1
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
2
|
El-Seedi HR, El-Wahed AAA, Salama S, Agamy N, Altaleb HA, Du M, Saeed A, Di Minno A, Wang D, Daglia M, Guo Z, Zhang H, Khalifa SAM. Natural Remedies and Health; A Review of Bee Pollen and Bee Bread Impact on Combating Diabetes and Obesity. Curr Nutr Rep 2024; 13:751-767. [PMID: 39302593 DOI: 10.1007/s13668-024-00567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF THE REVIEW Diabetes and obesity are complicated multifactorial conditions that have been highlighted as a significant global burden for both health care and national budgets and their complications are considered a substantial public health concern. This review focuses on the potential anti-diabetic and anti-obesity properties of bee pollen (BP) and bee bread (BB), two bee products with a long history of use in traditional medicine and supplemental nutrition. RECENT FINDINGS Recent studies, encompassing cellular models, experimental models, and clinical trials, have shed light on the therapeutic potential of these bee products. BP and BB are rich in phytochemical constituents like flavonoids and phenolic acids, which are believed to confer their anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity properties. These bee products have shown promising results in the treatment of diabetes and obesity, underscoring their potential as natural therapeutic tools. BP and BB possess properties that aid in decreasing blood glucose levels and body weight. BP and BB have been found to enhance insulin sensitivity, alleviate oxidative stress, regulate appetite, adjust levels of hormones linked to obesity, while bolstering anti-oxidant defense systems. BP and BB nutritional qualities and health benefits make them promising candidates for further research towards diabetes and obesity treatment strategies.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | - Aida A Abd El-Wahed
- Department of Bee Research, Agricultural Research Centre, Plant Protection Research Institute, Giza, 12627, Egypt
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan
| | - Neveen Agamy
- Nutrition Department, Food Analysis Division, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Hamud A Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116024, China
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Daijie Wang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Neurology and Psychiatry Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden.
| |
Collapse
|
3
|
Sun M, Zhang Z, Xie J, Yu J, Xiong S, Xiang F, Ma X, Yang C, Lin L. Research Progress on the Mechanism for Improving Glucose and Lipid Metabolism Disorders Using Phenolic Acid Components from Medicinal and Edible Homologous Plants. Molecules 2024; 29:4790. [PMID: 39459158 PMCID: PMC11510019 DOI: 10.3390/molecules29204790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Glucose and lipid metabolism disorders are the core pathological mechanism of a variety of metabolic diseases, and the incidence of related diseases is increasing year by year, which seriously threatens human life and health. Traditional Chinese medicine with medicinal and edible properties refers to Chinese medicinal resources that have both medicinal and edible characteristics. Due to its safety and its health-promoting and medicinal functions, traditional Chinese medicine has received increasing attention in the development of functional health foods. Phenolic acids are important secondary metabolites that are ubiquitous in medicinal and edible homologous plants, and the regulation of glycolipid metabolism is an important activity and plays a key role in many diseases. In this paper, we focus on the alleviation of glycolipid disorders using MEHH phenolic acids, which regulate glucose metabolism and lipid metabolism, improve insulin resistance, inhibit inflammatory responses, alleviate oxidative stress, and regulate intestinal flora; additionally, we summarize the mechanism in order to provide a reference for MEHH phenolic acids in the treatment of glycolipid metabolism diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (M.S.); (Z.Z.); (J.X.); (J.Y.); (S.X.); (F.X.); (X.M.); (C.Y.)
| |
Collapse
|
4
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
5
|
Acosta-Vega L, Moreno DA, Cuéllar Álvarez LN. Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods 2024; 13:2310. [PMID: 39123500 PMCID: PMC11311875 DOI: 10.3390/foods13152310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/12/2024] Open
Abstract
Arazá is a fruit native to the Amazonian region with characteristic properties such as aroma, texture, color, and marked acidity. Additionally, the fruit is rich in bioactive compounds in its three fractions (seed, pulp, and peel), such as ascorbic acid, phenolic compounds (and their derivatives), and carotenoids, which have been extensively investigated in the literature for their beneficial properties for human health. However, it is a little-known fruit, and the role it can play in health-promoting activities related to the treatment and prevention of non-communicable diseases (NCDs) when incorporated into the diet is also unknown. Therefore, it is necessary to know the profile of bioactive compounds and the biological properties Arazá possesses, which is the aim of this review.
Collapse
Affiliation(s)
- Luis Acosta-Vega
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia;
| | - Diego A. Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain;
| | - Liceth N. Cuéllar Álvarez
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia;
| |
Collapse
|
6
|
Enciso-Martínez Y, Zuñiga-Martínez BS, Ayala-Zavala JF, Domínguez-Avila JA, González-Aguilar GA, Viuda-Martos M. Agro-Industrial By-Products of Plant Origin: Therapeutic Uses as well as Antimicrobial and Antioxidant Activity. Biomolecules 2024; 14:762. [PMID: 39062476 PMCID: PMC11274454 DOI: 10.3390/biom14070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.
Collapse
Affiliation(s)
- Yessica Enciso-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - B. Shain Zuñiga-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| |
Collapse
|
7
|
Zhou Z, Niu H, Bian M, Zhu C. Kidney tea [ Orthosiphon aristatus (Blume) Miq.] improves diabetic nephropathy via regulating gut microbiota and ferroptosis. Front Pharmacol 2024; 15:1392123. [PMID: 38962302 PMCID: PMC11220284 DOI: 10.3389/fphar.2024.1392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Thembane N, Hlatshwayo S, Ngcobo M, Ngubane P, Gqaleni N. Review on the Anti-Hyperglycemic Potential of Psidium guajava and Seriphium plumosum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1608. [PMID: 38931040 PMCID: PMC11207340 DOI: 10.3390/plants13121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
The treatment and management of diabetes mellitus (DM) with conventional therapies, such as insulin injections and oral hypoglycemic agents, present significant challenges due to their side effects and burdensome administration. Therapies often manage symptoms rather than addressing insulin regulation, akin to medications like thiazolidinediones and glinides, which resemble many medicinal plants. Medicinal plants offer potential alternative treatments due to bioactive compounds targeting diabetes causes. We aimed to explore the antidiabetic potential of two medicinal plants, Psidium guajava and Seriphium plumosum L., by investigating their phytochemical constituents, medicinal uses, pharmacological actions, and mechanisms. This review followed specific guidelines and searched databases including PubMed, Scopus, ScienceDirect, and Web of Science for studies on medicinal plants and DM. Eligible studies underwent quality assessment and were categorized based on their design and interventions for data synthesis. This review identified the phytochemical constituents in Psidium guajava and Seriphium plumosum L., including tannins, flavonoids, phenols, and steroids, exerting antidiabetic effects through various mechanisms like antioxidant activity, anti-inflammatory effects, stimulation of insulin secretion, glucose regulation, and inhibition of carbohydrate-digesting enzymes. Psidium guajava and Seriphium plumosum L. exhibit promising antidiabetic potential, offering alternative approaches to diabetes management. Polyherbalism, combining multiple plant extracts, may enhance therapeutic efficacy in diabetes treatment. Comprehensive research is needed to explore the combined therapeutic effects of these plants and develop more effective antidiabetic treatments. This review highlights the importance of harnessing natural resources to combat the global burden of DM. Further research is warranted to fully explore the combined therapeutic effects of these plants and develop novel treatments.
Collapse
Affiliation(s)
- Nokukhanya Thembane
- Department of Biomedical Sciences, Mangosuthu University of Technology, Durban 4026, South Africa
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Sphamandla Hlatshwayo
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Mlungisi Ngcobo
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Phikelelani Ngubane
- Discipline of Medical Microbiology, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Nceba Gqaleni
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
- Africa Health Research Institute, Durban 4013, South Africa
| |
Collapse
|
9
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
10
|
Aryal D, Joshi S, Thapa NK, Chaudhary P, Basaula S, Joshi U, Bhandari D, Rogers HM, Bhattarai S, Sharma KR, Regmi BP, Parajuli N. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci Nutr 2024; 12:3025-3045. [PMID: 38726403 PMCID: PMC11077226 DOI: 10.1002/fsn3.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
In the middle of an ever-changing landscape of diabetes care, precision medicine, and lifestyle therapies are becoming increasingly important. Dietary polyphenols are like hidden allies found in our everyday meals. These biomolecules, found commonly in fruits, vegetables, and various plant-based sources, hold revolutionary potential within their molecular structure in the way we approach diabetes and its intimidating consequences. There are currently numerous types of diabetes medications, but they are not appropriate for all patients due to limitations in dosages, side effects, drug resistance, a lack of efficacy, and ethnicity. Currently, there has been increased interest in practicing herbal remedies to manage diabetes and its related complications. This article aims to summarize the potential of dietary polyphenols as a foundation in the treatment of diabetes and its associated consequences. We found that most polyphenols inhibit enzymes linked to diabetes. This review outlines the potential benefits of selected molecules, including kaempferol, catechins, rosmarinic acid, apigenin, chlorogenic acid, and caffeic acid, in managing diabetes mellitus as these compounds have exhibited promising results in in vitro, in vivo, in silico, and some preclinical trials study. This encompassing exploration reveals the multifaceted impact of polyphenols not only in mitigating diabetes but also in addressing associated conditions like inflammation, obesity, and even cancer. Their mechanisms involve antioxidant functions, immune modulation, and proinflammatory enzyme regulation. Furthermore, these molecules exhibit anti-tumor activities, influence cellular pathways, and activate AMPK pathways, offering a less toxic, cost-effective, and sustainable approach to addressing diabetes and its complications.
Collapse
Affiliation(s)
- Dipa Aryal
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Soniya Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Nabin Kumar Thapa
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Pratiksha Chaudhary
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Sirjana Basaula
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Usha Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Damodar Bhandari
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Hannah M. Rogers
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | | | - Khaga Raj Sharma
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Bishnu P. Regmi
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| |
Collapse
|
11
|
Macan TP, Magenis ML, Damiani AP, Monteiro IDO, Silveira GDB, Zaccaron RP, Silveira PCL, Teixeira JPF, Gajski G, Andrade VMD. Brazil nut consumption reduces DNA damage in overweight type 2 diabetes mellitus patients. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503739. [PMID: 38575248 DOI: 10.1016/j.mrgentox.2024.503739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease, which occurs largely due to unhealthy lifestyle. As oxidative stress is believed to promote T2D, by inducing damage to lipids, proteins, and DNA, appropriate dietary interventions seem critical to prevent, manage, and even reverse this condition. Brazil nuts (Bertholletia excelsa, H.B.K.) are nature's richest source of selenium, a mineral that has shown several health benefits. Therefore, this study aims to assess the effects of selenium consumption, through Brazil nuts, on biochemical and oxidative stress parameters, and genomic instability in T2D patients. We recruited 133 patients with T2D, registered in the Integrated Clinics of the University of Southern Santa Catarina (Brazil). Participants consumed one Brazil nut a day for six months. Blood samples and exfoliated buccal cells were collected at the beginning and the end of the intervention. The glycemic profile, lipid profile, renal profile and hepatic profile, DNA damage and selenium content were evaluated. A total of 74 participants completed the intervention. Brazil nut consumption increased selenium and GSH levels, GPx, and CAT activity while DCF and nitrites levels decreased. Total thiols increased, and protein carbonyl and MDA levels decreased. Levels of baseline and oxidative DNA damage in T2D patients were significantly decreased, as well as the frequency of micronuclei and nuclear buds. The fasting glucose levels, HDL and LDL cholesterol, and GGT levels that increased significantly in patients with type 2 diabetes were significantly reduced with nut consumption. Our results show an increase in antioxidant activity, along with reductions of protein and lipid oxidation as well as DNA damage, suggesting that Brazil nut consumption could be an ally in reducing oxidative stress and modulating the genomic instability in T2D patients.
Collapse
Affiliation(s)
- Tamires Pavei Macan
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Environmental Health Department, Portuguese National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Isadora de Oliveira Monteiro
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gustavo De Bem Silveira
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | | | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
12
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Petrović A, Madić V, Stojanović G, Zlatanović I, Zlatković B, Vasiljević P, Đorđević L. Antidiabetic effects of polyherbal mixture made of Centaurium erythraea, Cichorium intybus and Potentilla erecta. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117032. [PMID: 37582477 DOI: 10.1016/j.jep.2023.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The polyherbal mixture made of Centaurium erythraea aerial parts and Cichorium intybus roots and Potentilla erecta rhizomes has been used for centuries to treat both the primary and secondary complications of diabetes. AIM OF THE STUDY As a continuation of our search for the most effective herbal mixture used as an ethnopharmacological remedy for diabetes, this study aimed to compare the in vitro biological activities of this polyherbal mixture and its individual ingredients, and, most importantly, to validate the ethnopharmacological value of the herbal mixture through evaluation of its phytochemical composition, its potential in vivo toxicity and its effect on diabetes complications. MATERIALS AND METHODS Phytochemical analysis was performed using HPLC-UV. Antioxidant activity was estimated via the DPPH test. Potential cytotoxicity/anticytotoxicity was assessed using an in vitro RBCs antihemolytic assay and an in vivo sub-chronic oral toxicity method. Antidiabetic activity was evaluated using an in vitro α-amylase inhibition assay and in vivo using a chemically induced diabetic rat model. RESULTS The HPLC-UV analysis revealed the presence of p-hydroxybenzoic acid, p-hydroxybenzoic acid derivative, catechin, five catechin derivatives, epicatechin, isoquercetin, hyperoside, rutin, four quercetin derivatives, caffeic acid, and four caffeic acid derivatives in the polyherbal mixture decoction. Treatment with the decoction has shown no toxic effects. The antioxidant and cytoprotective activities of the polyherbal mixture were higher than the reference's ones. Its antidiabetic activity was high in both in vitro and in vivo studies. Fourteen days of treatment with the decoction (15 g/kg) completely normalized blood glucose levels of diabetic animals, while treatments with insulin and glimepiride only slightly lowered glycemic values. In addition, lipid status of treated animals as well as levels of serum AST, ALT, ALP, creatinine, urea and MDA were completely normalized. In addition, the polyherbal mixture completely restored the histopathological changes of the liver, kidneys and all four Cornu ammonis regions of the hippocampus. CONCLUSIONS The polyherbal mixture was effective in the prevention of both primary and secondary diabetic complications such as hyperlipidemia, increased lipid peroxidation, non-alcoholic fatty liver disease, nephropathy and neurodegeneration.
Collapse
Affiliation(s)
- Aleksandra Petrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Višnja Madić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Gordana Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ivana Zlatanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Bojan Zlatković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ljubiša Đorđević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
14
|
Cai L, Wu S, Jia C, Cui C, Sun-Waterhouse D. Active peptides with hypoglycemic effect obtained from hemp (Cannabis sativa L) protein through identification, molecular docking, and virtual screening. Food Chem 2023; 429:136912. [PMID: 37480780 DOI: 10.1016/j.foodchem.2023.136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Hemp (Cannabis sativa L) seeds are rich in proteins of high nutritional value, which makes the study of beneficial properties of hemp seed proteins and peptides, such as hypotensive and hypoglycemic effects, increasingly attractive. The present results confirm the good processability and stability of the hemp protein hydrolysate obtained by enzymatic hydrolysis of non-dehulled hemp seed meal (NDHM). Six peptides with potential hypoglycemic activity were obtained by ethanol-graded precipitation, Nano LC-Q-Orbitrap-MS/MS mass spectrometry, and computerized virtual screening. Further, validation experiments for in vitro synthesis showed that TGLGR, SPVI, FY, and FR exhibited good α-glucosidase inhibitory activity, respectively. Animal experiments showed that the hemp protein peptides modulated blood glucose and blood lipids in hyperglycemic rats. These results indicate that hemp protein peptides can reduce blood glucose levels in hyperglycemic rats, suggesting that hemp proteins may be a promising natural source for the prevention and treatment of hyperglycemia.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Shengwen Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chenggang Jia
- Guilin Sanjin Pharmaceutical Co., Ltd, Guilin 541100, Guangxi, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
15
|
Horvat A, Vlašić I, Štefulj J, Oršolić N, Jazvinšćak Jembrek M. Flavonols as a Potential Pharmacological Intervention for Alleviating Cognitive Decline in Diabetes: Evidence from Preclinical Studies. Life (Basel) 2023; 13:2291. [PMID: 38137892 PMCID: PMC10744738 DOI: 10.3390/life13122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus is a complex metabolic disease associated with reduced synaptic plasticity, atrophy of the hippocampus, and cognitive decline. Cognitive impairment results from several pathological mechanisms, including increased levels of advanced glycation end products (AGEs) and their receptors, prolonged oxidative stress and impaired activity of endogenous mechanisms of antioxidant defense, neuroinflammation driven by the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), decreased expression of brain-derived neurotrophic factor (BDNF), and disturbance of signaling pathways involved in neuronal survival and cognitive functioning. There is increasing evidence that dietary interventions can reduce the risk of various diabetic complications. In this context, flavonols, a highly abundant class of flavonoids in the human diet, are appreciated as a potential pharmacological intervention against cognitive decline in diabetes. In preclinical studies, flavonols have shown neuroprotective, antioxidative, anti-inflammatory, and memory-enhancing properties based on their ability to regulate glucose levels, attenuate oxidative stress and inflammation, promote the expression of neurotrophic factors, and regulate signaling pathways. The present review gives an overview of the molecular mechanisms involved in diabetes-induced cognitive dysfunctions and the results of preclinical studies showing that flavonols have the ability to alleviate cognitive impairment. Although the results from animal studies are promising, clinical and epidemiological studies are still needed to advance our knowledge on the potential of flavonols to improve cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Anđela Horvat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ignacija Vlašić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Istyastono EP, Yuniarti N, Prasasty VD, Mungkasi S, Waskitha SSW, Yanuar MRS, Riswanto FDO. Caffeic Acid in Spent Coffee Grounds as a Dual Inhibitor for MMP-9 and DPP-4 Enzymes. Molecules 2023; 28:7182. [PMID: 37894660 PMCID: PMC10609219 DOI: 10.3390/molecules28207182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Type 2 diabetes mellitus and diabetic foot ulcers remain serious worldwide health problems. Caffeic acid is one of the natural products that has been experimentally proven to have diverse pharmacological properties. This study aimed to assess the inhibitory activity of caffeic acid and ethanolic extract of spent coffee grounds targeting DPP-4 and MMP-9 enzymes and evaluate the molecular interactions through 50-ns molecular dynamics simulations. This study also introduced our new version of PyPLIF HIPPOS, PyPLIF HIPPOS 0.2.0, which allowed us to identify protein-ligand interaction fingerprints and interaction hotspots resulting from molecular dynamics simulations. Our findings revealed that caffeic acid inhibited the DPP-4 and MMP-9 activity with an IC50 of 158.19 ± 11.30 µM and 88.99 ± 3.35 µM while ethanolic extract of spent coffee grounds exhibited an IC50 of 227.87 ± 23.80 µg/100 µL and 81.24 ± 6.46 µg/100 µL, respectively. Molecular dynamics simulations showed that caffeic acid interacted in the plausible allosteric sites of DPP-4 and in the active site of MMP-9. PyPLIF HIPPOS 0.2.0 identified amino acid residues interacting more than 10% throughout the simulation, which were Lys463 and Trp62 in the plausible allosteric site of DPP-4 and His226 in the active site of MMP-9.
Collapse
Affiliation(s)
- Enade P. Istyastono
- Research Group of Computer-Aided Drug Design and Discovery of Bioactive Natural Products, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282, Indonesia; (S.S.W.W.); (M.R.S.Y.); (F.D.O.R.)
| | - Nunung Yuniarti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Vivitri D. Prasasty
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Sudi Mungkasi
- Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University, Yogyakarta 55282, Indonesia;
| | - Stephanus S. W. Waskitha
- Research Group of Computer-Aided Drug Design and Discovery of Bioactive Natural Products, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282, Indonesia; (S.S.W.W.); (M.R.S.Y.); (F.D.O.R.)
| | - Michael R. S. Yanuar
- Research Group of Computer-Aided Drug Design and Discovery of Bioactive Natural Products, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282, Indonesia; (S.S.W.W.); (M.R.S.Y.); (F.D.O.R.)
| | - Florentinus D. O. Riswanto
- Research Group of Computer-Aided Drug Design and Discovery of Bioactive Natural Products, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282, Indonesia; (S.S.W.W.); (M.R.S.Y.); (F.D.O.R.)
| |
Collapse
|
17
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
18
|
Shahein MR, El-Sayed MI, Raya-Álvarez E, Elmeligy AA, Hussein MAM, Mubaraki MA, Agil A, Elmahallawy EK. Fortification of Fermented Camel Milk with Salvia officinalis L. or Mentha piperita Leaves Powder and Its Biological Effects on Diabetic Rats. Molecules 2023; 28:5749. [PMID: 37570720 PMCID: PMC10420823 DOI: 10.3390/molecules28155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The incorporation of fermented camel milk with natural additives possesses numerous benefits for the treatment of various pathological and metabolic conditions. The present study investigated the impact of fortification of fermented camel milk with sage or mint leaves powder (1 and 1.5%, respectively) on glucose and insulin levels, lipid profile, and liver and kidney functions in alloxan-induced diabetic rats. The gross chemical composition of sage and peppermint leaves powder was studied. The chemical composition of sage and mint extracts was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS) of sage and mint extracts. Furthermore, a total of forty-two adult normal male albino rats were included in this study, whereas one group was kept as the healthy control group (n = 6 rats) and diabetes was induced in the remaining animals (n = 36 rats) using alloxan injection (150 mg/kg of body weight). Among diabetic rats groups, a control group (n = 6 rats) was kept as the diabetic control group whereas the other 5 groups (6 rats per group) of diabetic rats were fed fermented camel milk (FCM) or fermented camel milk fortified with 1 and 1.5% of sage or mint leaves powder. Interestingly, the oral administration of fermented camel milk fortified with sage or mint leaves powder, at both concentrations, caused a significant decrease in blood glucose level and lipid profile, and an increase in insulin level compared to the diabetic control and FCM groups. Among others, the best results were observed in the group of animals that received fermented camel milk fortified with 1.5% sage powder. In addition, the results revealed that the fermented camel milk fortified with sage or mint leaves powder improved the liver and kidney functions of diabetic rats. Our study concluded that the use of sage and mint leaves powder (at a ratio of 1.5%) with fermented camel milk produces functional food products with anti-diabetic activity.
Collapse
Affiliation(s)
- Magdy Ramadan Shahein
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Mahmoud Ibrahim El-Sayed
- Department of Dairy Technology Research, Food Technology Research Institute, Agricultural Research Center, Giza 12622, Egypt;
| | - Enrique Raya-Álvarez
- Rheumatology Department, Hospital Universitario San Cecilio, Av. de la Investigación, s/n, 18016 Granada, Spain;
| | | | - Mohamed A. Mohamady Hussein
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Murad A. Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute Granada (IBs Granada) and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain;
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, 14004 Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
19
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Yang L, Nao J, Dong X. The Therapeutic Potential of Hydroxycinnamic Acid Derivatives in Parkinson's Disease: Focus on In Vivo Research Advancements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37432913 DOI: 10.1021/acs.jafc.3c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Hydroxycinnamic acid derivatives (HCDs) are polyphenols that are abundant in cereals, coffee, tea, wine, fruits, vegetables, and other plant-based foods. To aid in the clinical prevention and treatment of Parkinson's disease (PD), we evaluated in vivo investigations of the pharmacological properties of HCDs relevant to PD, and their pharmacokinetic and safety aspects. An extensive search of published journals was conducted using several literature databases, including PubMed, Google Scholar, and the Web of Science. The search terms included "hydroxycinnamic acid derivatives," "ferulic acid," "caffeic acid," "sinapic acid," "p-coumaric acid," "Parkinson's disease," and combinations of these keywords. As of April 2023, 455 preclinical studies were retrieved, of which 364 were in vivo studies; we included 17 of these articles on the pharmaceutics of HCDs in PD. Available evidence supports the protective effects of HCDs in PD due to their anti-inflammatory, antioxidant, as well as antiapoptotic physiological activities. Studies have identified possible molecular targets and pathways for the protective actions of HCDs in PD. However, the paucity of studies on these compounds in PD, and the risk of toxicity induced with high-dose applications, limits their use. Thus, multifaceted studies of HCDs in vitro and in vivo are needed.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| |
Collapse
|
21
|
Matowane GR, Mashele SS, Makhafola TJ, Chukwuma CI. The ameliorative effect of zinc acetate with caffeic acid in the animal model of type 2 diabetes. Biomed Pharmacother 2023; 163:114779. [PMID: 37119739 DOI: 10.1016/j.biopha.2023.114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023] Open
Abstract
Recently the complexation-mediated antioxidative and glycaemic control synergism between zinc(II) and caffeic acid was demonstrated in vitro. The present study evaluated the complexation-mediated antidiabetic and antioxidative synergism between zinc(II) and caffeic acid in diabetic rats and the possible underlying mechanisms. Male SD rats were induced with diabetes using 10% fructose and 40 mg/kg bw streptozotocin. The diabetic rats were treated with Zn(II)-caffeic acid complex and its precursors (caffeic acid and zinc acetate) for 4 weeks at predetermined doses. The effect of the treatments on diabetes and oxidative stress was measured. The complex ameliorated diabetic alterations. It reduced polyphagia and polydipsia and recovered weight loss. It increased insulin secretion, insulin sensitivity, hepatic and muscle glycogen, muscle hexokinase activity and Akt phosphorylation, which resulted in improved glucose tolerance and reduced blood glucose in the diabetic rats. The complex concomitantly reduced systemic and tissue lipid peroxidation and increased antioxidant enzymes activity in the diabetic rats. The complex outperformed the antidiabetic and antioxidative action of its precursors and had a broader bioactivity profile. Complexing zinc acetate with caffeic acid improved their ameliorative effect on insulin resistance by ∼24% and 42%, respectively, as well as their anti-hyperglycaemic action by ∼24 - 36% and ∼42 - 47%, respectively, suggesting a complexation-mediated synergism. In some instances, the antidiabetic action of the complex was comparable to metformin, while its antioxidant effect was better than that of metformin. Zinc(II)-caffeic acid complexation may be an alternative approach to improving the efficacy of antidiabetic and antioxidative therapy with minimal adverse or side effects.
Collapse
Affiliation(s)
- Godfrey R Matowane
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa
| | - Samson S Mashele
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa
| | - Tshepiso J Makhafola
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa.
| |
Collapse
|
22
|
Yadav N, Palkhede JD, Kim SY. Anti-Glucotoxicity Effect of Phytoconstituents via Inhibiting MGO-AGEs Formation and Breaking MGO-AGEs. Int J Mol Sci 2023; 24:7672. [PMID: 37108833 PMCID: PMC10141761 DOI: 10.3390/ijms24087672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic benefits of phytochemicals in the treatment of various illnesses and disorders are well documented. They show significant promise for the discovery and creation of novel medications for treating a variety of human diseases. Numerous phytoconstituents have shown antibiotic, antioxidant, and wound-healing effects in the conventional system. Traditional medicines based on alkaloids, phenolics, tannins, saponins, terpenes, steroids, flavonoids, glycosides, and phytosterols have been in use for a long time and are crucial as alternative treatments. These phytochemical elements are crucial for scavenging free radicals, capturing reactive carbonyl species, changing protein glycation sites, inactivating carbohydrate hydrolases, fighting pathological conditions, and accelerating the healing of wounds. In this review, 221 research papers have been reviewed. This research sought to provide an update on the types and methods of formation of methylglyoxal-advanced glycation end products (MGO-AGEs) and molecular pathways induced by AGEs during the progression of the chronic complications of diabetes and associated diseases as well as to discuss the role of phytoconstituents in MGO scavenging and AGEs breaking. The development and commercialization of functional foods using these natural compounds can provide potential health benefits.
Collapse
Affiliation(s)
- Neera Yadav
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jyoti Dnyaneshwar Palkhede
- Department of Chemistry, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
23
|
Estrada-Soto S, Ornelas-Mendoza K, Navarrete-Vázquez G, Chávez-Silva F, Almanza-Pérez JC, Villalobos-Molina R, Ortiz-Barragán E, Loza-Rodríguez H, Rivera-Leyva JC, Flores-Flores A, Perea-Arango I, Rodríguez-Carpena JG, Ávila-Villarreal G. Insulin Sensitization by PPARγ and GLUT-4 Overexpression/Translocation Mediates the Antidiabetic Effect of Plantago australis. Pharmaceuticals (Basel) 2023; 16:ph16040535. [PMID: 37111292 PMCID: PMC10143998 DOI: 10.3390/ph16040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Plantago australis Lam. Subsp. hirtella (Kunth) Rahn is a medicinal plant used as a diuretic, anti-inflammatory, antibacterial, throat cancer treatment and for the control of diabetes. P. australis was collected in the state of Morelos, México. The hydroalcoholic extract (HAEPa) of P. australis was obtained by maceration and concentrated in vacuo. Once dry, it was evaluated through an oral glucose tolerance test (OGTT) in normoglycemic mice and in a non-insulin-dependent diabetic mice model. The expression of PPARγ and GLUT-4 mRNA was determined by rt-PCR, and GLUT-4 translocation was confirmed by confocal microscopy. The toxicological studies were conducted in accordance with the guidelines suggested by the OECD, sections 423 and 407, with some modifications. HAEPa significantly decreased glycemia in OGTT curves, as well as in the experimental diabetes model compared to the vehicle group. In vitro tests showed that HAEPa induced an α-glucosidase inhibition and increased PPARγ and GLUT-4 expression in cell culture. The LD50 of HAEPa was greater than 2000 mg/kg, and sub-chronic toxicity studies revealed that 100 mg/kg/day for 28 days did not generate toxicity. Finally, LC-MS analysis led to the identification of verbascoside, caffeic acid and geniposidic acid, and phytochemical approaches allowed for the isolation of ursolic acid, which showed significant PPARγ overexpression and augmented GLUT-4 translocation. In conclusion, HAEPa induced significant antidiabetic action by insulin sensitization through PPARγ/GLUT-4 overexpression.
Collapse
Affiliation(s)
- Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Kathia Ornelas-Mendoza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | | | - Fabiola Chávez-Silva
- Laboratorio de Farmacología, Depto. Ciencias de la Salud, D.C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico
| | - Julio Cesar Almanza-Pérez
- Laboratorio de Farmacología, Depto. Ciencias de la Salud, D.C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Erandi Ortiz-Barragán
- Laboratorio de Farmacología, Depto. Ciencias de la Salud, D.C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico
| | - Hilda Loza-Rodríguez
- Laboratorio de Microbiología Experimental, División de Tecnología Ambiental, Universidad Tecnológica de Nezahualcoyotl, Nezahualcoyotl 57000, Mexico
| | | | - Angélica Flores-Flores
- Departamento de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias, Ciudad de Mexico 14080, Mexico
| | - Irene Perea-Arango
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Javier-German Rodríguez-Carpena
- Centro Nayarita de Innovación y Transferencia de Tecnología "Unidad especializada en I+D+i en Calidad de Alimentos y Productos Naturales", Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Gabriela Ávila-Villarreal
- Centro Nayarita de Innovación y Transferencia de Tecnología "Unidad especializada en I+D+i en Calidad de Alimentos y Productos Naturales", Universidad Autónoma de Nayarit, Tepic 63000, Mexico
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| |
Collapse
|
24
|
Leite DOD, Camilo CJ, Castro JWG, Dantas AR, Rodrigues FFG, Maia de Farias PA, Martins de Andrade E, Coutinho HDM, da Costa JGM. Influence of methanolic extracts from seeds and pulp of Annona squamosa L. on osmotic and morphological fragility in human erythrocytes. Curr Res Toxicol 2023; 4:100103. [PMID: 36970244 PMCID: PMC10033307 DOI: 10.1016/j.crtox.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Medicinal plants have been used for many years by communities to treat illnesses. The need for scientific proof of these vegetable's curative effects is as necessary as the proof of the inexistence of toxicity related to the use of extracts with therapeutic potential. Annona squamosa L. (Annonaceae), popularly known as "pinha", "ata" or "fruta do conde", has been used in traditional medicine for its analgesic and antitumor activities. The toxic effects attributed to this plant have also been explored as a pesticide and an insecticide. The aim of the present study was to investigate the toxicity of the methanolic extract of A. squamosa seeds and pulp against human erythrocytes. Blood samples were treated with methanolic extract at different concentrations, osmotic fragility was determined using saline tension assays and morphological analyzes were performed using optical microscopy. The extracts were analyzed using high performance liquid chromatography with diode array detection (HPLC-DAD) for phenolic quantification. The seed's methanolic extract showed toxicity above 50% from a concentration of 100 µg/mL, while also presenting echinocytes in the morphological analysis. The pulp's methanolic extract did not show toxicity to red blood cells or morphological changes at the concentrations tested. HPLC-DAD analysis revealed the presence of caffeic acid in the seed extract and gallic acid in the pulp extract. The seed's methanolic extract is toxic and the pulp's methanolic extract showed no toxicity against human erythrocytes.
Collapse
Affiliation(s)
- Débora Odília Duarte Leite
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil
| | - Cicera Janaíne Camilo
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil
| | | | | | | | | | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil
- Corresponding authors at: Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil (J.G.M. da Costa).
| | - José Galberto Martins da Costa
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil
- Corresponding authors at: Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil (J.G.M. da Costa).
| |
Collapse
|
25
|
Ganguly R, Singh SV, Jaiswal K, Kumar R, Pandey AK. Modulatory effect of caffeic acid in alleviating diabetes and associated complications. World J Diabetes 2023; 14:62-75. [PMID: 36926656 PMCID: PMC10011896 DOI: 10.4239/wjd.v14.i2.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 02/14/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most common metabolic disorders characterized by elevated blood glucose levels. Prolonged uncontrolled hyperglycemia often leads to multi-organ damage including diabetic neuropathy, nephropathy, retinopathy, cardiovascular disorders, and diabetic foot ulcers. Excess production of free radicals causing oxidative stress in tissues is often considered to be the primary cause of onset and progression of DM and associated complications. Natural polyphenols can be used to induce or inhibit the expression of antioxidant enzymes such as glutathione peroxidase, heme oxygenase-1, superoxide dismutase, and catalase that are essential in maintaining redox balance, and ameliorate oxidative stress. Caffeic acid (CA) is a polyphenolderived from hydroxycinnamic acid and possesses numerous physiological properties includ-ing antioxidant, anti-inflammatory, anti-atherosclerotic, immune-stimulatory, cardioprotective, antiproliferative, and hepatoprotective activities. CA acts as a regulatory compound affecting numerous biochemical pathways and multiple targets. These include various transcription factors such as nuclear factor-B, tumor necrosis factor-α, interleukin-6, cyclooxygenase-2, and nuclear factor erythroid 2-related factor 2. Therefore, this review summarizes the pharmacological properties, molecular mechanisms, and pharmacokinetic profile of CA in mitigating the adverse effects of DM and associated complications. The bioavailability, drug delivery, and clinical trials of CA have also been discussed.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Shiv Vardan Singh
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Kritika Jaiswal
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| |
Collapse
|
26
|
Karayakali M, Altinoz E, Elbe H, Koca O, Onal MO, Bicer Y, Demir M. Crocin treatment exerts anti-inflammatory and anti-oxidative effects in liver tissue damage of pinealectomized diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47670-47684. [PMID: 36746856 DOI: 10.1007/s11356-023-25766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with an increasing global prevalence that leads to significant morbidity and mortality. The liver plays a vital role in glycemic regulation in physiological and pathological conditions such as DM. Free radical formation and inhibition of antioxidant defense systems play a role in the liver damage pathogenesis in diabetic patients The antioxidant, anti-diabetic, anti-inflammatory, and radical scavenging properties of crocin are known. This study was designed to determine the possible protective effects of crocin against liver tissue damage in pinealectomized diabetic rats. Sixty rats were divided into six groups: Control, Sham+streptozotocin (STZ), Pinealectomy (PINX), PINX+STZ, PINX+Crocin, and PINX+STZ+Crocin. PNX procedure was carried out on the first day of the experiment. Intraperitoneal (i.p.) injection of 50 mg/kg STZ was performed on the 30th day of the experiment to induce DM. Crocin (50 mg/kg; i.p.) was applied for 15 days after the pinealectomy procedure and induction of DM. Crocin decreased the markers (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin-1β (IL-1β), and malondialdehyde (MDA)) of liver damage and increased antioxidant enzyme levels and tissue total antioxidant status. Histological results showed that the administration of crocin exhibited a protective effect against liver damage caused by STZ. These results indicate that crocin evidence protection against liver injury caused by STZ.
Collapse
Affiliation(s)
- Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Oguzhan Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
27
|
Chularojmontri L, Nanna U, Tingpej P, Hansakul P, Jansom C, Wattanapitayakul S, Naowaboot J. Raphanus sativus L. var. caudatus Extract Alleviates Impairment of Lipid and Glucose Homeostasis in Liver of High-Fat Diet-Induced Obesity and Insulin Resistance in Mice. Prev Nutr Food Sci 2022; 27:399-406. [PMID: 36721756 PMCID: PMC9843712 DOI: 10.3746/pnf.2022.27.4.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
The present study investigated the activities of Raphanus sativus L. var. caudatus extract (RS) on abnormal lipid and glucose homeostasis in a high-fat diet (HFD)-induced obesity and insulin resistance in a mouse model. Institute of Cancer Research mice were rendered obese by 16-week HFD feeding. Obese mice were administered with 100 or 200 mg/kg/d RS orally during the last 8 weeks of diet feeding. Then, the biochemical parameters were determined. The gene and protein expressions regulating lipid and glucose homeostasis in the liver were measured. This study revealed that the state of hyperglycemia, hyperleptinemia, hyperinsulinemia, and hyperlipidemia was reduced after 8 weeks of RS treatment (100 or 200 mg/kg). Administration of RS also improved insulin sensitivity and increased serum adiponectin. The liver total cholesterol and triglyceride concentrations were decreased by both doses of RS. Notably, a decrease in the expression of liver-specific genes, including sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-CoA carboxylase, was found in the RS-treated groups. Moreover, administration of RS showed a significant increase in the expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and sirtuin1 (Sirt1) proteins. These findings indicated that RS improved abnormal lipid and glucose homeostasis in the liver of obesity-associated insulin resistance mouse model, possibly through the stimulation of the AMPK/Sirt1 pathway.
Collapse
Affiliation(s)
- Linda Chularojmontri
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Urarat Nanna
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Pholawat Tingpej
- Division of Microbiology and Immunology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Pintusorn Hansakul
- Division of Biochemistry, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Chalerm Jansom
- Research Office, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Suvara Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand,
Correspondence to Jarinyaporn Naowaboot, E-mail:
| |
Collapse
|
28
|
Caffeic Acid and Diseases-Mechanisms of Action. Int J Mol Sci 2022; 24:ijms24010588. [PMID: 36614030 PMCID: PMC9820408 DOI: 10.3390/ijms24010588] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Caffeic acid belongs to the polyphenol compounds we consume daily, often in the form of coffee. Even though it is less explored than caffeic acid phenethyl ester, it still has many positive effects on human health. Caffeic acid can affect cancer, diabetes, atherosclerosis, Alzheimer's disease, or bacterial and viral infections. This review focuses on the molecular mechanisms of how caffeic acid achieves its effects.
Collapse
|
29
|
Taxillus chinensis (DC.) Danser: a comprehensive review on botany, traditional uses, phytochemistry, pharmacology, and toxicology. Chin Med 2022; 17:136. [PMID: 36482376 PMCID: PMC9730624 DOI: 10.1186/s13020-022-00694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Taxillus chinensis (DC.) Danser (T. chinensis), known as "Sangjisheng" in Chinese, is a member of the family Loranthaceae, with the traditional functions of "dispelling wind dampness, strengthening bones and muscles, and preventing miscarriage". Since Eastern Han dynasty, it has been used for the treatment of rheumatoid arthritis, arthralgia, threatened abortion, and hypertension. Nowadays, T. chinensis is included in the 2020 Edition of the Chinese Pharmacopoeia as Taxilli Herba. The purpose of this review is to summarize the latest research on T. chinensis in recent years, and make critical comments, so as to provide reference for the clinical application and modern research of T. chinensis. MAIN BODY In this review, we summarize the botany, traditional uses, and research advances in the phytochemistry and pharmacological effects of T. chinensis. Its toxicity has also been discussed. The published literature on current pharmacological and toxicological data has also been assessed. To date, approximately 110 compounds, including flavonoids, phenolic acids, phenylpropanoids, tannins, glycosides, amino acids, and nucleosides, have been identified in T. chinensis. Flavonoids are considered the most vital bioactive ingredients in T. chinensis. Pharmacological studies have demonstrated that T. chinensis possesses anti-inflammatory, antioxidant, anticancer, antimicrobial, antiviral, diuretic, antihypertensive, antihyperglycemic, and other properties. CONCLUSION Currently, research on T. chinensis is in the preliminary stages, and further research is required to understand the active compounds present and mechanisms of action. We hope that this comprehensive review of T. chinensis will serve as a background for further research.
Collapse
|
30
|
Sharma N, Kar A, Panda S, Yadav D. Co-administration of Pterocarpus marsupium Extract and Glibenclamide Exhibits Better Effects in Regulating Hyperglycemia and Associated Changes in Alloxan-induced Diabetic Mice. Curr Top Med Chem 2022; 22:2617-2628. [PMID: 36366849 DOI: 10.2174/1568026623666221108125036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a well-known global metabolic disorder. For its treatment, glibenclamide (GLB) is very often prescribed. However, herbal drugs are considered effective and better alternatives due to their low risk of side effects. This study was conducted to determine the combined effects of GLB and Pterocarpus marsupium (PM, a commonly available Indian herb) extract for the effective and safe treatment of hyperglycemia in the mouse model. METHODS Healthy adult male mice were distributed into five groups (n=7 in each group). Group I acted as the control, whereas groups II, III, IV, and V were considered experimental groups which received a single dosage (150 mg/kg body weight) of alloxan (ALX) intraperitoneally (i.p.). In addition, groups III, IV, and V received a pre-standardized dose of GLB (500 μg/kg body weight), PM extract (150 mg/kg body weight), and GLB+PM, respectively, at the same doses as used in individual treatment, after the seventh day of ALX administration for 15 days and the alterations in different DM related parameters were evaluated. RESULTS ALX-induced hyperglycemia and other adverse effects were nearly normalized by GLB and PM co-treatment as evidenced by marked suppression in glucose, triglyceride, total-cholesterol, lipid-peroxidation, and lipid-hydroperoxides with an increase in antioxidants status and liver glycogen content. The positive effects were more pronounced when both GLB and PM were given, as compared to that of either of the drugs, administered alone. Liver ultra-structure, analyzed through histology and transmission electron microscopy revealed normalization of the ALX-induced damaged hepatocytes. The presence of epicatechin, the major phytoconstituent of the PM extract, as confirmed by high-performance liquid chromatography (HPLC), is responsible for its antioxidative and glucose-lowering activities. CONCLUSION These findings reveal that PM, along with GLB, exhibits synergistic and better effects than the individual drug in regulating hyperglycemia and associated changes in alloxan-induced mice.
Collapse
Affiliation(s)
- Neha Sharma
- School of Life Sciences, Devi Ahilya University, Khandwa Road, Indore, 452017, India
| | - Anand Kar
- School of Life Sciences, Devi Ahilya University, Khandwa Road, Indore, 452017, India
| | - Sunanda Panda
- School of Life Sciences, Devi Ahilya University, Khandwa Road, Indore, 452017, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
31
|
Saidi SA, Al-Shaikh TM, Alghamdi OA, Hamden K. Ephedra alata subsp. alenda (Ephedraceae) leaf extracts: phytochemical screening, anti-diabetic, anti-obesity and anti-toxic activities on diabetic-induced liver-kidney-testes toxicities and inhibition of α-amylase and lipase enzymes. Heliyon 2022; 8:e11954. [PMID: 36478797 PMCID: PMC9720601 DOI: 10.1016/j.heliyon.2022.e11954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
The study evaluated the phytochemical composition of Ephedra alata and its effects on α-amylase and lipase enzymes and diabetic-induced liver-kidney-testes toxicities to determine the anti-diabetic, anti-obesity, and anti-toxic potentials of the plant. Obesity was induced by a high-fat and fructose diet (HFFD). Various compounds were identified and quantified: cafeic acid, apigenin 7-O-glucoside, apigenin, rutin, luteolin 7-O-glucoside, p-Coumaric acid and others in EA aqueous extract (EAWE). In vitro, this study showed that EAWE strongly inhibited lipase activity as compared to EA methanol (EAME) and ethyl acetate EA extracts (EAEE). In obese rats, the supplementation of EAWE inhibited significantly (P < 0.01) intestinal and pancreatic lipase activity by 35 and 36% respectively. This decrease in lipid digestive enzyme activity caused a significant (P < 0.05) reduce in the weight gain by 12.7% and significant (P < 0.05) decrease in the serum lipid rate as total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). Moreover, the supplementation of EAWE to obese rats reduced the activity of α-amylase in the small intestine and pancreas by 26 and 31% respectively (P < 0.01) and consequently decreases in serum glucose level by 20.8% (P < 0.05). In addition, administration of EAWE in type 2 diabetes protected from obesity induced liver, kidney and testes alterations. The potent protective effect EAWE may be influenced by the diversity of phenolic compounds. therefore, this study showed in the first time that EAWE are efficient for the prevention and the amelioration of obesity, hyperglycemia, and various organs toxicities.
Collapse
Affiliation(s)
- Saber Abdelkader Saidi
- Department of Biology, College of Sciences and Arts-Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Turki M. Al-Shaikh
- Department of Biology, College of Sciences and Arts-Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Othman A. Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia
| |
Collapse
|
32
|
Comparable Benefits of Stingless Bee Honey and Caffeic Acid in Mitigating the Negative Effects of Metabolic Syndrome on the Brain. Antioxidants (Basel) 2022; 11:antiox11112154. [PMID: 36358526 PMCID: PMC9686980 DOI: 10.3390/antiox11112154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
There is mounting evidence that metabolic syndrome (MetS) contributes to the development of neurodegenerative disorders such as Alzheimer’s disease. Honey, which has been used for generations, is high in antioxidants and has been demonstrated to benefit the brain and mental health by reducing oxidative stress and boosting cognitive outcomes. Honey from the stingless bees of Heterotrigona itama has been found to have higher phenolic content compared to other types of honeys. The aim of this study is to investigate the effects of stingless bee honey (SBH) supplementation and to compare it with a pure form of antioxidant, caffeic acid (CA), on MetS parameters and inflammatory markers in the brains of MetS-induced rats. A total of 32 male Wistar rats were divided equally into groups of control, high-carbohydrate high-fructose (HCHF) diet (MetS), HCHF + SBH supplemented (1 g/kg) (SBH), and HCHF + CA supplemented (10 mg/kg) (CA) groups. The total duration for SBH and CA supplementation was eight weeks. The HCHF diet was found to promote hypertension, hyperglycemia, and hypertriglyceridemia, and to increase brain TNF-α levels. Supplementation with SBH and CA significantly reversed (p < 0.05) the hyperglycemic and hypertensive effects of the HCHF diet. Although both supplemented groups showed no significant changes to serum HDL or TG, SBH significantly reduced (p < 0.05) brain TNF-α levels and increased (p < 0.05) brain BDNF levels. Immunohistochemistry investigations of neurogenesis (EdU) and apoptosis (TUNEL) on the cornu Ammonis 1 (CA1) and dentate gyrus (DG) areas of the hippocampus showed no changes with SBH and CA supplementation compared to the control. These findings suggest that SBH and CA have the potential to mitigate HCHF-induced MetS effects and possess neuroprotective abilities.
Collapse
|
33
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
34
|
Deka H, Choudhury A, Dey BK. An Overview on Plant Derived Phenolic Compounds and Their Role in Treatment and Management of Diabetes. J Pharmacopuncture 2022; 25:199-208. [PMID: 36186092 PMCID: PMC9510143 DOI: 10.3831/kpi.2022.25.3.199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives In recent decades, the trend for treating diabetes mellitus (DM) has shifted toward alternative medicines that are obtained from plant sources. Existing literature suggests that phenolic compounds derived from plants possess promising health-promoting properties. This study aimed to discuss the role of plant-derived phenolic compounds in the effective treatment and management of diabetes. Methods Information about plant secondary metabolites, phenolic compounds, and their role in the treatment and management of diabetes was collected from different databases, such as Pubmed, ScienceDirect, Scopus, and Google Scholar. Keywords like secondary metabolites, phenolic compounds, simple phenol, flavonoids, lignans, stilbenes, and diabetes were searched. Research and review articles with relevant information were included in the study. Results Anti-diabetic studies of the four major classes of phenolic compounds were included in this review. The plant-derived phenolic compounds were reported to have potent anti-diabetic activities. However, each class of phenolic compounds was found to behave differently according to various mechanisms. Conclusion The obtained results suggest that phenolic compounds derived from natural sources display promising anti-diabetic activities. Based on the available information, it can be concluded that phenolic compounds obtained from various natural sources play key roles in the treatment and management of diabetes.
Collapse
Affiliation(s)
- Himangshu Deka
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Ananta Choudhury
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Biplab Kumar Dey
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
35
|
Othman NS, Che Roos NA, Aminuddin A, Murthy JK, A. Hamid A, Ugusman A. Effects of Piper sarmentosum Roxb. on hypertension and diabetes mellitus: A systematic review and meta-analysis. Front Pharmacol 2022; 13:976247. [PMID: 36091787 PMCID: PMC9453491 DOI: 10.3389/fphar.2022.976247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 12/09/2022] Open
Abstract
Hypertension and diabetes mellitus are among the most prevalent diseases affecting people from all walks of life. Medicinal herbs have garnered interest as potential agents for the prevention and treatment of diabetes mellitus and hypertension due to their multiple beneficial effects. Piper sarmentosum Roxb. (PS) is an edible medicinal plant that has been traditionally used in Asia for treating hypertension and diabetes mellitus. This review is aimed to provide comprehensive information from the literature on the effects of PS on hypertension and diabetes mellitus. A computerized database search was performed on Scopus, PubMed and Web of Science databases with the following set of keywords: Piper sarmentosum AND diabetes mellitus OR diabetic OR diabetes OR hyperglyc*emia OR blood glucose OR HbA1c OR glycated h*emoglobin OR h*emoglobin A1c OR hyperten* OR blood pressure. A total of 47 articles were screened and 14 articles published between the years 1998 until 2021 were included for data extraction, comprising of six articles on antihypertensive and eight articles on antidiabetic effects of PS. These studies consist of two in vitro studies and eleven in vivo animal studies. Meta-analysis of three studies on hypertension showed that PS versus no treatment significantly lowered the systolic blood pressure with mean difference (MD) -39.84 mmHg (95% confidence interval (CI) -45.05, -34.62; p < 0.01), diastolic blood pressure with MD -26.68 mmHg (95% CI -31.48, -21.88; p < 0.01), and mean arterial pressure with MD -30.56 mmHg (95% CI -34.49, -26.63; p < 0.01). Most of the studies revealed positive effects of PS against hypertension and diabetes mellitus, suggesting the potential of PS as a natural source of antidiabetic and antihypertensive agents.
Collapse
Affiliation(s)
- Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Morales-Ferra DL, Zavala-Sánchez MÁ, Jiménez-Ferrer E, González-Cortazar M, Zamilpa A. Effect of Tecoma stans (L.) Juss. ex Kunth in a Murine Model of Metabolic Syndrome. PLANTS 2022; 11:plants11141794. [PMID: 35890428 PMCID: PMC9324241 DOI: 10.3390/plants11141794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Metabolic syndrome is a constellation of abnormalities related to insulin resistance with an unfortunately high prevalence worldwide. Tecoma stans (L.) Juss. Ex Kunth. is a well-known medicinal plant that has been studied in several biological models related to diabetes mellitus. The aim of this study was to evaluate the effects of T. stans on a hypercaloric diet-induced metabolic syndrome model. An organic fraction obtained using liquid–liquid separation from the hydroalcoholic extract of T. stans and four subfractions of this organic fraction were administered for ten weeks to C57BL6J male mice previously fed with a hypercaloric diet. The hypercaloric diet caused changes in glucose levels (from 65.3 to 221.5 mg/dL), body weight (31.3 to 42.2 g), triglycerides (91.4 to 177.7 mg/dL), systolic (89.9 to 110.3 mmHg) and diastolic (61.6 to 73.7 mg/dL) blood pressure, and insulin resistance (4.47 to 5.16). Treatment with T. stans resulted in improvements in triglycerides (83.4–125.0 mg/dL), systolic blood pressure (75.1–91.8 mmHg), and insulin resistance (4.72–4.93). However, the organic fraction and hydroalcoholic extract produced a better response in diastolic blood pressure (52.8–56.4 mmHg). Luteolin, apigenin, and chrysoeriol were the major constituents in the most active subfractions. Treatment with T. stans, particularly a luteolin-rich organic fraction, achieved an improvement in metabolic syndrome alterations.
Collapse
Affiliation(s)
- Dulce Lourdes Morales-Ferra
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), México City 04960, Mexico;
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Miguel Ángel Zavala-Sánchez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), México City 04960, Mexico
- Correspondence: (M.Á.Z.-S.); (A.Z.); Tel.: +52-551-320-7614 (M.Á.Z.-S.); +52-777-361-2155 (A.Z.)
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
- Correspondence: (M.Á.Z.-S.); (A.Z.); Tel.: +52-551-320-7614 (M.Á.Z.-S.); +52-777-361-2155 (A.Z.)
| |
Collapse
|
37
|
Ma Q, Zhai R, Xie X, Chen T, Zhang Z, Liu H, Nie C, Yuan X, Tu A, Tian B, Zhang M, Chen Z, Li J. Hypoglycemic Effects of Lycium barbarum Polysaccharide in Type 2 Diabetes Mellitus Mice via Modulating Gut Microbiota. Front Nutr 2022; 9:916271. [PMID: 35845787 PMCID: PMC9280299 DOI: 10.3389/fnut.2022.916271] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 12/16/2022] Open
Abstract
This study aims to explore the molecular mechanisms of Lycium barbarum polysaccharide (LBP) in alleviating type 2 diabetes through intestinal flora modulation. A high-fat diet (HFD) combined with streptozotocin (STZ) was applied to create a diabetic model. The results indicated that LBP effectively alleviated the symptoms of hyperglycemia, hyperlipidemia, and insulin resistance in diabetic mice. A high dosage of LBP exerted better hypoglycemic effects than low and medium dosages. In diabetic mice, LBP significantly boosted the activities of CAT, SOD, and GSH-Px and reduced inflammation. The analysis of 16S rDNA disclosed that LBP notably improved the composition of intestinal flora, increasing the relative abundance of Bacteroides, Ruminococcaceae_UCG-014, Intestinimonas, Mucispirillum, Ruminococcaceae_UCG-009 and decreasing the relative abundance of Allobaculum, Dubosiella, Romboutsia. LBP significantly improved the production of short-chain fatty acids (SCFAs) in diabetic mice, which corresponded to the increase in the beneficial genus. According to Spearman’s correlation analysis, Cetobacterium, Streptococcus, Ralstonia. Cetobacterium, Ruminiclostridium, and Bifidobacterium correlated positively with insulin, whereas Cetobacterium, Millionella, Clostridium_sensu_stricto_1, Streptococcus, and Ruminococcaceae_UCG_009 correlated negatively with HOMA-IR, HDL-C, ALT, AST, TC, and lipopolysaccharide (LPS). These findings suggested that the mentioned genus may be beneficial to diabetic mice’s hypoglycemia and hypolipidemia. The up-regulation of peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and insulin were remarkably reversed by LBP in diabetic mice. The real-time PCR (RT-PCR) analysis illustrated that LBP distinctly regulated the glucose metabolism of diabetic mice by activating the IRS/PI3K/Akt signal pathway. These results indicated that LBP effectively alleviated the hyperglycemia and hyperlipidemia of diabetic mice by modulating intestinal flora.
Collapse
|
38
|
Farhadi A, Totonchi M, Nabavi SM, Baharvand H, Pakdaman H, Hajizadeh-Saffar E, Mousavi SA, Hadi F, Al-Sinawi H, Li Q, Zhang JS, Tahamtani Y, Shahpasand K. P38 Initiates Degeneration of midbrain GABAergic and Glutamatergic Neurons in Diabetes Models. Eur J Neurosci 2022; 56:3755-3778. [PMID: 35513862 DOI: 10.1111/ejn.15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Diabetes mellitus may cause tau protein hyperphosphorylation and neurodegeneration, but the exact mechanism by which diabetic conditions induce tau pathology remains unclear. Tau protein hyperphosphorylation is considered a major pathological hallmark of neurodegeneration and can be triggered by diabetes. Various tau-directed kinases, including P38, can be activated upon diabetic stress and induce tau hyperphosphorylation. Despite extensive research efforts the exact tau specie(s) and kinases driving neurodegeneration in diabetes mellitus have not been clearly elucidated. We herein employed different techniques to determine the exact molecular mechanism of tau pathology triggered by diabetes in in vivo and in vitro models. We showed that diabetes-related stresses and glucose metabolism deficiency could induce cis P-tau (an early driver of the tau pathology) accumulation in the midbrain and corpus callosum of the diabetic mice models and cells treated with 2-deoxy-D-glucose, respectively. We found that the active phosphorylated level of P38 was increased in the treated cells and diabetic mice models. We observed that oxidative stress activated P38, which directly and indirectly drove tau pathology in the GABAergic and Glutamatergic neurons of the midbrain of the diabetic mice after 96 hours, which accumulated in the other neighboring brain areas after two months. Notably, P38 inhibition suppressed tau pathogenicity and risk-taking behaviors in the animal models after 96 hours. The data establish P38 as a central mediator of diabetes mellitus induced tau pathology. Our findings provide mechanistic insight into the consequences of this metabolic disorder on the nervous system.
Collapse
Affiliation(s)
- Aisan Farhadi
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyed Masood Nabavi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pakdaman
- Brain Mapping Research Center, Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Hadi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Al-Sinawi
- Department of Behavioral Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Quan Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jin-San Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China.,Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
39
|
Odeh D, Oršolić N, Berendika M, Đikić D, Domjanić Drozdek S, Balbino S, Repajić M, Dragović-Uzelac V, Jurčević IL. Antioxidant and Anti-Atherogenic Activities of Essential Oils from Myrtus communis L. and Laurus nobilis L. in Rat. Nutrients 2022; 14:nu14071465. [PMID: 35406078 PMCID: PMC9003404 DOI: 10.3390/nu14071465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Essential oils (EOs) from aromatic and medicinal plants, such as myrtle (Myrtus communis L.) and Laurel (Laurus nobilis L.), are gaining popularity as a potential ingredient in functional foods and nutraceuticals. This study aims to investigate whether the essential oils (EOs) could be effective in weight control, antioxidative and antilipidemic status of rats by affecting microbiota and its enzymes activity and whether changes in intestinal enzyme activity affect the health of rats. The intragastric application of laurel and myrtle EOs to rats for two weeks affects weight loss, reduces glycolytic activity, lipid parameters (cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C) and very low-density lipoprotein cholesterol (VLDL-C)) and atherogenic indicators, leading to cardiovascular protection. Laurel EO can be an excellent candidate for the treatment of drug-induced obesity and related diseases, since it affects lipid metabolism in the liver and inhibits the enzymes responsible for the metabolism of carbohydrates into glucose in the digestive tract, leading to weight loss. In contrast, myrtle EO shows a better antioxidant capacity in most tissues, except kidneys, where it causes a pro-oxidative effect, compared to laurel EO. Myrtle EO increases the permeability and instability of the erythrocyte membrane, resulting in a loss of selectivity for the entry of toxic substances into the cell. On the other hand, myrtle EO leads to intestinal inflammation by reducing the number of probiotic bacteria and increasing Enterobacter.
Collapse
Affiliation(s)
- Dyana Odeh
- Department of Animal Physiology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (D.O.); (D.Đ.)
| | - Nada Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (D.O.); (D.Đ.)
- Correspondence: ; Tel.: +385-(0)-1-4877-735
| | - Marija Berendika
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (S.D.D.)
| | - Domagoj Đikić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (D.O.); (D.Đ.)
| | - Sandra Domjanić Drozdek
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (S.D.D.)
| | - Sandra Balbino
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.R.); (V.D.-U.)
| | - Maja Repajić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.R.); (V.D.-U.)
| | - Verica Dragović-Uzelac
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.R.); (V.D.-U.)
| | - Irena Landeka Jurčević
- Laboratory of Chemistry and Food Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
40
|
Pérez Gutiérrez RM, Soto Contreras JG, Martínez Jerónimo FF, de la Luz Corea Téllez M, Borja-Urby R. Assessing the Ameliorative Effect of Selenium Cinnamomum verum, Origanum majorana, and Origanum vulgare Nanoparticles in Diabetic Zebrafish (Danio rerio). PLANTS 2022; 11:plants11070893. [PMID: 35406873 PMCID: PMC9002390 DOI: 10.3390/plants11070893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/03/2022]
Abstract
Cinnamomum verum, Origanum majorana, and Origanum vulgare have been used in traditional medicine for a long time to treat diabetes because of their promising therapeutic effects. The combination of these plants (COO) was tested to improve their efficacy using selenium nanoparticles (Se-COO-NPs) and gum Arabic (GA) as stabilizers for sustained release. Phenolic compounds of plants were identified using liquid chromatography–mass spectrometry (LC–MS/MS). GA-Se-COO-NPs were characterized by spectroscopic and microscopic methods and evaluated in diabetic zebrafish. The ultraviolet spectrum was assessed to confirm the formation of plasmon resonance at 267 nm. The obtained particle size of selenium nanospheres was 65.76 nm. They were maintained in a stable form for 5 months at 4 °C. Transmission electron microscopy (TEM) images demonstrated the presence of individual spherical nanoparticles. Fourier transform infrared spectroscopy (FT-IR) showed the interaction between COO extract and selenium, exhibiting good entrapment efficiency (87%). The elemental analysis of COO extract and GA-COO-SeNPs confirmed that NPs were obtained. The zebrafish were exposed to a high glucose concentration for two weeks, and type 2 diabetes and oxidative stress responses were induced. In diabetic zebrafish, treatment with NPs showed antilipidemic and hypoglycemic effects, high survivability, and reduced levels of glucose, reactive oxygen species (ROS), and lipids in the blood. This group this had a higher survivorship rate than the diabetic control. The results demonstrated that GA-Se-COO-NPs have high antidiabetic potential, most likely because of the synergic effects of phenolic compounds and Se nanoparticles.
Collapse
Affiliation(s)
- Rosa Martha Pérez Gutiérrez
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Mexico City 07708, Mexico;
- Correspondence:
| | - José Guadalupe Soto Contreras
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Mexico City 07708, Mexico;
| | - Felipe Fernando Martínez Jerónimo
- Laboratorio de Hidrobiología Experimental, Instituto Politécnico Nacional (IPN), Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Mónica de la Luz Corea Téllez
- Laboratorio de Investigación en Polímeros y Nanomateriales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Edificio Z-5 Planta Baja Del Gustavo A. Madero, Mexico City 07730, Mexico;
| | - Raúl Borja-Urby
- Laboratorio de Microscopía Electrónica de Transmisión, Centro de Nanociencias y Micro-Nanotecnologías (CNMN), Instituto Politécnico Nacional (IPN), Mexico City 07758, Mexico;
| |
Collapse
|
41
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiovascular and metabolic diseases are a leading cause of death worldwide. Epidemiological studies strongly highlight various benefits of consuming colorful fruits and vegetables in everyday life. In this review, we aimed to revisit previous studies conducted in the last few decades regarding green-colored foods and their bioactive compounds in consideration of treating and/or preventing cardiovascular and metabolic diseases. This review draws a comprehensive summary and assessment of research on the physiological effects of various bioactive compounds, mainly polyphenols, derived from green-colored fruits and vegetables. In particular, their health-beneficial effects, including antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, cardioprotective, and lipid-lowering properties, will be discussed. Furthermore, the bioavailability and significance of action of these bioactive compounds on cardiovascular and metabolic diseases will be discussed in detail.
Collapse
|
42
|
Pérez Gutiérrez RM, Martínez Jerónimo FF, Contreras Soto JG, Muñiz Ramírez A, Estrella Mendoza MF. Optimization of ultrasonic-assisted extraction of polyphenols from the polyherbal formulation of Cinnamomum verum, Origanum majorana, and Origanum vulgare and their anti-diabetic capacity in zebrafish ( Danio rerio). Heliyon 2022; 8:e08682. [PMID: 35036595 PMCID: PMC8749454 DOI: 10.1016/j.heliyon.2021.e08682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
The Cinnamomum verum (CV), Origanum majorana (CM), and Origanum vulgare (OV) have been used in traditional medicine in several regions of México for their anti-diabetic properties. In this study investigated the variables of ultrasound-assisted extraction for the polyphenolic compounds from the combination of these plants and explore their potential antidiabetic activities on glucose-induced-diabetic zebrafish. Determined the optimum conditions for ultrasonic-assisted extraction (UAE) to maximum recovery amounts of phenolic compounds from the extract of these plants. Polyphenols were detected in the extracts using HPLC-DAD-analysis. Extracts were evaluated on zebrafish exposed to high glucose concentration (110 mM) for two weeks. Results showed second-order polynomial mathematical models with a high coefficient of determination (R2 > 0.9564). Optimized extraction conditions for UAE from the combination of the 3 plants (COV) were as follows: 66.03%, ethanol, 28.87 min, and 21.51 mL/g for maximal flavonoids extraction. Used the same optimal extraction conditions for CV, CM, and OV. Results from LC-MS/MS indicated 9 polyphenolic compounds in CV, 12 in CM, and 6 in OV, the content of total polyphenols was 310.28, 90.42, and 126.74 mg GAE 100 g-1 dry weight, respectively. However, hyperglycemic fish showed an increase in cholesterol and triglyceride levels whereas extracts completely prevented these metabolic alterations. COV showed higher anti-diabetic ability than CV, CM, and OV, suggesting a synergistic effect between them. Our investigation developed a new herbal formulation of Cinnamomum verum; Origanum majorana; Origanum vulgare that has proven effective in animals with type 2 diabetes will form a new class of supplements to treat diabetic complications.
Collapse
Affiliation(s)
- Rosa Martha Pérez Gutiérrez
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos S/N Av, Instituto Politécnico, Nacional Ciudad de Mexico, cp 07708, Mexico
- Insituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, CDMX 11340, Mexico
| | - Felipe Fernando Martínez Jerónimo
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos S/N Av, Instituto Politécnico, Nacional Ciudad de Mexico, cp 07708, Mexico
- Insituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, CDMX 11340, Mexico
| | - José Guadalupe Contreras Soto
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos S/N Av, Instituto Politécnico, Nacional Ciudad de Mexico, cp 07708, Mexico
- Insituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, CDMX 11340, Mexico
| | - Alethia Muñiz Ramírez
- CONACYT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C. San Luis Potosí, Mexico
| | | |
Collapse
|
43
|
Muhammad Abdul Kadar NN, Ahmad F, Teoh SL, Yahaya MF. Caffeic Acid on Metabolic Syndrome: A Review. Molecules 2021; 26:molecules26185490. [PMID: 34576959 PMCID: PMC8465857 DOI: 10.3390/molecules26185490] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) is a constellation of risk factors that may lead to a more sinister disease. Raised blood pressure, dyslipidemia in the form of elevated triglycerides and lowered high-density lipoprotein cholesterol, raised fasting glucose, and central obesity are the risk factors that could lead to full-blown diabetes, heart disease, and many others. With increasing sedentary lifestyles, coupled with the current COVID-19 pandemic, the numbers of people affected with MetS will be expected to grow in the coming years. While keeping these factors checked with the polypharmacy available currently, there is no single strategy that can halt or minimize the effect of MetS to patients. This opens the door for a more natural way of controlling the disease. Caffeic acid (CA) is a phytonutrient belonging to the flavonoids that can be found in abundance in plants, fruits, and vegetables. CA possesses a wide range of beneficial properties from antioxidant, immunomodulatory, antimicrobial, neuroprotective, antianxiolytic, antiproliferative, and anti-inflammatory activities. This review discusses the current discovery of the effect of CA against MetS.
Collapse
Affiliation(s)
- Nellysha Namela Muhammad Abdul Kadar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (N.N.M.A.K.); (F.A.); (S.L.T.)
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (N.N.M.A.K.); (F.A.); (S.L.T.)
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (N.N.M.A.K.); (F.A.); (S.L.T.)
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (N.N.M.A.K.); (F.A.); (S.L.T.)
- Correspondence:
| |
Collapse
|