1
|
Wareing B, Aktalay Hippchen A, Kolle SN, Birk B, Funk-Weyer D, Landsiedel R. Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials. TOXICS 2024; 12:616. [PMID: 39195718 PMCID: PMC11360696 DOI: 10.3390/toxics12080616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Since 2020, the REACh regulation requires toxicological data on nanoforms of materials, including the assessment of their skin-sensitizing properties. Small molecules' skin sensitization potential can be assessed by new approach methodologies (NAMs) addressing three key events (KE: protein interaction, activation of dendritic cells, and activation of keratinocytes) combined in a defined approach (DA) described in the OECD guideline 497. In the present study, the applicability of three NAMs (DPRA, LuSens, and h-CLAT) to nine materials (eight inorganic nanomaterials (NM) consisting of CeO2, BaSO4, TiO2 or SiO2, and quartz) was evaluated. The NAMs were technically applicable to NM using a specific sample preparation (NANOGENOTOX dispersion protocol) and method modifications to reduce interaction of NM with the photometric and flowcytometric read-outs. The results of the three assays were combined according to the defined approach described in the OECD guideline No. 497; two of the inorganic NM were identified as skin sensitizers. However, data from animal studies (for ZnO, also human data) indicate no skin sensitization potential. The remaining seven test substances were assessed as "inconclusive" because all inorganic NM were outside the domain of the DPRA, and the achievable test concentrations were not sufficiently high according to the current test guidelines of all three NAMs. The use of these NAMs for (inorganic) NM and the relevance of the results in general are challenged in three ways: (i) NAMs need modification to be applicable to insoluble, inorganic matter; (ii) current test guidelines lack adequate concentration metrics and top concentrations achievable for NM; and (iii) NM may not cause skin sensitization by the same molecular and cellular key events as small organic molecules do; in fact, T-cell-mediated hypersensitivity may not be the most relevant reaction of the immune system to NM. We conclude that the NAMs adopted by OECD test guidelines are currently not a good fit for testing inorganic NM.
Collapse
Affiliation(s)
- Britta Wareing
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Ayse Aktalay Hippchen
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Susanne N. Kolle
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Barbara Birk
- BASF SE, Agriculture Solutions, 67117 Limburgerhof, Germany;
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, 14195 Berlin, Germany
| |
Collapse
|
2
|
Pulido-Reyes G, Moreno-Martín G, Gómez-Gómez B, Navas JM, Madrid Y, Fernández-Cruz ML. Fish acute toxicity of nine nanomaterials: Need of pre-tests to ensure comparability and reuse of data. ENVIRONMENTAL RESEARCH 2024; 245:118072. [PMID: 38157971 DOI: 10.1016/j.envres.2023.118072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Fish acute toxicity tests are commonly used in aquatic environmental risk assessments, being required in different international substances regulations. A general trend in the toxicity testing of nanomaterials (NMs) has been to use standardized aquatic toxicity tests. However, as these tests were primarily developed for soluble chemical, issues regarding particle dissolution, agglomeration or sedimentation during the time of exposure are not considered when reporting the toxicity of NMs. The aim of this study was to characterize the NM behaviour throughout the fish acute test and to provide criteria to assay the toxicity of nine NMs based on TiO2, ZnO, SiO2, BaSO4, bentonite, and carbon nanotubes, on rainbow trout following OECD Test Guideline (TG) nº203. Our results showed the importance of conducting a preliminary test (without fish) when working with NMs. They provide valuable information on, sample monitoring, agglomeration, sedimentation, dissolution, actual concentrations of NMs, needed to design the test. Among the NMs tested, only bentonite nanoparticles were stable during the 96-h pre-test and test in aquarium water. In contrast, the remaining NMs exhibited considerable loss and sedimentation within the first 24 h. The high sedimentation observed for almost all NMs highlights the need of consistently measuring the concentrations throughout the entire duration of the fish acute toxicity test to make reliable concentration-response relationships. Notable differences emerged in LC50 values when using actual concentrations as nominal concentrations overestimated concentrations by up to 85.6%. Among all NMs tested, only ZnO NMs were toxic to rainbow trout. A flow chart was specifically developed for OECD TG 203, aiding users in making informed decisions regarding the selection of test systems and necessary modifications to ensure accurate, reliable, and reusable toxicity data. Our findings might contribute to the harmonization of TG 203 improving result reproducibility and interpretability and supporting the development of read-across and QSAR models.
Collapse
Affiliation(s)
- Gerardo Pulido-Reyes
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain.
| | - Gustavo Moreno-Martín
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Beatriz Gómez-Gómez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - José María Navas
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Luisa Fernández-Cruz
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain.
| |
Collapse
|
3
|
Yang Z, Wu S, Gao Y, Kou D, Lu K, Chen C, Zhou Y, Zhou D, Chen L, Ge J, Li C, Zeng J, Gao M. Unveiling the Biologically Dynamic Degradation of Iron Oxide Nanoparticles via a Continuous Flow System. SMALL METHODS 2024; 8:e2301479. [PMID: 38009499 DOI: 10.1002/smtd.202301479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Nanomaterials are increasingly being employed for biomedical applications, necessitating a comprehensive understanding of their degradation behavior and potential toxicity in the biological environment. This study utilizes a continuous flow system to simulate the biologically relevant degradation conditions and investigate the effects of pH, protein, redox species, and chelation ligand on the degradation of iron oxide nanoparticles. The morphology, aggregation state, and relaxivity of iron oxide nanoparticles after degradation are systematically characterized. The results reveal that the iron oxide nanoparticles degrade at a significantly higher rate under the acidic environment. Moreover, incubation with bovine serum albumin enhances the stability and decreases the dissolution rate of iron oxide nanoparticles. In contrast, glutathione accelerates the degradation of iron oxide nanoparticles, while the presence of sodium citrate leads to the fastest degradation. This study reveals that iron oxide nanoparticles undergo degradation through various mechanisms in different biological microenvironments. Furthermore, the dissolution and aggregation of iron oxide nanoparticles during degradation significantly impact their relaxivity, which has implications for their efficacy as magnetic resonance imaging contrast agents in vivo. The results provide valuable insights for assessing biosafety and bridge the gap between fundamental research and clinical applications of iron oxide nanoparticles.
Collapse
Affiliation(s)
- Zhe Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Shuwang Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yi Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Suzhou Xinying Biomedical Technology Co. Ltd., Suzhou, 215000, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Suzhou Xinying Biomedical Technology Co. Ltd., Suzhou, 215000, China
| |
Collapse
|
4
|
Di Cristo L, Keller JG, Leoncino L, Marassi V, Loosli F, Seleci DA, Tsiliki G, Oomen AG, Stone V, Wohlleben W, Sabella S. Critical aspects in dissolution testing of nanomaterials in the oro-gastrointestinal tract: the relevance of juice composition for hazard identification and grouping. NANOSCALE ADVANCES 2024; 6:798-815. [PMID: 38298600 PMCID: PMC10825926 DOI: 10.1039/d3na00588g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
The dissolution of a nanomaterial (NM) in an in vitro simulant of the oro-gastrointestinal (OGI) tract is an important predictor of its biodurability in vivo. The cascade addition of simulated digestive juices (saliva, stomach and intestine), including inorganic/organic biomacromolecules and digestive enzymes (complete composition, referred to as "Type 1 formulation"), strives for realistic representation of chemical composition of the OGI tract. However, the data robustness requires consideration of analytical feasibility, such as the use of simplified media. Here we present a systematic analysis of the effects exerted by different digestive juice formulations on the dissolution% (or half-life values) of benchmark NMs (e.g., zinc oxide, titanium dioxide, barium sulfate, and silicon dioxide). The digestive juices were progressively simplified by removal of components such as organic molecules, enzymes, and inorganic molecules (Type 2, 3 and 4). The results indicate that the "Type 1 formulation" augments the dissolution via sequestration of ions by measurable factors compared to formulations without enzymes (i.e., Type 3 and 4). Type 1 formulation is thus regarded as a preferable option for predicting NM biodurability for hazard assessment. However, for grouping purposes, the relative similarity among diverse nanoforms (NFs) of a NM is decisive. Two similarity algorithms were applied, and additional case studies comprising NFs and non NFs of the same substance were included. The results support the grouping decision by simplified formulation (Type 3) as a robust method for screening and grouping purposes.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| | - Johannes G Keller
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia Genova Italy
| | | | - Frederic Loosli
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
- University of Vienna Vienna Austria
| | - Didem Ag Seleci
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Georgia Tsiliki
- Institute for the Management of Information Systems, Athena Research Center Marousi Greece
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
- University of Amsterdam Amsterdam The Netherlands
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh UK
| | - Wendel Wohlleben
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| |
Collapse
|
5
|
Mbanga O, Cukrowska E, Gulumian M. A Comparative Study of the Biodurability and Persistence of Gold, Silver and Titanium Dioxide Nanoparticles Using the Continuous Flow through System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101653. [PMID: 37242069 DOI: 10.3390/nano13101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The potential for nanoparticles to cause harm to human health and the environment is correlated with their biodurability in the human body and persistence in the environment. Dissolution testing serves to predict biodurability and nanoparticle environmental persistence. In this study, dissolution testing using the continuous flow through system was used to investigate the biodurability and persistence of gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) and titanium dioxide nanoparticles (TiO2 NPs) in five different simulated biological fluids and two synthetic environmental media to predict their behaviour in real life situations. This study examined the physicochemical properties and agglomeration state of gold, silver and titanium dioxide nanoparticles before and after dissolution tests using three different techniques (UV-vis, XRD and TEM). The UV-vis spectra revealed that all three nanoparticles shifted to higher wavelengths after being exposed to simulated fluids. The titanium powder was found to be mixed with both rutile and anatase, according to XRD examination. The average diameter of gold nanoparticles was 14 nm, silver nanoparticles were 10 nm and titanium dioxide nanoparticles were 25 nm, according to TEM images. The gold and silver nanoparticles were observed to be spherical, but the titanium dioxide nanoparticles were irregular in shape, with some being spherical. The level of dissolved nanoparticles in simulated acidic media was higher in magnitude compared to that dissolved in simulated alkaline media. The results obtained via the continuous flow through dissolution system also displayed very significant dissolution rates. For TiO2 NPs the calculated half-times were in the range of 13-14 days, followed by AuNPs ranging between 4-12 days, significantly longer if compared to the half-times of AgNPs ranging between 2-7 days. AuNPs and TiO2 NPs were characterized by low dissolution rates therefore are expected to be (bio)durable in physiological surroundings and persistent in the environment thus, they might impose long-term effects on humans and the environment. In contrast, AgNPs have high dissolution rates and not (bio)durable and hence may cause short-term effects. The results suggest a hierarchy of biodurability and persistence of TiO2 NPs > AuNPs > AgNPs. It is recommended that nanoparticle product developers should follow the test guidelines stipulated by the OECD to ensure product safety for use before it is taken to the market.
Collapse
Affiliation(s)
- Odwa Mbanga
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| | - Ewa Cukrowska
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, Northwest University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
6
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
7
|
Keller JG, Persson M, Müller P, Ma-Hock L, Werle K, Arts J, Landsiedel R, Wohlleben W. Corrigendum to variation in dissolution behavior among different nanoforms and its implication for grouping approaches in inhalation toxicity [NanoImpact 23 (2021) 100341]. NANOIMPACT 2023; 29:100455. [PMID: 36801377 DOI: 10.1016/j.impact.2023.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Johannes G Keller
- BASF SE, Department Experimental Toxicology and Ecology, and Department Material Physics, Ludwigshafen 67056, Germany.
| | - Michael Persson
- Nouryon Pulp and Performance Chemicals AB, Bohus S-445 80, Sweden.
| | - Philipp Müller
- BASF SE, Department Experimental Toxicology and Ecology, and Department Material Physics, Ludwigshafen 67056, Germany.
| | - Lan Ma-Hock
- BASF SE, Department Experimental Toxicology and Ecology, and Department Material Physics, Ludwigshafen 67056, Germany
| | - Kai Werle
- BASF SE, Department Experimental Toxicology and Ecology, and Department Material Physics, Ludwigshafen 67056, Germany.
| | - Josje Arts
- Nouryon Pulp and Performance Chemicals AB, Bohus S-445 80, Sweden.
| | - Robert Landsiedel
- BASF SE, Department Experimental Toxicology and Ecology, and Department Material Physics, Ludwigshafen 67056, Germany.
| | - Wendel Wohlleben
- BASF SE, Department Experimental Toxicology and Ecology, and Department Material Physics, Ludwigshafen 67056, Germany.
| |
Collapse
|
8
|
Di Cristo L, Ude VC, Tsiliki G, Tatulli G, Romaldini A, Murphy F, Wohlleben W, Oomen AG, Pompa PP, Arts J, Stone V, Sabella S. Grouping of orally ingested silica nanomaterials via use of an integrated approach to testing and assessment to streamline risk assessment. Part Fibre Toxicol 2022; 19:68. [PMID: 36461106 PMCID: PMC9719179 DOI: 10.1186/s12989-022-00508-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Nanomaterials can exist in different nanoforms (NFs). Their grouping may be supported by the formulation of hypotheses which can be interrogated via integrated approaches to testing and assessment (IATA). IATAs are decision trees that guide the user through tiered testing strategies (TTS) to collect the required evidence needed to accept or reject a grouping hypothesis. In the present paper, we investigated the applicability of IATAs for ingested NFs using a case study that includes different silicon dioxide, SiO2 NFs. Two oral grouping hypotheses addressing local and systemic toxicity were identified relevant for the grouping of these NFs and verified through the application of oral IATAs. Following different Tier 1 and/or Tier 2 in vitro methods of the TTS (i.e., in vitro dissolution, barrier integrity and inflammation assays), we generated the NF datasets. Furthermore, similarity algorithms (e.g., Bayesian method and Cluster analysis) were utilized to identify similarities among the NFs and establish a provisional group(s). The grouping based on Tier 1 and/or Tier 2 testing was analyzed in relation to available Tier 3 in vivo data in order to verify if the read-across was possible and therefore support a grouping decision. RESULTS The measurement of the dissolution rate of the silica NFs in the oro-gastrointestinal tract and in the lysosome identified them as gradually dissolving and biopersistent NFs. For the local toxicity to intestinal epithelium (e.g. cytotoxicity, membrane integrity and inflammation), the biological results of the gastrointestinal tract models indicate that all of the silica NFs were similar with respect to the lack of local toxicity and, therefore, belong to the same group; in vivo data (although limited) confirmed the lack of local toxicity of NFs. For systemic toxicity, Tier 1 data did not identify similarity across the NFs, with results across different decision nodes being inconsistent in providing homogeneous group(s). Moreover, the available Tier 3 in vivo data were also insufficient to support decisions based upon the obtained in vitro results and relating to the toxicity of the tested NFs. CONCLUSIONS The information generated by the tested oral IATAs can be effectively used for similarity assessment to support a grouping decision upon the application of a hypothesis related to toxicity in the gastrointestinal tract. The IATAs facilitated a structured data analysis and, by means of the expert's interpretation, supported read-across with the available in vivo data. The IATAs also supported the users in decision making, for example, reducing the testing when the grouping was well supported by the evidence and/or moving forward to advanced testing (e.g., the use of more suitable cellular models or chronic exposure) to improve the confidence level of the data and obtain more focused information.
Collapse
Affiliation(s)
- Luisana Di Cristo
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| | - Victor C. Ude
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Georgia Tsiliki
- grid.19843.370000 0004 0393 5688Institute for the Management of Information Systems, Athena Research Center, Marousi, Greece
| | - Giuseppina Tatulli
- grid.25786.3e0000 0004 1764 2907Nanobiointeractions & Nanodiagnostics, Istituto Italiano Di Tecnologia (IIT), Via Morego, 30, 16163 Genoa, Italy
| | - Alessio Romaldini
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| | - Fiona Murphy
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Wendel Wohlleben
- grid.3319.80000 0001 1551 0781Department Material Physics and Department of Experimental Toxicology & Ecology, BASF SE, Ludwigshafen, Germany
| | - Agnes G. Oomen
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands ,grid.7177.60000000084992262Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Pier P. Pompa
- grid.25786.3e0000 0004 1764 2907Nanobiointeractions & Nanodiagnostics, Istituto Italiano Di Tecnologia (IIT), Via Morego, 30, 16163 Genoa, Italy
| | | | - Vicki Stone
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Stefania Sabella
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| |
Collapse
|
9
|
Lehner R, Zanoni I, Banuscher A, Costa AL, Rothen-Rutishauser B. Fate of engineered nanomaterials at the human epithelial lung tissue barrier in vitro after single and repeated exposures. FRONTIERS IN TOXICOLOGY 2022; 4:918633. [PMID: 36185318 PMCID: PMC9524228 DOI: 10.3389/ftox.2022.918633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The understanding of the engineered nanomaterials (NMs) potential interaction with tissue barriers is important to predict their accumulation in cells. Herein, the fate, e.g., cellular uptake/adsorption at the cell membrane and translocation, of NMs with different physico-chemical properties across an A549 lung epithelial tissue barrier, cultured on permeable transwell inserts, were evaluated. We assessed the fate of five different NMs, known to be partially soluble, bio-persistent passive and bio-persistent active. Single exposure measurements using 100 µg/ml were performed for barium sulfate (BaSO4), cerium dioxide (CeO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NMs and non-nanosized crystalline silica (DQ12). Elemental distribution of the materials in different compartments was measured after 24 and 80 h, e.g., apical, apical wash, intracellular and basal, using inductively coupled plasma optical emission spectrometry. BaSO4, CeO2, and TiO2 were mainly detected in the apical and apical wash fraction, whereas for ZnO a significant fraction was detected in the basal compartment. For DQ12 the major fraction was found intracellularly. The content in the cellular fraction decreased from 24 to 80 h incubation for all materials. Repeated exposure measurements were performed exposing the cells on four subsequent days to 25 µg/ml. After 80 h BaSO4, CeO2, and TiO2 NMs were again mainly detected in the apical fraction, ZnO NMs in the apical and basal fraction, while for DQ12 a significant concentration was measured in the cell fraction. Interestingly the cellular fraction was in a similar range for both exposure scenarios with one exception, i.e., ZnO NMs, suggesting a potential different behavior for this material under single exposure and repeated exposure conditions. However, we observed for all the NMs, a decrease of the amount detected in the cellular fraction within time, indicating NMs loss by cell division, exocytosis and/or possible dissolution in lysosomes. Overall, the distribution of NMs in the compartments investigated depends on their composition, as for inert and stable NMs the major fraction was detected in the apical and apical wash fraction, whereas for partially soluble NMs apical and basal fractions were almost similar and DQ12 could mainly be found in the cellular fraction.
Collapse
Affiliation(s)
- Roman Lehner
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Ilaria Zanoni
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza, Ravenna, Italy
| | - Anne Banuscher
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Anna Luisa Costa
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza, Ravenna, Italy
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Barbara Rothen-Rutishauser,
| |
Collapse
|
10
|
Karlsson HL, Hartwig A. Lung Cell Toxicity of Metal-Containing Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3044. [PMID: 36080081 PMCID: PMC9458187 DOI: 10.3390/nano12173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Among the various nanomaterials present in society, many contain metals or metal compounds [...].
Collapse
Affiliation(s)
- Hanna L. Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Alklaf SA, Zhang S, Zhu J, Manirakiza B, Addo FG, Guo S, Alnadari F. Impacts of nano-titanium dioxide toward Vallisneria natans and epiphytic microbes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129066. [PMID: 35739691 DOI: 10.1016/j.jhazmat.2022.129066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, Vallisneria natans plants were exposed to 5 and 20 nm of titanium dioxide nanoparticles (TiO₂ NPs) anatase and 600-1000 nm of bulk at 5 and 20 mg/L for 30 days. SEM images and EDX spectra revealed that epiphytic biofilms were more prone to TiO₂ NPs adhesion than bare plant leaves. TiO₂ NPs injured plant leaf cells, ruptured epiphytic diatoms membranes and increased the ratio of free-living microbes. The TN, NH4⁺-N and NO3--N concentrations significantly decreased, respectively, by 44.9%, 33.6%, and 23.6% compared to bulk treatments after 30 days due to macrophyte damage and a decline in diversity of epiphytic bacterial community and abundance of nitrogen cycle bacteria. TiO₂ NPs size-dependent decrease in bacterial relative abundance was detected, including phylum Cyanobacteria, Planctomycetes, and Verrucomicrobia. Although TiO₂ NPs increased eukaryotic diversity and abundance, abundances of Bacillariophyceae and Vampyrellidae classes and Gastrotricha and Phragmoplastophyta phylum decreased significantly under TiO₂ NPs exposure compared to bulk and control. TiO₂ NPs reduced intensities of interaction relationships among epiphytic microbial genera. This study shed new light on the potential effects of TiO₂ NPs toxicity toward aquatic plants and epiphytic microbial communities and its impacts on nitrogen species removal in wetlands.
Collapse
Affiliation(s)
- Salah Alden Alklaf
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jianzhong Zhu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Fawze Alnadari
- Department of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
12
|
Zanoni I, Keller JG, Sauer UG, Müller P, Ma-Hock L, Jensen KA, Costa AL, Wohlleben W. Dissolution Rate of Nanomaterials Determined by Ions and Particle Size under Lysosomal Conditions: Contributions to Standardization of Simulant Fluids and Analytical Methods. Chem Res Toxicol 2022; 35:963-980. [PMID: 35593714 PMCID: PMC9215348 DOI: 10.1021/acs.chemrestox.1c00418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/08/2023]
Abstract
Dissolution of inhaled engineered nanomaterials (ENM) under physiological conditions is essential to predict the clearance of the ENM from the lungs and to assess their biodurability and the potential effects of released ions. Alveolar macrophage (AM) lysosomes contain a pH 4.5 saline brine with enzymes and other components. Different types of artificial phagolysosomal simulant fluids (PSFs) have been developed for dissolution testing, but the consequence of using different media is not known. In this study, we tested to which extent six fundamentally different PSFs affected the ENM dissolution kinetics and particle size as determined by a validated transmission electron microscopy (TEM) image analysis. Three lysosomal simulant media were consistent with each other and with in vivo clearance. These media predict the quick dissolution of ZnO, the partial dissolution of SiO2, and the very slow dissolution of TiO2. The valid media use either a mix of organic acids (with the total concentration below 0.5 g/L, thereof citric acid below 0.15 g/L) or another organic acid (KH phthalate). For several ENM, including ZnO, BaSO4, and CeO2, all these differences induce only minor modulation of the dissolution rates. Only for TiO2 and SiO2, the interaction with specific organic acids is highly sensitive, probably due to sequestration of the ions, and can lead to wrong predictions when compared to the in vivo behavior. The media that fail on TiO2 and SiO2 dissolution use citric acid at concentrations above 5 g/L (up to 28 g/L). In the present selection of ENM, fluids, and methods, the different lysosomal simulant fluids did not induce changes of particle morphology, except for small changes in SiO2 and BaSO4 particles most likely due to ion dissolution, reprecipitation, and coalescence between neighboring particles. Based on the current evidence, the particle size by TEM analysis is not a sufficiently sensitive analytical method to deduce the rate of ENM dissolution in physiological media. In summary, we recommend the standardization of ENM dissolution testing by one of the three valid lysosomal simulant fluids with determination of the dissolution rate and halftime by the quantification of ions. This recommendation was established for a continuous flow system but may be relevant as well for static (batch) solubility testing.
Collapse
Affiliation(s)
- Ilaria Zanoni
- CNR-ISTEC-National
Research Council of Italy, Institute of
Science and Technology for Ceramics, Faenza 48018, Italy
| | - Johannes G. Keller
- Department
of Material Physics and Analytics, BASF
SE, Ludwigshafen 67056, Germany
- Department
of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen 67056, Germany
| | - Ursula G. Sauer
- Scientific
Consultancy-Animal Welfare, Neubiberg 85579, Germany
| | - Philipp Müller
- Department
of Material Physics and Analytics, BASF
SE, Ludwigshafen 67056, Germany
| | - Lan Ma-Hock
- Department
of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen 67056, Germany
| | - Keld A. Jensen
- National
Research Centre for Work Environment (NRCWE), Copenhagen 2100, Denmark
| | - Anna Luisa Costa
- CNR-ISTEC-National
Research Council of Italy, Institute of
Science and Technology for Ceramics, Faenza 48018, Italy
| | - Wendel Wohlleben
- Department
of Material Physics and Analytics, BASF
SE, Ludwigshafen 67056, Germany
- Department
of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen 67056, Germany
| |
Collapse
|
13
|
Di Cristo L, Janer G, Dekkers S, Boyles M, Giusti A, Keller JG, Wohlleben W, Braakhuis H, Ma-Hock L, Oomen AG, Haase A, Stone V, Murphy F, Johnston HJ, Sabella S. Integrated approaches to testing and assessment for grouping nanomaterials following dermal exposure. Nanotoxicology 2022; 16:310-332. [PMID: 35704509 DOI: 10.1080/17435390.2022.2085207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exposure to different nanoforms (NFs) via the dermal route is expected in occupational and consumer settings and thus it is important to assess their dermal toxicity and the contribution of dermal exposure to systemic bioavailability. We have formulated four grouping hypotheses for dermal toxicity endpoints which allow NFs to be grouped to streamline and facilitate risk assessment. The grouping hypotheses are developed based on insight into how physicochemical properties of NFs (i.e. composition, dissolution kinetics, size, and flexibility) influence their fate and hazard following dermal exposure. Each hypothesis is accompanied by a tailored Integrated Approach to Testing and Assessment (IATA) that is structured as a decision tree and tiered testing strategies (TTS) for each relevant question (at decision nodes) that indicate what information is needed to guide the user to accept or reject the grouping hypothesis. To develop these hypotheses and IATAs, we gathered and analyzed existing information on skin irritation, skin sensitization, and dermal penetration of NFs from the published literature and performed experimental work to generate data on NF dissolution in sweat simulant fluids. We investigated the dissolution of zinc oxide and silicon dioxide NFs in different artificial sweat fluids, demonstrating the importance of using physiologically relevant conditions for dermal exposure. All existing and generated data informed the formulation of the grouping hypotheses, the IATAs, and the design of the TTS. It is expected that the presented IATAs will accelerate the NF risk assessment for dermal toxicity via the application of read-across.
Collapse
Affiliation(s)
- Luisana Di Cristo
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genova, Italy
| | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Anna Giusti
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Johannes G Keller
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lan Ma-Hock
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Fiona Murphy
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Helinor J Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Stefania Sabella
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genova, Italy
| |
Collapse
|
14
|
Huang Y, Li X, Cao J, Wei X, Li Y, Wang Z, Cai X, Li R, Chen J. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells: Machine learning boosts nano-safety assessment. ENVIRONMENT INTERNATIONAL 2022; 164:107258. [PMID: 35483183 DOI: 10.1016/j.envint.2022.107258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Potential immune responses resulting from exposure to metal oxide nanoparticles (MeONPs) have been the subject of intensive discussion in the last decade. Despite the extensive use of MeONPs in several applications, their toxic effects on immune cells have rarely been predicted in silico because of the complexity of immune responses and the complicated properties of MeONPs. In the present study, machine learning (ML) methods coupled with high-throughput in vitro bioassays were used to develop models for predicting the toxicity of MeONPs in immune cells. An ML model with a high prediction accuracy (97% and 96% in the training and test sets, respectively) was constructed by resolving the class imbalance problem in training and applying an ensembled algorithm. Further, to verify the model, MeONPs outside the scope of the datasets were selected to examine their cytotoxicity experimentally. The model was validated against independent MeONPs, with an accuracy of 91%. ML methods coupled with intracellular imaging revealed that the toxic ions released in the lysosome were an important determinant of toxicity in immune cells. Furthermore, ζ-potential, electronegativity, and size are crucial factors for predicting nanotoxicity. We believe the established modeling framework will provide useful insights for designing and applying safe nanoparticles and facilitating decision-making for environmental and health protection.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jiayu Cao
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhe Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Jeliazkova N, Ma-Hock L, Janer G, Stratmann H, Wohlleben W. Possibilities to group nanomaterials across different substances - A case study on organic pigments. NANOIMPACT 2022; 26:100391. [PMID: 35560297 DOI: 10.1016/j.impact.2022.100391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/15/2023]
Abstract
Grouping concepts to reduce the testing of NFs have been developed for regulatory purposes for different forms of the same substance. Here we explore possibilities to group nanomaterials across different substances for non-regulatory applications, using the example of 16 organic pigments from six chemical classes. Organic pigments are particles consisting of low-molar-mass organic molecules, and rank by tonnage among the most important substances manufactured in nanoform (NF). Tiered testing strategies relevant to the inhalation route included Tier 1 (deposition, dissolution, reactivity, inflammation) and if available Tier 3 data (in vivo). A similarity assessment of the pigment NF data was conducted in a quantitative (Tier 1 and Tier 3 in vivo potency) or qualitative (Tier 3 in vivo effects) manner. We observed that chemical similarity of organic pigments was predictive for their similarity of reactivity and dissolution, but that additional NF descriptors such as surface area or size, modulate the similarity in inflammation or cytotoxicity. We applied the concept of biologically relevant ranges to crop the values of the Tier 1 data matrix before applying similarity algorithms. The Tier 3 assessment by in vivo inhalation confirmed the IATA methodical choices and IATA assessment criteria as consistent and conservative. We suggested limits of acceptable similarity for Tier 1 data and demonstrated their application to support the grouping of some candidate NFs (subsequently confirmed by Tier 3 data). Four candidate NFs exceeded the limits of acceptability for Tier 1 and were escalated from Tier 1 to Tier 3, but were then included in the group, demonstrating the conservative Tier 1 criteria. The resulting group of low-solubility, low-reactivity materials included both NFs and non-NFs of various substances, and could find use for risk management purposes in the occupational handling of pigment powders.
Collapse
Affiliation(s)
| | - Lan Ma-Hock
- BASF SE, Dept Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | | | - Wendel Wohlleben
- BASF SE, Dept Experimental Toxicology & Ecology, Ludwigshafen, Germany; BASF SE, Dept. Material Physics, Ludwigshafen, Germany.
| |
Collapse
|
16
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
17
|
Holmfred E, Sloth JJ, Loeschner K, Jensen KA. Influence of Pre-Dispersion Media on the Batch Reactor Dissolution Behavior of Al 2O 3 Coated TiO 2 (NM-104) and Two ZnO (NM-110 and NM-111) Nanomaterials in Biologically Relevant Test Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:566. [PMID: 35159911 PMCID: PMC8840498 DOI: 10.3390/nano12030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 01/30/2022] [Indexed: 11/16/2022]
Abstract
Dissolution plays an important role on pulmonary toxicity of nanomaterials (NMs). The influence of contextual parameters on the results from dissolution testing needs to be identified to improve the generation of relevant and comparable data. This study investigated how pre-dispersions made in water, low-calcium Gamble's solution, phagolysosomal simulant fluid (PSF), and 0.05% bovine serum albumin (BSA) affected the dissolution of the Al2O3 coating on poorly soluble TiO2 also coated with glycerine (NM-104) and rapidly dissolving uncoated (NM-110) and triethoxycaprylsilane-coated ZnO (NM-111) NMs. Dissolution tests were undertaken and controlled in a stirred batch reactor using low-calcium Gamble's solution and phagolysosomal simulant fluid a surrogate for the lung-lining and macrophage phagolysosomal fluid, respectively. Pre-dispersion in 0.05% BSA-water showed a significant delay or decrease in the dissolution of Al2O3 after testing in both low-calcium Gamble's solution and PSF. Furthermore, use of the 0.05% BSA pre-dispersion medium influenced the dissolution of ZnO (NM-110) in PSF and ZnO (NM-111) in low-calcium Gamble's solution and PSF. We hypothesize that BSA forms a protective coating on the particles, which delays or lowers the short-term dissolution of the materials used in this study. Consequently, the type of pre-dispersion medium can affect the results in short-term dissolution testing.
Collapse
Affiliation(s)
- Else Holmfred
- National Research Center for the Working Environment, 2100 Copenhagen, Denmark
- Research Group for Analytical Food Chemistry, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.J.S.); (K.L.)
| | - Jens J. Sloth
- Research Group for Analytical Food Chemistry, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.J.S.); (K.L.)
| | - Katrin Loeschner
- Research Group for Analytical Food Chemistry, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.J.S.); (K.L.)
| | - Keld Alstrup Jensen
- National Research Center for the Working Environment, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Stetten L, Mackevica A, Tepe N, Hofmann T, von der Kammer F. Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles. NANOMATERIALS 2022; 12:nano12030519. [PMID: 35159864 PMCID: PMC8839430 DOI: 10.3390/nano12030519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023]
Abstract
The dissolution of metal-based engineered nanomaterials (ENMs) in aquatic environments is an important mechanism governing the release of toxic dissolved metals. For the registration of ENMs at regulatory bodies such as REACH, their dissolution behavior must therefore be assessed using standardized experimental approaches. To date, there are no standardized procedures for dissolution testing of ENMs in environmentally relevant aquatic media, and the Organisation for Economic Co-operation and Development (OECD) strongly encourages their development into test guidelines. According to a survey of surface water hydrochemistry, we propose to use media with low concentrations of Ca2+ and Mg2+ for a better simulation of the ionic background of surface waters, at pH values representing acidic (5 < pH < 6) and near-neutral/alkaline (7 < pH < 8) waters. We evaluated a continuous flow setup adapted to expose small amounts of ENMs to aqueous media, to mimic ENMs in surface waters. For this purpose, silver nanoparticles (Ag NPs) were used as model for soluble metal-bearing ENMs. Ag NPs were deposited onto a 10 kg.mol−1 membrane through the injection of 500 µL of a 5 mg.L−1 or 20 mg.L−1 Ag NP dispersion, in order to expose only a few micrograms of Ag NPs to the aqueous media. The dissolution rate of Ag NPs in 10 mM NaNO3 was more than two times higher for ~2 µg compared with ~8 µg of Ag NPs deposited onto the membrane, emphasizing the importance of evaluating the dissolution of ENMs at low concentrations in order to keep a realistic scenario. Dissolution rates of Ag NPs in artificial waters (2 mM Ca(NO3)2, 0.5 mM MgSO4, 0–5 mM NaHCO3) were also determined, proving the feasibility of the test using environmentally relevant media. In view of the current lack of harmonized methods, this work encourages the standardization of continuous flow dissolution methods toward OECD guidelines focused on natural aquatic environments, for systematic comparisons of nanomaterials and adapted risk assessments.
Collapse
|
19
|
Holmfred E, Loeschner K, Sloth JJ, Jensen KA. Validation and Demonstration of an Atmosphere-Temperature-pH-Controlled Stirred Batch Reactor System for Determination of (Nano)Material Solubility and Dissolution Kinetics in Physiological Simulant Lung Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:517. [PMID: 35159862 PMCID: PMC8838572 DOI: 10.3390/nano12030517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
In this study, we present a dissolution test system that allows for the testing of dissolution of nano- and micrometer size materials under highly controlled atmospheric composition (O2 and CO2), temperature, and pH. The system enables dissolution testing in physiological simulant fluids (here low-calcium Gamble's solution and phagolysosomal simulant fluid) and derivation of the temporal dissolution rates and reactivity of test materials. The system was validated considering the initial dissolution rates and dissolution profiles using eight different materials (γ-Al2O3, TiO2 (NM-104 coated with Al2O3 and glycerin), ZnO (NM-110 and NM-113, uncoated; and NM-111 coated with triethoxycaprylsilane), SiO2 (NM-200-synthetic amorphous silica), CeO2 (NM-212), and bentonite (NM-600) showing high intra-laboratory repeatability and robustness across repeated testing (I, II, and III) in triplicate (replicate 1, 2, and 3) in low-calcium Gamble's solution. A two-way repeated-measures ANOVA was used to determine the intra-laboratory repeatability in low-calcium Gamble's solution, where Al2O3 (p = 0.5277), ZnO (NM-110, p = 0.6578), ZnO (NM-111, p = 0.0627), and ZnO (NM-113, p = 0.4210) showed statistical identical repeatability across repeated testing (I, II, and III). The dissolution of the materials was also tested in phagolysosomal simulant fluid to demonstrate the applicability of the ATempH SBR system in other physiological fluids. We further show the uncertainty levels at which dissolution can be determined using the ATempH SBR system.
Collapse
Affiliation(s)
- Else Holmfred
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
- Research Group for Analytical Food Chemistry, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (K.L.); (J.J.S.)
| | - Katrin Loeschner
- Research Group for Analytical Food Chemistry, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (K.L.); (J.J.S.)
| | - Jens J. Sloth
- Research Group for Analytical Food Chemistry, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (K.L.); (J.J.S.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Wall J, Seleci DA, Schworm F, Neuberger R, Link M, Hufnagel M, Schumacher P, Schulz F, Heinrich U, Wohlleben W, Hartwig A. Comparison of Metal-Based Nanoparticles and Nanowires: Solubility, Reactivity, Bioavailability and Cellular Toxicity. NANOMATERIALS 2021; 12:nano12010147. [PMID: 35010097 PMCID: PMC8746854 DOI: 10.3390/nano12010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
While the toxicity of metal-based nanoparticles (NP) has been investigated in an increasing number of studies, little is known about metal-based fibrous materials, so-called nanowires (NWs). Within the present study, the physico-chemical properties of particulate and fibrous nanomaterials based on Cu, CuO, Ni, and Ag as well as TiO2 and CeO2 NP were characterized and compared with respect to abiotic metal ion release in different physiologically relevant media as well as acellular reactivity. While none of the materials was soluble at neutral pH in artificial alveolar fluid (AAF), Cu, CuO, and Ni-based materials displayed distinct dissolution under the acidic conditions found in artificial lysosomal fluids (ALF and PSF). Subsequently, four different cell lines were applied to compare cytotoxicity as well as intracellular metal ion release in the cytoplasm and nucleus. Both cytotoxicity and bioavailability reflected the acellular dissolution rates in physiological lysosomal media (pH 4.5); only Ag-based materials showed no or very low acellular solubility, but pronounced intracellular bioavailability and cytotoxicity, leading to particularly high concentrations in the nucleus. In conclusion, in spite of some quantitative differences, the intracellular bioavailability as well as toxicity is mostly driven by the respective metal and is less modulated by the shape of the respective NP or NW.
Collapse
Affiliation(s)
- Johanna Wall
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | | | - Feranika Schworm
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | - Ronja Neuberger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | - Martin Link
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | - Paul Schumacher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | | | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
- Correspondence:
| |
Collapse
|
21
|
Di Cristo L, Oomen AG, Dekkers S, Moore C, Rocchia W, Murphy F, Johnston HJ, Janer G, Haase A, Stone V, Sabella S. Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2623. [PMID: 34685072 PMCID: PMC8541163 DOI: 10.3390/nano11102623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
The risk assessment of ingested nanomaterials (NMs) is an important issue. Here we present nine integrated approaches to testing and assessment (IATAs) to group ingested NMs following predefined hypotheses. The IATAs are structured as decision trees and tiered testing strategies for each decision node to support a grouping decision. Implications (e.g., regulatory or precautionary) per group are indicated. IATAs integrate information on durability and biopersistence (dissolution kinetics) to specific hazard endpoints, e.g., inflammation and genotoxicity, which are possibly indicative of toxicity. Based on IATAs, groups of similar nanoforms (NFs) of a NM can be formed, such as very slow dissolving, highly biopersistent and systemically toxic NFs. Reference NMs (ZnO, SiO2 and TiO2) along with related NFs are applied as case studies to testing the oral IATAs. Results based on the Tier 1 level suggest a hierarchy of biodurability and biopersistence of TiO2 > SiO2 > ZnO, and are confirmed by in vivo data (Tier 3 level). Interestingly, our analysis suggests that TiO2 and SiO2 NFs are able to induce both local and systemic toxicity along with microbiota dysbiosis and can be grouped according to the tested fate and hazard descriptors. This supports that the decision nodes of the oral IATAs are suitable for classification and assessment of the toxicity of NFs.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Colin Moore
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Walter Rocchia
- Computational Modelling of Nanoscale and Biophysical Systems—CONCEPT Lab, Istituto Italiano Di Tecnologia, 16163 Genova, Italy;
| | - Fiona Murphy
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Helinor J. Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Gemma Janer
- LEITAT Technological Center, 08005 Barcelona, Spain;
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Stefania Sabella
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| |
Collapse
|
22
|
Braakhuis HM, Murphy F, Ma-Hock L, Dekkers S, Keller J, Oomen AG, Stone V. An Integrated Approach to Testing and Assessment to Support Grouping and Read-Across of Nanomaterials After Inhalation Exposure. ACTA ACUST UNITED AC 2021; 7:112-128. [PMID: 34746334 PMCID: PMC8567336 DOI: 10.1089/aivt.2021.0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction: Here, we describe the generation of hypotheses for grouping nanoforms (NFs) after inhalation exposure and the tailored Integrated Approaches to Testing and Assessment (IATA) with which each specific hypothesis can be tested. This is part of a state-of-the-art framework to support the hypothesis-driven grouping and read-across of NFs, as developed by the EU-funded Horizon 2020 project GRACIOUS. Development of Grouping Hypotheses and IATA: Respirable NFs, depending on their physicochemical properties, may dissolve either in lung lining fluid or in acidic lysosomal fluid after uptake by cells. Alternatively, NFs may also persist in particulate form. Dissolution in the lung is, therefore, a decisive factor for the toxicokinetics of NFs. This has led to the development of four hypotheses, broadly grouping NFs as instantaneous, quickly, gradually, and very slowly dissolving NFs. For instantaneously dissolving NFs, hazard information can be derived by read-across from the ions. For quickly dissolving particles, as accumulation of particles is not expected, ion toxicity will drive the toxic profile. However, the particle aspect influences the location of the ion release. For gradually dissolving and very slowly dissolving NFs, particle-driven toxicity is of concern. These NFs may be grouped by their reactivity and inflammation potency. The hypotheses are substantiated by a tailored IATA, which describes the minimum information and laboratory assessments of NFs under investigation required to justify grouping. Conclusion: The GRACIOUS hypotheses and tailored IATA for respiratory toxicity of inhaled NFs can be used to support decision making regarding Safe(r)-by-Design product development or adoption of precautionary measures to mitigate potential risks. It can also be used to support read-across of adverse effects such as pulmonary inflammation and subsequent downstream effects such as lung fibrosis and lung tumor formation after long-term exposure.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona Murphy
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Susan Dekkers
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Johannes Keller
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Agnes G Oomen
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vicki Stone
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Keller JG, Persson M, Müller P, Ma-Hock L, Werle K, Arts J, Landsiedel R, Wohlleben W. Variation in dissolution behavior among different nanoforms and its implication for grouping approaches in inhalation toxicity. NANOIMPACT 2021; 23:100341. [PMID: 35559842 DOI: 10.1016/j.impact.2021.100341] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 06/15/2023]
Abstract
Different nanoforms (NF) of the same substance each need to be registered under REACH, but similarities in physiological interaction -among them biodissolution- can justify read-across within a group of NFs, thereby reducing the need to perform animal studies. Here we focused on the endpoint of inhalation toxicity and explored how differences in physical parameters of 17 NFs of silica, and organic and inorganic pigments impact dissolution rates, half-times, and transformation under both pH 7.4 lung lining conditions and pH 4.5 lysosomal conditions. We benchmarked our observations against well-known TiO2, BaSO4 and ZnO nanomaterials, representing very slow, partial and quick dissolution respectively. By automated image evaluation, structural transformations were observed for dissolution rates in the order of 0.1 to 10 ng/cm2/h, but did not provide additional decision criteria on the similarity of NFs. Dissolution half-times spanned nearly five orders of magnitude, mostly dictated by the substance and simulant fluid, but modulated up to ten-fold by the subtle differences between NFs. Physiological time scales and benchmark materials help to frame the biologically relevant range, proposed as 1 h to 1 y. NFs of ZnO, Ag, SiO2, BaSO4 were in this range. We proposed numerical rules of pairwise similarity within a group, of which the worst case NF would be further assessed by in vivo inhalation studies. These rules divided the colloidal silica NFs into two separate candidate groups, one with Al-doping, one without. Shape or silane surface treatment were less important. The dissolution halftimes of many organic and inorganic pigment NFs were longer than the biologically relevant range, such that dissolution behavior is not an obstacle for their groupings.
Collapse
Affiliation(s)
- Johannes G Keller
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056 Ludwigshafen, Germany.
| | - Michael Persson
- Nouryon Pulp and Performance Chemicals AB, S-445 80 Bohus, Sweden.
| | - Philipp Müller
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056 Ludwigshafen, Germany.
| | - Lan Ma-Hock
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056 Ludwigshafen, Germany.
| | - Kai Werle
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056 Ludwigshafen, Germany.
| | - Josje Arts
- Nouryon Pulp and Performance Chemicals AB, S-445 80 Bohus, Sweden.
| | - Robert Landsiedel
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056 Ludwigshafen, Germany.
| | - Wendel Wohlleben
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056 Ludwigshafen, Germany.
| |
Collapse
|
24
|
Yokel RA, Wohlleben W, Keller JG, Hancock ML, Unrine JM, Butterfield DA, Grulke EA. The preparation temperature influences the physicochemical nature and activity of nanoceria. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:525-540. [PMID: 34136328 PMCID: PMC8182686 DOI: 10.3762/bjnano.12.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Cerium oxide nanoparticles, so-called nanoceria, are engineered nanomaterials prepared by many methods that result in products with varying physicochemical properties and applications. Those used industrially are often calcined, an example is NM-212. Other nanoceria have beneficial pharmaceutical properties and are often prepared by solvothermal synthesis. Solvothermally synthesized nanoceria dissolve in acidic environments, accelerated by carboxylic acids. NM-212 dissolution has been reported to be minimal. To gain insight into the role of high-temperature exposure on nanoceria dissolution, product susceptibility to carboxylic acid-accelerated dissolution, and its effect on biological and catalytic properties of nanoceria, the dissolution of NM-212, a solvothermally synthesized nanoceria material, and a calcined form of the solvothermally synthesized nanoceria material (ca. 40, 4, and 40 nm diameter, respectively) was investigated. Two dissolution methods were employed. Dissolution of NM-212 and the calcined nanoceria was much slower than that of the non-calcined form. The decreased solubility was attributed to an increased amount of surface Ce4+ species induced by the high temperature. Carboxylic acids doubled the very low dissolution rate of NM-212. Nanoceria dissolution releases Ce3+ ions, which, with phosphate, form insoluble cerium phosphate in vivo. The addition of immobilized phosphates did not accelerate nanoceria dissolution, suggesting that the Ce3+ ion release during nanoceria dissolution was phosphate-independent. Smaller particles resulting from partial nanoceria dissolution led to less cellular protein carbonyl formation, attributed to an increased amount of surface Ce3+ species. Surface reactivity was greater for the solvothermally synthesized nanoceria, which had more Ce3+ species at the surface. The results show that temperature treatment of nanoceria can produce significant differences in solubility and surface cerium valence, which affect the biological and catalytic properties of nanoceria.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | | | | | - Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506-0046, USA
| | - Jason M Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | | | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506-0046, USA
| |
Collapse
|
25
|
Innes E, Yiu HHP, McLean P, Brown W, Boyles M. Simulated biological fluids - a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit Rev Toxicol 2021; 51:217-248. [PMID: 33905298 DOI: 10.1080/10408444.2021.1903386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of simulated biological fluids (SBFs) is a promising in vitro technique to better understand the release mechanisms and possible in vivo behaviour of materials, including fibres, metal-containing particles and nanomaterials. Applications of SBFs in dissolution tests allow a measure of material biopersistence or, conversely, bioaccessibility that in turn can provide a useful inference of a materials biodistribution, its acute and long-term toxicity, as well as its pathogenicity. Given the wide range of SBFs reported in the literature, a review was conducted, with a focus on fluids used to replicate environments that may be encountered upon material inhalation, including extracellular and intracellular compartments. The review aims to identify when a fluid design can replicate realistic biological conditions, demonstrate operation validation, and/or provide robustness and reproducibility. The studies examined highlight simulated lung fluids (SLFs) that have been shown to suitably replicate physiological conditions, and identify specific components that play a pivotal role in dissolution mechanisms and biological activity; including organic molecules, redox-active species and chelating agents. Material dissolution was not always driven by pH, and likewise not only driven by SLF composition; specific materials and formulations correspond to specific dissolution mechanisms. It is recommended that SLF developments focus on biological predictivity and if not practical, on better biological mimicry, as such an approach ensures results are more likely to reflect in vivo behaviour regardless of the material under investigation.
Collapse
Affiliation(s)
- Emma Innes
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Humphrey H P Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - William Brown
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | | |
Collapse
|
26
|
Sauer UG, Werle K, Waindok H, Hirth S, Hachmöller O, Wohlleben W. Critical Choices in Predicting Stone Wool Biodurability: Lysosomal Fluid Compositions and Binder Effects. Chem Res Toxicol 2021; 34:780-792. [PMID: 33464877 DOI: 10.1021/acs.chemrestox.0c00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The hazard potential, including carcinogenicity, of inhaled man-made vitreous fibers (MMVFs) is correlated with their biodurability in the lung, as prerequisite for biopersistence. Abiotic dissolution testing serves to predict biodurability. We re-analyzed the International Agency for Research on Cancer Monograph on MMVFs and found that the correlation between in vivo biopersistence and abiotic dissolution presented therein confounded different simulant fluids and further confounded evaluation of leaching vs structural elements. These are critical choices for abiotic dissolution testing, as are binder removal and the rate of the flow that removes ions during testing. Therefore, we experimentally demonstrated how fluid composition and binder affect abiotic dissolution of a representative stone wool MMVF. We compared six simulant fluids (all pH 4.5, reflecting the environment of alveolar macrophage lysosomes) that differed in organic acids, which have a critical role in their ability to modulate the formation of Si-rich gels on the fiber surfaces. Removing the binder accelerates the average dissolution rate by +104% (max. + 273%) across the fluids by suppression of gel formation. Apart from the high-citrate fluid that predicted a 10-fold faster dissolution than is observed in vivo, none of the five other fluids resulted in dissolution rates above 400 ng/cm2/h, the limit associated with the exoneration from classification for carcinogenicity in the literature. These findings were confirmed with and without binder. For corroboration, five more stone wool MMVFs were assessed with and without binder in one specific fluid. Again, the presence of the binder caused gel formation and reduced dissolution rates. To enhance the reliability and robustness of abiotic predictions of biodurability, we recommend replacing the critically influential citric acid in pH 4.5 fluids with other organic acids. Also, future studies should consider structural transformations of the fibers, including changes in fiber length, fiber composition, and reprecipitation of gel layers.
Collapse
Affiliation(s)
- Ursula G Sauer
- Scientific Consultancy - Animal Welfare, 85579 Neubiberg, Germany
| | - Kai Werle
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Hubert Waindok
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Sabine Hirth
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Oliver Hachmöller
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Wendel Wohlleben
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| |
Collapse
|
27
|
Zhang Z, Kappenstein O, Ebner I, Ruggiero E, Müller P, Luch A, Wohlleben W, Haase A. Investigating ion-release from nanocomposites in food simulant solutions: Case studies contrasting kaolin, CaCO3 and Cu-phthalocyanine. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Schneider T, Westermann M, Glei M. Impact of ultrasonication on the delivered dose of metal oxide particle dispersions in vitro. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Musial J, Krakowiak R, Mlynarczyk DT, Goslinski T, Stanisz BJ. Titanium Dioxide Nanoparticles in Food and Personal Care Products-What Do We Know about Their Safety? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1110. [PMID: 32512703 PMCID: PMC7353154 DOI: 10.3390/nano10061110] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Titanium dioxide (TiO2) is a material of diverse applications commonly used as a food additive or cosmetic ingredient. Its prevalence in products of everyday use, especially in nanosize, raises concerns about safety. Current findings on the safety of titanium dioxide nanoparticles (TiO2 NPs) used as a food additive or a sunscreen compound are reviewed and systematized in this publication. Although some studies state that TiO2 NPs are not harmful to humans through ingestion or via dermal exposure, there is a considerable number of data that demonstrated their toxic effects in animal models. The final agreement on the safety of this nanomaterial has not yet been reached among researchers. There is also a lack of official, standardized guidelines for thorough characterization of TiO2 NPs in food and cosmetic products, provided by international authorities. Recent advances in the application of 'green-synthesized' TiO2 NPs, as well as comparative studies of the properties of 'biogenic' and 'traditional' nanoparticles, are presented. To conclude, perspectives and directions for further studies on the toxicity of TiO2 NPs are proposed.
Collapse
Affiliation(s)
- Joanna Musial
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
| | - Rafal Krakowiak
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Beata J. Stanisz
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| |
Collapse
|