1
|
Wu J, Lv T, Liu Y, Liu Y, Han Y, Liu X, Peng X, Tang F, Cai J. The role of quercetin in NLRP3-associated inflammation. Inflammopharmacology 2024; 32:3585-3610. [PMID: 39306817 DOI: 10.1007/s10787-024-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 11/10/2024]
Abstract
Quercetin is a natural flavonoid that is widely found in fruits and vegetables. As an important flavonoid, it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, antiviral, immunomodulatory, and analgesic activities. Quercetin exerts powerful antioxidant activity by regulating glutathione, enzyme activity, and the production of reactive oxygen species (ROS). Quercetin exerts powerful anti-inflammatory effects by acting on the Nod-like receptor protein 3 (NLRP3) inflammasome. In diabetes, quercetin has been shown to improve insulin sensitivity and reduce high blood sugar level, while, in neurological diseases, it potentially prevents neuronal degeneration and cognitive decline by regulating neuroinflammation. In addition, in liver diseases, quercetin may improve liver inflammation and fibrosis by regulating the NLRP3 activity. In addition, quercetin may improve inflammation in other diseases based on the NLRP3 inflammasome. With this background, in this review, we have discussed the progress in the study on the mechanism of quercetin toward improving inflammation via NLRP3 inflammasome in the past decade. In addition, from the perspective of quercetin glycoside derivatives, the anti-inflammatory mechanism of hyperoside, rutin, and isoquercetin based on NLRP3 inflammasome has been discussed. Moreover, we have discussed the pharmacokinetics of quercetin and its nanoformulation application, with the aim to provide new ideas for further research on the anti-inflammatory effect of quercetin and its glycoside derivatives based on NLRP3 inflammasome, as well as in drug development and application.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yu Liu
- Department of Oncology, Gong'an County People's Hospital, Jingzhou, 434000, China
| | - Yifan Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Yukun Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, 434023, China
| | - Xin Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore, 138602, Singapore.
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
2
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
3
|
Sejbuk M, Mirończuk-Chodakowska I, Karav S, Witkowska AM. Dietary Polyphenols, Food Processing and Gut Microbiome: Recent Findings on Bioavailability, Bioactivity, and Gut Microbiome Interplay. Antioxidants (Basel) 2024; 13:1220. [PMID: 39456473 PMCID: PMC11505337 DOI: 10.3390/antiox13101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can induce changes in polyphenols, affecting their ability to achieve their intended health benefits. Thus, it is essential to develop and apply food processing methods that optimize polyphenol content while maintaining their bioactivity and bioavailability. This review aims to explore how various food processing techniques affect the quantity, bioactivity, and bioavailability of polyphenols, as well as their interactions with the gut microbiome, which may ultimately determine their health effects.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| |
Collapse
|
4
|
Aguilar-Garcia IG, Alpirez J, Castañeda-Arellano R, Dueñas-Jiménez JM, Toro Castillo C, León-Moreno LC, Osuna-Carrasco LP, Dueñas-Jiménez SH. Resveratrol and Exercise Produce Recovered Ankle and Metatarsus Joint Movements after Penetrating Lesion in Hippocampus in Male Rats. Brain Sci 2024; 14:980. [PMID: 39451994 PMCID: PMC11506448 DOI: 10.3390/brainsci14100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: This study investigates how traumatic injuries alter joint movements in the ankle and foot. We used a brain injury model in rats, focusing on the hippocampus between the CA1 and dentate gyrus. Materials and Methods: We assessed the dissimilarity factor (DF) and vertical displacement (VD) of the ankle and metatarsus joints before and after the hippocampal lesion. We analyzed joint movements in rats after the injury or in rats treated with resveratrol, exercise, or a combination of both. Results: Resveratrol facilitated the recovery of DF in both legs, showing improvements in the ankle and metatarsus joints on the third and seventh days post-injury. The hippocampal lesion affected VD in both legs, observed on the third or seventh day after the injury. Both exercise and resveratrol partially recovered VD in the ankle and metatarsus joints on these days. These effects may be linked to increased hippocampal neurogenesis and reduced neuroinflammation. Conclusions: The study highlights the benefits of resveratrol and exercise in motor recovery following brain injury, suggesting their potential to enhance the quality of life for patients with neurological disorders affecting motor function and locomotion. These findings also suggest that resveratrol could offer a promising or complementary alternative in managing chronic pain and inflammation associated with orthopedic conditions, thus improving overall patient management.
Collapse
Affiliation(s)
- Irene Guadalupe Aguilar-Garcia
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Jonatan Alpirez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Rolando Castañeda-Arellano
- Laboratorio de Farmacología, Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico;
| | - Judith Marcela Dueñas-Jiménez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Carmen Toro Castillo
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Lilia Carolina León-Moreno
- Unidad de Evaluación Preclinica, Biotecnología Médica y Farmacéutica, CIATEJ, Guadalajara 44270, Mexico;
| | - Laura Paulina Osuna-Carrasco
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Sergio Horacio Dueñas-Jiménez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| |
Collapse
|
5
|
Patias NS, Maia SV, Ferreira YG, de Oliveira NLF, Ferrarini SR, Bomfim GF, Sinhorin AP, Aguiar DH, de Queiroz EAIF, Sinhorin VDG. Effects of Extended Treatment with Protium heptaphyllum Liposomes on Metabolic Parameters of Obese Rats. BIOLOGY 2024; 13:771. [PMID: 39452080 PMCID: PMC11505265 DOI: 10.3390/biology13100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Protium heptaphyllum (P. heptaphyllum), popularly known as "almacega" or "white pitch", is widely used in folk medicine due to its antioxidant, anti-inflammatory and healing properties, attributed to its richness in flavonoids and terpenes. Therefore, this study aimed to evaluate the effects of treatment for 28 days with liposomes containing P. heptaphyllum leaf extract in obese animals. Male Wistar rats, subjected to a hypercaloric diet for 8 weeks to induce obesity (hypercaloric chow and water enriched with 30% sucrose, ad libitum), were treated with the plant formulation (1 mg kg-1day-1, via gavage) for 28 days. The study investigated morphological, metabolic, redox state, immunological and histological parameters in adipose and liver tissue. Rats were divided into four groups: control (C), liposomes with extract (H), obese (O) and obese treated with liposomes containing extract (OH). The results indicated that the obese group (O) presented weight gain, hepatic steatosis and alterations in metabolic and inflammatory parameters. However, treatment with liposomes (OH) reduced glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatinine and the lipid profile. In adipose tissue, the OH group showed decreased superoxide dismutase (SOD) activity and increased glutathione S-transferase (GST) activity, in contrast to the effects observed in liver GST. In the analysis of thiobarbituric-acid-reactive substances (TBARS), it was possible to observe an increase in all groups in adipose tissue and in group O in liver tissue, in addition to a reduction in TBARS in group OH in the liver, indicating modulation of oxidative stress. The treatment also increased the concentration of IL-10 and IL-17 in the liver and decreased that of IL-6 in adipose tissue. After 28 days of treatment, these results point to the therapeutic potential of treatment with P. heptaphyllum, not necessarily only against obesity, but also an effect per se of the liposomes, possibly due to the high concentration of flavonoids present in the plant extract.
Collapse
Affiliation(s)
- Naiéle Sartori Patias
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade (Rede Pró-Centro-Oeste), Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
| | - Sara Vieira Maia
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
| | - Yasmin Gabriele Ferreira
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
| | - Natalhya Letícia Ferreira de Oliveira
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
| | - Stela Regina Ferrarini
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil
| | - Gisele Facholi Bomfim
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil
| | - Adilson Paulo Sinhorin
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade (Rede Pró-Centro-Oeste), Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Danilo Henrique Aguiar
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Eveline Aparecida Isquierdo Fonseca de Queiroz
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil
| | - Valéria Dornelles Gindri Sinhorin
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade (Rede Pró-Centro-Oeste), Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
- Departamento de Química, Instituto de Química, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil
| |
Collapse
|
6
|
Pérez-Cabral ID, Bernal-Mercado AT, Islas-Rubio AR, Suárez-Jiménez GM, Robles-García MÁ, Puebla-Duarte AL, Del-Toro-Sánchez CL. Exploring Dietary Interventions in Autism Spectrum Disorder. Foods 2024; 13:3010. [PMID: 39335937 PMCID: PMC11431671 DOI: 10.3390/foods13183010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Autism spectrum disorder (ASD) involves social communication difficulties and repetitive behaviors, and it has a growing prevalence worldwide. Symptoms include cognitive impairments, gastrointestinal (GI) issues, feeding difficulties, and psychological problems. A significant concern in ASD is food selectivity, leading to nutrient deficiencies. Common GI issues in ASD, such as constipation and irritable bowel syndrome, stem from abnormal gut flora and immune system dysregulation. Sensory sensitivities and behavioral challenges exacerbate these problems, correlating with neurological symptom severity. Children with ASD also exhibit higher oxidative stress due to low antioxidant levels like glutathione. Therapeutic diets, including ketogenic, high-antioxidant, gluten-free and casein-free, and probiotic-rich diets, show potential in managing ASD symptoms like behavior, communication, GI issues, and oxidative stress, though the evidence is limited. Various studies have focused on different populations, but there is increasing concern about the impact among children. This review aims to highlight the food preferences of the ASD population, analyze the effect of the physicochemical and nutritional properties of foods on the selectivity in its consumption, GI problems, and antioxidant deficiencies in individuals with ASD, and evaluate the effectiveness of therapeutic diets, including diets rich in antioxidants, gluten-free and casein-free, ketogenic and essential fatty acids, and probiotic-rich diets in managing these challenges.
Collapse
Affiliation(s)
| | | | - Alma Rosa Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, SO, Mexico
| | | | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, JA, Mexico
| | | | | |
Collapse
|
7
|
Assalve G, Lunetti P, Zara V, Ferramosca A. In Vivo Antioxidant Activity of Common Dietary Flavonoids: Insights from the Yeast Model Saccharomyces cerevisiae. Antioxidants (Basel) 2024; 13:1103. [PMID: 39334762 PMCID: PMC11429029 DOI: 10.3390/antiox13091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Oxidative stress, associated with diseases and aging, underscores the therapeutic potential of natural antioxidants. Flavonoids, known for scavenging free radicals and modulating cell signaling, offer significant health benefits and contribute to longevity. To explore their in vivo effects, we investigated the antioxidant activity of quercetin, apigenin, luteolin, naringenin, and genistein, using Saccharomyces cerevisiae as a model organism. METHODS We performed viability assays to evaluate the effects of these compounds on cell growth, both in the presence and absence of H2O2. Additional assays, including spot assays, drug drop tests, and colony-forming unit assays, were also conducted. RESULTS Viability assays indicated that the tested compounds are non-toxic. H2O2 reduced yeast viability, but flavonoid-treated cells showed increased resistance, confirming their protective effect. Polyphenols scavenged intracellular reactive oxygen species (ROS) and protected cells from oxidative damage. Investigations into defense systems revealed that H2O2 induced catalase activity and oxidized glutathione accumulation, both of which were reduced by polyphenol treatment. CONCLUSIONS The tested natural compounds enhance cell viability and reduce oxidative damage by scavenging ROS and modulating antioxidant defenses. These results suggest their potential as supplements and pave the way for further research.
Collapse
|
8
|
Preciado-Ortiz ME, Martínez-López E, Pedraza-Chaverri J, Medina-Campos ON, Rodríguez-Echevarría R, Reyes-Pérez SD, Rivera-Valdés JJ. 10-Gingerol Increases Antioxidant Enzymes and Attenuates Lipopolysaccharide-Induced Inflammation by Modulating Adipokines in 3T3-L1 Adipocytes. Antioxidants (Basel) 2024; 13:1093. [PMID: 39334752 PMCID: PMC11429246 DOI: 10.3390/antiox13091093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Obesity increases reactive oxygen species production and alters adipokines levels, resulting in a low-grade chronic inflammation state, which contributes to tissue metabolic dysfunction. 10-gingerol, a phenol present in ginger, has shown potential anti-obesogenic effects in vitro. However, the antioxidant and anti-inflammatory properties of 10-gingerol have not been approached. The aim of this study was to investigate the effects of 10-gingerol on antioxidant enzymes' expression and adipokine production in 3T3-L1 adipocytes in response to lipopolysaccharide (LPS)-induced inflammation. METHODS 10-gingerol antioxidant capacity was assessed through Oxygen Radical Absorbance Capacity (ORAC) , Ferric Reducing Antioxidant Power (FRAP), and radical scavenging activity of 2,2-diphenyl-2-picrylhydrazyl (DPPH) assays. 3T3-L1 cells were differentiated and stimulated with 100 ng/mL LPSs. Then, 15 µg/mL 10-gingerol was added for 48 h. The mRNA expression and protein abundance of antioxidant enzymes were evaluated by qPCR and Western blot, respectively. Adipokine levels were determined by ELISA. RESULTS 10-gingerol showed low FRAP and DPPH values but a moderate ORAC value. Moreover, 10-gingerol increased Gpx1 and Sod1 but downregulated Cat expression. Additionally, 10-gingerol significantly increased CAT and GPx1 levels but not SOD-1. Finally, adiponectin and leptin concentrations were increased while resistin and tumor necrosis factor alpha (TNFα) were decreased by 10-gingerol. CONCLUSIONS 10-gingerol presented antioxidant potential by increasing antioxidant enzymes and attenuated LPS-induced inflammation by modulating adipokines in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- María Elizabeth Preciado-Ortiz
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Roberto Rodríguez-Echevarría
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - Samantha Desireé Reyes-Pérez
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
- Doctorado en Ciencias en Biología Molecular en Medicina, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Juan José Rivera-Valdés
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| |
Collapse
|
9
|
Baliou S, Ioannou P, Apetroaei MM, Vakonaki E, Fragkiadaki P, Kirithras E, Tzatzarakis MN, Arsene AL, Docea AO, Tsatsakis A. The Impact of the Mediterranean Diet on Telomere Biology: Implications for Disease Management-A Narrative Review. Nutrients 2024; 16:2525. [PMID: 39125404 PMCID: PMC11313773 DOI: 10.3390/nu16152525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Telomeres are nucleoprotein complexes at the ends of chromosomes that are under the control of genetic and environmental triggers. Accelerated telomere shortening is causally implicated in the increasing incidence of diseases. The Mediterranean diet has recently been identified as one that confers protection against diseases. This review aimed to identify the effect of each component of the Mediterranean diet on telomere length dynamics, highlighting the underlying molecular mechanisms. METHODS PubMed was searched to identify relevant studies to extract data for conducting a narrative review. RESULTS The Mediterranean diet alleviates clinical manifestations in many diseases. Focusing on autoimmune diseases, the Mediterranean diet can be protective by preventing inflammation, mitochondrial malfunction, and abnormal telomerase activity. Also, each Mediterranean diet constituent seems to attenuate aging through the sustenance or elongation of telomere length, providing insights into the underlying molecular mechanisms. Polyphenols, vitamins, minerals, and fatty acids seem to be essential in telomere homeostasis, since they inhibit inflammatory responses, DNA damage, oxidative stress, mitochondrial malfunction, and cell death and induce telomerase activation. CONCLUSIONS The Mediterranean diet is beneficial for maintaining telomere dynamics and alleviating age-related illnesses. This review provides a comprehensive overview of cross-sectional, observational, and randomized controlled trials regarding the beneficial impact of every constituent in the Mediterranean diet on telomere length and chronic disease management.
Collapse
Affiliation(s)
- Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (A.L.A.)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Evangelos Kirithras
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
| | - Andreea Letitia Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (A.L.A.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
10
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
11
|
Quetglas-Llabrés MM, Monserrat-Mesquida M, Bouzas C, García S, Mateos D, Ugarriza L, Gómez C, Sureda A, Tur JA. Long-Term Impact of Nutritional Intervention with Increased Polyphenol Intake and Physical Activity Promotion on Oxidative and Inflammatory Profiles in Patients with Metabolic Syndrome. Nutrients 2024; 16:2121. [PMID: 38999869 PMCID: PMC11243639 DOI: 10.3390/nu16132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity and overweight pose significant risks to health, contributing to the prevalence of chronic conditions like type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). The current study aimed to assess the impact of a 6-year nutritional and lifestyle intervention on oxidative and inflammatory markers in individuals aged 55 to 75, specifically those at high risk of CVD. A study was carried out in a group of 80 participants with metabolic syndrome (MetS) residing in Mallorca, Spain, who underwent nutritional intervention based on a low-calorie Mediterranean diet (MedDiet) and promotion of physical activity. Before and after the intervention, several parameters including anthropometric data, haematological factors, blood pressure, and physical activity level were measured. Oxidative and inflammatory biomarkers in plasma were analysed. After the 6-year intervention, participants who managed to reduce their body mass index (BMI) had greater reductions in abdominal obesity, waist to heigh ratio (WHtR), diastolic blood pressure, and glucose levels, and increased high density protein cholesterol (HDL-c) compared to those who did not reduce BMI. This higher reduction in BMI was related to reduced energy intake and increased adherence to MedDiet, with greater polyphenol intake, and total physical activity (PA). Furthermore, improvements in oxidative stress and proinflammatory status were observed in participants who reduced their BMI. Significant reductions in the activity of the prooxidant enzyme, myeloperoxidase (MPO), levels of the lipid oxidation marker, malondialdehyde (MDA), and the proinflammatory chemokine, monocyte chemoattractant protein-1 (MCP-1,) were found in those who reduced their BMI. In contrast, participants who did not improve their BMI exhibited higher levels of proinflammatory markers such as MCP-1 and tumour necrosis factor α (TNFα), as well as increased activity of the antioxidant enzyme catalase (CAT). Current findings suggest that an effective way to reduce BMI is a hypocaloric MedDiet combined with tailored physical activity to improve oxidative stress and proinflammatory status, and potentially reducing the risk of CVD.
Collapse
Affiliation(s)
- Maria Magdalena Quetglas-Llabrés
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Silvia García
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Mateos
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lucía Ugarriza
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Gómez
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Clinical Analysis Service, University Hospital Son Espases, 07198 Palma, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Nery-Flores SD, Castro-López CM, Martínez-Hernández L, García-Chávez CV, Palomo-Ligas L, Ascacio-Valdés JA, Flores-Gallegos AC, Campos-Múzquiz LG, Rodríguez-Herrera R. Grape Pomace Polyphenols Reduce Acute Inflammatory Response Induced by Carrageenan in a Murine Model. Chem Biodivers 2024; 21:e202302065. [PMID: 38768437 DOI: 10.1002/cbdv.202302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Grape pomace (GP), a by-product of wine production, contains bioactive polyphenols with potential health benefits. This study investigates the anti-inflammatory properties of a polyphenolic fraction derived from GP, obtained by ultrasound-microwave hybrid extraction and purified using ion-exchange chromatography. In the inflammation model, mice were divided into six groups: intact, carrageenan, indomethacin, and three GP polyphenols treatment groups. Paw edema was induced by subplantar injection of carrageenan, and the GP polyphenols were administered intraperitoneally at doses of 10, 20, and 40 mg/kg. The anti-inflammatory effect was evaluated by measuring paw volume, and expression of inflammatory markers: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), and cytokines (IL-1β and IL-6), along with lipid peroxidation levels. The GP polyphenols significantly reduced paw edema and expression levels of COX-2, MPO, and cytokines in a dose-dependent manner effect, with the highest dose showing the greatest reduction. Additionally, lipid peroxidation levels were also decreased by GP polyphenols treatment at doses of 10 and 20 mg/kg. These findings suggest that ultrasound-microwave extraction combined with amberlite purification proved to be effective in obtaining a polyphenolic-rich fraction from GP. Thus, GP polyphenols may serve as a natural anti-inflammatory and antioxidant agent for treating inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lissethe Palomo-Ligas
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| | | | | | | | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| |
Collapse
|
13
|
Frago LM, Gómez-Romero A, Collado-Pérez R, Argente J, Chowen JA. Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control. Physiology (Bethesda) 2024; 39:0. [PMID: 38530221 DOI: 10.1152/physiol.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.
Collapse
Affiliation(s)
- Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Gómez-Romero
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
14
|
Di Berardino C, Barceviciute U, Camerano Spelta Rapini C, Peserico A, Capacchietti G, Bernabò N, Russo V, Gatta V, Konstantinidou F, Donato M, Barboni B. High-fat diet-negative impact on female fertility: from mechanisms to protective actions of antioxidant matrices. Front Nutr 2024; 11:1415455. [PMID: 38915855 PMCID: PMC11194403 DOI: 10.3389/fnut.2024.1415455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Urte Barceviciute
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
15
|
Ding D, Liu S, Liu F, Hao S, Zhang C, Shen Y, Wei W, Chen Q, Han F. Exploring the role of Chinese herbal medicine in the long-term management of postoperative ovarian endometriotic cysts: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1376037. [PMID: 38910886 PMCID: PMC11190181 DOI: 10.3389/fphar.2024.1376037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Background Ovarian endometriotic cysts (OEC) represent the primary manifestation of endometriosis, constituting a hormonally dependent inflammatory disorder in gynecology. It significantly affects the quality of life and reproductive health of women. It is worth noting that traditional Chinese medicine (TCM), especially Chinese herbal medicine (CHM), has been widely applied in mainland China due to its unique therapeutic system and commendable clinical efficacy, bringing new hope for preventing and managing OEC. Objective This study aims to evaluate the efficacy and safety of CHM in the management of postoperative OEC. Simultaneously, it seeks to explore the medication laws, therapeutic principles, and specific treatment mechanisms of CHM. Methods Eight electronic databases were searched from their inception to 01 November 2023. Randomized controlled trials (RCTs) assessing the therapeutic effects and safety of CHM for postoperative OEC were included. The risk of bias for each trial was assessed using the Cochrane Collaboration's tool. The certainty of the evidence was evaluated using the GRADE profiler 3.2. Additionally, we extracted formulation from the included studies, conducting a thorough analysis. Results (ⅰ) Twenty-two RCTs involving 1938 patients were included. In terms of the primary efficacy outcome, the CHM group demonstrated a potentially lower recurrence rate compared to both control (odds ratio (OR) = 0.25; 95% confidence intervals (CI): 0.10-0.64) and conventional western medicine (CWM) (OR = 0.26; 95% CI: 0.11-0.65) groups. Furthermore, the joint application of CHM and CWM resulted in a significant reduction in the recurrence rate (OR = 0.26; 95% CI: 0.17-0.40). (ⅱ) Regarding secondary efficacy outcomes, (a) Total clinical efficacy rate: CHM showcased an augmentation in clinical effectiveness compared to both the control (OR = 4.23; 95% CI: 1.12-15.99) and CWM (OR = 2.94; 95% CI: 1.34-6.43) groups. The combined administration of CHM and CWM substantially enhanced overall clinical effectiveness (OR = 3.44; 95% CI: 2.37-5.00). (b) VAS Score: CHM exhibited the capacity to diminish the VAS score in comparison to surgery alone (Mean difference (MD) = -0.86; 95% CI: -1.01 to -0.71). Nevertheless, no substantial advantage was observed compared to CWM alone (MD = -0.16; 95% CI: -0.49 to 0.17). The integration of CHM with CWM effectively ameliorated pain symptoms (MD = -0.87; 95% CI: -1.10 to -0.65). (c) Serum Level of Cancer antigen 125 (CA125): the CHM group potentially exhibited lower CA125 levels in comparison to CWM alone (MD = -11.08; 95% CI: -21.75 to -0.42). The combined intervention of CHM and CWM significantly decreased CA125 levels (MD = -5.31; 95% CI: -7.27 to -3.36). (d) Pregnancy Rate: CHM exhibited superiority in enhancing the pregnancy rate compared to surgery (OR = 3.95; 95% CI: 1.60-9.74) or CWM alone (OR = 3.31; 95% CI: 1.40-7.83). The combined utilization of CHM and CWM demonstrated the potential to enhance pregnancy rates compared to CWM (OR = 2.99; 95% CI: 1.28-6.98). Concerning safety outcome indicators, CHM effectively decreased the overall incidence of adverse events and, to a certain extent, alleviated perimenopausal symptoms as well as liver function impairment. (ⅲ) Most of CHMs were originated from classical Chinese herbal formulas. Prunus persica (L.) Batsch (Taoren), Angelica sinensis (Oliv.) Diels (Danggui), Salvia miltiorrhiza Bunge (Danshen), Paeonia lactiflora Pall. (Chishao), and Corydalis yanhusuo W.T.Wang (Yanhusuo) were most frequently used CHM. Conclusion CHM may be a viable choice in the long-term management of postoperative OEC, with the potential to enhance clinical efficacy while decreasing recurrence and adverse effects.
Collapse
Affiliation(s)
- Danni Ding
- Heilongjiang University of Chinese Medicine, First Clinical Medical College, Harbin, China
| | - Shaoxuan Liu
- Heilongjiang University of Chinese Medicine, First Clinical Medical College, Harbin, China
| | - Fangyuan Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songli Hao
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunlan Zhang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Shen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wei
- Heilongjiang University of Chinese Medicine, First Clinical Medical College, Harbin, China
| | - Qiaochu Chen
- Heilongjiang University of Chinese Medicine, First Clinical Medical College, Harbin, China
| | - Fengjuan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Sam-Yellowe TY. Nutritional Barriers to the Adherence to the Mediterranean Diet in Non-Mediterranean Populations. Foods 2024; 13:1750. [PMID: 38890978 PMCID: PMC11171913 DOI: 10.3390/foods13111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Adherence to the Mediterranean diet has been shown to lower the risk of developing chronic non-communicable diseases like cardiovascular and neurodegenerative diseases and cancer. Improvements in depression, participation in daily activities in older individuals, weight loss and a reduction in adverse pregnancy outcomes are associated with adherence to the Mediterranean diet. The number of studies that have evaluated barriers to adherence to the Mediterranean diet in the US and, in particular, in racial and ethnic minority populations within the US are few. Among Native American and Alaskan Native populations, studies evaluating traditional or alternative Mediterranean diet adherence for chronic non-infectious diseases is unavailable. Mediterranean diet scoring instruments used in studies in European and Mediterranean countries and among white participants in the US fail to capture the dietary patterns of racial and ethnic minority populations. In this narrative review, the food components of the traditional Mediterranean diet are discussed, adherence to the Mediterranean diet is examined in Mediterranean and non-Mediterranean countries and barriers preventing adherence to the Mediterranean diet in the US and among racial and ethnic minority populations is reviewed. Recommendations for improving nutrition education and intervention and for increasing adherence and cultural adaptions to the Mediterranean diet are provided.
Collapse
Affiliation(s)
- Tobili Y. Sam-Yellowe
- Graduate College, Canisius University, 2001 Main Street, Buffalo, NY 14208-1098, USA;
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| |
Collapse
|
17
|
Reytor-González C, Zambrano AK, Montalvan M, Frias-Toral E, Simancas-Racines A, Simancas-Racines D. Adherence to the Mediterranean Diet and its association with gastric cancer: health benefits from a Planeterranean perspective. J Transl Med 2024; 22:483. [PMID: 38773621 PMCID: PMC11110331 DOI: 10.1186/s12967-024-05176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
The Mediterranean Diet (MD) has garnered increasing attention for its potential protective effects against gastric cancer (GC). The MD's rich content of antioxidants, polyphenols, and other bioactive compounds contributes to its ability to modulate gene expression, inhibit tumor growth, and regulate apoptosis. Studies have shown significant reductions in inflammatory markers such as C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) among individuals adhering to the MD, suggesting its pivotal role in mitigating chronic inflammation-associated with cancer development. Furthermore, the MD's anti-angiogenic properties, particularly in components like olive oil, red wine, fish, and tomatoes, offer promising avenues for reducing GC risk by inhibiting tumor angiogenesis. Additionally, the MD's influence on intestinal microbiota composition underscores its potential in maintaining immune homeostasis and reducing systemic inflammation, factors crucial in GC prevention. Despite challenges such as variability in dietary adherence scoring systems and the need for further gender and geographical-specific studies, evidence supports the MD as a cost-effective and holistic approach to GC prevention. Emphasizing the role of nutrition in public health is a promising strategy with broad implications for global health and cancer prevention initiatives. Therefore, this review explores the multifaceted impacts of the MD on GC prevention, delving into its anti-inflammatory, anti-angiogenic, and molecular mechanisms.
Collapse
Affiliation(s)
- Claudia Reytor-González
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, 170129, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariana de Jesús Ave, no number, 170129, Quito, Pichincha, Ecuador
| | - Martha Montalvan
- Universidad Católica Santiago de Guayaquil, . Pdte. Carlos Julio Arosemena Tola, 090615, Guayaquil, Ecuador
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayas, Guayaquil, Ecuador
| | - Evelyn Frias-Toral
- Escuela de Medicina, Universidad Espíritu Santo, 0901952, Samborondón, Ecuador
| | - Alison Simancas-Racines
- Carrera de Medicina Veterinaria, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad Técnica de Cotopaxi, 050108, Latacunga, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, 170129, Quito, Ecuador.
| |
Collapse
|
18
|
Güneş Kaya D, Arslan N, Ayyıldız F, Bayramoğlu E, Turan H, Ercan O. The potential of the Mediterranean diet to improve metabolic control and body composition in youths with Type 1 Diabetes Mellitus. BMC Endocr Disord 2024; 24:63. [PMID: 38724988 PMCID: PMC11080120 DOI: 10.1186/s12902-024-01593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND A chronic autoimmune disease with an increasing incidence rate, type 1 diabetes mellitus (T1DM) is typified by the degeneration of the pancreatic beta cells. Diabetes management is significantly impacted by nutrition. Although it has been demonstrated that following the Mediterranean diet (MD) improves metabolic control with type 2 diabetes in children and adults, its effects on children with T1DM have not received much attention. OBJECTIVE Therefore, the purpose of this study was to assess whether adherence to Mediterranean diet is associated with better metabolic control and body composition in youths with Type 1 Diabetes Mellitus. The study recruited T1DM patients aged 6-18 years at İstanbul University Cerrahpaşa Medical Faculty Hospital's Pediatric Endocrinology and Diabetes Outpatient Clinic for follow-up. METHODS In addition to demographic variables, some anthropometric measurements, body composition and biochemical parameters such as: Trygliceride(TG), Total cholesterol (TC), High density lipoprotein cholesterol (HDL-C), Low density lipoprotein cholesterol (LDL-C), (Aspartate aminotransferase) AST, Alanine transaminase (ALT) and glycated hemoglobin (HbA1c) was analyzed. The time in range (TIR) is a value obtained from continuous glucose monitoring. KIDMED was used to assess the participants' adherence with the MD. RESULTS Good adherence to the MD resulted in much larger height SDS than poor adherence. Poor adherence to MD resulted in higher body fat than moderate and good adherence. There is positivite correlation between TIR and KIDMED score. Adherence to MD is negatively associated with HbA1c. The regression anaylsis showed that a one-point rise in the KIDMED score would result in a 0.314-unit reduction in the HbA1c value (p < 0.01). CONCLUSIONS In conclusion, this study found that adhering to MD led to improved anthropometric measurements, biochemistry, and diabetes outcomes. Awareness among children, adolescents with T1DM, and their parents about the benefits of MD compliance for glycemic and metabolic control should be raised.
Collapse
Affiliation(s)
- Didem Güneş Kaya
- Istanbul University Cerrahpasa- Cerrahpasa Faculty of Medicine, Pediatrics, İstanbul, Turkey
| | - Neslihan Arslan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, Erzurum, Turkey.
| | - Feride Ayyıldız
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey
| | - Elvan Bayramoğlu
- Istanbul University Cerrahpasa - Cerrahpasa Faculty of Medicine, Pediatric Endocrinology, İstanbul, Turkey
| | - Hande Turan
- Istanbul University Cerrahpasa - Cerrahpasa Faculty of Medicine, Pediatric Endocrinology, İstanbul, Turkey
| | - Oya Ercan
- Istanbul University Cerrahpasa - Cerrahpasa Faculty of Medicine, Pediatric Endocrinology, İstanbul, Turkey
| |
Collapse
|
19
|
Yaylaci Karahalil F, Bakirhan F, Kara Y. In Vitro Determination of Nitric Oxide Synthase Inhibition, Antioxidant Capacity and Phenolic Content of Various Natural Products (Bee and Herbal Products). Chem Biodivers 2024; 21:e202301330. [PMID: 38220973 DOI: 10.1002/cbdv.202301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
It is obvious that the oxidation process is an undeniable fact and when it comes to aging, one of the first solutions that come to mind is natural products. When it comes to natural products, both plants and bee products play an important, almost combative role against oxidation. For this purpose, natural products of both plant and animal origin were considered together in our study: Linden, green tea, aronia, wild grapes, myrtle, blueberries and basil, honey, pollen and propolis. Total phenolic content values of the extracts ranged between 49.28 and 3859.06 mg gallic acid equivalent/100 g, and propolis, green tea, chestnut flower and aronia samples were found to have the highest values. When looking at the NOS inhibition potential, it was determined that propolis, pollen and aronia samples had the highest percentage inhibition values of 98.11, 92.29, 83.44, respectively. Antioxidant activities of methanolic extracts were investigated using iron(III) reducing/antioxidant capacity (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity test and NOS inhibition tests. The phenolic composition of methanolic extracts was tested using the RP-HPLC-UV (high-performance liquid chromatographic method with ultraviolet) method with 19 phenolic standards.
Collapse
Affiliation(s)
- Fatma Yaylaci Karahalil
- Karadeniz Technical University, Maçka Vocational School, Department of Chemistry and Chemical Processing Technologies, Biochemistry Program, 61750, Maçka, Trabzon, Turkey
| | - Fatma Bakirhan
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, 61080, Trabzon, Turkey
| | - Yakup Kara
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, 61080, Trabzon, Turkey
| |
Collapse
|
20
|
Moscatelli F, Monda A, Messina G, Picciocchi E, Monda M, Di Padova M, Monda V, Mezzogiorno A, Dipace A, Limone P, Messina A, Polito R. Exploring the Interplay between Bone Marrow Stem Cells and Obesity. Int J Mol Sci 2024; 25:2715. [PMID: 38473961 DOI: 10.3390/ijms25052715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity, a complex disorder with rising global prevalence, is a chronic, inflammatory, and multifactorial disease and it is characterized by excessive adipose tissue accumulation and associated comorbidities. Adipose tissue (AT) is an extremely diverse organ. The composition, structure, and functionality of AT are significantly influenced by characteristics specific to everyone, in addition to the variability connected to various tissue types and its location-related heterogeneity. Recent investigation has shed light on the intricate relationship between bone marrow stem cells and obesity, revealing potential mechanisms that contribute to the development and consequences of this condition. Mesenchymal stem cells within the bone marrow, known for their multipotent differentiation capabilities, play a pivotal role in adipogenesis, the process of fat cell formation. In the context of obesity, alterations in the bone marrow microenvironment may influence the differentiation of mesenchymal stem cells towards adipocytes, impacting overall fat storage and metabolic balance. Moreover, bone marrow's role as a crucial component of the immune system adds another layer of complexity to the obesity-bone marrow interplay. This narrative review summarizes the current research findings on the connection between bone marrow stem cells and obesity, highlighting the multifaceted roles of bone marrow in adipogenesis and inflammation.
Collapse
Affiliation(s)
- Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Antonietta Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Elisabetta Picciocchi
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marilena Di Padova
- Department of Humanistic Studies, University of Foggia, 71100 Foggia, Italy
| | - Vincenzo Monda
- Department of Exercise Sciences and Well-Being, University of Naples "Parthenope", 80138 Naples, Italy
| | - Antonio Mezzogiorno
- Department of Mental Health, Fisics and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Dipace
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Pierpaolo Limone
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
21
|
Gómez-López I, Eseberri I, Cano MP, Portillo MP. Anti-Obesity Effect of Different Opuntia stricta var. dillenii's Prickly Pear Tissues and Industrial By-Product Extracts in 3T3-L1 Mature Adipocytes. Nutrients 2024; 16:499. [PMID: 38398824 PMCID: PMC10892177 DOI: 10.3390/nu16040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Opuntia stricta var. dillenii fruit is a source of phytochemicals, such as betalains and phenolic compounds, which may play essential roles in health promotion. The aim of this research was to study the triglyceride-lowering effect of green extracts, obtained from Opuntia stricta var. dillenii fruit (whole fruit, pulp, peel, and industrial by-products (bagasse)) in 3T3-L1 mature adipocytes. The cells were treated on day 12, for 24 h, after the induction of differentiation with the extracts, at doses of 10, 25, 50, or 100 μg/mL. The expression of genes (PCR-RT) and proteins (Western blot) involved in fatty acid synthesis, fatty acid uptake, triglyceride assembly, and triglyceride mobilisation was determined. The fruit pulp extraction yielded the highest levels of betalains, whereas the peel displayed the greatest concentration of phenolic compounds. The extracts from whole fruit, peel and pulp were effective in reducing triglyceride accumulation at doses of 50 μg/mL or higher. Bagasse did not show this effect. The main mechanisms of action underpinning this outcome encompass a reduction in fatty acids synthesis (de novo lipogenesis), thus limiting their availability for triglyceride formation, alongside an increase in triglyceride mobilisation. However, their reliance is contingent upon the specific Opuntia extract.
Collapse
Affiliation(s)
- Iván Gómez-López
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.G.-L.); (M.P.C.)
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - M. Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.G.-L.); (M.P.C.)
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
22
|
Huang L, Chen H, Gao M, Shen J, Tao Y, Huang Y, Lv R, Xie R, Lv X, Xu X, Xu X, Yuan C. Dietary factors in relation to the risk of cognitive impairment and physical frailty in Chinese older adults: a prospective cohort study. Eur J Nutr 2024; 63:267-277. [PMID: 37930363 DOI: 10.1007/s00394-023-03260-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE The study aimed to investigate the independent associations of dietary factors with cognitive impairment (CI) and physical frailty (PF) among Chinese older adults. METHODS This study included 10,734 participants (mean age = 78.7 years) free of CI and PF at baseline from the Chinese Longitudinal Health Longevity Survey. Dietary intake was collected using a simplified food frequency questionnaire every 3-4 years. The Chinese version Mini-Mental State Examination was used to assess cognition function, participants with a score below 18 were defined as CI. PF was defined using the activities of daily living, instrumental activities of daily living, and functional limitation-related questions. The outcome was defined as the first onset of either CI or PF. Competing risk models were used to estimate the corresponding hazard ratios (HRs) and the 95% confidence intervals (95% CIs). RESULTS During the study follow-up (mean = 8.1 years), a total of 1220 CI cases and 1451 PF cases were newly identified. Higher frequency of fruits intake was associated with a lower hazard of CI (HR = 0.75, 95% CI 0.58-0.97), whereas higher intake of preserved vegetables demonstrated an opposite association (HR = 1.23, 95% CI 1.07-1.42). In terms of PF, we observed a lower risk associated with higher meat and poultry intake (HR = 0.72, 95% CI 0.61-0.88). In particular, a significant protective association of fish and aquatic products intake with PF was observed among participants with ≥ 28 natural teeth (HR = 0.52, 95% CI 0.27-0.99). CONCLUSION Our findings suggest divergent roles of major dietary factors in the development of CI and PF among Chinese older adults.
Collapse
Affiliation(s)
- Liyan Huang
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Hui Chen
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Mengyan Gao
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jie Shen
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yang Tao
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yuhui Huang
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Rongxia Lv
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Renxiang Xie
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaozhen Lv
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University), Peking University Institute of Mental Health (Sixth Hospital), Beijing, 100191, China
| | - Xin Xu
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaolin Xu
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Changzheng Yuan
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
de Carvalho Faria RV, Duarte MS, de Souza Nogueira J, Gregório BM, Romana-Souza B. Nrf2 activation by hydroxytyrosol and dimethyl fumarate ameliorates skin tissue repair in high-fat diet-fed mice by promoting M2 macrophage polarization and normalizing inflammatory response and oxidative damage. J Biochem Mol Toxicol 2024; 38:e23652. [PMID: 38348708 DOI: 10.1002/jbt.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.
Collapse
Affiliation(s)
| | - Matheus Silva Duarte
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeane de Souza Nogueira
- Laboratory of Histocompatibility and Cryopreservation, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Martins Gregório
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Liu R, Zhang J, Gu W, Zhao X, Xiao L, Yang C. Dietary Inflammatory Index and diabetic retinopathy risk in US adults: findings from NHANES (2005-2008). BMC Ophthalmol 2024; 24:46. [PMID: 38291352 PMCID: PMC10826025 DOI: 10.1186/s12886-024-03303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Inflammation is associated with the pathophysiology of diabetic retinopathy (DR). Within the framework of complete dietary patterns, the Dietary Inflammatory Index (DII) was formulated to evaluate the inflammatory properties inherent in a diet. The main purpose of the current study was to assess the relationship between DII and DR using National Health and Nutrition Examination Survey (NHANES). METHODS The original sample size included 1,148 diabetes patients out of 2005-2008 NHANES surveys. Twenty-four-hour dietary consumptions were used to calculate the DII scores. Demographic characteristics and retina examinations were collected for the comparison between DR and non-DR groups in diabetes patients. The relationship between DII and DR was analyzed by a logistic regression model. RESULTS 227 subjects (110 non-DR and 117 DR) were selected in the analyses by using undersampling method to balance the sample size. Compared with non-DR group, DR group had higher DII values (1.14 ± 0.29 vs. 1.49 ± 0.21, p = 0.32), higher levels of HbA1c (6.8 ± 1.1% vs. 7.7 ± 2.6%, p < 0.001), longer duration of diabetes (6.52 ± 12 years vs. 14 ± 11 years, p < 0.001). The odds rate (OR) of DII for DR from the logistic regression was 1.38 (95%CI 1.06-1.81, p < 0.001). HbA1c, diabetes duration and obesity were important influencing factors, and their ORs were 1.81 (95% CI:1.31-2.50), 1.12 (95%CI:1.04-1.20), 4.01 (95%CI:1.12-14.32), respectively. In addition, the most important dietary indices for DR were different across males and females. CONCLUSIONS The current study demonstrates that a higher DII is associated with an increased risk of DR in US adults. Considering diet as a modifiable factor, limiting pro-inflammatory diets or encouraging an anti-inflammatory diet may be a promising and cost-effective method in the management of DR.
Collapse
Affiliation(s)
- Rong Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 209 Tongshan Road, 221004, Xuzhou, China
| | - Jiechang Zhang
- Department of Cardiology, Zhuhai People's Hospital, Zhuhai, China
| | - Wen Gu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 209 Tongshan Road, 221004, Xuzhou, China
| | - Xiujuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Lishun Xiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 209 Tongshan Road, 221004, Xuzhou, China.
| | - Chengcheng Yang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua Road, 519000, Zhuhai, China.
| |
Collapse
|
25
|
Ballini A, Zhurakivska K, Troiano G, Lo Muzio L, Caponio VCA, Spirito F, Porro R, Rella M, Cantore S, Arrigoni R, Dioguardi M. Dietary Polyphenols against Oxidative Stress in Head and Neck Cancer: What's New, What's Next. J Cancer 2024; 15:293-308. [PMID: 38169656 PMCID: PMC10758035 DOI: 10.7150/jca.90545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024] Open
Abstract
Head and neck cancers (HNC) are a worldwide health problem, accounting for over 5% of all types of cancers. Their varied nature makes it sometimes difficult to find clear explanations for the molecular mechanisms that underline their onset and development. While chemio- and radiotherapy are clearly not to be dismissed, we cannot undervalue the effect that polyphenols - especially dietary polyphenols - can have in helping us to cope with this medical emergency. By influencing several different proteins involved in numerous different metabolic pathways, polyphenols can have a broad spectrum of biological action and can hopefully act synergistically to tackle down head and neck cancer. Moreover, being natural molecules, polyphenols does not present any side effects and can even enhance drugs efficacy, making our clinical therapy against head and neck cancer more and more effective. Certainly, oxidative stress plays an important role, altering several molecular pathways, lowering the body's defenses, and ultimately helping to create a microenvironment conducive to the appearance and development of the tumor. In this regard, the regular and constant intake of foods rich in polyphenols can help counteract the onset of oxidative stress, improving the health of the general population. In this review, we highlight the role of polyphenols in managing oxidative stress, with such positive effects that they can be considered new tools to use in our anti-head and neck cancer strategy.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosa Porro
- Department of Informatics, University of Bari “Aldo Moro”, Bari, Italy
| | - Martina Rella
- AULSS4 - Veneto Orientale - Portogruaro, Venice, Italy
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
26
|
Vigne S, Pot C. Implication of Oxysterols and Phytosterols in Aging and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:231-260. [PMID: 38036883 DOI: 10.1007/978-3-031-43883-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is easily oxidized and can be transformed into numerous oxidation products, among which oxysterols. Phytosterols are plant sterols related to cholesterol. Both oxysterols and phytosterols can have an impact on human health and diseases.Cholesterol is a member of the sterol family that plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized into several molecules including bile acids, hormones, and oxysterols. On the other hand, phytosterols are plant-derived compounds structurally related to cholesterol, which can also have an impact on human health. Here, we review the current knowledge about the role of oxysterols and phytosterols on human health and focus on the impact of their pathways on diseases of the central nervous system (CNS), autoimmune diseases, including inflammatory bowel diseases (IBD), vascular diseases, and cancer in both experimental models and human studies. We will first discuss the implications of oxysterols and then of phytosterols in different human diseases.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland.
| |
Collapse
|
27
|
Wang W, Liu W, Wu J, Liu M, Wang Y, Liu H, Liu J. Preparation and characterization of particle-filled microgels by chemical cross-linking based on zein and carboxymethyl starch for delivering the quercetin. Carbohydr Polym 2024; 323:121375. [PMID: 37940242 DOI: 10.1016/j.carbpol.2023.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
This work aimed to develop novel particle-filled microgels based on zein and carboxymethyl starch for delivering quercetin (Que). The anti-solvent precipitation and chemical cross-linking methods were combined to produce the zein-carboxymethyl starch particle-filled microgels (SM-Z). The critical finding of the study was that adding zein nanoparticles significantly improved the strength, water holding capacity, and thermal stability of carboxymethyl starch microgel (SM). Besides, SM-Z had good biodegradability, and the particle size was about 44-61 μm. SM-Z successfully encapsulated Que with a high encapsulation efficiency of 86.7 %. Que-loaded SM-Z (Q/SM-Z) significantly enhanced 30 d storage and UV light stability (up to 89.4 % retention rate) of Que than the Que-loaded SM (Q/SM). Q/SM-Z exhibited pH-responsive swelling behavior, and the swelling was greatest in the simulated intestinal fluid (pH = 7). Besides, the Q/SM-Z showed good stability in simulated gastric fluids and sustained release of Que in simulated intestinal fluids, 72.5 % Que was released at 8 h. During Que transport in Caco-2 cell monolayers, Q/SM (5.8 %) and Q/SM-Z (9.7 %) were significantly higher than free Que (1.93 %). Therefore, as an oral delivery system for hydrophobic active substances, SM-Z possesses good biodegradability and pH-responsive intestinal-targeted delivery capability, providing a new strategy for designing starch-based encapsulation materials.
Collapse
Affiliation(s)
- Wei Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Wei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jinshan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
28
|
Kushkestani M, Moghadassi M, Sidossis L. Mediterranean Lifestyle: More Than a Diet, A Way of Living (and Thriving). Endocr Metab Immune Disord Drug Targets 2024; 24:1785-1793. [PMID: 38424420 DOI: 10.2174/0118715303279769240215105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Although the Mediterranean Diet (MedDiet) may appear simple and locally inspired based on the provided definitions, mounting evidence reveals that adopting a dietary pattern aligned with MedDiet principles can yield numerous health benefits. Also, the MedDiet stands as the gold standard in preventive medicine, so it is not a simplistic diet centered around specific ingredients or cooking methods; instead, it emerges from a distinctive way of life (lifestyle) inherent to the Mediterranean region. This lifestyle encapsulates essential components of a balanced diet and life, including frugality and moderation in food consumption, the utilization of seasonal and traditional products, a focus on locally sourced, eco-friendly, and biodiverse items, personal engagement in culinary preparation, the emphasis on conviviality and social activities during meal consumption, regular engagement in physical activity, adequate hydration, and sufficient rest. In this review, we will establish the interconnections and links between the various aspects of the Mediterranean diet, how these pillars reflect the Mediterranean region's distinctive lifestyle, and how each element is a necessary part of the others. Finally, the seamless integration of social involvement, sufficient rest, regular physical exercise, and diet will be explored to provide a holistic view of the Mediterranean lifestyle and its inherent harmony.
Collapse
Affiliation(s)
- Mehdi Kushkestani
- Kinesiology and Health Department, Faculty of Kinesiology and Applied Physiology, Rutgers University, New Brunswick, NJ, USA
| | - Mahsa Moghadassi
- Physical Education and Sport Science Faculty, Islamic Azad University North-Branch, Tehran, Iran
| | - Labros Sidossis
- Kinesiology and Health Department, Faculty of Kinesiology and Applied Physiology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
29
|
Hou Y, Zhao X, Wang Y, Li Y, Chen C, Zhou X, Jin J, Ye J, Li D, Gan L, Wu R. Oleuropein-Rich Jasminum Grandiflorum Flower Extract Regulates the LKB1-PGC-1α Axis Related to the Attenuation of Hepatocellular Lipid Dysmetabolism. Nutrients 2023; 16:58. [PMID: 38201888 PMCID: PMC10780778 DOI: 10.3390/nu16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Diets() rich in fat are a major() cause() of metabolic disease(), and nutritional() food has been widely() used() to counteract the metabolic disorders such() as obesity() and fatty() liver(). The present study investigated the effects of oleuropein-enriched extract() from Jasminum grandiflorum L. flowers (OLE-JGF) in high-fat diet() (HFD)-fed mice and oleic acid() (OA)-treated AML-12 cells. Treatment() of HFD-fed mice with 0.6% OLE-JGF for 8 weeks significantly reduced body and liver() weights, as well as attenuating lipid dysmetabolism and hepatic steatosis. OLE-JGF administration() prominently suppressed the mRNA expressions() of monocyte chemoattractant protein()-1 (MCP-1) and cluster of differentiation 68 (CD68), and it also downregulated acetyl-CoA carboxylase (ACC) and fatty() acid() synthase (FAS) as well as sterol-regulatory-element()-binding protein() (SREBP-1c) in the liver(). Meanwhile, mitochondrial DNA and uncoupling protein() 2 (UCP2) were upregulated along with the increased expression() of mitochondrial biogenic promoters including liver() kinase B1 (LKB1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear() factor()-erythroid-derived 2-like 2 (Nrf2), and mitochondrial transcription factor() A (Tfam), but did not change AMP-activated protein() kinase (AMPK) in liver(). The lipid droplets were decreased significantly after treatment() with 80 μM oleuropein for 24 h in OA-induced AML-12 cells. Furthermore, oleuropein significantly inhibited ACC mRNA expression() and upregulated LKB1, PGC-1α, and Tfam mRNA levels, as well as increasing the binding level of LKB1 to PGC-1α promoter in OA-induced cells. These findings indicate() that OLE-JGF reduces hepatic lipid deposition in HFD-fed mice, as well as the fact that OA-induced liver() cells may be partly() attributed to upregulation of the LKB1-PGC-1α axis, which mediates hepatic lipogenesis and mitochondrial biogenesis. Our study provides a scientific() basis() for the benefits and potential() use() of the J. grandiflorum flower as a food supplement() for the prevention() and treatment() of metabolic disease().
Collapse
Affiliation(s)
- Yajun Hou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xuan Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Yalin Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Yapeng Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Caihong Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Xiu Zhou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Jingwei Jin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jiming Ye
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Dongli Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lishe Gan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| |
Collapse
|
30
|
Pavlidou E, Papadopoulou SK, Fasoulas A, Papaliagkas V, Alexatou O, Chatzidimitriou M, Mentzelou M, Giaginis C. Diabesity and Dietary Interventions: Evaluating the Impact of Mediterranean Diet and Other Types of Diets on Obesity and Type 2 Diabetes Management. Nutrients 2023; 16:34. [PMID: 38201865 PMCID: PMC10780530 DOI: 10.3390/nu16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Diabesity, the intersection of obesity and diabetes, presents a global health crisis with profound implications. Addressing diabesity requires multifaceted strategies, with diet playing a pivotal role. Over the last 15 years, clinical studies have intensified their exploration of various dietary approaches in diabesity management. This literature review aims to synthesize findings from clinical studies conducted in the last 15 years, shedding light on the efficacy, mechanisms, and nuances of different diet types in diabesity management with special focus on the Mediterranean diet (MD). METHODS Thorough research of academic databases yielded a collection of relevant clinical studies. These studies encompassed a range of dietary strategies, including the MD, low-carbohydrate diets, plant-based diets, high-protein diets, low-fat regimens, and intermittent fasting. Key findings, methodologies, and outcomes were thoroughly extracted and analyzed. RESULTS The last 15 years have witnessed considerable improvements in recognizing the role of human nutritional habits in diabesity management. The MD appears to be the most well-recognized diet, exerting favorable effects against both obesity and diabetes. Low-carbohydrate diets were found to enhance glycemic regulation and decrease insulin resistance. Plant-based diets demonstrated potential benefits in weight management and cardiometabolic health. High-protein, low-fat dietary models exhibited positive effects on satiety and body weight decline. Intermittent fasting regimens also exerted metabolic improvements and body weight decline. Personalization emerged as a crucial factor in dietary recommendations. CONCLUSIONS Clinical studies from the last 15 years underscore the intricate relationship between diet types and diabesity management. The above results contribute to an increasing body of evidence, emphasizing the need for tailored dietary approaches and especially the MD. Healthcare providers can utilize this knowledge to offer personalized dietary recommendations for individuals with diabesity, potentially curbing the rise of these twin epidemics and improving the well-being of affected populations.
Collapse
Affiliation(s)
- Eleni Pavlidou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (A.F.); (O.A.); (M.M.); (C.G.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Aristeidis Fasoulas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (A.F.); (O.A.); (M.M.); (C.G.)
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (V.P.); (M.C.)
| | - Olga Alexatou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (A.F.); (O.A.); (M.M.); (C.G.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (V.P.); (M.C.)
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (A.F.); (O.A.); (M.M.); (C.G.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (A.F.); (O.A.); (M.M.); (C.G.)
| |
Collapse
|
31
|
Lu JF, Zhu MQ, Xia B, Zhang NN, Liu XP, Liu H, Zhang RX, Xiao JY, Yang H, Zhang YQ, Li XM, Wu JW. GDF15 is a major determinant of ketogenic diet-induced weight loss. Cell Metab 2023; 35:2165-2182.e7. [PMID: 38056430 DOI: 10.1016/j.cmet.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
A ketogenic diet (KD) has been promoted as an obesity management diet, yet its underlying mechanism remains elusive. Here we show that KD reduces energy intake and body weight in humans, pigs, and mice, accompanied by elevated circulating growth differentiation factor 15 (GDF15). In GDF15- or its receptor GFRAL-deficient mice, these effects of KD disappeared, demonstrating an essential role of GDF15-GFRAL signaling in KD-mediated weight loss. Gdf15 mRNA level increases in hepatocytes upon KD feeding, and knockdown of Gdf15 by AAV8 abrogated the obesity management effect of KD in mice, corroborating a hepatic origin of GDF15 production. We show that KD activates hepatic PPARγ, which directly binds to the regulatory region of Gdf15, increasing its transcription and production. Hepatic Pparγ-knockout mice show low levels of plasma GDF15 and significantly diminished obesity management effects of KD, which could be restored by either hepatic Gdf15 overexpression or recombinant GDF15 administration. Collectively, our study reveals a previously unexplored GDF15-dependent mechanism underlying KD-mediated obesity management.
Collapse
Affiliation(s)
- Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Na Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao Peng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Ying Qi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao Miao Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Wang J, Xing F, Sheng N, Xiang Z. Associations of dietary oxidative balance score with femur osteoporosis in postmenopausal women: data from the National Health and Nutrition Examination Survey. Osteoporos Int 2023; 34:2087-2100. [PMID: 37648795 DOI: 10.1007/s00198-023-06896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
We used data from the NHANES to explore associations of DOBS with femur BMD and osteoporosis in postmenopausal women. We found that DOBS was positively associated with femur BMD and negatively associated with the risk of osteoporosis in postmenopausal women. PURPOSE The study aimed to investigate the relationship between dietary oxidative balance score (DOBS) and the risk of osteoporosis in American postmenopausal women. METHODS A total of 3043 participants were included in this study. The linear relationship between DOBS and femur BMD was evaluated using a weighted multivariate linear regression model. The association between DOBS and the risk of osteoporosis was assessed using a weighted logistic regression model, with odds ratios (ORs) and 95% confidence intervals (CIs) calculated. Moreover, the relationship was further characterized through smooth curve fitting (SCF) and weighted generalized additive model (GAM) analysis. RESULTS After adjusting for all covariates, the weighted multivariable linear regression models showed a positive correlation between DOBS and femur BMD. Moreover, the weighted logistic regression model demonstrated that compared to the first tertile of DOBS, the highest tertile of DOBS was significantly associated with a lower risk of osteoporosis, with ORs of 0.418 (95% CI, 0.334, 0.522) for individuals under the age of 70 and 0.632 (95% CI, 0.506, 0.790) for individuals aged 70 or above. Similar trends were also observed in SCF and GAM models. CONCLUSION The present study indicated that postmenopausal women with a higher DOBS have a lower risk of femur osteoporosis. This finding may highlight the potential protective role of an antioxidant-rich diet for the bones of the postmenopausal population. Moreover, DOBS may also be a valuable tool in identifying individuals with osteoporosis. Screening and early intervention for osteoporosis may be essential for postmenopausal women with low DOBS.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Fei Xing
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ning Sheng
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
33
|
Terzo S, Calvi P, Giardina M, Gallizzi G, Di Carlo M, Nuzzo D, Picone P, Puleio R, Mulè F, Scoglio S, Amato A. Positive Impacts of Aphanizomenon Flos Aquae Extract on Obesity-Related Dysmetabolism in Mice with Diet-Induced Obesity. Cells 2023; 12:2706. [PMID: 38067134 PMCID: PMC10705513 DOI: 10.3390/cells12232706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The present study evaluated the ability of KlamExtra®, an Aphanizomenon flos aquae (AFA) extract, to counteract metabolic dysfunctions due to a high fat diet (HFD) or to accelerate their reversion induced by switching an HFD to a normocaloric diet in mice with diet-induced obesity. A group of HFD mice was fed with an HFD supplemented with AFA (HFD-AFA) and another one was fed with regular chow (standard diet-STD) alone or supplemented with AFA (STD-AFA). AFA was able to significantly reduce body weight, hypertriglyceridemia, liver fat accumulation and adipocyte size in HFD mice. AFA also reduced hyperglycaemia, insulinaemia, HOMA-IR and ameliorated the glucose tolerance and the insulin response of obese mice. Furthermore, in obese mice AFA normalised the gene and the protein expression of factors involved in lipid metabolism (FAS, PPAR-γ, SREBP-1c and FAT-P mRNA), inflammation (TNF-α and IL-6 mRNA, NFkB and IL-10 proteins) and oxidative stress (ROS levels and SOD activity). Interestingly, AFA accelerated the STD-induced reversion of glucose dysmetabolism, hepatic and VAT inflammation and oxidative stress. In conclusion, AFA supplementation prevents HFD-induced dysmetabolism and accelerates the STD-dependent recovery of glucose dysmetabolism by positively modulating oxidative stress, inflammation and the expression of the genes linked to lipid metabolism.
Collapse
Affiliation(s)
- Simona Terzo
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
| | - Pasquale Calvi
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90127 Palermo, Italy
| | - Marta Giardina
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
| | - Giacoma Gallizzi
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Marta Di Carlo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Flavia Mulè
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
| | | | - Antonella Amato
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
34
|
Pasdar Y, Shadmani FK, Fateh HL, Soleimani D, Hamzeh B, Ghalandari M, Moloudpour B, Darbandi M. The burden of colorectal cancer attributable to dietary risk in Middle East and North African from 1990 to 2019. Sci Rep 2023; 13:20244. [PMID: 37985710 PMCID: PMC10662137 DOI: 10.1038/s41598-023-47647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The incidence of colorectal cancer (CRC) is increasing in low- and middle-income countries. This study aimed to estimate the burden of CRC attributable to nutritional risk in the Middle East and North Africa (MENA) region. The GBD 2019 methods were used to estimate age-standardized mortality rates (ASMRs) and disability-adjusted life-years (DALYs) in 2019 and over the past three decades. We evaluated the 30-year trend in DALYs and mortality rates from nutrition-related risks of CRC, from 1990 to 2019 by sex and age groups in 21 countries in the MENA region. The rate of DALYs/100,000 due to diet-related risks for CRC in 2019 was 79.71 (95% UI: 56.79, 98.44) and 65.16 (95% UI: 45.86, 80.95) in men and women, respectively. The percent changes of DALYs/100,000 in men and women were 8.15% and 2.50%, respectively, between 1990 and 2019. The percent changes in ASMRs in men and women were 8.32% and 3.44%, respectively. The highest DALYs and ASMRs were observed in both sexes in the age group 75-79 years and above. The highest percent changes in DALYs/100,000 and ASMRs were observed between 1990 and 2019 in Afghanistan, Egypt, Iran, Iraq, Lebanon, Libya, Morocco, Palestine, Qatar, Saudi Arabia, Sudan and Yemen. DALYs and ASMRs attributed to dietary risk for CRC increased in 21 countries in the MENA region from 1990 to 2019. A modified diet with more fiber, dairy products and less red meat intake is a highly recommended strategy for prevention CRC.
Collapse
Affiliation(s)
- Yahya Pasdar
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khosravi Shadmani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hawal Lateef Fateh
- Nursing Department, Kalar Technical College, Garmian Polytechnic University, Kalar, Iraq
| | - Davood Soleimani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrooz Hamzeh
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Ghalandari
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrooz Moloudpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Darbandi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
35
|
Cu-Cañetas TE, Velázquez-Villegas LA, Manzanilla-Franco M, Ayora-Talavera TDR, Acevedo-Fernández JJ, Barbosa-Martín E, Márquez-Mota CC, López-Barradas AM, Noriega LG, Guevara-Cruz M, Gutiérrez-Solís AL, Avila-Nava A. Ramon Flour ( Brosimum alicastrum Swartz) Ameliorates Hepatic Lipid Accumulation, Induction of AMPK Phosphorylation, and Expression of the Hepatic Antioxidant System in a High-Fat-Diet-Induced Obesity Mouse Model. Antioxidants (Basel) 2023; 12:1957. [PMID: 38001809 PMCID: PMC10669741 DOI: 10.3390/antiox12111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive consumption of fat and carbohydrates, together with a decrease in traditional food intake, has been related to obesity and the development of metabolic alterations. Ramon seed is a traditional Mayan food used to obtain Ramon flour (RF) with high biological value in terms of protein, fiber, micronutrients, and bioactive compounds such as polyphenols. However, few studies have evaluated the beneficial effects of RF. Thus, we aimed to determine the metabolic effects of RF consumption on a high-fat-diet-induced obesity mouse model. We divided male BALB/c mice into four groups (n = 5 each group) and fed them for 90 days with the following diets: Control (C): control diet (AIN-93), C + RF: control diet adjusted with 25% RF, HFD: high-fat diet + 5% sugar in water, and HFD + RF: high-fat diet adjusted with 25% RF + 5% sugar in water. The RF prevented the increase in serum total cholesterol (TC) and alanine transaminase (ALT) that occurred in the C and HFD groups. Notably, RF together with HFD increased serum polyphenols and antioxidant activity, and it promoted a decrease in the adipocyte size in white adipose tissue, along with lower hepatic lipid accumulation than in the HFD group. In the liver, the HFD + RF group showed an increase in the expression of β-oxidation-related genes, and downregulation of the fatty acid synthase (Fas) gene compared with the HFD group. Moreover, the HFD + RF group had increased hepatic phosphorylation of AMP-activated protein kinase (AMPK), along with increased nuclear factor erythroid 2-related factor 2 (NRF2) and superoxide dismutase 2 (SOD2) protein expression compared with the HFD group. Thus, RF may be used as a nutritional strategy to decrease metabolic alterations during obesity.
Collapse
Affiliation(s)
| | - Laura A. Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico; (L.A.V.-V.); (A.M.L.-B.); (L.G.N.); (M.G.-C.)
| | - Mariana Manzanilla-Franco
- Escuela de Salud, Universidad Modelo, Mérida 97130, Yucatán, Mexico; (T.E.C.-C.); (M.M.-F.); (E.B.-M.)
| | - Teresa del Rosario Ayora-Talavera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Subsede Sureste, Mérida 97302, Yucatán, Mexico;
| | - Juan José Acevedo-Fernández
- Departamento de Fisiología y Fisiopatología, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca 62350, Morelos, Mexico;
| | - Enrique Barbosa-Martín
- Escuela de Salud, Universidad Modelo, Mérida 97130, Yucatán, Mexico; (T.E.C.-C.); (M.M.-F.); (E.B.-M.)
| | - Claudia C. Márquez-Mota
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (FMVZ-UNAM), Ciudad de México 04510, Mexico;
| | - Adriana M. López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico; (L.A.V.-V.); (A.M.L.-B.); (L.G.N.); (M.G.-C.)
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico; (L.A.V.-V.); (A.M.L.-B.); (L.G.N.); (M.G.-C.)
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico; (L.A.V.-V.); (A.M.L.-B.); (L.G.N.); (M.G.-C.)
| | - Ana Ligia Gutiérrez-Solís
- Hospital Regional de Alta Especialidad de la Península de Yucatán (HRAEPY), Mérida 97130, Yucatán, Mexico;
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán (HRAEPY), Mérida 97130, Yucatán, Mexico;
| |
Collapse
|
36
|
Diniz MS, Magalhães CC, Tocantins C, Grilo LF, Teixeira J, Pereira SP. Nurturing through Nutrition: Exploring the Role of Antioxidants in Maternal Diet during Pregnancy to Mitigate Developmental Programming of Chronic Diseases. Nutrients 2023; 15:4623. [PMID: 37960276 PMCID: PMC10649237 DOI: 10.3390/nu15214623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.
Collapse
Affiliation(s)
- Mariana S. Diniz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carina C. Magalhães
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís F. Grilo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
37
|
Di Renzo L, Gualtieri P, Frank G, De Santis GL, Cianci R, Bigioni G, De Lorenzo A. Sex Differences in the Efficacy of Mediterranean Diet Treatment: A Nutrigenomics Pilot Study. Genes (Basel) 2023; 14:1980. [PMID: 38002923 PMCID: PMC10671063 DOI: 10.3390/genes14111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The Mediterranean diet (MedD) has been shown to have beneficial effects on health, well-being, and mental status. It potentially modulates gene expressions linked to oxidative stress, contributing to its beneficial effects on overall health. The aim of this study was to assess the effects of MedD treatment in healthy human volunteers on the expression of ten genes related to oxidative stress and inflammation in women and men. Of 30 enrolled subjects, 17 were eligible, 10 women and 7 men. All of them received the same MedD treatment. Before and after 8 weeks of MedD treatment, an evaluation of body composition, blood tests, and anthropometric and clinical parameters was performed. Furthermore, 10 genes were amplified and analyzed. The study showed significant differences between females and males in body composition and biochemical parameters before and after MedD treatment. Significant differences between females and males in Resistance Force (p < 0.009) and Diastolic Blood Pressure (p < 0.04) before MedD treatment, and in High-Density Lipoprotein (p < 0.02) after MedD treatment, were observed. Moreover, a significant upregulation of Apolipoprotein E and Angiotensin I-Converting Enzyme in females has been shown. Sex differences impact MedD treatment response, and influence the genetic expression of genes related to oxidative stress; our findings may help to personalize diet therapy and contribute to overall health and well-being.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (P.G.)
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (P.G.)
| | - Giulia Frank
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gemma Lou De Santis
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giulia Bigioni
- Department of Physics, University of Rome Sapienza, 00185 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (P.G.)
| |
Collapse
|
38
|
Silva P, Rodríguez-Pérez M, Burgos-Ramos E. Zebrafish Model Insights into Mediterranean Diet Liquids: Olive Oil and Wine. Antioxidants (Basel) 2023; 12:1843. [PMID: 37891921 PMCID: PMC10604723 DOI: 10.3390/antiox12101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In this review, we explored the potential of a zebrafish model to investigate the antioxidant effects of key components of the Mediterranean diet, namely, olive oil and wine, in the context of preventing age-related diseases, particularly cardiovascular conditions. This paper explores the spectrum of observational studies to preclinical investigations and ultimately converges toward potential translational insights derived from animal experimentation. This review highlights the potential and underutilization of zebrafish as an experimental model in this domain. We highlighted the genetic proximity of zebrafish to humans, offering a unique opportunity for translational insights into the health benefits of olive oil and wine. Indeed, we wanted to focus on the potential of zebrafish to elucidate the health benefits of olive oil and wine while calling for continued exploration to unlock its full potential to advance our knowledge of age-related disease prevention within the Mediterranean diet framework.
Collapse
Affiliation(s)
- Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenue Carlos III s/n, 45071 Toledo, Spain;
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenue Carlos III s/n, 45071 Toledo, Spain;
| |
Collapse
|
39
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
de Freitas Rocha J, de Castro Viana L, Filho LCPA, de Almeida TS, Neto JJL, Neto VV, Tabosa PMS, Nunes-Pinheiro DCS, Girão-Carmona VCC, Carvalho AFU, Mota EF. In vitro anti-inflammatory activity and ameliorative effects on gastric ulcers of Licania rigida benth seed extract. Inflammopharmacology 2023; 31:2631-2640. [PMID: 37420144 DOI: 10.1007/s10787-023-01283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
Licania rigida Benth., a Brazilian endemic plant, has been traditionally used for treating inflammation and stomach pain. This work investigates the anti-inflammatory and gastroprotective activities of the ethanolic extract from L. rigida seeds (EELr) by in vitro and in vivo methods. The phytochemical profile was determined and the in vitro antioxidant activity was investigated by radical scavenging and thiobarbituric acid reactive substances methods. The ovalbumin denaturation method was used with sodium diclofenac as standard for the in vitro anti-inflammatory activity assessment. Acetylsalicylic acid was used to induce gastric ulcers in male mice and then to evaluate the preventive and therapeutic gastroprotective effect of EELr, using omeprazole as the reference drug. The extract exhibited relevant amount of phenolic compounds and flavonoids, in particular, demonstrating in vitro antioxidant capacity. EELr was able to inhibit almost 60% of ovalbumin denaturation at a concentration considered low. It also prevented the decrease of biochemical markers for oxidative stress such as superoxide dismutase (SOD) and reduced glutathione (GSH) in the stomach and SOD and catalase (CAT) in the liver. EELr also significantly decreased the number of lesions as well as reduced the ulcerated area when used as therapy. The observed effect may be due to its phenolic compounds, such as chlorogenic acid, caffeic acid and tannins, as previously reported. EELr is a potential source of compounds with anti-inflammatory activity, protects the liver from oxidative damage and improves healing of aspirin-induced ulcers. This work contributes to the knowledge of L. rigida species.
Collapse
Affiliation(s)
| | | | | | - Thiago Silva de Almeida
- Biochemistry and Molecular Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
- Laboratory of Phytochemistry and Process Integration, Northeast Strategic Technologies Center-CETENE, Recife, Pernambuco, 50740-545, Brazil
| | - José Joaquim Lopes Neto
- Biochemistry and Molecular Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
- Pharmacy Course, Estacio São Luís University Center, São Luís, Maranhão, 65020-250, Brazil
| | - Veríssimo Vieira Neto
- Biochemistry and Molecular Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Pedro Matheus Sousa Tabosa
- Biochemistry and Molecular Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | | | | | | | - Erika Freitas Mota
- Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil.
| |
Collapse
|
41
|
Kumari M, Haranahalli Nataraj B, Prasad WG, Ali SA, Behare PV. Multi-Faceted Bioactivity Assessment of an Exopolysaccharide from Limosilactobacillus fermentum NCDC400: Antioxidant, Antibacterial, and Immunomodulatory Proficiencies. Foods 2023; 12:3595. [PMID: 37835248 PMCID: PMC10572761 DOI: 10.3390/foods12193595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Exopolysaccharides (EPS) are acknowledged for their diverse functional and technological properties. This study presents the characterization of EPS400, an acidic exopolysaccharide sourced from the native probiotic Limosilactobacillus fermentum NCDC400. Notably, this strain has demonstrated previous capabilities in enhancing dairy food texture and displaying in vivo hypocholesterolemic activity. Our investigation aimed to unveil EPS400's potential biological roles, encompassing antioxidant, antibacterial, and immunomodulatory activities. The results underscore EPS400's prowess in scavenging radicals, including the 2,2-diphenyl-1-picrylhydrazyl radical, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) radical, superoxide radical, hydroxyl radical, and chelating activity targeting the ferrous ion. Furthermore, EPS400 displayed substantial antibacterial effectiveness against prevalent food spoilage bacteria such as Pseudomonas aeruginosa NCDC105 and Micrococcus luteus. Remarkably, EPS400 exhibited the ability to modulate cytokine production, downregulating pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and nitric oxide, while concurrently promoting the release of anti-inflammatory cytokine IL-10 within lipopolysaccharide-activated murine primary macrophages. Additionally, EPS400 significantly (p ≤ 0.05) enhanced the phagocytic potential of macrophages. Collectively, our findings spotlight EPS400 as a promising contender endowed with significant antioxidant, antibacterial, and immunomodulatory attributes. These characteristics propose EPS400 as a potential pharmaceutical or bioactive component, with potential applications in the realm of functional food development.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Basavaprabhu Haranahalli Nataraj
- Dairy Chemistry and Bacteriology Section, Southern Regional Station, ICAR-National Dairy Research Institute, Bengaluru 560030, India
| | - Writdhama G. Prasad
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal 132001, India;
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Pradip V. Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| |
Collapse
|
42
|
Zapata-Lamana R, Ibarra-Mora J, Carrasco-Marín F, Durán-Agüero S, Cuevas-Aburto J, Parra-Rizo MA, Cigarroa I. Low Sleep Hygiene Is Associated with Less Adherence to the Mediterranean Diet in Chilean Schoolchildren from Rural Public Schools-A Cross-Sectional Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1499. [PMID: 37761460 PMCID: PMC10529217 DOI: 10.3390/children10091499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
The Mediterranean diet stands as a widely acknowledged and health-promoting dietary pattern, renowned for its notable linkage to the mitigation of noncommunicable chronic maladies. Nonetheless, the existing body of evidence concerning the potential interrelation between sleep hygiene and this dietary regimen remains circumscribed. The main objective was to determine the association between sleep hygiene and adherence to the Mediterranean diet in Chilean schoolchildren from rural public schools in southern Chile. A non-experimental study was carried out, with an analytical, cross-sectional design. A total of 265 students (56.6% women, mean age 13.5 ± 1.8) from a rural community in southern Chile were recruited. Sleep habits were evaluated using Section 6 of the Life Habits and Adolescence Questionnaire, Sleep and Rest, and adherence to the Mediterranean diet was assessed with the KIDMED Mediterranean Diet Adherence Questionnaire. The main results indicated that 52.8% of schoolchildren need to improve adherence to the Mediterranean diet and 16.6% have a low-quality Mediterranean diet. A high percentage of schoolchildren have behaviors related to poor sleep hygiene (going to bed late (46%), waking up tired and wanting to continue sleeping (63.8%), and having problems falling asleep (42.6%)). Schoolchildren who got up after 8:30 a.m., those who fell asleep after midnight, upon conducting a comparative analysis of the students based on their sleep patterns, those who woke up tired and those who had trouble falling asleep had a lower level of adherence to the Mediterranean diet compared to schoolchildren who got up earlier than 8:30 a.m., fell asleep before midnight, did not wake up tired, and those who did not find it difficult to fall asleep, respectively. In conclusion, having poor sleep patterns including difficulties in both awakening and falling asleep are associated with less adherence to the Mediterranean diet in schoolchildren from rural public schools in southern Chile. Monitoring these variables and promoting healthy lifestyle habits within the educational community are essential measures.
Collapse
Affiliation(s)
| | - Jessica Ibarra-Mora
- Departamento de Educación Física, Deportes y Recreación, Universidad Metropolitana de Ciencias de la Educación, Santiago 8330106, Chile;
| | | | - Samuel Durán-Agüero
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 8330106, Chile;
| | | | - Maria Antonia Parra-Rizo
- Faculty of Health Sciences, Valencian International University (VIU), 46002 Valencia, Spain
- Department of Health Psychology, Faculty of Social and Health Sciences, Campus of Elche, Miguel Hernandez University (UMH), 03202 Elche, Spain
| | - Igor Cigarroa
- Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Los Ángeles 4440000, Chile
| |
Collapse
|
43
|
Filho OCDSB, Peres WAF, Spinelli RR, Peniche BX, Silverio RN, da Costa VM, Luescher JL, Ribeiro SML, Vicente BM, Cunha LVSD, Padilha PDC. Evaluation of the dietary inflammatory index in children and adolescents with type 1 diabetes mellitus and its relationship with nutritional status and metabolic control. Nutrition 2023; 113:112082. [PMID: 37321044 DOI: 10.1016/j.nut.2023.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/30/2023] [Accepted: 05/13/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the association of the dietary inflammatory index (DII) with the nutritional status and metabolic control of children and adolescents with type 1 diabetes mellitus. METHODS This was a cross-sectional study that examined data of children and adolescents ages 7 to 16 y diagnosed with type 1 diabetes mellitus. Dietary intake was assessed using a 24-h dietary recall, from which the DII was calculated. The outcomes were body mass index, lipid profiles (low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol), and glycated hemoglobin. The DII was evaluated in tertiles and in a continuous way. Multiple linear regression was adopted in the analysis, with P < 0.05 considered significant. RESULTS Overall, 120 children and adolescents with a mean age of 11.7 (± 2.8) y were included, 53.3% (n = 64) of whom were girls. Excess weight was present in 31.7% participants (n = 38). The average DII was +0.25, ranging from -1.11 to +2.67. Higher values of selenium (P = 0.011), zinc (P = 0.001), fiber (P < 0.001), and other micronutrients were observed in the first tertile of the DII (diet with more antiinflammatory potential). The DII appeared as a predictor of body mass index (P = 0.002; β = 0.23; 95% confidence interval [CI], 0.39-1.75) and non-high-density lipoprotein cholesterol (P = 0.034; β = 0.19; 95% CI, -13.5 to 0.55). There was a tendency for DII to be associated with glycemic control (P = 0.09; β = 0.19; 95% CI, -0.04 to 0.51). CONCLUSIONS The inflammatory potential of the diet was associated with increased body mass index and aspects related to metabolic control in children and adolescents with type 1 diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Renata Ribeiro Spinelli
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, Brazil
| | - Beatriz Xavier Peniche
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, Brazil
| | | | - Veronica Medeiros da Costa
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, Brazil
| | - Jorge Luiz Luescher
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia de Carvalho Padilha
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, Brazil; Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Nani A, Tehami W. Targeting inflammasome pathway by polyphenols as a strategy for pancreatitis, gastrointestinal and liver diseases management: an updated review. Front Nutr 2023; 10:1157572. [PMID: 37743919 PMCID: PMC10513047 DOI: 10.3389/fnut.2023.1157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Obesity, pancreatitis, cardiovascular, gastrointestinal (GI), and liver diseases have all been linked to the Western lifestyle, characterized by increased unhealthy food consumption and decreased physical activity. Besides obesity and pancreatitis, many GI and liver diseases are associated with inflammation. Inflammasomes are multi-protein complexes that mediate acute and restorative inflammatory pathways. However, many aberrations in inflammasome activity originate from shifts in dietary habits. Evidence reveals that dietary polyphenols effectively modulate inflammasome-associated dysfunctions. With a focus on pancreatitis, GI, and liver disorders, this review set out to provide the most relevant evidence for the therapeutic impact of polyphenols via the regulation of the inflammasome pathway. Overall, flavonoid and non-flavonoid polyphenols maintain intestinal eubiosis, downregulate NLRP3 inflammasome canonical pathway, and restore redox status via upregulating Nrf2/HO-1 signaling. These effects at the level of the intestine, the liver, and the pancreas are associated with decreased systemic levels of key pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Abdelhafid Nani
- Laboratory of Saharan Natural Resources, University of Ahmed Draia, Adrar, Algeria
| | | |
Collapse
|
45
|
Barreto P, Farinha C, Coimbra R, Cachulo ML, Melo JB, Lechanteur Y, Hoyng CB, Cunha-Vaz J, Silva R. Interaction between genetics and the adherence to the Mediterranean diet: the risk for age-related macular degeneration. Coimbra Eye Study Report 8. EYE AND VISION (LONDON, ENGLAND) 2023; 10:38. [PMID: 37580831 PMCID: PMC10424352 DOI: 10.1186/s40662-023-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a multifactorial degenerative disease of the macula. Different factors, environmental, genetic and lifestyle, contribute to its onset and progression. However, how they interconnect to promote the disease, or its progression, is still unclear. With this work, we aim to assess the interaction of the genetic risk for AMD and the adherence to the Mediterranean diet in the Coimbra Eye Study. METHODS Enrolled subjects (n = 612) underwent ophthalmological exams and answered a food questionnaire. Adherence to the Mediterranean diet was assessed with mediSCORE. An overall value was calculated for each participant, ranging from 0 to 9, using the sum of 9 food groups, and a cut off value of ≥ 6 was considered high adherence. Rotterdam Classification was used for grading. Participants' genotyping was performed in collaboration with The European Eye Epidemiology Consortium. The genetic risk score (GRS) was calculated for each participant considering the number of alleles at each variant and their effect size. Interaction was assessed with additive and multiplicative models, adjusted for age, sex, physical exercise, and smoking. RESULTS The AMD risk was reduced by 60% in subjects with high adherence to the Mediterranean diet compared to subjects with low adherence to the Mediterranean diet. Combined effects of having low adherence to the Mediterranean diet and high GRS led to almost a 5-fold increase in the risk for AMD, compared to low GRS and high adherence to the Mediterranean diet. The multiplicative scale suggested a multiplicative interaction, although not statistically significant [odds ratio (OR) = 1.111, 95% CI 0.346-3.569, P = 0.859]. The additive model showed a causal positive effect of the interaction of GRS and adherence to the Mediterranean diet: relative excess risk due to interaction (RERI) = 150.9%, (95% CI: - 0.414 to 3.432, P = 0.062), attributable proportion due to interaction (AP) = 0.326 (95% CI: - 0.074 to 0.726, P = 0.055) and synergy index (SI) = 1.713 (95% CI: 0.098-3.329, P = 0.019). High GRS people benefited from adhering to the Mediterranean diet with a 60% risk reduction. For low-GRS subjects, a risk reduction was also seen, but not significantly. CONCLUSIONS Genetics and Mediterranean diet interact to protect against AMD, proving there is an interplay between genetics and environmental factors. TRIAL REGISTRATION The AMD Incidence (NCT02748824) and Lifestyle and Food Habits Questionnaire in the Portuguese Population Aged 55 or More (NCT01715870) studies are registered at www. CLINICALTRIALS gov . Five-year Incidence of Age-related Macular Degeneration in the Central Region of Portugal (AMD IncidencePT); NCT02748824: date of registration: 22/04/16. Lifestyle and Food Habits Questionnaire in the Portuguese Population Aged 55 or More; NCT01715870: date of registration: 29/10/12.
Collapse
Affiliation(s)
- Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Cláudia Farinha
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rita Coimbra
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Maria Luz Cachulo
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Barbosa Melo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Yara Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - José Cunha-Vaz
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Rufino Silva
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Bonafos B, Feillet-Coudray C, Casas F, Bravo FI, Calvo E, Ávila-Román J, Mulero M. Rhythm and ROS: Hepatic Chronotherapeutic Features of Grape Seed Proanthocyanidin Extract Treatment in Cafeteria Diet-Fed Rats. Antioxidants (Basel) 2023; 12:1606. [PMID: 37627601 PMCID: PMC10452039 DOI: 10.3390/antiox12081606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Béatrice Bonafos
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Christine Feillet-Coudray
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - François Casas
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| |
Collapse
|
47
|
Caturano A, D’Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, Galiero R, Rinaldi L, Vetrano E, Marfella R, Monda M, Giordano A, Sasso FC. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr Issues Mol Biol 2023; 45:6651-6666. [PMID: 37623239 PMCID: PMC10453126 DOI: 10.3390/cimb45080420] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Oxidative stress is a critical factor in the pathogenesis and progression of diabetes and its associated complications. The imbalance between reactive oxygen species (ROS) production and the body's antioxidant defence mechanisms leads to cellular damage and dysfunction. In diabetes, chronic hyperglycaemia and mitochondrial dysfunction contribute to increased ROS production, further exacerbating oxidative stress. This oxidative burden adversely affects various aspects of diabetes, including impaired beta-cell function and insulin resistance, leading to disrupted glucose regulation. Additionally, oxidative stress-induced damage to blood vessels and impaired endothelial function contribute to the development of diabetic vascular complications such as retinopathy, nephropathy, and cardiovascular diseases. Moreover, organs and tissues throughout the body, including the kidneys, nerves, and eyes, are vulnerable to oxidative stress, resulting in diabetic nephropathy, neuropathy, and retinopathy. Strategies to mitigate oxidative stress in diabetes include antioxidant therapy, lifestyle modifications, and effective management of hyperglycaemia. However, further research is necessary to comprehensively understand the underlying mechanisms of oxidative stress in diabetes and to evaluate the efficacy of antioxidant interventions in preventing and treating diabetic complications. By addressing oxidative stress, it might be possible to alleviate the burden of diabetes and improve patient outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy; (M.D.)
| | - Margherita D’Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy; (M.D.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Andrea Mormone
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, I-80134 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy; (M.D.)
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| |
Collapse
|
48
|
Bernier V, Debarge MH, Hein M, Ammendola S, Mungo A, Loas G. Major Depressive Disorder, Inflammation, and Nutrition: A Tricky Pattern? Nutrients 2023; 15:3438. [PMID: 37571376 PMCID: PMC10420964 DOI: 10.3390/nu15153438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disease associated with inflammation. The Western diet (WD) is a high-fat, high-sugar diet also associated with inflammation. We aimed to show whether the diet of MDD patients was a WD and could act as a risk factor in this context. We conducted a transversal study of MDD patients and controls (CTRLs) without comorbidities. We performed blood analyses including C-reactive protein (CRP), a diet anamnesis, and an advanced glycation end-product assessment. We found that 34.37% of MDD patients had a CRP level above 3 to 10 mg/L, which remained higher than CTRLs after adjustments (sex, BMI, age, smoking status). The MDD patients had an excess of sugar and saturated and trans fatty acids; a deficiency in n-3 polyunsaturated fatty acid, monounsaturated acid, dietary fibers, and antioxidants; a high glycemic load; and aggravating nutritional factors when compared to the CTRLs. We found correlations between nutritional factors and CRP in univariate/multivariate analysis models. Thus, MDD patients showed an elevated CRP level and a WD pattern that could contribute to sustaining an inflammatory state. Further studies are required to confirm this, but the results highlighted the importance of nutrition in the context of MDD.
Collapse
Affiliation(s)
- Veronique Bernier
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| | - Marie-Hélène Debarge
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| | - Matthieu Hein
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| | - Sarah Ammendola
- Department of Psychiatry, Brugmann University Hospital, Université Libre de Bruxelles—ULB, 1020 Brussels, Belgium
| | - Anais Mungo
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| | - Gwenole Loas
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| |
Collapse
|
49
|
Dar MA, Maqbool M, Ara I. The PCOS puzzle: putting the pieces together for optimal care. Int J Adolesc Med Health 2023; 35:299-311. [PMID: 37596861 DOI: 10.1515/ijamh-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted hormonal disorder that has significant ramifications for both women's reproductive and metabolic well-being. This analysis aims to offer a thorough comprehension of PCOS by investigating the various contributing factors that are crucial for its effective management. We delve into the topic of hormonal imbalances, such as elevated androgens and disrupted estrogen-progesterone dynamics, and their effects on reproductive and metabolic health. Furthermore, we explore the intricate connection between insulin resistance, hyperinsulinemia, and PCOS, highlighting their pivotal role in metabolic dysfunction. Additionally, we examine fertility challenges, irregular menstrual patterns, and metabolic complications while also reviewing current treatment methodologies. Moreover, we address the latest research concerning genetic, environmental, and epigenetic influences on PCOS. By piecing together these essential elements, healthcare professionals can attain a comprehensive understanding of PCOS and deliver optimal care for those affected by the condition.
Collapse
Affiliation(s)
- Mohd Altaf Dar
- Department of Pharmacology, CT Institute of Pharmaceutical Sciences, PTU, Jalandhar, Punjab, India
| | - Mudasir Maqbool
- Department of Pharmaceutical Sciences, University Of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Irfat Ara
- Regional Research Institute of Unani Medicine, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
50
|
Monmai C, Kim JS, Chin JH, Lee S, Baek SH. Inhibitory Effects of Polyphenol- and Flavonoid-Enriched Rice Seed Extract on Melanogenesis in Melan-a Cells via MAPK Signaling-Mediated MITF Downregulation. Int J Mol Sci 2023; 24:11841. [PMID: 37511600 PMCID: PMC10380342 DOI: 10.3390/ijms241411841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Jin-Suk Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| |
Collapse
|