1
|
Chaudhary S, Singh B. Grapefruit peel waste: unlocking the potential for industrial applications in the circular economy. Food Sci Biotechnol 2025; 34:2131-2155. [PMID: 40351712 PMCID: PMC12064541 DOI: 10.1007/s10068-024-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 05/14/2025] Open
Abstract
Abstract Grapefruit processing generates tons of peel waste. Valorization of grapefruit peel waste represents an archetype to extract valuable components viz., dietary fiber, pectin, flavonoids, phenolic acids, and essential oil that can be utilized in food, health, and cosmeceutical industries, materializing the circular economy concept, aligning with sustainable development goals (SDGs). This article chronicles updated information about the potential of bioactive components, methods for extraction, and their application in the food industry as natural additives, to develop functional foods and packaging. Furthermore, it elucidates the mechanism behind grapefruit peels' antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-inflammatory activities. The suitability of thermochemical and biochemical technologies has been discussed for peel waste conversion into value-added products like adsorbents, biochar, and biofuel. Conclusively, this review provides valuable information to capitalize on the utilization of grapefruit peel waste for commercial aims to effectuate a "waste-to-worth" regime and serve the purpose well of SDGs. Graphical Abstract
Collapse
Affiliation(s)
- Sahil Chaudhary
- Department of Food Science and Technology, I. K. Gujral Punjab Technical University, Kapurthala, Punjab 144603 India
| | - Barinderjit Singh
- Department of Food Science and Technology, I. K. Gujral Punjab Technical University, Kapurthala, Punjab 144603 India
| |
Collapse
|
2
|
Özer E, Döner Şİ, Dağ Tüzmen H. The effect of aromatherapy intervention with Bergamot and Grapefruit essential oils on premenstrual syndrome and menstrual symptoms: a randomized controlled trial. BMC Complement Med Ther 2025; 25:162. [PMID: 40312670 PMCID: PMC12044709 DOI: 10.1186/s12906-025-04857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/14/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Premenstrual syndrome and menstrual symptoms adversely affect approximately 80-95% of women of reproductive age. Aromatherapy interventions are used to reduce premenstrual syndrome and menstrual symptoms. This study was conducted to determine the effect of aromatherapy intervention with bergamot and grapefruit essential oils on premenstrual syndrome and menstrual symptoms. METHODS Ninety women with premenstrual syndrome were included the study. Participants were randomly divided into 3 groups: Bergamot(n = 30), Grapefruit(n = 30), Placebo(n = 30). Participants in each group were made to smell pure essential oil for 30 min 3 times a day for 4 days during the luteal phase of the menstrual cycle. The used was repeated in 3 menstrual cycles. "Premenstrual Syndrome Scale (PMSS)" was used to evaluate premenstrual syndrome and "Menstrual Symptom Questionnaire (MSQ)" was used to evaluate menstrual symptoms. All measurements were performed before and after the study. RESULTS The results showed that grapefruit essential oil was effective in reducing PMSS total score (p = 0.010) and sub-scale scores (depressive affect, anxiety, fatigue, depressive thoughts, appetite changes, sleep changes and bloating (p < 0.001), irritability (p = 0.024), pain (p = 0.047)). Although grapefruit essential oil had no effect on the total score of the MSQ. Grapefruit essential oil was found to be effective in reducing the MSQ scale sub-scale scores (menstrual pain symptoms (p = 0.024) and the use of coping methods with menstrual pain (p = 0.011)). Bergamot essential oil was found to be effective in reducing PMSS total score (p = 0.001) and PMSS sub-scale scores depressive affect (p = 0.013), irritability (p = 0.034), depressive thoughts and appetite changes (p = 0.026), pain (p = 0.001)). In addition, there was no effect on the menstrual syndrome scale and its sub-dimensions (p > 0.05). CONCLUSION Grapefruit essential oil was effective in reducing both premenstrual syndrome and menstrual symptoms, whereas bergamot essential oil was only effective in reducing premenstrual symptoms. TRIAL REGISTRATION NUMBER NCT06289764 (2024-02-01).
Collapse
Affiliation(s)
- Esra Özer
- Faculty of Health Sciences, Department of Midwifery, Ankara Medipol University, Ankara, Turkey
| | - Şerife İrem Döner
- Faculty of Health Sciences, Department of Midwifery, Ankara Medipol University, Ankara, Turkey.
| | - Hafize Dağ Tüzmen
- Faculty of Health Sciences, Department of Midwifery, KTO Karatay University, Konya, Turkey
| |
Collapse
|
3
|
Olewnik-Kruszkowska E, Vishwakarma A, Wrona M, Bertella A, Rudawska A, Gierszewska M, Schmidt B. Comparative Study of Crucial Properties of Packaging Based on Polylactide and Selected Essential Oils. Foods 2025; 14:204. [PMID: 39856870 PMCID: PMC11764739 DOI: 10.3390/foods14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% v/v solutions of ethanol, 3% w/v acetic acid solution, and isooctane, were among the critical studies conducted. A comparison of the properties of the obtained materials allowed us to establish that the incorporation of essential oils significantly increases elongation at break and enhances UV barrier properties. In the case of materials containing clove oil and tea tree oil, a reduction in WVTR of about 1 g/m2/h was observed. The migration of the ingredients present in the films filled with clove oil, grapefruit oil, and tea tree oil into the acetic acid solution did not exceed 10 mg/kg, which is an acceptable value according to the European Union restrictions. Taking into account all of the studied properties, it should be stressed that the most promising packaging material is the film filled with clove oil.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Street, 87-100 Toruń, Poland;
| | - Astha Vishwakarma
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Centre National de la Recherche Scientifique (CNRS), Universite Paris-Est Creteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France;
| | - Magdalena Wrona
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences 2, 52428 Jülich, Germany;
| | - Anis Bertella
- Department of Molecular and Cellular Biology, Faculty of Life and Nature Sciences, Abbes Laghrour University Khenchela, BP 1252 Road of Batna, Khenchela 40004, Algeria;
| | - Anna Rudawska
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36 St., 20-618 Lublin, Poland;
| | - Magdalena Gierszewska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Street, 87-100 Toruń, Poland;
| | - Beata Schmidt
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
4
|
Huo Y, Deng W, Sun X, Zhou L, Zhang Q, Hu J. Extract toolkit for essential oils: State of the art, trends, and challenges. Food Chem 2024; 461:140854. [PMID: 39167953 DOI: 10.1016/j.foodchem.2024.140854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Plant essential oils have a wide range of applications including cosmetics, food, leather, and textiles. Traditional methods employed for essential oils extraction suffer from several drawbacks, which have escalated into a major bottleneck for industrial applications. To circumvent the limitations, various innovative and eco-friendly technologies have emerged for the extraction of essential oils, such as ultrasound-assisted extraction, pulsed electrical-assisted extraction, ohmic-assisted technology, supercritical fluid extraction, and solvent-free microwave extraction. These cutting-edge technologies provide notable advantages over traditional methods in terms of extraction efficiency, environmental safety, and product quality enhancement. This review highlights the advantage of these innovative techniques, with a particular focus on their ability to enhance the yield and antioxidant activity of essential oils while simultaneously reducing energy consumption. Additionally, the mechanisms of these new and eco-friendly extraction methods are thoroughly discussed. This review provides valuable insights into the advancements in essential oils extraction.
Collapse
Affiliation(s)
- Yujia Huo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, PR China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, PR China
| | - Xinyi Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, PR China
| | - Lulu Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, PR China.
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, PR China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, PR China.
| |
Collapse
|
5
|
Maslii Y, Herbina N, Dene L, Ivanauskas L, Bernatoniene J. Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity. Polymers (Basel) 2024; 16:2649. [PMID: 39339113 PMCID: PMC11435575 DOI: 10.3390/polym16182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
According to data in the literature, natural products and essential oils are often used in dental practice. To develop a new oromucosal spray for the treatment of infectious and inflammatory diseases of the oral cavity, clove CO2 extract and essential oils of lavender and grapefruit were used as active pharmaceutical ingredients. Clove extract was obtained by the method of subcritical extraction from various raw materials, the choice of which was based on the yield of the CO2 extract and the study of its phytochemical and microbiological properties. Based on the results of microscopic and diffraction analyses, the rational time of ultrasonic exposure for the emulsion of active pharmaceutical ingredients was established. Mucoadhesive polymers were used as stabilizers of the two-phase system and prolongators. This article discusses the impact of the type and concentration of mucoadhesive polymers on the stability of the emulsion system; the viscous, textural, adhesive, and film characteristics of oromucosal spray; and the parameters determining sprayability.
Collapse
Affiliation(s)
- Yuliia Maslii
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Nataliia Herbina
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Lina Dene
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
- PetalNord MB, Kruosto g. 31, LT-47214 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
6
|
Sajid R, Abbas Z, Nazir M, Saleem M, Riaz N, Tousif MI, Tauseef S, Zengin G, Uba AI, Hussain AI, Ali MS, Hashem A, Almutairi KF, Avila-Quezada GD, Abd Allah EF. Valorization of hydro-distillate of fruit peels of Citrus paradisi macfad. Cultivar. Foster: Chemical profiling, antioxidant evaluation and in vitro and in silico enzyme inhibition studies. Heliyon 2024; 10:e36226. [PMID: 39281520 PMCID: PMC11400606 DOI: 10.1016/j.heliyon.2024.e36226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
The major commercial crops in Pakistan are citrus fruit trees, which are farmed extensively and serve as the country's principal source of foreign exchange. A local citrus plant, Citrus paradisi, variety Foster is famous for its valuable fruit and fruit juice, however, tons of peels of this fruit are thrown as waste, which otherwise can be utilized in formulating nutraceutical and cosmetics. In the present study, essential oil of fruit peels was obtained through hydro-distillation, which was then analyzed through GC-MS analysis and studied for its antioxidant and enzyme inhibition potential. GCMS analysis revealed the presence of several components; major were found to be limonene, α-terpineol, caryophyllene, δ-amorphene, elemol, γ-eudesoml, nootkatone and di-isooctyl phthalate. Although, the oil showed weak free radical inhibition, it was potentially active in CUPRAC, FRAP, phosphomolybdenum and metal chelating antioxidant assays. The oil also exhibited anti-glucosidase, anti-amylase activities and also exhibited potent inhibition of the enzyme tyrosinase, which makes it strong candidate for nutraceuticals and skin care products. The docking studies also substantiate our results and caryophyllene, γ-eudesoml and nootkatone showed good binding affinity α-glucosidase and α-amylase and all tested compounds showed the higher binding affinity towards the enzyme tyrosinase.
Collapse
Affiliation(s)
- Rameen Sajid
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zaheer Abbas
- Department of Botany, Division of Science and Technology, University of Education Lahore, Pakistan
| | - Mamona Nazir
- Department of Chemistry, Government Sadiq College Women University Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Pakistan
| | - Saba Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research., International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537 Istanbul, Turkey
| | | | - Muhammad Shaiq Ali
- International Center of Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Khalid F Almutairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | | | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Ren J, Wang YM, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Terpinen-4-ol from tea tree oil prevents Aspergillus flavus growth in postharvest wheat grain. Int J Food Microbiol 2024; 418:110741. [PMID: 38733636 DOI: 10.1016/j.ijfoodmicro.2024.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 μL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 μL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 μL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 μL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.
Collapse
Affiliation(s)
- Jing Ren
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yi-Ming Wang
- School of International Education, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
8
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
9
|
Pimentel LS, Bastos LM, Goulart LR, Ribeiro LNDM. Therapeutic Effects of Essential Oils and Their Bioactive Compounds on Prostate Cancer Treatment. Pharmaceutics 2024; 16:583. [PMID: 38794244 PMCID: PMC11125265 DOI: 10.3390/pharmaceutics16050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Since prostate cancer (PCa) relies on limited therapies, more effective alternatives are required. Essential oils (EOs) and their bioactive compounds are natural products that have many properties including anticancer activity. This review covers studies published between 2000 and 2023 and discusses the anti-prostate cancer mechanisms of the EOs from several plant species and their main bioactive compounds. It also provides a critical perspective regarding the challenges to be overcome until they reach the market. EOs from chamomile, cinnamon, Citrus species, turmeric, Cymbopogon species, ginger, lavender, Mentha species, rosemary, Salvia species, thyme and other species have been tested in different PCa cell lines and have shown excellent results, including the inhibition of cell growth and migration, the induction of apoptosis, modulation in the expression of apoptotic and anti-apoptotic genes and the suppression of angiogenesis. The most challenging aspects of EOs, which limit their clinical uses, are their highly lipophilic nature, physicochemical instability, photosensitivity, high volatility and composition variability. The processing of EO-based products in the pharmaceutical field may be an interesting alternative to circumvent EOs' limitations, resulting in several benefits in their further clinical use. Identifying their bioactive compounds, therapeutic effects and chemical structures could open new perspectives for innovative developments in the field. Moreover, this could be helpful in obtaining versatile chemical synthesis routes and/or biotechnological drug production strategies, providing an accurate, safe and sustainable source of these bioactive compounds, while looking at their use as gold-standard therapy in the close future.
Collapse
Affiliation(s)
- Leticia Santos Pimentel
- Laboratory of Nanobiotechnology Professor Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia 38405-302, MG, Brazil
| | | | | | - Lígia Nunes de Morais Ribeiro
- Laboratory of Nanobiotechnology Professor Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia 38405-302, MG, Brazil
| |
Collapse
|
10
|
Deng N, Hu Z, Li H, Li C, Xiao Z, Zhang B, Liu M, Fang F, Wang J, Cai Y. Physicochemical properties and pork preservation effects of lotus seed drill core powder starch-based active packaging films. Int J Biol Macromol 2024; 260:129340. [PMID: 38262831 DOI: 10.1016/j.ijbiomac.2024.129340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Lotus seed drill core powder starch (LCPS)-based active packaging films incorporated with cellulose nanocrystals (CNC) and grapefruit essential oil-corn nanostarch Pickering emulsion (ECPE) were characterized, and their pork preservation effects were investigated in this study. In contrast with corn, potato and rice starches, LCPS showed higher amylose content, elliptical and circular shape with more uniform size distribution. Furthermore, LCPS film exhibited lower light transmittance, stronger tensile strength, and smaller elongation at break compared to the other starch films. Then, the LCPS film containing 4 % CNC and 9 % ECPE was fabricated which had stronger mechanical properties, lower water vapor permeability and oxygen transmission rate, and denser network structure. FTIR and XRD analyses also confirmed that CNC and ECPE were successfully implanted into the LCPS matrix without damaging the crystalline structure of LCPS. Herein, the LCPS/CNC/ECPE film exerted potential antibacterial activity against Escherichia coli and Staphylococcus aureus. Besides, packaging with this composite film significantly preserved the pork during cold storage via decreasing its juice loss rate, pH value, total number of colonies, total volatile base nitrogen and thiobarbituric acid reactive substance values. The present study will provide a theoretical basis for the application of LCPS as new biodegradable active films.
Collapse
Affiliation(s)
- Na Deng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhiqiang Hu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Intelligent Manufacturing and Quality Safety of Xiang Flavoured Compound Seasoning for Chain Catering, Liuyang 410023, China.
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
11
|
Bhatia S, Abbas Shah Y, Al-Harrasi A, Jawad M, Koca E, Aydemir LY. Enhancing Tensile Strength, Thermal Stability, and Antioxidant Characteristics of Transparent Kappa Carrageenan Films Using Grapefruit Essential Oil for Food Packaging Applications. ACS OMEGA 2024; 9:9003-9012. [PMID: 38434887 PMCID: PMC10905581 DOI: 10.1021/acsomega.3c07366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
The trends in food packaging technologies are shifting toward utilizing natural and environmentally friendly materials prepared from biopolymers such as kappa carrageenan to replace synthetic polymers. In the current study, varying amounts (0.1, 0.2, and 0.3%) of grapefruit essential oil (GFO) were incorporated in kappa carrageenan-based edible films to improve their physicochemical properties. The developed film samples were characterized for their barrier, mechanical, morphological, optical, thermal, antioxidant, and biodegradable properties. The results obtained showed that the tensile strength of the carrageenan films enhanced significantly from 65.20 ± 4.71 to 98.21 ± 6.35 MPa with the incorporation of GFO in a concentration-dependent manner. FTIR and SEM analysis confirmed the intermolecular bonding between carrageenan and GFO, resulting in the formation of compact films. Incorporating GFO significantly enhanced the thermal resistance of oil-loaded films, as confirmed by TGA, DSC, and DTG analysis. The addition of GFO led to a substantial increase in the radical scavenging activity of the films, as evidenced by the DPPH and ABTS assays. Furthermore, the developed films were biodegradable in soil and seawater environments, indicating their potential as a sustainable alternative to traditional plastics. Findings demonstrated that GFO can be used as a natural antioxidant agent in kappa carrageenan-based films for potential applications in food packaging.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- School
of Health Science, University of Petroleum
and Energy Studies, Dehradun 248007, India
- Saveetha
Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Yasir Abbas Shah
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Muhammad Jawad
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Esra Koca
- Department
of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| | - Levent Yurdaer Aydemir
- Department
of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
12
|
Kačániová M, Čmiková N, Vukovic NL, Verešová A, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Ban Z, Vukic MD. Citrus limon Essential Oil: Chemical Composition and Selected Biological Properties Focusing on the Antimicrobial (In Vitro, In Situ), Antibiofilm, Insecticidal Activity and Preservative Effect against Salmonella enterica Inoculated in Carrot. PLANTS (BASEL, SWITZERLAND) 2024; 13:524. [PMID: 38498554 PMCID: PMC10893099 DOI: 10.3390/plants13040524] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
New goals for industry and science have led to increased awareness of food safety and healthier living in the modern era. Here, one of the challenges in food quality assurance is the presence of pathogenic microorganisms. As planktonic cells can form biofilms and go into a sessile state, microorganisms are now more resistant to broad-spectrum antibiotics. Due to their proven antibacterial properties, essential oils represent a potential option to prevent food spoilage in the search for effective natural preservatives. In this study, the chemical profile of Citrus limon essential oil (CLEO) was evaluated. GC-MS analysis revealed that limonene (60.7%), β-pinene (12.6%), and γ-terpinene (10.3%) are common constituents of CLEO, which prompted further research on antibacterial and antibiofilm properties. Minimum inhibitory concentration (MIC) values showed that CLEO generally exhibits acceptable antibacterial properties. In addition, in situ antimicrobial research revealed that vapour-phase CLEO can arrest the growth of Candida and Y. enterocolitica species on specific food models, indicating the potential of CLEO as a preservative. The antibiofilm properties of CLEO were evaluated by MIC assays, crystal violet assays, and MALDI-TOF MS analysis against S. enterica biofilm. The results of the MIC and crystal violet assays showed that CLEO has strong antibiofilm activity. In addition, the data obtained by MALDI-TOF MS investigation showed that CLEO altered the protein profiles of the bacteria studied on glass and stainless-steel surfaces. Our study also found a positive antimicrobial effect of CLEO against S. enterica. The anti-Salmonella activity of CLEO in vacuum-packed sous vide carrot samples was slightly stronger than in controls. These results highlight the advantages of the antibacterial and antibiofilm properties of CLEO, suggesting potential applications in food preservation.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
- INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Nenad L. Vukovic
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| | - Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| |
Collapse
|
13
|
Bhatia S, Al-Harrasi A, Shah YA, Saif Alrasbi AN, Jawad M, Koca E, Aydemir LY, Alamoudi JA, Almoshari Y, Mohan S. Structural, mechanical, barrier and antioxidant properties of pectin and xanthan gum edible films loaded with grapefruit essential oil. Heliyon 2024; 10:e25501. [PMID: 38371972 PMCID: PMC10873655 DOI: 10.1016/j.heliyon.2024.e25501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
This research focused on the development of films based on pectin and xanthan gum composite loaded with different concentrations of grapefruit essential oil (GFO). The fabricated films were characterized to assess the effect of GFO on the structural, mechanical, barrier, chemical, and antioxidant properties. The addition of GFO enhanced the functional properties of the films, as confirmed by FTIR analysis showing molecular interactions within the film matrix. SEM observations revealed that films with higher GFO content had a smoother, more compact structure with uniform oil distribution. Films loaded with oil demonstrated enhanced water resistance, as their decreased permeability ranged from 0.733 ± 0.009 to 0.561 ± 0.020 (g mm)/(m2.h.kPa). Additionally, these films showed a notable increase in tensile strength, ranging from 2.91 ± 0.19 to 8.55 ± 0.62 MPa. However, the addition of oil led to a reduction in the elongation at break of the films, which decreased from 52.84 ± 3.41 % to 12.68 ± 1.52 %, and a decline in transparency from 87.57 ± 0.65 % to 76.18 ± 1.12 %. Fabricated films exhibited enhanced antioxidant properties, as evidenced by increased DPPH• and ABTS•+ radical scavenging activities with the addition of GFO. The findings of the current study suggest that GFO is an effective natural additive for enhancing the physiochemical properties of pectin and xanthan gum-based films, making them more suitable for food packaging applications.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Aaisha Naseer Saif Alrasbi
- School of Pharmacy, College of Health Sciences, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Muhammad Jawad
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Esra Koca
- Adana Alparslan Turkes Science and Technology University, Department of Food Engineering, Adana 01250, Turkey
| | - Levent Yurdaer Aydemir
- Adana Alparslan Turkes Science and Technology University, Department of Food Engineering, Adana 01250, Turkey
| | - Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
14
|
Angane M, Swift S, Huang K, Perera J, Chen X, Butts CA, Quek SY. Synergistic antimicrobial interaction of plant essential oils and extracts against foodborne pathogens. Food Sci Nutr 2024; 12:1189-1206. [PMID: 38370080 PMCID: PMC10867478 DOI: 10.1002/fsn3.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
Essential oils (EOs) and plant extracts have demonstrated inhibitory activity against a wide range of pathogenic bacteria. In this study, the chemical composition of manuka, kanuka, peppermint, thyme, lavender, and feijoa leaf and peel EOs and feijoa peel and leaf extracts were analyzed, and their antimicrobial activity against Escherichia coli, Salmonella enterica Typhimurium, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes were determined. The results showed that the major compounds varied among different EOs and extracts, with menthol in peppermint EO, thymol and carvacrol in thyme EO, linalool in lavender EO, β-caryophyllene in feijoa EO, and flavones in feijoa extract being the most prevalent. The study found that while EOs/extracts had antimicrobial activity alone, no individual EO/extract was highly effective against all tested species. Therefore, their combinations were tested to identify those that could broaden the spectrum of activity and act synergistically. The checkerboard method was applied to assess the possible synergism between the paired combinations of EOs/extract. The peppermint/thyme, peppermint/lavender, and peppermint/feijoa peel extract combinations exhibited a synergistic effect against E. coli and L. monocytogenes, with the peppermint/thyme and peppermint/feijoa peel extract combinations being the most effective against all five pathogens. Time-to-kill kinetics assays demonstrated that peppermint/thyme and peppermint/feijoa peel extract combinations achieved complete eradication of E. coli within 10-30 min and L. monocytogenes within 4-6 h. This study provides a promising approach to developing a natural alternative for food preservation using synergistic combinations of EOs/extracts, which could potentially reduce the required dosage and broaden their application in food products as natural preservatives.
Collapse
Affiliation(s)
- Manasweeta Angane
- Food Science, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
- Faculty of Medical and Health Sciences, School of Medical SciencesThe University of AucklandAucklandNew Zealand
- The New Zealand Institute for Plant & Food Research LimitedPalmerston NorthNew Zealand
| | - Simon Swift
- Faculty of Medical and Health Sciences, School of Medical SciencesThe University of AucklandAucklandNew Zealand
| | - Kang Huang
- Food Science, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
| | - Janesha Perera
- Faculty of Medical and Health Sciences, School of Medical SciencesThe University of AucklandAucklandNew Zealand
| | - Xiao Chen
- Food Science, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
| | - Christine A. Butts
- The New Zealand Institute for Plant & Food Research LimitedPalmerston NorthNew Zealand
| | - Siew Young Quek
- Food Science, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
- Riddet InstituteNew Zealand Centre of Research Excellence for Food ResearchPalmerston NorthNew Zealand
| |
Collapse
|
15
|
Shetta A, Ali IH, Sharaf NS, Mamdouh W. "Review of strategic methods for encapsulating essential oils into chitosan nanosystems and their applications". Int J Biol Macromol 2024; 259:129212. [PMID: 38185303 DOI: 10.1016/j.ijbiomac.2024.129212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Essential oils (EOs) are hydrophobic, concentrated extracts of botanical origin containing diverse bioactive molecules that have been used for their biomedical properties. On the other hand, the volatility, toxicity, and hydrophobicity limited their use in their pure form. Therefore, nano-encapsulation of EOs in a biodegradable polymeric platform showed a solution. Chitosan (CS) is a biodegradable polymer that has been intensively used for EOs encapsulation. Various approaches such as homogenization, probe sonication, electrospinning, and 3D printing have been utilized to integrate EOs in CS polymer. Different CS-based platforms were investigated for EOs encapsulation such as nanoparticles (NPs), nanofibers, films, nanoemulsions, 3D printed composites, and hydrogels. Biological applications of encapsulating EOs in CS include antioxidant, antimicrobial, and anticancer functions. This review explores the principles for nanoencapsulation strategies, and the available technologies are also reviewed, in addition to an in-depth overview of the current research and application of nano-encapsulated EOs.
Collapse
Affiliation(s)
- Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Isra H Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Nouran S Sharaf
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
16
|
Viscusi G, Boccalon E, Lamberti E, Nocchetti M, Gorrasi G. Alginate Microbeads Containing Halloysite and Layered Double Hydroxide as Efficient Carriers of Natural Antimicrobials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:232. [PMID: 38276750 PMCID: PMC10820769 DOI: 10.3390/nano14020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The present paper describes the preparation and characterization of novel microbeads from alginate filled with nanoclay such as halloysite nanotubes (HNTs). HNTs were used as support for the growth of layered double hydroxide (LDH) crystals producing a flower-like structure (HNT@LDH). Such nanofiller was loaded with grapefruit seed oil (GO), an active compound with antimicrobial activity, up to 50% wt. For comparison, the beads were also loaded with HNT and LDH separately, and filled with the same amount of GO. The characterization of the filler was performed using XRD and ATR spectroscopy. The beads were analyzed through XRD, TGA, ATR and SEM. The functional properties of the beads, as nanocarriers of the active compound, were investigated using UV-vis spectroscopy. The release kinetics were recorded and modelled as a function of the structural characteristics of the nanofiller.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.V.); (E.L.)
| | - Elisa Boccalon
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell’ Elce di Sotto 8, 06123 Perugia, Italy;
| | - Elena Lamberti
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.V.); (E.L.)
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.V.); (E.L.)
| |
Collapse
|
17
|
Saeed RA, Maqsood M, Saeed RA, Muzammil HS, Khan MI, Asghar L, Nisa SU, Rabail R, Aadil RM. Plant-based foods and hepatocellular carcinoma: A review on mechanistic understanding. Crit Rev Food Sci Nutr 2023; 63:11750-11783. [PMID: 35796706 DOI: 10.1080/10408398.2022.2095974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regardless of etiology, hepatocarcinogenesis is frequently preceded by a distinctive sequence of chronic necroinflammation, compensatory hepatic regeneration, development of hepatic fibrosis, and ultimately cirrhosis. The liver being central immunomodulators, closely maintains immunotolerance. Any dysregulation in this management of immunotolerance is a hallmark of chronic hepatic disease and hepatocellular carcinoma (HCC). Apart from other malignancies, hepatocellular carcinoma accounts for 90% of liver cancers. Several emerging evidences have recognized diet as lifestyle associated risk factor in HCC development. However, natural compounds have the potential to fight hepatoma aggressiveness via inhibition of cellular proliferation and modulation of oncogenic pathways. This review aimed to identify the several plant-based foods for their protective role in HCC prevention by understating the molecular mechanisms involved in inhibition of progression and proliferation of cancer. Information from relevant publications in which several plant-based foods demonstrated protective potential against HCC has been integrated as well as evaluated. For data integration, Science direct, Google scholar, and Scopus websites were used. Nutrition-based approaches in the deterrence of several cancers offer a substantial benefit to currently used medical therapies and should be implemented more often as an adjunct to first-line medical therapy. Furthermore, the inclusion of these plant-based foods (vegetables, fruits, herbs, and spices) may improve general health and decline cancer incidence.
Collapse
Affiliation(s)
- Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raafia Anam Saeed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Laiba Asghar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Un Nisa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
18
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
19
|
Potocka W, Assy Z, Bikker FJ, Laine ML. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023; 28:7178. [PMID: 37894657 PMCID: PMC10609285 DOI: 10.3390/molecules28207178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.
Collapse
Affiliation(s)
- Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| |
Collapse
|
20
|
Mladenović M, Astolfi R, Tomašević N, Matić S, Božović M, Sapienza F, Ragno R. In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition-Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants (Basel) 2023; 12:1815. [PMID: 37891894 PMCID: PMC10604248 DOI: 10.3390/antiox12101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The antioxidant activity of essential oils (EOs) is an important and frequently studied property, yet it is not sufficiently understood in terms of the contribution of EOs mixtures' constituents and biological properties. In this study, a series of 61 commercial EOs were first evaluated as antioxidants in vitro, following as closely as possible the cellular pathways of reactive oxygen species (ROS) generation. Hence, EOs were assessed for the ability either to chelate metal ions, thus interfering with ROS generation within the respiratory chain, or to neutralize 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and lipid peroxide radicals (LOO•), thereby halting lipid peroxidation, as well as to neutralize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radicals (ABTS•+) and hydroxyl radicals (OH•), thereby preventing the ROS species from damaging DNA nucleotides. Showing noteworthy potencies to neutralize all of the radicals at the ng/mL level, the active EOs were also characterized as protectors of DNA double strands from damage induced by peroxyl radicals (ROO•), emerging from 2,2'-azobis-2-methyl-propanimidamide (AAPH) as a source, and OH•, indicating some genome protectivity and antigenotoxicity effectiveness in vitro. The chemical compositions of the EOs associated with the obtained activities were then analyzed by means of machine learning (ML) classification algorithms to generate quantitative composition-activity relationships (QCARs) models (models published in the AI4EssOil database available online). The QCARs models enabled us to highlight the key features (EOSs' chemical compounds) for exerting the redox potencies and to define the partial dependencies of the features, viz. percentages in the mixture required to exert a given potency. The ML-based models explained either the positive or negative contribution of the most important chemical components: limonene, linalool, carvacrol, eucalyptol, α-pinene, thymol, caryophyllene, p-cymene, eugenol, and chrysanthone. Finally, the most potent EOs in vitro, Ylang-ylang (Cananga odorata (Lam.)) and Ceylon cinnamon peel (Cinnamomum verum J. Presl), were promptly administered in vivo to evaluate the rescue ability against redox damage caused by CCl4, thereby verifying their antioxidant and antigenotoxic properties either in the liver or in the kidney.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Sanja Matić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Mijat Božović
- Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| |
Collapse
|
21
|
Bukvicki D, D’Alessandro M, Rossi S, Siroli L, Gottardi D, Braschi G, Patrignani F, Lanciotti R. Essential Oils and Their Combination with Lactic Acid Bacteria and Bacteriocins to Improve the Safety and Shelf Life of Foods: A Review. Foods 2023; 12:3288. [PMID: 37685221 PMCID: PMC10486891 DOI: 10.3390/foods12173288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The use of plant extracts (e.g., essential oils and their active compounds) represents an interesting alternative to chemical additives and preservatives applied to delay the alteration and oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable sources of food preservatives as they provide a healthier alternative to synthetic chemicals while serving the same purpose without affecting food quality parameters. The natural antimicrobial molecules found in medicinal plants represent a possible solution against drug-resistant bacteria, which represent a global health problem, especially for foodborne infections. Several solutions related to their application on food have been described, such as incorporation in active packaging or edible film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives may negatively impact the sensorial characteristics of the final product, and to solve this problem, their application has been proposed in combination with other hurdles, including biocontrol agents. Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use is combined with other preservation methods. The combined use of EOs and biocontrol agents in fruit and vegetables, meat, and dairy products is becoming more and more important due to growing concerns about potentially dangerous and toxic synthetic additives. The combination of these two hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms) of the final products while maintaining or stabilizing their sensory and nutritional quality. This review critically describes and collects the most updated works regarding the application of EOs in different food sectors and their combination with biocontrol agents and bacteriocins.
Collapse
Affiliation(s)
- Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden ‘Jevremovac’, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
22
|
Ratajczak K, Piotrowska-Cyplik A, Cyplik P. Analysis of the Effect of Various Potential Antimicrobial Agents on the Quality of the Unpasteurized Carrot Juice. Molecules 2023; 28:6297. [PMID: 37687126 PMCID: PMC10488548 DOI: 10.3390/molecules28176297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Short shelf-life and poor microbial quality of minimally processed foods of plant origin pose a serious problem for the food industry. Novel techniques of minimal treatment combined with disinfection are being researched, and, for fresh juice, the addition of antimicrobial agents appears to be a promising route. In this research, fresh, nonfiltered, unpasteurized carrot juice was mixed with four potential antimicrobials (bourbon vanilla extract, peppermint extract, cannabidiol oil, and grapefruit extract). All four variants and the reference pure carrot juice were analyzed for metapopulational changes, microbial changes, and physicochemical changes. The potential antimicrobials used in the research have improved the overall microbial quality of carrot juice across 4 days of storage. However, it is important to notice that each of the four agents had a different spectrum of effectiveness towards the groups identified in the microflora of carrot juice. Additionally, the antimicrobials have increased the diversity of the carrot juice microbiome but did not prevent the occurrence of pathogenic bacteria. In conclusion, the use of antimicrobial agents such as essential oils or their derivatives may be a promising way of improving the microbial quality and prolonging the shelf-life of minimally processed foods, such as fresh juices, but the technique requires further research.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Agnieszka Piotrowska-Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Paweł Cyplik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland;
| |
Collapse
|
23
|
Liu S, Zhao C, Cao Y, Li Y, Zhang Z, Nie D, Tang W, Li Y. Comparison of Chemical Compositions and Antioxidant Activity of Essential Oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus. Molecules 2023; 28:5051. [PMID: 37446712 DOI: 10.3390/molecules28135051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to compare the antioxidant activity of litsea cubeba oil (LCO), cinnamon oil (CO), anise oil (AO), and eucalyptus oil (EUC) in vitro. The chemical compositions of the essential oils (EOs) were analyzed using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of the four EOs was evaluated through scavenging DPPH free radicals, chelating Fe2+, scavenging hydroxyl free radicals, and inhibiting yolk lipid peroxidation. The results showed that the major compounds found in LCO, CO, AO, and EUC are citral (64.29%), cinnamaldehyde (84.25%), anethole (78.51%), and 1,8-cineole (81.78%), respectively. The four EOs all had certain antioxidant activity. The ability to scavenge DPPH radical was ranked in the order of LCO > CO > AO > EUC. The hydroxyl radical scavenging ability was ranked in the order of EUC > CO > LCO > AO. The chelating Fe2+ capacity was ranked in the order of EUC > AO > CO > LCO. The yolk lipid peroxidation inhibition ability was ranked in the order of CO > AO > EUC > LCO. In different antioxidant activity assays, the antioxidant activity of the EOs was different. It was speculated that the total antioxidant activity of an EO may be the result of the joint action of different antioxidant capacities.
Collapse
Affiliation(s)
- Shutian Liu
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Chen Zhao
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yuwei Cao
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yan Li
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Zhuo Zhang
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Dechao Nie
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Weixuan Tang
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yanling Li
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| |
Collapse
|
24
|
Jun N, Yi‐Ting C, Yu‐Ting G, Cheng‐Fa Z, Li‐Juan L, Rong S, Xiao‐yan Y, Wen X, Xu Y. Antioxidant, anti-inflammatory, and anticancer function of Engleromyces goetzei Henn aqueous extract on human intestinal Caco-2 cells treated with t-BHP. Food Sci Nutr 2023; 11:3450-3463. [PMID: 37324905 PMCID: PMC10261740 DOI: 10.1002/fsn3.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 04/08/2023] Open
Abstract
High body mass index (high BMI, obesity) is a serious public health problem, and "obesity-induced oxidative stress, inflammation, and cancer" have become modern epidemic diseases. We carried out this study to explore a functional beverage that may protect against obesity-induced diseases. The Engleromyces goetzei Henn herbal tea is such a candidate. For this study, we carried out LC-MS analysis of E. goetzei Henn aqueous extract (EgH-AE); then used the Caco-2 cell line for the model cells and treated the cells with t-BHP to form an oxidative stress system. An MTT assay was used for testing the biocompatibility and cytoprotective effects; reactive oxygen species and malondialdehyde determination was used for evaluating the antioxidative stress effect; TNF-α and IL-1β were used for observing the anti-inflammatory effect, and 8-OHdG for monitoring anticancer activity. The results of this study demonstrate that the EgH-AE has very good biocompatibility with the Caco-2 cell line and has good cytoprotective, antioxidant, anti-inflammatory, and anticancer properties. It is clear that EgH-AE, a kind of ancient herbal tea, may be used to develop a functional beverage that can be given to people with a high BMI to protect against obesity-induced diseases.
Collapse
Affiliation(s)
- Ni Jun
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Cheng Yi‐Ting
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Gao Yu‐Ting
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Zhao Cheng‐Fa
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Li Li‐Juan
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
| | - She Rong
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Yang Xiao‐yan
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Xiao Wen
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
- Center for Cultural Ecology in Northwest YunnanDaliYunnan671003China
- Yunling Back‐and‐White Snub‐Nosed Monkey Observation and Research Station of Yunnan ProvinceDaliYunnan671003China
| | - Yang Xu
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Laboratory of Environmental BiomedicineCentral China Normal University430079WuhanChina
| |
Collapse
|
25
|
Amala Dev AR, Sonia Mol J. Citrus Essential Oils: A Rational View on its Chemical Profiles, Mode of Action of Anticancer Effects/Antiproliferative Activity on Various Human Cancer Cell Lines. Cell Biochem Biophys 2023:10.1007/s12013-023-01138-z. [PMID: 37086387 DOI: 10.1007/s12013-023-01138-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Cancer is a complex genetic disorder due to uncontrolled growth of abnormal cells in the body, causes damage to the immune system, and may lead to life-threatening situations. Common approaches to cancer treatment includes chemotherapy, hormone therapy, immunotherapy, radiation therapy etc. Development of novel and natural chemotherapeutic agents is highly demanded because of the side effects of synthetic drugs. Essential oils from aromatic plants exhibited antioxidant, antimutagenic, antiproliferative and immunomodulating activities. Mechanism of multidrug resistance and synergistic action of these volatile constituents are responsible for their chemopreventive properties. These oils primarily comprising of terpenoid constituents and are characterized by volatility, aroma, low molecular weight etc. The chemical composition of these oils varies depending on the environmental condition, species, plant part and geographical region. Literature analysis revealed that plant essential oils play an important role in cancer prevention and treatment. Cancer patients exposed to essential oils via inhaler devices were found to have less anxiety, stress, and nausea and insomnia. Nowadays, there is an increasing demand for investigating the biological properties of aromatic plants due to their availability, chemical diversity, and low toxicity. In aromatherapy, Citrus essential oils repress cancer related pain and enhance immune system. Current review summarizes existing variability of the chemical composition of Citrus essential oils and its molecular level anticancer mechanism against various human cancer cell lines. Citrus essential oils enhance cytotoxicity, antiproliferative and apoptotic behavior of cancer cell lines. Since essential oils exhibiting significant anticancer potential is worthy of further investigation for cancer chemoprevention. The findings of various research activities can be exploited by cancer researchers world wide for the development of anticancer drugs which can relieve cancer symptoms.
Collapse
Affiliation(s)
- A R Amala Dev
- PG & Research Department of Chemistry, Mar Ivanios College (Autonomous), Thiruvananthapuram 695015, Kerala, India
| | - Joseph Sonia Mol
- PG & Research Department of Chemistry, Mar Ivanios College (Autonomous), Thiruvananthapuram 695015, Kerala, India.
| |
Collapse
|
26
|
Milenković AN, Stanojević JS, Troter DZ, Pejčić MG, Stojanović-Radić ZZ, Cvetković DJ, Stanojević LP. Chemical composition, antimicrobial and antioxidant activities of essential oils isolated from black ( Piper nigrum L.) and cubeb pepper ( Piper cubeba L.) fruits from the Serbian market. JOURNAL OF ESSENTIAL OIL RESEARCH 2023. [DOI: 10.1080/10412905.2023.2185310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
| | | | | | - Milica G. Pejčić
- Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | | | | | | |
Collapse
|
27
|
Couteau C, Diarra H, Lecoq M, Ali A, Bernet &, Coiffard L. The Role of Essential Oils in Homemade Cosmetics: A Study of 140 Recipes. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2023; 16:18-24. [PMID: 36743973 PMCID: PMC9891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two recent trends that have developed simultaneously are a mistrust of health products by some of the population and the growing popularity of essential oils. The objective of this study was to analyze recipes with essential oils found on the internet and to assess their level of photoprotective efficacy. Therefore, we conducted a study of 140 recipes for personal care and hygiene products that incorporate one or more essential oils. This analysis revealed that numerous essential oils are called for in these recipes, derived from plants belonging to a wide diversity of botanical families. There was a significant difference (p=0.0026) in the number of essential oils listed in the recipes for facial care and body care recipes. There was also a statistically significant difference (p=2.54E-5) in the amount of essential oil to be added, expressed in drops, according to the type of product being made. A common characteristic of most of the recipes was the absence of any antimicrobial agents or antioxidants, which poses serious issues of preservation for the finished products. Recipes with essential oils pose many issues. The first issue lies in the quantities of the different raw materials to be incorporated; it influences the final essential oil concentration. The second issue concerns the adverse effects (photosensitization, for example) and contraindications (pregnant women, nursing women) of certain essential oils. Finally, it is not possible to carry out physicochemical testing raw materials and finish preparation.
Collapse
Affiliation(s)
- Céline Couteau
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| | - Harona Diarra
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
- Mr. Diarra is with University of Paris-Saclay, Faculty of Pharamacy in Châtenay-Malabry, France
| | - Manon Lecoq
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| | - Aline Ali
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| | - >Mélanie Bernet
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| | - Laurence Coiffard
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| |
Collapse
|
28
|
Ceccato-Antonini SR, Shirahigue LD, Varano A, da Silva BN, Brianti CS, de Azevedo FA. Citrus essential oil: would it be feasible as antimicrobial in the bioethanol industry? Biotechnol Lett 2023; 45:1-12. [PMID: 36333539 DOI: 10.1007/s10529-022-03320-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Essential oils (EOs) extracted from Citrus peels contain 85%-99% volatile components (a mixture of monoterpenes, sesquiterpenes, and their oxygenated derivatives) and 1%-15% non-volatile compounds. Citrus EOs have been long known for their antimicrobial properties, owing to which these EOs have a diverse range of applications. However, no studies have reported the applicability of Citrus EOs for the control of bacterial and yeast contaminants in the bioethanol industry. In this regard, the present review aimed to explore the feasibility of Citrus EOs in this industry. The Web of Science database was searched for reports that described the association of Citrus EOs with the most common microorganisms in the bioethanol industry to evaluate the efficacy of these EOs as antimicrobial agents in this context. The objective of the review was to suggest a novel antimicrobial that could replace sulfuric acid and antibiotics as the commonly used antimicrobial agents in the bioethanol industry. Citrus EOs exhibit antibacterial activity against Lactobacillus, which is the main bacterial genus that contaminates this fermentation process. The present report also confirms the selective action of these EOs on the contaminating yeasts and not/less on ethanol-producing yeast Saccharomyces cerevisiae, however further studies should be conducted to investigate the effects of Citrus EOs in yeast-bacterium co-culture.
Collapse
Affiliation(s)
- Sandra Regina Ceccato-Antonini
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil.
| | - Ligianne Din Shirahigue
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Amanda Varano
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Bianca Novaes da Silva
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Carina Sawaya Brianti
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Fernando Alves de Azevedo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Via Anhanguera Km 158, Cordeirópolis, SP, 13490-970, Brasil
| |
Collapse
|
29
|
Khan N, Ahmed S, Sheraz MA, Anwar Z, Ahmad I. Pharmaceutical based cosmetic serums. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS AND RELATED METHODOLOGY 2023; 48:167-210. [PMID: 37061274 DOI: 10.1016/bs.podrm.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The growth and demand for cosmeceuticals (cosmetic products that have medicinal or drug-like benefits) have been enhanced for the last few decades. Lately, the newly invented dosage form, i.e., the pharmaceutical-based cosmetic serum has been developed and widely employed in various non-invasive cosmetic procedures. Many pharmaceutical-based cosmetic serums contain natural active components that claim to have a medical or drug-like effect on the skin, hair, and nails, including anti-aging, anti-wrinkle, anti-acne, hydrating, moisturizing, repairing, brightening and lightening skin, anti-hair fall, anti-fungal, and nail growth effect, etc. In comparison with other pharmaceutical-related cosmetic products (creams, gels, foams, and lotions, etc.), pharmaceutical-based cosmetic serums produce more rapid and incredible effects on the skin. This chapter provides detailed knowledge about the different marketed pharmaceutical-based cosmetic serums and their several types such as facial serums, hair serums, nail serums, under the eye serum, lip serum, hand, and foot serum, respectively. Moreover, some valuable procedures have also been discussed which provide prolong effects with desired results in the minimum duration of time after the few sessions of the serum treatment.
Collapse
Affiliation(s)
- Nimra Khan
- Department of Pharmacy Practice, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmacy Practice, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan; Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
30
|
Garzoli S, Alarcón-Zapata P, Seitimova G, Alarcón-Zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022; 22:407. [PMID: 36514100 PMCID: PMC9749237 DOI: 10.1186/s12935-022-02806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
- Facultad de Ciencias de La Salud, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063 Tajikistan
| | | | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Yaounde, 812 Cameroon
| | | | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Pascal 36, 20133 Milan, Italy
| | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padua, Italy
- AIROB, Associazione Italiana Per la Ricerca Oncologica Di Base, Padua, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
31
|
Li Y, Liu S, Zhao C, Zhang Z, Nie D, Tang W, Li Y. The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules 2022; 27:molecules27207044. [PMID: 36296637 PMCID: PMC9607008 DOI: 10.3390/molecules27207044] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing concerns over the use of antimicrobial growth promoters in animal production has prompted the need to explore the use of natural alternatives such as phytogenic compounds and probiotics. Citrus EOs have the potential to be used as an alternative to antibiotics in animals. The purpose of this research was to study the antibacterial and antioxidant activities of five citrus EOs, grapefruit essential oil (GEO), sweet orange EO (SEO), bergamot EO (BEO), lemon EO (LEO) and their active component d-limonene EO (DLEO). The chemical composition of EOs was analyzed by gas chromatography–mass spectrometry (GC-MS). The antibacterial activities of the EOs on three bacteria (Escherichia coli, Salmonella and Lactobacillus acidophilus) were tested by measuring the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and inhibition zone diameter (IZD). The antioxidant activities of EOs were evaluated by measuring the free radical scavenging activities of DPPH and ABTS. We found that the active components of the five citrus EOs were mainly terpenes, and the content of d-limonene was the highest. The antibacterial test showed that citrus EOs had selective antibacterial activity, and the LEO had the best selective antibacterial activity. Similarly, the LEO had the best scavenging ability for DPPH radicals, and DLEO had the best scavenging ability for ABTS. Although the main compound of the five citrus EOs was d-limonene, the selective antibacterial and antioxidant activity of them might not be primarily attributed to the d-limonene, but some other compounds’ combined action.
Collapse
|
32
|
Zhang H, Duan Z, Zhang J, Liu B, Jiang W, Zhou Q. Analysis and optimization of feed liquid flow characteristics of distributor in scraping film molecular distillation equipment. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The initial liquid film is the basis of material evaporation during distillation, so it is of great significance to study the distribution of the initial liquid film of distributor in the process of scraping film molecular distillation. In this paper, CFD is used to study the distribution of distributor liquid film, and the mathematical model of the triangular tooth distributor and its peripheral cylinder is established, and the effects of the triangular tooth distributor’s speed, feed rate, and feed position on initial liquid film uniformity are investigated. And the reliability of the numerical simulation model is verified by experiments. In this paper, a new feed structure that includes an intermediate feed device and inclined tooth distributor is proposed and researched by numerical simulation. And compared with the previous structure, the liquid film distribution is more uniform. This has important guiding significance to the optimization of equipment in production.
Collapse
Affiliation(s)
- Haodong Zhang
- College of Electromechanical Engineering, Qingdao University of Science and Technology , Qingdao 266061 , China
| | - Zhenya Duan
- College of Electromechanical Engineering, Qingdao University of Science and Technology , Qingdao 266061 , China
| | - Junmei Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology , Qingdao 266061 , China
| | - Bin Liu
- Qingdao Special Equipment Inspection Research Institute , Qingdao 266061 , China
| | - Wencai Jiang
- Qingdao Dovere Precise Machinery Co., Ltd , Qingdao 266200 , China
| | - Qingwei Zhou
- CNPC EastChina Design Institute Co., Ltd. , Qingdao 266071 , China
| |
Collapse
|
33
|
Cheng YJ, Wu YJ, Lee FW, Ou LY, Chen CN, Chu YY, Kuan YC. Impact of Storage Condition on Chemical Composition and Antifungal Activity of Pomelo Extract against Colletotrichum gloeosporioides and Anthracnose in Post-harvest Mango. PLANTS (BASEL, SWITZERLAND) 2022; 11:2064. [PMID: 35956542 PMCID: PMC9370353 DOI: 10.3390/plants11152064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Anthracnose caused by Colletotrichum leads to a tremendous post-harvest mango loss. While chemical fungicides are applied to control anthracnose, natural alternatives are preferred due to food safety and environmental concerns. Pomelo extract (PE) exhibits a broad spectrum of antimicrobial activities; however, its effect against anthracnose is unknown. Here we investigated the chemical profile of PE using GC-MS and the anti-anthracnose activity of PE using in vitro and in vivo assays. We also evaluated the impact of storage temperature (0°, 5°, 10°, 20°, -20°, and -80 °C) and light conditions on the composition and antifungal activity of PE. We found that PE inhibited C. gloeosporioides in vitro with an IC50 of 3.2 mL L-1. Applying chitosan-based coating incorporated with 20 mL L-1 PE significantly suppressed anthracnose in post-harvest 'Keitt' mango. A storage temperature below 5 °C substantially preserved major compounds and the antifungal activity of PE after 6 m of storage. Finally, we showed that applying d-limonene, the key constituent of PE, inhibited C. gloeosporioides in vitro (IC50: 10.9 mM) and suppressed anthracnose in vivo. In conclusion, we demonstrated that the application of PE and d-limonene are sustainable methods for anthracnose control in post-harvest crops and established the preservation protocol for PE.
Collapse
Affiliation(s)
- Yu-Jung Cheng
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Jou Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Fang-Wei Lee
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Ling-Yi Ou
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Nan Chen
- Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Chiayi 60044, Taiwan
| | - Yu-Ying Chu
- Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Chiayi 60044, Taiwan
| | - Yen-Chou Kuan
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
- Highland Experimental Farm, National Taiwan University, Nantou 54641, Taiwan
| |
Collapse
|
34
|
Antibacterial Peptide NP-6 Affects Staphylococcus aureus by Multiple Modes of Action. Int J Mol Sci 2022; 23:ijms23147812. [PMID: 35887160 PMCID: PMC9319634 DOI: 10.3390/ijms23147812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Our previous study extracted and identified an antibacterial peptide that was named NP-6. Herein, we investigated the physicochemical properties of NP-6, and elucidated the mechanisms underlying its antimicrobial activity against Staphylococcus aureus. The results showed that the hemolysis activity of NP-6 was 2.39 ± 0.13%, lower than Nisin A (3.91 ± 0.43%) at the same concentration (512 µg/mL). Negligible cytotoxicity towards RAW264.7 cells was found when the concentration of NP-6 was lower than 512 µg/mL. In addition, it could keep most of its activity in fetal bovine serum. Moreover, transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry results showed that NP-6 can destroy the integrity of the bacterial cell membrane and increase the membrane permeability. Meanwhile, NP-6 had binding activity with bacterial DNA and RNA in vitro and strongly inhibited the intracellular β-galactosidase activity of S. aureus. Our findings suggest that NP-6 could be a promising candidate against S. aureus.
Collapse
|
35
|
Lazar V, Holban AM, Curutiu C, Ditu LM. Modulation of Gut Microbiota by Essential Oils and Inorganic Nanoparticles: Impact in Nutrition and Health. Front Nutr 2022; 9:920413. [PMID: 35873448 PMCID: PMC9305160 DOI: 10.3389/fnut.2022.920413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Microbiota plays a crucial role in human health and disease; therefore, the modulation of this complex and yet widely unexplored ecosystem is a biomedical priority. Numerous antibacterial alternatives have been developed in recent years, imposed by the huge problem of antibioresistance, but also by the people demand for natural therapeutical products without side effects, as dysbiosis, cyto/hepatotoxicity. Current studies are focusing mainly in the development of nanoparticles (NPs) functionalized with herbal and fruit essential oils (EOs) to fight resistant pathogens. This is due to their increased efficiency against susceptible, multidrug resistant and biofilm embedded microorganisms. They are also studied because of their versatile properties, size and possibility to ensure a targeted administration and a controlled release of bioactive substances. Accordingly, an increasing number of studies addressing the effects of functional nanoparticles and plant products on microbial pathogens has been observed. Regardless the beneficial role of EOs and NPs in the treatment of infectious diseases, concerns regarding their potential activity against human microbiota raised constantly in recent years. The main focus of current research is on gut microbiota (GM) due to well documented metabolic and immunological functions of gut microbes. Moreover, GM is constantly exposed to micro- and nano-particles, but also plant products (including EOs). Because of the great diversity of both microbiota and chemical antimicrobial alternatives (i.e., nanomaterials and EOs), here we limit our discussion on the interactions of gut microbiota, inorganic NPs and EOs. Impact of accidental exposure caused by ingestion of day care products, foods, atmospheric particles and drugs containing nanoparticles and/or fruit EOs on gut dysbiosis and associated diseases is also dissected in this paper. Current models developed to investigate mechanisms of dysbiosis after exposure to NPs/EOs and perspectives for identifying factors driving EOs functionalized NPs dysbiosis are reviewed.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Alina-Maria Holban
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Laboratory of Microbiology, Research Institute of the University of Bucharest, Bucharest, Romania
- *Correspondence: Alina-Maria Holban
| | - Carmen Curutiu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Laboratory of Microbiology, Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
36
|
Khalil RK, Abdelrahim DS, Sharaby MR. Novel active edible food packaging films based entirely on citrus peel wastes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Zhang X, Xu H, Hua J, Zhu Z, Wang M. Protective Effects of Grapefruit Essential Oil against Staphylococcus Aureus-Induced Inflammation and Cell Damage in Human Epidermal Keratinocytes. Chem Biodivers 2022; 19:e202200205. [PMID: 35505451 DOI: 10.1002/cbdv.202200205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Staphylococcus aureus (S. aureus) is a common skin pathogenic bacterium, over-colonization can induce skin infections, while its metabolites can also produce irritation to the skin, often accompanied by eczema dermatitis, specific dermatitis and other skin diseases. Grapefruit essential oil is extracted from the fruit of grapefruit (Citrus maxima (Burm) Merr.), a citrus plant that is rich in flavonoids, phenolic acids and high flavanones. Due to its good odor and biological activity such as anti-inflammatory, antibacterial, etc., grapefruit essential oil has been widely used as an additive in food. To evaluate the potential application of grapefruit essential oil as raw materials in cosmetics products and health foods, we developed a cell damage model of skin inflammation stimulated by S. aureus metabolites. Compared to that of lime essential oil, an internal control, we found that grapefruit essential oil could significantly promote HaCaT cells proliferation, reduce reactive oxygen species (ROS) production induced by S. aureus metabolites, inhibit the upregulated expression of IL-1 and COX-2. In the 3D epidermal model, grapefruit essential oil could recover the decreased LOR and FLG contents caused by S. aureus metabolites. These results demonstrated pharmacological evidence for the anti-inflammatory effect of grapefruit essential oil, suggesting a potential application of grapefruit essential oil as cosmetic raw materials for repair and alleviating of skin inflammation caused by S. aureus.
Collapse
Affiliation(s)
- Xiaona Zhang
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing, 100048, P. R. China
| | - Heran Xu
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing, 100048, P. R. China
| | - Jinglin Hua
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing, 100048, P. R. China
| | - Ziying Zhu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, 100048, P. R. China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing, 100048, P. R. China.,BTBU-TANGYI Innovation Center for The Evaluation of The Safety and Efficacy of Bioengineering Raw Materials, Beijing, 100048, P. R. China
| |
Collapse
|
38
|
Optimization of Naringin and Naringenin Extraction from Citrus × paradisi L. Using Hydrolysis and Excipients as Adsorbent. Pharmaceutics 2022; 14:pharmaceutics14050890. [PMID: 35631476 PMCID: PMC9144392 DOI: 10.3390/pharmaceutics14050890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
While flavanones exist in a variety of chemical forms, their favorable health effects are most prominent in their free form—aglycones. Their concentrations in grapefruit (Citrus × paradisi L.) extracts vary according to the extraction and hydrolysis methods used. The primary aim of this work was to maximize the yields of naringin and naringenin from various parts of fresh grapefruit fruits (flavedo, albedo, and segmental) using different extraction and hydrolysis methods. In addition, we aimed to evaluate the excipient—magnesium aluminometasilicate—and determine its influence on the qualitative composition of grapefruit extracts. Extracts were obtained by heat reflux extraction (HRE), ultrasound-assisted extraction with an ultrasonic homogenizer (UAE*), and ultrasound-assisted extraction with a bath (UAE). Ultrasound-assisted extraction using a bath (UAE) was modulated using acidic, thermal, and alkaline hydrolysis. The highest yield of naringin 8A (17.45 ± 0.872 mg/g) was obtained from an albedo sample under optimal conditions using ultrasound-assisted extraction; a high yield of naringenin 23-SHR (35.80 ± 1.79 µg/g) was produced using the heat reflux method from the segmental part. Meanwhile, ultrasonic combined with thermal hydrolysis significantly increased flavanone extraction from the albedo and segmental parts: naringin from sample 9-A (from 17.45 ± 0.872 mg/g to 25.05 ± 1.25 mg/g) and naringenin from sample 15-S (from 0 to 4.21 ± 0.55 µg/g). Additionally, magnesium aluminometasilicate demonstrated significant increases of naringenin from all treated grapefruit parts. To our knowledge, this is the first report of magnesium aluminometasilicate used as an adsorbent in flavanone extractions.
Collapse
|
39
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|
40
|
Chang Y, Harmon PF, Treadwell DD, Carrillo D, Sarkhosh A, Brecht JK. Biocontrol Potential of Essential Oils in Organic Horticulture Systems: From Farm to Fork. Front Nutr 2022; 8:805138. [PMID: 35096947 PMCID: PMC8792766 DOI: 10.3389/fnut.2021.805138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
In recent decades, increasing attention has been paid to food safety and organic horticulture. Thus, people are looking for natural products to manage plant diseases, pests, and weeds. Essential oils (EOs) or EO-based products are potentially promising candidates for biocontrol agents due to their safe, bioactive, biodegradable, ecologically, and economically viable properties. Born of necessity or commercial interest to satisfy market demand for natural products, this emerging technology is highly anticipated, but its application has been limited without the benefit of a thorough analysis of the scientific evidence on efficacy, scope, and mechanism of action. This review covers the uses of EOs as broad-spectrum biocontrol agents in both preharvest and postharvest systems. The known functions of EOs in suppressing fungi, bacteria, viruses, pests, and weeds are briefly summarized. Related results and possible modes of action from recent research are listed. The weaknesses of applying EOs are also discussed, such as high volatility and low stability, low water solubility, strong influence on organoleptic properties, and phytotoxic effects. Therefore, EO formulations and methods of incorporation to enhance the strengths and compensate for the shortages are outlined. This review also concludes with research directions needed to better understand and fully evaluate EOs and provides an outlook on the prospects for future applications of EOs in organic horticulture production.
Collapse
Affiliation(s)
- Yuru Chang
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Philip F. Harmon
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Danielle D. Treadwell
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jeffrey K. Brecht
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
David V, Andrea AN, Aleksandr K, Lourdes JA, Eugenia P, Nancy C, Isabel W, Jessica C, León-Tamariz F. Validation of a method of broth microdilution for the determination of antibacterial activity of essential oils. BMC Res Notes 2021; 14:439. [PMID: 34857039 PMCID: PMC8638534 DOI: 10.1186/s13104-021-05838-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The aim of the present study was to adapt and optimize a broth microdilution method and compare it to the agar dilution method for the evaluation of activity of essential oils from medicinal plants against Gram-negative bacteria. Based on bibliographic research, active and not active oils were selected. The sensitivity and specificity were established as parameters for validation. The comparison between both methods was made using contingency analysis tables, based on the observed frequencies. For both methods, the minimum inhibitory concentration was determined against Escherichia coli strains, in an essential oil concentration range between 0.03 and 0.48% (v/v). RESULTS A stable emulsion formation was achieved with the addition of Tween 80 and constant agitation, guaranteeing the continuous contact of oil with bacteria (critical step in the microdilution method). The statistical analysis of results obtained with both methods presented a good sensitivity and specificity (100% in both cases), which let us correctly discriminate between active and non-active oils. The values obtained for the minimal inhibitory concentration were independent of the technique used. Finally, the obtained results show that the validated microtechnique allows important diminishment of time and resources for investigations dealing with essential oils or lipophilic extracts evaluation.
Collapse
Affiliation(s)
- Vanegas David
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador
| | - Abril-Novillo Andrea
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador
| | - Khachatryan Aleksandr
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador
| | - Jerves-Andrade Lourdes
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador
| | - Peñaherrera Eugenia
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador
| | - Cuzco Nancy
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador
| | - Wilches Isabel
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador
| | - Calle Jessica
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador
| | - Fabián León-Tamariz
- Deparment of Biosciences, Group of Medicinal Plants and Natural Products, Faculty of Chemistry, School of Biochemistry and Pharmacy, Universidad de Cuenca, Cuenca, Ecuador.
| |
Collapse
|
42
|
Zanganeh H, Mortazavi SA, Shahidi F, Alizadeh Behbahani B. Evaluation of the chemical and antibacterial properties of Citrus paradise essential oil and its application in Lallemantia iberica seed mucilage edible coating to improve the physicochemical, microbiological and sensory properties of lamb during refrigerated storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01129-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Zhang N, Liao Y, Xie L, Zhang Z, Hu W. Using essential oils from Citrus paradisi as a fumigant for Solenopsis invicta workers and evaluating the oils' effect on worker behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59665-59672. [PMID: 34142322 DOI: 10.1007/s11356-021-14910-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
The red imported fire ant is one of the world's most devastating invasive species, adversely affecting humans, wildlife, crops, and livestock. To control infestations, chemical pesticides are deployed extensively around the world. However, their extensive use has led to negative effects on the environment and human health. Essential oils, which are safe and ecofriendly, can potentially be used as alternatives to chemical pesticides. In this study, grapefruit essential oils were used as fumigant agents to control red imported fire ants. The crude grapefruit oil (GO1) contained 28 compounds, and the concentrated grapefruit oil (GO2), which was refined from GO1 by vacuum distillation, contained 20 compounds. D-Limonene was the dominant constituent in both GO1 (70.1%) and GO2 (73.96%), and other important constituents included β-pinene, α-pinene, β-phellandrene, octanal, d-carvone, α-terpineol, and linalool. Both the essential oils and their individual constituents (α-pinene, α-terpineol, β-phellandrene, octanal, and d-carvone) showed strong lethal fumigant effects against workers. Workers were more susceptible to GO2 than GO1, and octanal was more toxic to workers as compared with the other four constituents. When antennas of workers were treated with the two oils or the five constituents, their walking and gripping abilities were significantly suppressed, and there was an obvious bending or breaking phenomenon on the sensilla of the antennas. Fumigant activity by grapefruit essential oils and their main compounds were associated with their effects on the walking and gripping behavior of workers, and this confirmed that grapefruit essential oil is a promising, ecofriendly, and safe fumigant for the control of red imported fire ants.
Collapse
Affiliation(s)
- Ning Zhang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Yihong Liao
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Lianjie Xie
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Zhixiang Zhang
- Agricultural College, South China Agricultural University, Guangzhou, 510642, China.
| | - Wei Hu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
44
|
Abstract
In 2018, the worldwide consumption of meat was 346.14 million tonnes, and this is expected to increase in the future. As meat consumption increases, the use of packaging materials is expected to increase along with it. Petrochemical packaging materials which are widely used in the meat processing industry, take a long time to regenerate and biodegrade, thus they adversely affect the environment. Therefore, the necessity for the development of eco-friendly packaging materials for meat processing, which are easily degradable and recyclable, came to the fore. The objective of this review is to describe the application of natural compound-derived edible films with their antioxidant and antibacterial activities in meat and meat products. For several decades, polysaccharides (cellulose, starch, pectin, gum, alginate, carrageenan and chitosan), proteins (milk, collagen and isolated soy protein) and lipids (essential oil, waxes, emulsifiers, plasticizers and resins) were studied as basic materials for edible films to reduce plastic packaging. There are still high consumer demands for eco-friendly alternatives to petrochemical-based plastic packaging, and edible films can be used in a variety of ways in meat processing. More efforts to enhance the physiological and functional properties of edible films are needed for commercial application to meat and meat products.
Collapse
|
45
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Jama-Kmiecik A, Sarowska J, Wojnicz D, Choroszy-Król I, Frej-Mądrzak M. Natural Products and Their Potential Anti-HAV Activity. Pathogens 2021; 10:1095. [PMID: 34578128 PMCID: PMC8469781 DOI: 10.3390/pathogens10091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The role of purified natural products in the prevention and treatment of countless diseases of bacterial, fungal, and viral origin cannot be overestimated. New antiviral drugs have been obtained from natural sources and transformed into preparations for prophylactic and therapeutic purposes. Flavonoids, polyphenols, saponins, proanthocyanins, polysaccharides, organic acids, proteins, polypeptides, and essential oils derived from plants, animals, or microorganisms can control and combat foodborne viral infections, including hepatitis A. The components of essential oils are characterized by numerous therapeutic and antioxidant properties and exhibit a broad spectrum of antimicrobial and antiviral activity. Due to these properties, they can be used to preserve meat, fruit, vegetables, and their products. Over the past two decades, much effort has been made to identify natural products, mostly of plant origin, to combat foodborne viruses. Natural plant extracts have several potential uses, not limited to increasing the safety of food products and improving their quality, but also as natural antiviral agents.
Collapse
Affiliation(s)
- Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Medical Biology and Parasitology, Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland;
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| |
Collapse
|
47
|
Phytochemical Composition, Antioxidant Activity, and Enzyme Inhibitory Activities (α-Glucosidase, Xanthine Oxidase, and Acetylcholinesterase) of Musella lasiocarpa. Molecules 2021; 26:molecules26154472. [PMID: 34361630 PMCID: PMC8348986 DOI: 10.3390/molecules26154472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.
Collapse
|
48
|
Liu N, Li X, Zhao P, Zhang X, Qiao O, Huang L, Guo L, Gao W. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem 2021; 365:130585. [PMID: 34325351 DOI: 10.1016/j.foodchem.2021.130585] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Citrus is one of the main fruits processed worldwide, producing a lot of industrial by-products. As the main part of citrus "residue", citrus peels have a wide application prospect. They could not only be directly used to produce various food products, but also be used as promising biofuels to produce ethanol and methane. Additionally, functional components (flavonoids, limonoids, alkaloids, essential oils and pectin) extracted from citrus peels have been related to the improvement of human health against active oxygen, inflammatory, cancer and metabolic disorders. Therefore, it is clear that the citrus peels have great potential to be developed into useful functional foods, medicines and biofuels. This review systematically summarizes the recent advances in current uses, processing, bioactive components and biological properties of citrus peels. A better understanding of citrus peels may provide reference for making full use of it.
Collapse
Affiliation(s)
- Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
49
|
Türkmenoğlu A, Özmen D. Allergenic components, biocides, and analysis techniques of some essential oils used in food products. J Food Sci 2021; 86:2225-2241. [PMID: 34091909 DOI: 10.1111/1750-3841.15753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, almost 300 essential oils (EOs) are commonly traded in the world market, with a prediction to be worth over $14 billion in 2024. EOs are natural preservatives for food products in order to reduce the activity of pathogenic microorganisms, therefore their use as an antioxidant or a preservative in foods has been encouraged. They are not only considered as antimicrobial or flavoring agents, but are also incorporated into food packaging materials. There are several types of EOs which have been approved as food additives by the Food and Drug Administration. Hence, it is important to use safe EO products to minimize possible adverse effect risks such as nausea, vomiting, necrosis, nephropathy, mucous membrane, and skin irritation. This review article gives information about some EOs that are used in the food industries and the types of some allergenic compounds and biocides which could make the EOs hazardous or may cause allergenic reactions in the human body. Besides, some analysis techniques of possible allergenic compounds or biocides in EOs were introduced and supported with the most relevant studies. The overall conclusion from the study is that pregnant women, patients taking drugs (e.g., diabetics) or the having a history of allergy are the most prone to be affected from EO allergenic components. As regards to biocides, organochlorine and organophosphorus types of pesticides that are carried over from the plant may be found mostly in EOs. The most common allergic reaction is skin sensitization and irritation if the EO components are oxidized during storage or transportation. Moreover, drug interactions are one of the other possible adverse effect. Hence, determination of biocides and possible allergenic component concentrations is an essential factor when they are used as a preservative or flavoring agent. The most prominent analysis techniques are gas and liquid chromatography because most of the allergens and biocides are mainly composed of volatile components. PRACTICAL APPLICATION: Determining of the essential oil's content will be crucial if oils are used for food preservation or flavoring because they may have some hazardous effects, such as nausea, vomiting, necrosis and nephropathy. Therefore, after applying them to the food products, consumers (especially pregnant women) should be informed about their concentration levels and their possible adverse effects are taken into account when they are consumed over toxic limit. For this reason, we reviewed in our study that some allergenic components, biocides and toxic limits of EOs to be used in food products. In addition to this, recent analytical techniques have been explained and discussed which methods are suitable for analysis.
Collapse
Affiliation(s)
| | - Dilek Özmen
- Department of Chemical Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, 34320, Turkey
| |
Collapse
|
50
|
Denkova-Kostova R, Teneva D, Tomova T, Goranov B, Denkova Z, Shopska V, Slavchev A, Hristova-Ivanova Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine ( Citrus reticulata L.), grapefruit ( Citrus paradisi L.), lemon ( Citrus lemon L.) and cinnamon ( Cinnamomum zeylanicum Blume). Z NATURFORSCH C 2021; 76:175-185. [PMID: 33909955 DOI: 10.1515/znc-2020-0126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022]
Abstract
The phytochemical and biological properties of tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume) essential oils were examined. The chemical composition of the essential oils determined using chromatography analysis revealed that D-limonene and cis-cinnamaldehyde were the main components. The antioxidant and antimicrobial activities of the essential oils have been studied by the DPPH radical-scavenging assay and the disc-diffusion method, respectively. All essential oils had antimicrobial activity against saprophytic (Bacillus subtilis, Penicillium chrysogenum, Fusarium moniliforme, Aspergillus niger, Aspergillus flavus, Saccharomyces cerevisiae) and pathogenic microorganisms (Escherichia coli, Salmonella abony, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans), with the highest inhibitory activity being observed in cinnamon oil, followed by grapefruit zest oil, tangerine zest oil and lemon zest oil; the MIC ranging from 6 to 60 ppm. In addition, they exhibited high antioxidant activity with the highest antioxidant activity being determined for the grapefruit zest essential oil, followed by the lemon zest essential oil, the tangerine zest essential oil and the cinnamon essential oil. The demonstrated promising results for the antioxidant and antimicrobial activity of the studied essential oils would give reason for their inclusion in the development of bio-preservation strategies for food emulsion preservation.
Collapse
Affiliation(s)
- Rositsa Denkova-Kostova
- Department of Biochemistry and Molecular Biology, University of Food Technologies, 26 Maritza Blvd, Plovdiv, Bulgaria
| | - Desislava Teneva
- Laboratory of Biologically Active Substances - Plovdiv, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 135 Ruski, Blvd, Plovdiv, Bulgaria
| | - Teodora Tomova
- Department of Microbiology, University of Food Technologies, 26 Maritza Blvd, Plovdiv4000, Bulgaria
| | - Bogdan Goranov
- Department of Microbiology, University of Food Technologies, 26 Maritza Blvd, Plovdiv4000, Bulgaria
| | - Zapryana Denkova
- Department of Microbiology, University of Food Technologies, 26 Maritza Blvd, Plovdiv4000, Bulgaria
| | - Vesela Shopska
- Department of Wine and Brewing, University of Food Technologies, 26 Maritza Blvd, Plovdiv4000, Bulgaria
| | - Aleksandar Slavchev
- Department of Microbiology, University of Food Technologies, 26 Maritza Blvd, Plovdiv4000, Bulgaria
| | - Yana Hristova-Ivanova
- Department of Food Technologies, Institute of Food Preservation and Quality-Plovdiv, Agricultural Academy of Bulgaria, 154 Vasil Aprilov Blvd, Plovdiv4000, Bulgaria
| |
Collapse
|