1
|
Santana Júnior CC, Santos AM, Oliveira AMS, Nascimento Júnior JAC, Picot L, Frank LA, Menezes PDP, Alves IA, Serafini MR. Green synthesis of antimicrobial nanotechnology using flavonoids: a systematic review. J Microencapsul 2025:1-14. [PMID: 40183348 DOI: 10.1080/02652048.2025.2487033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Antimicrobial resistance (AMR) is a critical public health concern that arises when microorganisms evolve mechanisms to evade the effects of antibiotics, thereby rendering conventional treatments ineffective. This growing challenge underscores the urgent need for novel therapeutic approaches. Nanotechnology, particularly when combined with environmentally sustainable practices such as green synthesis, reduces the use of toxic substances and minimises waste, offering a promising solution. This review explores the green synthesis of antimicrobial nanoparticles using flavonoids-natural compounds with substantial biological activity-as reducing and stabilising agents. By systematically analysing articles from PubMed, Scopus, Web of Science, and Embase, 10 key studies were identified. The primary nanoparticles examined were metallic, including silver, gold, copper, and metallic, which demonstrated notable efficacy against pathogens such as S. aureus, E. coli, and P. aeruginosa. The results support that green-synthesised nanoparticles represent a viable strategy to combat AMR, offering an effective and eco-friendly alternative for developing antimicrobial agents.
Collapse
Affiliation(s)
| | - Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Laurent Picot
- La Rochelle Université, UMR CNRS 7266 LIENSs, La Rochelle, France
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Núcleo de Terapias Nanotecnológicas (NTnano), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Paula Dos Passos Menezes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- SejaPhD, Brazil
| | - Izabel Almeida Alves
- Postgraduate Program in Pharmaceutical Sciences, University of the State of Bahia, and Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
2
|
Li Y, Liu P, Zhang B, Chen J, Yan Y. Global trends and research hotspots in nanodrug delivery systems for breast cancer therapy: a bibliometric analysis (2013-2023). Discov Oncol 2025; 16:269. [PMID: 40047951 PMCID: PMC11885776 DOI: 10.1007/s12672-025-02014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
OBJECTIVE Nanomedicine offers fresh approaches for breast cancer treatment, countering traditional limitations. The nanodrug delivery system's precision and biocompatibility hold promise, yet integration hurdles remain. This study reviews nano delivery systems in breast cancer therapy from 2013 to 2023, guiding future research directions. METHODS In this study, we conducted a comprehensive search on Web of Science database (Guilin Medical University purchase edition) and downloaded literature related to the field published between 2013 and 2023. We analyzed these publications using R software, VOSviewer, and CiteSpace software. RESULTS This study reviewed 2632 documents, showing a steady publication increase from 2013 to 2023, peaking at 408 in 2022. China, USA, India, and Iran were prominent in publishing. The Chinese Academy of Sciences and Tabriz University of Medical Science were key collaboration centers. Notably, the Journal of Controlled Release and Biomaterials ranked among the top 10 journals for publications and citations, establishing their field representation. Key terms like "breast cancer," "nanoparticles," "drug delivery," "in-vitro," and "delivery" were widely used. Research focused on optimizing drug targeting, utilizing the tumor microenvironment for drug delivery, and improving delivery efficiency. CONCLUSION The nanodrug delivery system, as an innovative drug delivery approach, offers numerous advantages and has garnered global attention from researchers. This study provides an analysis of the status and hotspots in nano delivery systems within the realm of breast cancer therapy, offering valuable insights for future research in this domain.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmacy, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Pingping Liu
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Juan Chen
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Yuanyuan Yan
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China.
| |
Collapse
|
3
|
Tadele DT, David D, Yim E, Mekonnen TH. Development and characterization of PVA-zein/α-tocopherol nonwoven mats for functional wound dressing applications. Colloids Surf B Biointerfaces 2025; 246:114355. [PMID: 39522289 DOI: 10.1016/j.colsurfb.2024.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Wound healing poses significant clinical challenges due to issues like bacterial infections, oxidative stress, and the need for sustained therapeutic delivery. This study aimed to develop and characterize biocompatible nonwoven fibrous mats composed of poly(vinyl alcohol) (PVA) and zein encapsulating α-tocopherol for wound dressing applications. α-Tocopherol was nano-encapsulated in zein proteins using an antisolvent co-precipitation method, followed by its dispersion in PVA solutions. The resulting composition was then processed using a novel, scalable, and inexpensive solution blow spinning (SBS) process that offers higher throughputs to generate non-woven mats. The resulting fibers in the non-woven mats, ranging in diameter from 350 nm to 796 nm, demonstrate uniform morphology, as confirmed by scanning electron microscopy. Fourier transform infrared (FTIR) spectroscopy validated the successful incorporation of α-tocopherol without altering the chemical structure of the PVA-zein matrix. Rheological assessments revealed Newtonian behavior and a decrease in viscosity with higher tocopherol content, enhancing the processability of the mats. Mechanical testing showed that increasing tocopherol content improved tensile strength, elongation, and Young's modulus. The mats exhibited a biphasic release profile with an initial burst and sustained α-tocopherol release over 24 h, fitting the Korsmeyer-Peppas model and hence indicating a diffusion-controlled mechanism. Cytotoxicity assays confirmed high cell viability (>90 %) and enhanced cell spreading, underscoring their biocompatibility. These findings suggest that PVA-zein/tocopherol fiber mats are promising candidates for functional wound dressing materials, offering sustained antioxidant activity and a favorable wound healing environment. Future work will focus on optimizing fiber composition for antimicrobial properties and conducting in vivo studies to validate their clinical efficacy.
Collapse
Affiliation(s)
- Debela T Tadele
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Dency David
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Evelyn Yim
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Institute of Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
4
|
Chen J, Zhao Z, Alantary D, Huang J. Nanomedicine for pediatric healthcare: A review of the current state and future prospectives. Eur J Pharm Biopharm 2025; 207:114597. [PMID: 39647671 DOI: 10.1016/j.ejpb.2024.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Nanomedicine has emerged as a valuable treatment and diagnosis option, due to its ability not only to address formulation challenges associated with new therapeutic moieties, but also to improve the existing drugs efficacy. Nanomedicine provides appealing advantages such as increased drug payload, enhanced stability, tailored drug release profile, improved bioavailability and targeted drug delivery, etc. Tremendous research and regulatory efforts have been made in the past decades to advance nanomedicine from the benchtop to clinic. Numerous nanotechnology-based formulation approaches have been seen succeeding in commercialization. Despite the progress in nanomedicine use in adults, the advancement in pediatric population has been much slower. Clearly the treatment of disease in children cannot be simplified by dose adjustment based on body weight or surface, due to the significant differences in physiology thus the drug absorption, distribution, metabolism, excretion and transport (ADMET), between children and adults. This inherent variable among others poses much more challenges when developing pediatric-specific nanomedicine or translating adult nanodrug to pediatric indication. This review therefore intends to highlight the physiological differences between children and adult, and the common pediatric diseases which are good candidates for nanomedicine. The formulation approaches utilized in the marketed nanomedicine with pediatric indications, including liposomes, nanocrystals, polymeric nanoparticles and lipid nanoemulsions are elaborated. Finally, the challenges and gaps in pediatric nanomedicine development and commercialization, and the future prospectives are discussed.
Collapse
Affiliation(s)
- Jiayi Chen
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Zhifeng Zhao
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Doaa Alantary
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Jingjun Huang
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States.
| |
Collapse
|
5
|
Bhullar SK, Thingnam R, Kirshenbaum E, Nematisouldaragh D, Crandall M, Willerth SM, Ramkrishna S, Rabinovich-Nikitin I, Kirshenbaum LA. Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury. JACC Basic Transl Sci 2025; 10:227-240. [PMID: 40131159 PMCID: PMC11897462 DOI: 10.1016/j.jacbts.2024.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 03/26/2025]
Abstract
Because the adult heart has only minimal regenerative capacity, its inability to induce regeneration is well-known in patients with myocardial infarction. However, based on multidisciplinary approaches, it is possible to restore myocardial capability with regenerative medicine via living cardiac patches seeded with therapeutic ingredients ranging from multiple cell types to bioactive molecules, including growth factors, microRNA, and extracellular vesicles to the affected site. Biomaterials, natural and/or synthesized polymers, or in vivo sources such as collagen, fibrin, and decellularized extracellular matrix are used to form these cardiac patches. Herein, we review various techniques where seeded cells and bioactive agents are incorporated within porous nanofibers to create functional cardiac patches that provide myocardial extracellular matrix-like features, mechanical support, and a large surface-to-volume ratio for promoting cellular metabolism as well as compensation for the loss of cardiomyocytes in the infarcted region. We summarize recent advances through electrospinning-generated nanofibers of synthetic and/or natural polymers combined with biological material to create cardiac patches to repair and improve the function of infarcted myocardium. As tailoring designs on cardiac patches have been shown to exhibit deformation mechanisms and enhanced myocardial tissue regeneration, significant roles of various patterns and associated parameters are also discussed. The enhanced delivery of therapeutics offered by tailored nanofiber cardiac patches to treat myocardial infarction and overcome challenges of existing cardiac regeneration therapies such as low stability, short half-lifetime, and delivery methods may promote the potential for their clinical impact on myocardial regeneration.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Raneeta Thingnam
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eryn Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Molly Crandall
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, Centre for Advanced Materials and Technology, University of Victoria, Victoria, British Columbia, Canada
| | - Seeram Ramkrishna
- National University of Singapore, Nanoscience and Nanotechnology Initiative, Engineering Drive, Singapore
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
Benjamin AS, Nayak S. Iron oxide nanoparticles coated with bioactive materials: a viable theragnostic strategy to improve osteosarcoma treatment. DISCOVER NANO 2025; 20:18. [PMID: 39883285 PMCID: PMC11782756 DOI: 10.1186/s11671-024-04163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment. Iron oxide nanoparticles stand out in both therapeutic and diagnostic applications, offering a versatile platform for targeted drug delivery, hyperthermia, magneto-thermal therapy, and combinational therapy using modulation of ferroptosis pathways. These nanoparticles are easy to synthesize, non-toxic, biocompatible, and display enhanced circulation time within the system. They can also be easily conjugated to anti-cancer drugs, targeting agents, or genetic vectors that respond to specific stimuli or pH changes. The surface functionalization of these nanoparticles using bioactive molecules unveils a promising and effective nanoparticle system for assisting osteosarcoma therapy. This review will summarize the current conventional therapies for osteosarcoma and their disadvantages, the synthesis and modification of iron oxide nanoparticles documented in the literature, cellular targeting and uptake mechanism, with focus on their functionalization using natural biomaterials and application strategies towards management of osteosarcoma. The review also compiles the translational challenges and future prospects that must be addressed for clinical advancements of iron oxide based osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Amy Sarah Benjamin
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
Zhu J, Lee H, Huang R, Zhou J, Zhang J, Yang X, Zhou W, Jiang W, Chen S. Harnessing nanotechnology for cancer treatment. Front Bioeng Biotechnol 2025; 12:1514890. [PMID: 39902172 PMCID: PMC11788409 DOI: 10.3389/fbioe.2024.1514890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Nanotechnology has become a groundbreaking innovation force in cancer therapy, offering innovative solutions to the limitations of conventional treatments such as chemotherapy and radiation. By manipulating materials at the nanoscale, researchers have developed nanocarriers capable of targeted drug delivery, improving therapeutic efficacy while reducing systemic toxicity. Nanoparticles like liposomes, dendrimers, and polymeric nanomaterials have shown significant promise in delivering chemotherapeutic agents directly to tumor sites, enhancing drug bioavailability and minimizing damage to healthy tissues. In addition to drug delivery, with the utilization of tools such as quantum dots and nanosensors that enables more precise identification of cancer biomarkers, nanotechnology is also playing a pivotal role in early cancer detection and diagnosis. Furthermore, nanotechnology-based therapeutic strategies, including photothermal therapy, gene therapy and immunotherapy are offering novel ways to combat cancer by selectively targeting tumor cells and enhancing the immune response. Nevertheless, despite these progressions, obstacles still persist, particularly in the clinical translation of these technologies. Issues such as nanoparticle toxicity, biocompatibility, and the complexity of regulatory approval hinder the widespread adoption of nanomedicine in oncology. This review discusses different applications of nanotechnology in cancer therapy, highlighting its potential and the hurdles to its clinical implementation. Future research needs to concentrate on addressing these obstacles to unlock the full potential of nanotechnology in providing personalized, effective, and minimally invasive cancer treatments.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - HaeJu Lee
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruotong Huang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianming Zhou
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Yang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhan Zhou
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangqing Jiang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
9
|
Yalamandala BN, Huynh TMH, Lien HW, Pan WC, Iao HM, Moorthy T, Chang YH, Hu SH. Advancing brain immunotherapy through functional nanomaterials. Drug Deliv Transl Res 2025:10.1007/s13346-024-01778-5. [PMID: 39789307 DOI: 10.1007/s13346-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy. Recent advancements in immune-actuated particles for targeted drug delivery have shown the potential to overcome these obstacles. These particles interact with the BBB by rapidly and reversibly disrupting its structure, thereby significantly enhancing targeting and penetrating delivery. The BBB targeting also minimizes potential long-term damage. At GBM, the particles demonstrated effective chemotherapy, chemodynamic therapy, photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy, or magnetotherapy, facilitating tumor disruption and promoting antigen release. Additionally, components of the delivery system retained autologous tumor-associated antigens and presented them to dendritic cells (DCs), ensuring prolonged immune activation. This review explores the immunosuppressive mechanisms of GBM, existing therapeutic strategies, and the role of nanomaterials in enhancing immunotherapy. We also discuss innovative particle-based approaches designed to traverse the BBB by mimicking innate immune functions to improve treatment outcomes for brain tumors.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hui-Wen Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Yun-Hsuan Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Massoud EN, Hebert MK, Siddharthan A, Ferreira T, Neron A, Goodrow M, Ferreira T. Delivery vehicles for light-mediated drug delivery: microspheres, microbots, and nanoparticles: a review. J Drug Target 2025:1-13. [PMID: 39714878 DOI: 10.1080/1061186x.2024.2446636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infra-red (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release. Furthermore, this review discusses the significance of these drug delivery vehicles towards a spectrum of diverse applications spanning gene therapy, cancer treatment, diagnostics, and microsurgery, and the materials used in the fabrication of these vehicles encompassing polymers, ceramics, and lipids. Moreover, the review analyses the challenges and limitations of such drug delivery vehicles as areas of improvement to provide researchers with valuable insights for addressing current obstacles in the progression of drug delivery. Overall, this review underscores the potential of light-mediated drug delivery to revolutionise healthcare and personalised medicine, providing precise, targeted, and effective therapeutic interventions.
Collapse
Affiliation(s)
- Engi Nadia Massoud
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | | | | | - Tyler Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Abid Neron
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Mary Goodrow
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Tracie Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| |
Collapse
|
11
|
Mandpe S, Kole E, Parate V, Chatterjee A, Mujumdar A, Naik J. Development, QbD-based optimisation, in-vivo pharmacokinetics, and ex-vivo evaluation of Eudragit ® RS 100 loaded flurbiprofen nanoparticles for oral drug delivery. J Microencapsul 2025; 42:1-13. [PMID: 39548962 DOI: 10.1080/02652048.2024.2427294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
This study aims to develop and evaluate flurbiprofen-loaded polymeric nanoparticles to achieve sustained drug release, enhancing therapeutic efficacy and minimising dosing frequency for improved patient outcomes. Flurbiprofen-loaded polymeric nanoparticles were prepared using a tubular microreactor and spray drying, optimised via Box-Behnken Design. Characterisation included particle size, encapsulation efficiency, in vitro and in vivo drug release, and techniques like FTIR, DSC, XRD, and SEM. Statistical analysis ensured robust formulation optimisation and evaluation of performance. The optimised batch of flurbiprofen-loaded polymeric nanoparticles was characterised for mean diameter, PDI, zeta potential, drug release, and EE% were found to be 306.1 ± 6.00 nm, 0.184 ± 0.02 Mw, -23.6 ± 1.51 mV, 85.46 ± 0.53% and 92.31 ± 0.84 (% w/w) respectively. Pharmacokinetic analysis further confirmed the sustained release, extending up to 12 hours and enhancing permeation compared to the pure flurbiprofen. Sustained release of flurbiprofen-loaded polymeric nanoparticles significantly enhances therapeutic effectiveness for inflammatory conditions.
Collapse
Affiliation(s)
- Shilpa Mandpe
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, India
- School of Pharmacy and Technology, SVKM's NMIMS, Shirpur, Maharashtra, India
| | - Eknath Kole
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, India
| | - Vishal Parate
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, India
| | - Aniruddha Chatterjee
- Plastics Engineering Department, Plastindia International University, Vapi, Gujarat
| | - Arun Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Quebec, Canada
| | - Jitendra Naik
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, India
| |
Collapse
|
12
|
Mishra A, Jyoti A, Aayush K, Saxena J, Sharma K. Harnessing Nanoparticles to Overcome Antimicrobial Resistance: Promises and Challenges. Curr Pharm Des 2025; 31:292-306. [PMID: 39219123 DOI: 10.2174/0113816128326718240809091654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
The rise of antimicrobial resistance (AMR) has become a serious global health issue that kills millions of people each year globally. AMR developed in bacteria is difficult to treat and poses a challenge to clinicians. Bacteria develop resistance through a variety of processes, including biofilm growth, targeted area alterations, and therapeutic drug alteration, prolonging the period they remain within cells, where antibiotics are useless at therapeutic levels. This rise in resistance is linked to increased illness and death, highlighting the urgent need for effective solutions to combat this growing challenge. Nanoparticles (NPs) offer unique solutions for fighting AMR bacteria. Being smaller in size with a high surface area, enhancing interaction with bacteria makes the NPs strong antibacterial agents against various infections. In this review, we have discussed the epidemiology and mechanism of AMR development. Furthermore, the role of nanoparticles as antibacterial agents, and their role in drug delivery has been addressed. Additionally, the potential, challenges, toxicity, and future prospects of nanoparticles as antibacterial agents against AMR pathogens have been discussed. The research work discussed in this review links with Sustainable Development Goal 3 (SDG-3), which aims to ensure disease-free lives and promote well-being for all ages.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Krishna Aayush
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Distt. Solan, H.P., India
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Kanika Sharma
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
13
|
Rezagholizade-shirvan A, Soltani M, Shokri S, Radfar R, Arab M, Shamloo E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem X 2024; 24:101953. [PMID: 39582652 PMCID: PMC11584689 DOI: 10.1016/j.fochx.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Nanotechnology plays a pivotal role in food science, particularly in the nanoencapsulation of bioactive compounds, to enhance their stability, bioavailability, and therapeutic potential. This review aims to provide a comprehensive analysis of the encapsulation of bioactive compounds, emphasizing the characteristics, food applications, and implications for human health. This work offers a detailed comparison of polymers such as sodium alginate, gum Arabic, chitosan, cellulose, pectin, shellac, and xanthan gum, while also examining both conventional and emerging encapsulation techniques, including freeze-drying, spray-drying, extrusion, coacervation, and supercritical anti-solvent drying. The contribution of this review lies in highlighting the role of encapsulation in improving system stability, controlling release rates, maintaining bioactivity under extreme conditions, and reducing lipid oxidation. Furthermore, it explores recent technological advances aimed at optimizing encapsulation processes for targeted therapies and functional foods. The findings underline the significant potential of encapsulation not only in food supplements and functional foods but also in supportive medical treatments, showcasing its relevance to improving human health in various contexts.
Collapse
Affiliation(s)
| | - Mahya Soltani
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shokri
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ramin Radfar
- Department of Agriculture and Food Policies, Agricultural Planning, Economic and Rural Development Research Institute (APERDRI), Tehran, Iran
| | - Masoumeh Arab
- Department of Food Science and Technology, School of Public Health, Shahid sadoughi University of Medical Sciences, Yazd, Iran Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
14
|
Fayazi M, Rostami M, Amiri Moghaddam M, Nasiri K, Tadayonfard A, Roudsari MB, Ahmad HM, Parhizgar Z, Majbouri Yazdi A. A state-of-the-art review of the recent advances in drug delivery systems for different therapeutic agents in periodontitis. J Drug Target 2024:1-36. [PMID: 39698877 DOI: 10.1080/1061186x.2024.2445051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Periodontitis (PD) is a chronic gum illness that may be hard to cure for a number of reasons, including the fact that no one knows what causes it, the side effects of anti-microbial treatment, and how various kinds of bacteria interact with one another. As a result, novel therapeutic approaches for PD treatment must be developed. Additionally, supplementary antibacterial regimens, including local and systemic medication administration of chemical agents, are necessary for deep pockets to assist with mechanical debridement of tooth surfaces. As our knowledge of periodontal disease and drug delivery systems (DDSs) grows, new targeted delivery systems like extracellular vesicles, lipid-based nanoparticles (NPs), metallic NPs, and polymer NPs have been developed. These systems aim to improve the targeting and precision of PD treatments while reducing the systemic side effects of antibiotics. Nanozymes, photodermal therapy, antibacterial metallic NPs, and traditional PD therapies have all been reviewed in this research. Medicinal herbs, antibiotics, photothermal therapy, nanozymes, antibacterial metallic NPs, and conventional therapies for PD have all been examined in this research. After that, we reviewed the key features of many innovative DDSs and how they worked for PD therapy. Finally, we have discussed the advantages and disadvantages of these DDSs.
Collapse
Affiliation(s)
- Mehrnaz Fayazi
- School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Azadeh Tadayonfard
- Department of Prosthodontics, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Behnam Roudsari
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Parhizgar
- Resident of Periodontology, Department of Periodontics, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
15
|
Patil H, Naik R, Paramasivam SK. Utilization of banana crop ligno-cellulosic waste for sustainable development of biomaterials and nanocomposites. Int J Biol Macromol 2024; 282:137065. [PMID: 39481709 DOI: 10.1016/j.ijbiomac.2024.137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Banana (Musa spp.) is a tropical fruit cultivated in over 130 countries, producing significant lignocellulosic biomass. However, much of the agro-industrial waste from banana plants is neglected, contributing to environmental pollution. Around 60 % of the plant's biomass is generated after fruit harvesting, representing an untapped resource. This review examines the potential of banana plant waste for developing biocomposite and biodegradable materials. It covers the extraction and modification of banana fibers for composites, with a focus on the fabrication of nano biocomposites using banana fibers as reinforcement and polysaccharides or proteins as matrices. The review also evaluates the biodegradability and environmental impact of these materials through Life Cycle Assessment studies. Future research directions include refining processing methods, improving fiber-matrix compatibility, and enhancing the durability of banana fiber composites for packaging applications.
Collapse
Affiliation(s)
- Hrishikesh Patil
- ICAR-Central Institute of Agricultural Engineering, Regional Station, Coimbatore, Tamil Nadu, India
| | - Ravindra Naik
- ICAR-Central Institute of Agricultural Engineering, Regional Station, Coimbatore, Tamil Nadu, India.
| | - Suresh Kumar Paramasivam
- Division of Crop Production and Postharvest Technology, ICAR - National Research Centre for Banana, Tiruchirappalli, India
| |
Collapse
|
16
|
Badran MM, Alsubaie A, Salem Bekhit MM, Alomrani AH, Almomen A, Ibrahim MA, Alshora DH. Bioadhesive hybrid system of niosomes and pH sensitive in situ gel for itraconazole ocular delivery: Dual approach for efficient treatment of fungal infections. Saudi Pharm J 2024; 32:102208. [PMID: 39697473 PMCID: PMC11653644 DOI: 10.1016/j.jsps.2024.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes. This approach is considered to enhance the ocular permeation of ITZ, thereby boosting its efficacy against fungal infections. Therefore, it was encapsulated into niosomes (F1) and subsequently coated with hyaluronic acid (HA; F2), chitosan (CS; F3), or a bilayer of CS/HA (F4). In addition, they were further incorporated into pH-sensitive in situ gels. This dual approach is expected to increase the amount of corneal-permeated ITZ, facilitating more effective management of ocular fungal infection. Firstly, the niosomes were prepared by hydrating proniosomes using span 60, cholesterol, and phospholipid. ITZ-niosomes showed an increase in vesicle size from 165.5 ± 3.4 (F1) to 378.2 ± 7.2 nm (F3). The zeta potential varied within -20.9 ± 2.1 (F1), -29.5 ± 3.1 (F2), 32.3 ± 1.9 (F3), and 22.6 ± 1.3 mV (F4). The high EE% values ranged from 78.1 ± 2.2 % to 86.6 ± 2.9 %. Regarding ITZ release, F1 demonstrated a high release profile, whereas bioadhesive niosomes showed sustained release patterns. Furthermore, in situ gels containing niosomes displayed excellent gelling capacity and viscosity. Remarkably, F3 laden-in situ gels (F3-ISG) demonstrated the highest ex vivo corneal permeability of ITZ and antifungal activity with a safety effect. These results indicate that F3-ISG presents a promising strategy for boosting the ocular delivery of ITZ, that could help in treating ocular fungal infections.
Collapse
Affiliation(s)
- Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Areej Alsubaie
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa Hasan Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Sharma P, Bal T, Singh SK, Sharma N. Biodegradable polymeric nanocomposite containing phloretin for enhanced oral bioavailability and improved myocardial ischaemic recovery. J Microencapsul 2024; 41:754-769. [PMID: 39431662 DOI: 10.1080/02652048.2024.2418608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
AIM The study aimed to enhance phloretin's oral absorption and systemic availability through nanoencapsulation within biodegradable polymers, improving its anti-oxidant and cardioprotective potential. METHODS Phloretin-loaded polymeric nanocomposites were prepared using ionic gelation and optimised for yield, encapsulation, loading, particle size, PdI and zeta potential. The formulation was characterised by FTIR, XRD, FESEM and MS. In-vitro drug release, stability, pharmacokinetics, biodistribution, anti-oxidant capacity, haemolysis and both in-vitro and in-vivo assessments were conducted in an ischaemia-induced rat model. RESULTS The average particle size, zeta potential, encapsulation and drug loading of the optimised nanoparticles were 105.8 ± 1.92 nm, -41.5 ± 1.10 mV, 92.36 ± 0.01% and 18.47 ± 0.38%, respectively. Nano-phloretin enhanced oral bioavailability, anti-oxidant capacity. In-vivo, it reduced myocardial infarct size by ∼46% versus ∼13% for free phloretin, showing significant cardiomyocyte protection and ROS suppression. CONCLUSION The study demonstrates polymer-based nanoparticles as effective oral drug delivery systems capable of enhancing both systemic bioavailability and therapeutic efficacy of the encapsulated drug.
Collapse
Affiliation(s)
- Prasanti Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
18
|
Wagh H, Bhattacharya S. Targeted therapy with polymeric nanoparticles in PBRM1-mutant biliary tract cancers: Harnessing DNA damage repair mechanisms. Crit Rev Oncol Hematol 2024; 204:104505. [PMID: 39255911 DOI: 10.1016/j.critrevonc.2024.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Biliary tract cancers (BTCs) are aggressive malignancies with a dismal prognosis that require intensive targeted therapy. Approximately 10 % of BTCs have PBRM1 mutations, which impede DNA damage repair pathways and make cancer cells more susceptible to DNA-damaging chemicals. This review focus on development of poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles targeting delivery system to selectively deliver chemotherapy into PBRM1-deficient BTC cells. These nanoparticles improve therapy efficacy by increasing medication targeting and retention at tumour locations. In preclinical studies, pharmacokinetic profile of this nanoparticle was encouraging and supported its ability to achieve extended circulation time with high drug accumulation in tumor. The review also highlights potential of Pou3F3:I54N to expedite bioassays for patient selection in BTC targeted therapies.
Collapse
Affiliation(s)
- Hrushikesh Wagh
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
19
|
Gulati S, Ansari N, Moriya Y, Joshi K, Prasad D, Sajwan G, Shukla S, Kumar S, Varma RS. Nanobiopolymers in cancer therapeutics: advancing targeted drug delivery through sustainable and controlled release mechanisms. J Mater Chem B 2024; 12:11887-11915. [PMID: 39502076 DOI: 10.1039/d4tb00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nanobiopolymers have emerged as a transformative frontier in cancer treatment, leveraging nanotechnology to transform drug delivery. This review provides a comprehensive exploration of the multifaceted landscape of nano-based biopolymers, emphasizing their diverse sources, synthesis methods, and classifications. Natural, synthetic, and microbial nanobiopolymers are scrutinized, along with elucidation of their underlying mechanisms and impact on cancer drug delivery; the latest findings on their deployment as targeted drug delivery agents for cancer treatment are discussed. A detailed analysis of nanobiopolymer sources, including polysaccharides, peptides, and nucleic acids, highlights critical attributes like biodegradability, renewability, and sustainability essential for therapeutic applications. The classification of nanobiopolymers based on their origin and differentiation among natural, synthetic, and microbial sources are thoroughly examined for inherent advantages, challenges, and suitability for cancer therapeutics. The importance of targeted drug release at tumour sites, crucial for minimizing adverse effects on normal tissues, is discussed, encompassing various mechanisms. The role of polymer membrane coatings as a pivotal barrier for facilitating controlled drug release through diffusion is elucidated, providing further insight into efficient methods for cancer treatment and thus consolidating the current knowledge base for researchers and practitioners in the field of nanobiopolymers and cancer therapeutics.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Nabeela Ansari
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Yamini Moriya
- Department of Life Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Kumud Joshi
- Department of Life Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Disha Prasad
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Gargi Sajwan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil.
| |
Collapse
|
20
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Virameteekul S, Lees AJ, Bhidayasiri R. Small Particles, Big Potential: Polymeric Nanoparticles for Drug Delivery in Parkinson's Disease. Mov Disord 2024; 39:1922-1937. [PMID: 39077831 DOI: 10.1002/mds.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Despite the availability of a number of efficacious treatments for Parkinson's disease, their limitations and drawbacks, particularly related to low brain bioavailability and associated side effects, emphasize the need for alternative and more effective therapeutic approaches. Nanomedicine, the application of nanotechnology in medicine, has received considerable interest in recent years as a method of effectively delivering potentially therapeutic molecules to the brain. In particular, polymeric nanoparticles, constructed from biodegradable polymer, have shown great promise in enhancing therapeutic efficacy, reducing toxicity, and ensuring targeted delivery. However, their clinical translation remains a considerable challenge. This article reviews recent in vitro and in vivo studies using polymeric nanoparticles as drug and gene delivery systems for Parkinson's disease with their challenges and future directions. We are also particularly interested in the technical properties, mechanism, drugs release patterns, and delivery strategies to overcome the blood-brain barrier. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sasivimol Virameteekul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
22
|
Manna S, Sarkar S, Sahu R, Dua TK, Paul P, Jana S, Nandi G. Characterization of Taro (Colocasia esculenta) stolon polysaccharide and evaluation of its potential as a tablet binder in the formulation of matrix tablet. Int J Biol Macromol 2024; 280:135901. [PMID: 39313047 DOI: 10.1016/j.ijbiomac.2024.135901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
This investigation focuses on the extraction, characterization, and evaluation of taro (Colocasia esculenta) stolon polysaccharide (TSP) as a tablet binding agent, which is obtained from edible taro stolon. TSP was subjected to phytochemical screening and characterized by FTIR, DSC, TGA, DTA, XRD, particle size, polydispersity index, zeta potential, rheological behavior, and SEM. The tablets prepared with varying concentrations of TSP (2.5 %, 5 %, 7.5 %, and 10 % w/w) and diclofenac sodium (DS) were evaluated and compared with the same concentrations of gum acacia and PVP K-30. The presence of carbohydrates was confirmed by Molisch's test. The FTIR spectra established the compatibility of the drug with excipients. The SEM images revealed asymmetric and elongated particles of TSP powder. The hydration kinetics study showed matrix hydration and water penetration velocity within the range of 0.602-0.753 g/g and 0.112-0.189 cm/g.h, respectively. The tablets showed drug release of >75 % at 45 min. The release-exponent value above 0.89 indicated a super case II drug transport combining matrix erosion and diffusion. Optimum tablet hardness and very low friability, even at 2.5 % binder concentration, suggested the potential application of the novel TSP as a tablet binder in the formulation of the tablets.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India; Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Saurav Sarkar
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India.
| |
Collapse
|
23
|
Butola M, Nainwal N. Non-Invasive Techniques of Nose to Brain Delivery Using Nanoparticulate Carriers: Hopes and Hurdles. AAPS PharmSciTech 2024; 25:256. [PMID: 39477829 DOI: 10.1208/s12249-024-02946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Intranasal drug delivery route has emerged as a promising non-invasive method of administering drugs directly to the brain, bypassing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barriers (BCSF). BBB and BCSF prevent many therapeutic molecules from entering the brain. Intranasal drug delivery can transport drugs from the nasal mucosa to the brain, to treat a variety of Central nervous system (CNS) diseases. Intranasal drug delivery provides advantages over invasive drug delivery techniques such as intrathecal or intraparenchymal which can cause infection. Many strategies, including nanocarriers liposomes, solid-lipid NPs, nano-emulsion, nanostructured lipid carriers, dendrimers, exosomes, metal NPs, nano micelles, and quantum dots, are effective in nose-to-brain drug transport. However, the biggest obstacles to the nose-to-brain delivery of drugs include mucociliary clearance, poor drug retention, enzymatic degradation, poor permeability, bioavailability, and naso-mucosal toxicity. The current review aims to compile current approaches for drug delivery to the CNS via the nose, focusing on nanotherapeutics and nasal devices. Along with a brief overview of the related pathways or mechanisms, it also covers the advantages of nasal drug delivery as a potential method of drug administration. It also offers several possibilities to improve drug penetration across the nasal barrier. This article overviews various in-vitro, ex-vivo, and in-vivo techniques to assess drug transport from the nasal epithelium into the brain.
Collapse
Affiliation(s)
- Mansi Butola
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India
| | - Nidhi Nainwal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
24
|
de Lacerda Coriolano D, de Souza JB, Cavalcanti IDL, Cavalcanti IMF. Antibacterial Activity of Polymyxins Encapsulated in Nanocarriers Against Gram-Negative Bacteria. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/11/2024] [Indexed: 01/04/2025] Open
|
25
|
Samiotaki C, Koumentakou I, Christodoulou E, Bikiaris ND, Vlachou M, Karavas E, Tourlouki K, Kehagias N, Barmpalexis P. Fabrication of PLA-Based Nanoneedle Patches Loaded with Transcutol-Modified Chitosan Nanoparticles for the Transdermal Delivery of Levofloxacin. Molecules 2024; 29:4289. [PMID: 39339284 PMCID: PMC11433958 DOI: 10.3390/molecules29184289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Current transdermal drug delivery technologies, like patches and ointments, effectively deliver low molecular weight drugs through the skin. However, delivering larger, hydrophilic drugs and macromolecules remains a challenge. In the present study, we developed novel transdermal nanoneedle patches containing levofloxacin-loaded modified chitosan nanoparticles. Chitosan was chemically modified with transcutol in three ratios (1/1, 1/2, 1/3, w/w), and the optimum ratio was used for nanoparticle fabrication via the ionic gelation method. The successful modification was confirmed using ATR-FTIR spectroscopy, while DLS results revealed that only the 1/3 ratio afforded suitably sized particles of 220 nm. After drug encapsulation, the particle size increased to 435 nm, and the final formulations were examined via XRD and an in vitro dissolution test, which suggested that the nanoparticles reach 60% release in a monophasic pattern at 380 h. We then prepared transdermal patches with pyramidal geometry nanoneedles using different poly(lactic acid)/poly(ethylene adipate) (PLA/PEAd) polymer blends of varying ratios, which were characterized in terms of morphology and mechanical compressive strength. The 90/10 blend exhibited the best mechanical properties and was selected for further testing. Ex vivo permeation studies proved that the nanoneedle patches containing drug-loaded nanoparticles achieved the highest levofloxacin permeation (88.1%).
Collapse
Affiliation(s)
- Christina Samiotaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos D Bikiaris
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marilena Vlachou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, 15351 Athens, Greece
| | | | - Nikolaos Kehagias
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341 Paraskevi, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
26
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
27
|
Geszke-Moritz M, Moritz M. Biodegradable Polymeric Nanoparticle-Based Drug Delivery Systems: Comprehensive Overview, Perspectives and Challenges. Polymers (Basel) 2024; 16:2536. [PMID: 39274168 PMCID: PMC11397980 DOI: 10.3390/polym16172536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
In the last few decades, there has been a growing interest in the use of biodegradable polymeric nanoparticles (BPNPs) as the carriers for various therapeutic agents in drug delivery systems. BPNPs have the potential to improve the efficacy of numerous active agents by facilitating targeted delivery to a desired site in the body. Biodegradable polymers are especially promising nanocarriers for therapeutic substances characterized by poor solubility, instability, rapid metabolism, and rapid system elimination. Such molecules can be efficiently encapsulated and subsequently released from nanoparticles, which greatly improves their stability and bioavailability. Biopolymers seem to be the most suitable candidates to be used as the nanocarriers in various delivery platforms, especially due to their biocompatibility and biodegradability. Other unique properties of the polymeric nanocarriers include low cost, flexibility, stability, minimal side effects, low toxicity, good entrapment potential, and long-term and controlled drug release. An overview summarizing the research results from the last years in the field of the successful fabrication of BPNPs loaded with various therapeutic agents is provided. The possible challenges involving nanoparticle stability under physiological conditions and the possibility of scaling up production while maintaining quality, as well as the future possibilities of employing BPNPs, are also reviewed.
Collapse
Affiliation(s)
- Małgorzata Geszke-Moritz
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| | - Michał Moritz
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| |
Collapse
|
28
|
Ershad-Langroudi A, Babazadeh N, Alizadegan F, Mehdi Mousaei S, Moradi G. Polymers for implantable devices. J IND ENG CHEM 2024; 137:61-86. [DOI: 10.1016/j.jiec.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Hadkar VM, Mohanty C, Selvaraj CI. Biopolymeric nanocarriers in cancer therapy: unleashing the potency of bioactive anticancer compounds for enhancing drug delivery. RSC Adv 2024; 14:25149-25173. [PMID: 39139249 PMCID: PMC11317881 DOI: 10.1039/d4ra03911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Effective cancer treatment is becoming a global concern, and recent developments in nanomedicine are essential for its treatment. Cancer is a severe metabolic syndrome that affects the human population and is a significant contributing factor to deaths globally. In science, nanotechnology offers rapidly developing delivery methods for natural bioactive compounds that are becoming increasingly prominent and can be used to treat diseases in a site-specific way. Chemotherapy and radiotherapy are conventional approaches for preventing cancer progression and have adverse effects on the human body. Many chemically synthesized drugs are used as anticancer agents, but they have several side effects; hence, they are less preferred. Medicinal plants and marine microorganisms represent a vast, mostly untapped reservoir of bioactive compounds for cancer treatment. However, they have several limitations, including nonspecific targeting, weak water solubility and limited therapeutic potential. An alternative option is the use of biopolymeric nanocarriers, which can generate effective targeted treatment therapies when conjugated with natural anticancer compounds. The present review focuses on biopolymeric nanocarriers utilizing natural sources as anticancer drugs with improved tumor-targeting efficiency. This review also covers various natural anticancer compounds, the advantages and disadvantages of natural and synthetic anticancer compounds, the problems associated with natural anticancer drugs and the advantages of biopolymeric nanocarriers over synthetic nanocarriers as drug delivery agents. This review also discusses various biopolymeric nanocarriers for enhancing the controlled delivery of anticancer compounds and the future development of nanomedicines for treating cancer.
Collapse
Affiliation(s)
- Vrushali Manoj Hadkar
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chirasmita Mohanty
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Sciences and Advanced Learning (VAIAL), VIT Vellore 632014 Tamil Nadu India
| |
Collapse
|
30
|
Andreana I, Chiapasco M, Bincoletto V, Digiovanni S, Manzoli M, Ricci C, Del Favero E, Riganti C, Arpicco S, Stella B. Targeting pentamidine towards CD44-overexpressing cells using hyaluronated lipid-polymer hybrid nanoparticles. Drug Deliv Transl Res 2024; 14:2100-2111. [PMID: 38709442 DOI: 10.1007/s13346-024-01617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Biodegradable nanocarriers possess enormous potential for use as drug delivery systems that can accomplish controlled and targeted drug release, and a wide range of nanosystems have been reported for the treatment and/or diagnosis of various diseases and disorders. Of the various nanocarriers currently available, liposomes and polymer nanoparticles have been extensively studied and some formulations have already reached the market. However, a combination of properties to create a single hybrid system can give these carriers significant advantages, such as improvement in encapsulation efficacy, higher stability, and active targeting towards specific cells or tissues, over lipid or polymer-based platforms. To this aim, this work presents the formulation of poly(lactic-co-glycolic) acid (PLGA) nanoparticles in the presence of a hyaluronic acid (HA)-phospholipid conjugate (HA-DPPE), which was used to anchor HA onto the nanoparticle surface and therefore create an actively targeted hybrid nanosystem. Furthermore, ionic interactions have been proposed for drug encapsulation, leading us to select the free base form of pentamidine (PTM-B) as the model drug. We herein report the preparation of hybrid nanocarriers that were loaded via ion-pairing between the negatively charged PLGA and HA and the positively charged PTM-B, demonstrating an improved loading capacity compared to PLGA-based nanoparticles. The nanocarriers displayed a size of below 150 nm, a negative zeta potential of -35 mV, a core-shell internal arrangement and high encapsulation efficiency (90%). Finally, the ability to be taken up and exert preferential and receptor-mediated cytotoxicity on cancer cells that overexpress the HA specific receptor (CD44) has been evaluated. Competition assays supported the hypothesis that PLGA/HA-DPPE nanoparticles deliver their cargo within cells in a CD44-dependent manner.
Collapse
Affiliation(s)
- Ilaria Andreana
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Marta Chiapasco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Valeria Bincoletto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | | - Maela Manzoli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Caterina Ricci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milano, Italy
| | - Elena Del Favero
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milano, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università di Torino, Torino, Italy
| | - Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy.
| |
Collapse
|
31
|
Adwani G, Bharti S, Kumar A. Engineered nanoparticles in non-invasive insulin delivery for precision therapeutics of diabetes. Int J Biol Macromol 2024; 275:133437. [PMID: 38944087 DOI: 10.1016/j.ijbiomac.2024.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus is a chronic disease leading to the death of millions a year across the world. Insulin is required for Type 1, Type 2, and gestational diabetic patients, however, there are various modes of insulin delivery out of which oral delivery is noninvasive and convenient. Moreover, factors like insulin degradation and poor intestinal absorption play a crucial role in its bioavailability and effectiveness. This review discusses various types of engineered nanoparticles used in-vitro, in-vivo, and ex-vivo insulin delivery along with their administration routes and physicochemical properties. Injectable insulin formulations, currently in use have certain limitations, leading to invasiveness, low patient compliance, causing inflammation, and side effects. Based on these drawbacks, this review emphasizes more on the non-invasive route, particularly oral delivery. The article is important because it focuses on how engineered nanoparticles can overcome the limitations of free therapeutics (drugs alone), navigate the barriers, and accomplish precision therapeutics in diabetes. In future, more drugs could be delivered with a similar strategy to cure various diseases and resolve challenges in drug delivery. This review significantly describes the role of various engineered nanoparticles in improving the bioavailability of insulin by protecting it from various barriers during non-invasive routes of delivery.
Collapse
Affiliation(s)
- Gunjan Adwani
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
32
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
33
|
Kaliyaperumal V, Rajasekaran S, Kanniah R, Gopal D, Ayyakannu Sundaram G, Kumar ASK. Synthesis and Evaluation of Gelatin-Chitosan Biofilms Incorporating Zinc Oxide Nanoparticles and 5-Fluorouracil for Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3186. [PMID: 38998269 PMCID: PMC11242392 DOI: 10.3390/ma17133186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
In this study, a novel multifunctional biofilm was fabricated using a straightforward casting process. The biofilm comprised gelatin, chitosan, 5-fluorouracil (5-FU)-conjugated zinc oxide nanoparticles, and polyvinyl alcohol plasticized with glycerol. The 5-FU-conjugated nanoparticles were synthesized via a single-step co-precipitation process, offering a unique approach. Characterization confirmed successful drug conjugation, revealing bar-shaped nanoparticles with sizes ranging from 90 to 100 nm. Drug release kinetics followed the Korsmeyer-Peppas model, indicating controlled release behavior. Maximum swelling ratio studies of the gelatin-chitosan film showed pH-dependent characteristics, highlighting its versatility. Comprehensive analysis using SEM, FT-IR, Raman, and EDX spectra confirmed the presence of gelatin, chitosan, and 5-FU/ZnO nanoparticles within the biofilms. These biofilms exhibited non-cytotoxicity to human fibroblasts and significant anticancer activity against skin cancer cells, demonstrating their potential for biomedical applications. This versatility positions the 5-FU/ZnO-loaded sheets as promising candidates for localized topical patches in skin and oral cancer treatment, underscoring their practicality and adaptability for therapeutic applications.
Collapse
Affiliation(s)
- Viswanathan Kaliyaperumal
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, India; (S.R.); (R.K.)
| | - Srilekha Rajasekaran
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, India; (S.R.); (R.K.)
| | - Rajkumar Kanniah
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, India; (S.R.); (R.K.)
| | - Dhinakaraj Gopal
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies (CAHS), Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Chennai 600051, India;
- Department of Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Chennai 600051, India
| | - Ganeshraja Ayyakannu Sundaram
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai 600077, India;
| | - Alagarsamy Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-Hai Road, Gushan District, Kaohsiung 80424, Taiwan
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
34
|
Wang R, Huang H, Yu C, Li X, Wang Y, Xie L. Current status and future directions for the development of human papillomavirus vaccines. Front Immunol 2024; 15:1362770. [PMID: 38983849 PMCID: PMC11231394 DOI: 10.3389/fimmu.2024.1362770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
The development of human papillomavirus (HPV) vaccines has made substantive progress, as represented by the approval of five prophylactic vaccines since 2006. Generally, the deployment of prophylactic HPV vaccines is effective in preventing newly acquired infections and incidences of HPV-related malignancies. However, there is still a long way to go regarding the prevention of all HPV infections and the eradication of established HPV infections, as well as the subsequent progression to cancer. Optimizing prophylactic HPV vaccines by incorporating L1 proteins from more HPV subtypes, exploring adjuvants that reinforce cellular immune responses to eradicate HPV-infected cells, and developing therapeutic HPV vaccines used either alone or in combination with other cancer therapeutic modalities might bring about a new era getting closer to the vision to get rid of HPV infection and related diseases. Herein, we summarize strategies for the development of HPV vaccines, both prophylactic and therapeutic, with an emphasis on the selection of antigens and adjuvants, as well as implications for vaccine efficacy based on preclinical studies and clinical trials. Additionally, we outline current cutting-edge insights on formulation strategies, dosing schedules, and age expansion among HPV vaccine recipients, which might play important roles in addressing barriers to vaccine uptake, such as vaccine hesitancy and vaccine availability.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Hongpeng Huang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Xuefeng Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yang Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Ghaffari N, Mokhtari T, Adabi M, Ebrahimi B, Kamali M, Gholaminejhad M, Hassanzadeh G. Neurological recovery and neurogenesis by curcumin sustained-release system cross-linked with an acellular spinal cord scaffold in rat spinal cord injury: Targeting NLRP3 inflammasome pathway. Phytother Res 2024; 38:2669-2686. [PMID: 38500263 DOI: 10.1002/ptr.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
In the context of treating spinal cord injury (SCI), the modulation of inflammatory responses, and the creation of a suitable region for tissue regeneration may present a promising approach. This study aimed to evaluate the effects of curcumin (Cur)-loaded bovine serum albumin nanoparticles (Cur-BSA NPs) cross-linked with an acellular spinal cord scaffold (ASCS) on the functional recovery in a rat model of SCI. We developed an ASCS using chemical and physical methods. Cur-BSA, and blank (B-BSA) NPs were fabricated and cross-linked with ASCS via EDC-NHS, resulting in the production of Cur-ASCS and B-ASCS. We assessed the properties of scaffolds and NPs as well as their cross-links. Finally, using a male rat hemisection model of SCI, we investigated the consequences of the resulting scaffolds. The inflammatory markers, neuroregeneration, and functional recovery were evaluated. Our results showed that Cur was efficiently entrapped at the rate of 42% ± 1.3 in the NPs. Compared to B-ASCS, Cur-ASCS showed greater effectiveness in the promotion of motor recovery. The implantation of both scaffolds could increase the migration of neural stem cells (Nestin- and GFAP-positive cells) following SCI with the superiority of Cur-ASCS. Cur-ASCS was successful to regulate the gene expression and protein levels of NLRP3, ASC, and Casp1in the spinal cord lesion. Our results indicate that using ASCS can lead to the entrance of cells into the scaffold and promote neurogenesis. However, Cur-ASCS had greater effects in terms of inflammation relief and enhanced neurogenesis.
Collapse
Affiliation(s)
- Neda Ghaffari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Kamali
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
37
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
38
|
Al Baloushi KSY, Senthilkumar A, Kandhan K, Subramanian R, Kizhakkayil J, Ramachandran T, Shehab S, Kurup SS, Alyafei MAM, Al Dhaheri AS, Jaleel A. Green Synthesis and Characterization of Silver Nanoparticles Using Moringa Peregrina and Their Toxicity on MCF-7 and Caco-2 Human Cancer Cells. Int J Nanomedicine 2024; 19:3891-3905. [PMID: 38711613 PMCID: PMC11070442 DOI: 10.2147/ijn.s451694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The synthesis of nanoparticles using naturally occurring reagents such as vitamins, sugars, plant extracts, biodegradable polymers and microorganisms as reductants and capping agents could be considered attractive for nanotechnology. These syntheses have led to the fabrication of limited number of inorganic nanoparticles. Among the reagents mentioned above, plant-based materials seem to be the best candidates, and they are suitable for large-scale biosynthesis of nanoparticles. Methods The aqueous extract of Moringa peregrina leaves was used to synthesize silver nanoparticles. The synthesized nanoparticles were characterized by various spectral studies including FT-IR, SEM, HR-TEM and XRD. In addition, the antioxidant activity of the silver nanoparticles was studied viz. DPPH, ABTS, hydroxyl radical scavenging, superoxide radical scavenging, nitric oxide scavenging potential and reducing power with varied concentrations. The anticancer potential of the nanoparticles was also studied against MCF-7 and Caco-2 cancer cell lines. Results The results showed that silver nanoparticles displayed strong antioxidant activity compared with gallic acid. Furthermore, the anticancer potential of the nanoparticles against MCF-7 and Caco-2 in comparison with the standard Doxorubicin revealed that the silver nanoparticles produced significant toxic effects against the studied cancer cell lines with the IC50 values of 41.59 (Caco-2) and 26.93 (MCF-7) µg/mL. Conclusion In conclusion, the biosynthesized nanoparticles using M. peregrina leaf aqueous extract as a reducing agent showed good antioxidant and anticancer potential on human cancer cells and can be used in biological applications.
Collapse
Affiliation(s)
- Khaled Saeed Yousef Al Baloushi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Annadurai Senthilkumar
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- PG and Research Department of Botany, Kandaswami Kandar’s College, Velur, TN, India
| | - Karthishwaran Kandhan
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Radhakrishnan Subramanian
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jaleel Kizhakkayil
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, TN, India
| | - Safa Shehab
- Department of Human Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shyam Sreedhara Kurup
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Abdul Muhsen Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayesha Salem Al Dhaheri
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
39
|
Turner SM, Kukk K, Sidor IF, Mason MD, Bouchard DA. Biocompatibility of intraperitoneally implanted TEMPO-oxidized cellulose nanofiber hydrogels for antigen delivery in Atlantic salmon (Salmo salar L.) vaccines. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109464. [PMID: 38412902 DOI: 10.1016/j.fsi.2024.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Disease outbreaks are a major impediment to aquaculture production, and vaccines are integral for disease management. Vaccines can be expensive, vary in effectiveness, and come with adjuvant-induced adverse effects, causing fish welfare issues and negative economic impacts. Three-dimensional biopolymer hydrogels are an appealing new technology for vaccine delivery in aquaculture, with the potential for controlled release of multiple immunomodulators and antigens simultaneously, action as local depots, and tunable surface properties. This research examined the intraperitoneal implantation of a cross-linked TEMPO cellulose nanofiber (TOCNF) hydrogel formulated with a Vibrio anguillarum bacterin in Atlantic salmon with macroscopic and microscopic monitoring to 600-degree days post-implantation. Results demonstrated a modified passive integrated transponder tagging (PITT) device allowed for implantation of the hydrogel. However, the Atlantic salmon implanted with TOCNF hydrogels exhibited a significant foreign body response (FBR) compared to sham-injected negative controls. The FBR was characterized by gross and microscopic external and visceral proliferative lesions, granulomas, adhesions, and fibrosis surrounding the hydrogel using Speilberg scoring of the peritoneum and histopathology of the body wall and coelom. Acutely, gross monitoring displayed rapid coagulation of blood in response to the implantation wound with development of fibrinous adhesions surrounding the hydrogel by 72 h post-implantation consistent with early stage FBR. While these results were undesirable for aquaculture vaccines, this work informs on the innate immune response to an implanted biopolymer hydrogel in Atlantic salmon and directs future research using cellulose nanomaterial formulations in Atlantic salmon for a new generation of aquaculture vaccine technology.
Collapse
Affiliation(s)
- Sarah M Turner
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA; Cooperative Extension, University of Maine, Orono, ME, 04469, USA.
| | - Kora Kukk
- Department of Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Inga F Sidor
- New Hampshire Veterinary Diagnostic Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael D Mason
- Department of Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Deborah A Bouchard
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA; Cooperative Extension, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
40
|
Gaikwad D, Sutar R, Patil D. Polysaccharide mediated nanodrug delivery: A review. Int J Biol Macromol 2024; 261:129547. [PMID: 38278399 DOI: 10.1016/j.ijbiomac.2024.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Polysaccharides have drawn a lot of attention due to their potential as carriers for drugs and other bioactive chemicals. In drug delivery systems, natural macromolecules such as polysaccharides are widely utilized as polymers. This utilization extends to various polysaccharides employed in the development of nanoparticles for medicinal administration, with the goal of enhancing therapeutic efficacy while minimizing side effects. This study not only offers an overview of the existing challenges faced by these materials but also provides detailed information on key polysaccharides expertly engineered into nanoparticles. Noteworthy examples include Bael Fruit Gum, Guar Gum, Pectin, Agar, Cellulose, Alginate, Chitin, and Gum Acacia, each selected for their distinctive properties and strategically integrated into nanoparticles. The exploration of these natural macromolecules illuminates their diverse applications and underscores their potential as effective carriers in drug delivery systems. By delving into the unique attributes of each polysaccharide, this review aims to contribute valuable insights to the ongoing advancements in nanomedicine and pharmaceutical technologies. The overarching objective of this review research is to assess the utilization and comprehension of polysaccharides in nanoapplications, further striving to promote their continued integration in contemporary therapeutics and industrial practices.
Collapse
Affiliation(s)
- Dinanath Gaikwad
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India.
| | - Ravina Sutar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| | - Dhanashri Patil
- Department of Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| |
Collapse
|
41
|
Broadwin M, Imarhia F, Oh A, Stone CR, Sellke FW, Bhowmick S, Abid MR. Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease. Bioengineering (Basel) 2024; 11:218. [PMID: 38534492 DOI: 10.3390/bioengineering11030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.
Collapse
Affiliation(s)
- Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frances Imarhia
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Amy Oh
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christopher R Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
42
|
Hassan M, Abdelnabi HA, Mohsin S. Harnessing the Potential of PLGA Nanoparticles for Enhanced Bone Regeneration. Pharmaceutics 2024; 16:273. [PMID: 38399327 PMCID: PMC10892810 DOI: 10.3390/pharmaceutics16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, nanotechnologies have become increasingly prominent in the field of bone tissue engineering (BTE), offering substantial potential to advance the field forward. These advancements manifest in two primary ways: the localized application of nanoengineered materials to enhance bone regeneration and their use as nanovehicles for delivering bioactive compounds. Despite significant progress in the development of bone substitutes over the past few decades, it is worth noting that the quest to identify the optimal biomaterial for bone regeneration remains a subject of intense debate. Ever since its initial discovery, poly(lactic-co-glycolic acid) (PLGA) has found widespread use in BTE due to its favorable biocompatibility and customizable biodegradability. This review provides an overview of contemporary advancements in the development of bone regeneration materials using PLGA polymers. The review covers some of the properties of PLGA, with a special focus on modifications of these properties towards bone regeneration. Furthermore, we delve into the techniques for synthesizing PLGA nanoparticles (NPs), the diverse forms in which these NPs can be fabricated, and the bioactive molecules that exhibit therapeutic potential for promoting bone regeneration. Additionally, we addressed some of the current concerns regarding the safety of PLGA NPs and PLGA-based products available on the market. Finally, we briefly discussed some of the current challenges and proposed some strategies to functionally enhance the fabrication of PLGA NPs towards BTE. We envisage that the utilization of PLGA NP holds significant potential as a potent tool in advancing therapies for intractable bone diseases.
Collapse
Affiliation(s)
| | | | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
43
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
44
|
Jamshidian N, Hajiaghasi A, Amirghofran Z, Karami A, Karami K. New anthracene-based Oxime-Palladium complexes loaded on albumin nanoparticles, in vitro cytotoxicity, mathematical release mechanism studies and biological macromolecules interaction investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123513. [PMID: 37864973 DOI: 10.1016/j.saa.2023.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
In this research work, two new palladium complexes [trans-Pd(C15H10NOCH3)2]Cl2 (1) and [cis- Pd(C15H10NOCH3)(PPh3)2Cl]Cl (2) were synthesized using an alkoxyme ligand named isophethalaldoxime. Then structure characterization has been done by FT-IR and different NMR (1H, 13C and 31P) spectroscopy. Then, their interactions with biological macromolecules including deoxyribonucleic acid and bovine serum albumin were studied using various spectroscopic methods such as UV-Vis absorption, fluorescence emission spectroscopy and circular dichroism. The results showed the binding of the prepared complexes to the deoxyribonucleic acid via grooves and different binding sites of bovine serum albumin. Fluorescence emission data showed that the mechanism of extinction of albumin emission by these compounds is static. Competitive titration was performed on albumin with eosin-Y, ibuprofen and digoxin as site markers I, II and III. The antitumor activity and toxicity of these compounds were evaluated on cancer cell lines A549 (leukemia) and K562 by in-vitro cytotoxicity test. The IC50 values showed the good activity of these complexes in inhibiting cancer cells. In the last section, the release mechanism of synthesized complexes from albumin nanoparticles (BNPs) was investigated and theoretical calculations were performed that showed Korsmeyer-Peppas mechanism for complex (1) and Quadratic mechanism for complex (2).
Collapse
Affiliation(s)
- Nasrin Jamshidian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran
| | - Afsaneh Hajiaghasi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran
| | - Zahra Amirghofran
- Immunology Department and Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Karami
- Medical school, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kazem Karami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran.
| |
Collapse
|
45
|
Carvalho L, Sarcinelli M, Patrício B. Nanotechnological approaches in the treatment of schistosomiasis: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:13-25. [PMID: 38213572 PMCID: PMC10777326 DOI: 10.3762/bjnano.15.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Schistosomiasis causes over 200,000 deaths annually. The current treatment option, praziquantel, presents limitations, including low bioavailability and resistance. In this context, nanoparticles have emerged as a promising option for improving schistosomiasis treatment. Several narrative reviews have been published on this topic. Unfortunately, the lack of clear methodologies presented in these reviews leads to the exclusion of many important studies without apparent justification. This integrative review aims to examine works published in this area with a precise and reproducible method. To achieve this, three databases (i.e., Pubmed, Web of Science, and Scopus) were searched from March 31, 2022, to March 31, 2023. The search results included only original research articles that used nanoparticles smaller than 1 µm in the treatment context. Additionally, a search was conducted in the references of the identified articles to retrieve works that could not be found solely using the original search formula. As a result, 65 articles that met the established criteria were identified. Inorganic and polymeric nanoparticles were the most prevalent nanosystems used. Gold was the primary material used to produce inorganic nanoparticles, while poly(lactic-co-glycolic acid) and chitosan were commonly used to produce polymeric nanoparticles. None of these identified works presented results in the clinical phase. Finally, based on our findings, the outlook appears favorable, as there is a significant diversity of new substances with schistosomicidal potential. However, financial efforts are required to advance these nanoformulations.
Collapse
Affiliation(s)
- Lucas Carvalho
- Laboratory of Parasitic Diseases, FIOCRUZ, Avenida Brasil, 4365, Rio de Janeiro, Brazil
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Michelle Sarcinelli
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Beatriz Patrício
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Pharmaceutical and Technological Innovation Laboratory - Department of Physiological Sciences, Biomedical Institute, R. Frei Caneca, 94, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Shahid N, Erum A, Hanif S, Malik NS, Tulain UR, Syed MA. Nanocomposite Hydrogels-A Promising Approach towards Enhanced Bioavailability and Controlled Drug Delivery. Curr Pharm Des 2024; 30:48-62. [PMID: 38155469 DOI: 10.2174/0113816128283466231219071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
Nanotechnology has emerged as the eminent focus of today's research to overcome challenges related to conventional drug delivery systems. A wide spectrum of novel delivery systems has been investigated to improve the therapeutic outcomes of drugs. The polymer-based nanocomposite hydrogels (NCHs) that have evolved as efficient carriers for controlled drug delivery are of particular interest in this regard. Nanocomposites amalgamate the properties of both nanoparticles (NPs) as well as hydrogels, exhibiting superior functionalities over conventional hydrogels. This multiple functionality is based upon advanced mechanical, electrical, optical as well as magnetic properties. Here is a brief overview of the various types of nanocomposites, such as NCHs based on Carbon-bearing nanomaterials, polymeric nanoparticles, inorganic nanoparticles, and metal and metal-oxide NPs. Accordingly, this article will review numerous ways of preparing these NCHs with particular emphasis on the vast biomedical applications displayed by them in numerous fields such as tissue engineering, drug delivery, wound healing, bioprinting, biosensing, imaging and gene silencing, cancer therapy, antibacterial therapy, etc. Moreover, various features can be tuned, based on the final application, by controlling the chemical composition of hydrogel network, which may also influence the released conduct. Subsequently, the recent work and future prospects of this newly emerging class of drug delivery system have been enlisted.
Collapse
Affiliation(s)
- Nariman Shahid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Muhammad Ali Syed
- Department of Pharmaceutical Sciences, Faculty of Chemistry & Life Sciences, GC University Lahore, Lahore, Pakistan
| |
Collapse
|
47
|
Raza HZ, Shah AA, Noreen Z, Usman S, Zafar S, Yasin NA, Sayed SRM, Al-Mana FA, Elansary HO, Ahmad A, Farzana Habib, Aslam M. Calcium oxide nanoparticles mitigate lead stress in Abelmoschus esculentus though improving the key antioxidative enzymes, nutritional content and modulation of stress markers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108171. [PMID: 38029614 DOI: 10.1016/j.plaphy.2023.108171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Lead (Pb) is thought to be one of most injurious metals on the earth. Lead stress in plants enhances synthesis of highly toxic reactive oxygen species (ROS). During present research, impact of calcium-oxide nanoparticles (CaO-NPs) was observed on antioxidative defense mechanism in Abelmoschus esculentus plants prone to Pb stress. A CRD experiment was employed with 5 replicates having four treatments (T0 = Control, T1 = Pb stress (200 ppm), T2 = CaO-NPs and T3 = Pb + CaO-NPs). Pb-stressed seedlings exhibited decreased root growth, shoot growth, chlorophyll concentration and biomass accumulation. Moreover, higher synthesis of hydrogen-peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) resulting in cellular injuries were noted in plants growing in Pb spiked conditions. Similarly, stressed plants showed higher accumulation of total soluble sugar and proline content besides elevated activity of antioxidative enzymes counting catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX). On the contrary side, CaO-NPs alleviated the Pb induced phytotoxicity through improving activity of antioxidative enzymes. The elevated activity of antioxidant enzymes reduced biosynthesis of H2O2 and MDA which was revealed through the increased growth parameters. In addition, CaO-NPs persuaded enhancement in plant defence machinery by decreased chlorophyll deprivation and augmented the uptake of plant nutrients including K and Ca content. Hence, CaO-NPs can be potent regulators of the antioxidative enzymes and stress markers to ameliorate abiotic stresses.
Collapse
Affiliation(s)
- Hafiz Zulqurnain Raza
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fahed A Al-Mana
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hosam O Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh, 11451, Saudi Arabia; Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Aqeel Ahmad
- Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences, Beijing, 100101, China
| | - Farzana Habib
- Pakistan Institute of Technology for Minerals and Advanced Engineering Materials, PCSIR Laboratories Complex, Lahore, 54600, Pakistan.
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
48
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
49
|
Valiallahi A, Vazifeh Z, Gatabi ZR, Davoudi M, Gatabi IR. PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Curr Med Chem 2024; 31:6371-6392. [PMID: 37612875 DOI: 10.2174/0929867331666230823094737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
Collapse
Affiliation(s)
- Alaleh Valiallahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Vazifeh
- Department of Biotechnology, Shahed University, Tehran, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Davoudi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
50
|
Hossain KR, Akter S, Nanjeba M, Mahmud MA. Properties and Performance of Biopolymers in Textile Applications. BIOPOLYMERS IN THE TEXTILE INDUSTRY 2024:41-86. [DOI: 10.1007/978-981-97-0684-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|