1
|
Zheng ALT, Teo EYL, Yiu PH, Boonyuen S, Andou Y. Emerging trends in functional materials for electrochemical sensors in nicotine determination. ANAL SCI 2024; 40:1933-1946. [PMID: 39030465 DOI: 10.1007/s44211-024-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
In the past year, there has been significant progress in the utilization of electrochemical strategies for the determination of harmful substances. Among those, the electrochemical determination of nicotine (NIC) has continued to be of significant interest ascribed to the global health concern of e-cigarette products, nowadays. Electrochemical sensors have become promising tools for the detection of NIC ascribed to their high sensitivity, selectivity, and ease of use. This review article provides a concise overview of the advanced developments in electrochemical sensors for NIC detection using modified functional materials such as carbon-based materials, metal-organic frameworks (MOF), MXene, polymer, and metallic based modifiers. The sensitivity of electrochemical sensors can be improved by modifying them with these conductive materials ascribed to their physical and chemical properties. The review also addresses the challenges and future perspectives in the field, including sensitivity and selectivity improvements, stability and reproducibility issues, integration with data analysis techniques, and emerging trends. In conclusion, this review article may be of interest to researchers intending to delve into the development of functional electrochemical sensors in future studies.
Collapse
Affiliation(s)
- Alvin Lim Teik Zheng
- Institute of Ecoscience Borneo, Universiti Putra Malaysia Bintulu Campus, Bintulu, 97008, Sarawak, Malaysia.
| | - Ellie Yi Lih Teo
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, 97008, Sarawak, Malaysia
| | - Pang Hung Yiu
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, 97008, Sarawak, Malaysia
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Yoshito Andou
- Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
- Collaborative Research Centre for Green Materials On Environmental Technology, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| |
Collapse
|
2
|
Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, Rezaei A, Moghaddam SP, Hajjafari K, Simab PA, Kharaba Z, Borji H, Pandey S. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. INORG CHEM COMMUN 2024; 164:112409. [DOI: 10.1016/j.inoche.2024.112409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
|
3
|
Mohamed AM, Fouad FH, Raouf Fayek G, El Sayed KM, Ahmed MN, Mahmoud RZ, El Nashar RM. Recent advances in electrochemical sensors based on nanomaterials for detection of red dyes in food products: A review. Food Chem 2024; 435:137656. [PMID: 37806207 DOI: 10.1016/j.foodchem.2023.137656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Red dyes as Allura Red (E129), Amaranth (E124), Ponceau 4R (E123), Erythrosine (E127) and Carmoisine (E122), are very popular food additives due to their stability, low cost, and minimal microbial contamination. Despite these advantages, their consumption may result in asthma, hyperactivity, carcinogenic effects, etc depending on the uptake and age. Therefore, the United States Food and Drug Administration (FDA) and European Food Safety Authority (EFSA) have managed the permissions of allowed daily intake (ADI) for consumption levels of these dyes to be 0.01-7.0 mg/kg to assure foodstuffs consumer's safety and avoid their adverse effects. Yet, many countries as Japan and USA have prohibited their use in food and drinks to reduce their possible health risks. Based on the above concentration ranges, highly sensitive and selective detection techniques are required, accordingly, the application of electrochemical sensors for the analysis of these dyes in food samples is very promising due to their superior sensitivity and selectivity, low cost and rapid response compared to traditional spectrophotometric or chromatographic methods. Also, they can be miniaturized, portable and require no complicated sampling or preparation procedures, besides being ecofriendly which allows their commercialization for public consumers in fast detection kits. In this review, the role of nanomaterials such as: carbon-based, transition metal oxides, metal organic frameworks, ionic liquids and others in enhancing the detection properties of modified electrochemical sensors for red dyes will be evaluated in terms of the type of nanomaterial applied, tested food samples and their impact on the evaluation of foodstuffs quality.
Collapse
Affiliation(s)
- Aya M Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | - Fouad Hassan Fouad
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | - George Raouf Fayek
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | | | - Mohamed Nabil Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | | | - Rasha M El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt.
| |
Collapse
|
4
|
Marineau A, Karpukhina U, Agyemang R, Stewart KME. Effect of Ionic Strength and pH on the Sorption of Heavy Metals onto Polyaniline Copolymers in Aqueous Solutions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10623-10632. [PMID: 38356331 DOI: 10.1021/acsami.3c16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Polyaniline (PANI) and two copolymers, poly(aniline-co-o-toluidine) (PoTOL-50) and poly(aniline-co-o-anisidine) (PoANI-50) were synthesized with equal input ratios (1:1) to enhance PANI as sensing material for the sensing of various heavy metal analytes in aqueous solutions. The polymers were evaluated for both their sensitivity and selectivity toward four heavy metals (Ba2+, Cd2+, Cu2+, and Ni2+) and two common matrix interferents (Ca2+ and Mg2+) at 10 and 40 ppm. The effect of pH and ionic strength of the aqueous solutions on the sensitivity and selectivity was also evaluated. All three polymers showed high sensitivity and selectivity to Ba2+. Varying the pH and ionic strength of solutions did not show significant differences in either the selectivity or the sensitivity of the polymers.
Collapse
Affiliation(s)
- Angela Marineau
- Department of Chemistry, Trent University, 1600 W. Bank Dr, Peterborough, Ontario K9L0G2, Canada
| | - Uliana Karpukhina
- Department of Chemistry, Trent University, 1600 W. Bank Dr, Peterborough, Ontario K9L0G2, Canada
| | - Ruth Agyemang
- Department of Chemistry, Trent University, 1600 W. Bank Dr, Peterborough, Ontario K9L0G2, Canada
| | - Katherine M E Stewart
- Department of Chemistry, Trent University, 1600 W. Bank Dr, Peterborough, Ontario K9L0G2, Canada
| |
Collapse
|
5
|
Quiroz-Arturo H, Reinoso C, Scherf U, Palma-Cando A. Microporous Polymer-Modified Glassy Carbon Electrodes for the Electrochemical Detection of Metronidazole: Experimental and Theoretical Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:180. [PMID: 38251144 PMCID: PMC10819510 DOI: 10.3390/nano14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The persistence and potential toxicity of emergent pollutants pose significant threats to biodiversity and human health, emphasizing the need for sensors capable of detecting these pollutants at extremely low concentrations before treatment. This study focuses on the development of glassy carbon electrodes (GCEs) modified by films of poly-tris(4-(4-(carbazol-9-yl)phenyl)silanol (PTPTCzSiOH), poly-4,4'-Di(carbazol-9-yl)-1,1'-biphenyl (PCBP), and poly-1,3,5-tri(carbazol-9-yl)benzene (PTCB) for the detection of metronidazole (MNZ) in aqueous media. The films were characterized using electrochemical, microscopy, and spectroscopy techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Monomers were electropolymerized through cyclic voltammetry and chronoamperometry techniques. Computational methods at the B3LYP/def2-TZVP level were employed to investigate the structural and electrochemical properties of the monomers. The electrochemical detection of MNZ utilized the linear sweep voltammetry technique. Surface characterization through SEM and XPS confirmed the proper electrodeposition of polymer films. Notably, MPN-GCEs exhibited higher detection signals compared to bare GCEs up to 3.6 times in the case of PTPTCzSiOH-GCEs. This theoretical study provides insights into the structural, chemical, and electronic properties of the polymers. The findings suggest that polymer-modified GCEs hold promise as candidates for the development of electrochemical sensors.
Collapse
Affiliation(s)
- Héctor Quiroz-Arturo
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| | - Carlos Reinoso
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| | - Ullrich Scherf
- Department of Chemistry, Macromolecular Chemistry and Wuppertal Center for Smart Materials @ Systems (CM@S), Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| |
Collapse
|
6
|
Saputra HA, Jannath KA, Kim KB, Park DS, Shim YB. Conducting polymer composite-based biosensing materials for the diagnosis of lung cancer: A review. Int J Biol Macromol 2023; 252:126149. [PMID: 37582435 DOI: 10.1016/j.ijbiomac.2023.126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
The development of a simple and fast cancer detection method is crucial since early diagnosis is a key factor in increasing survival rates for lung cancer patients. Among several diagnosis methods, the electrochemical sensor is the most promising one due to its outstanding performance, portability, real-time analysis, robustness, amenability, and cost-effectiveness. Conducting polymer (CP) composites have been frequently used to fabricate a robust sensor device, owing to their excellent physical and electrochemical properties as well as biocompatibility with nontoxic effects on the biological system. This review brings up a brief overview of the importance of electrochemical biosensors for the early detection of lung cancer, with a detailed discussion on the design and development of CP composite materials for biosensor applications. The review covers the electrochemical sensing of numerous lung cancer markers employing composite electrodes based on the conducting polyterthiophene, poly(3,4-ethylenedioxythiophene), polyaniline, polypyrrole, molecularly imprinted polymers, and others. In addition, a hybrid of the electrochemical biosensors and other techniques was highlighted. The outlook was also briefly discussed for the development of CP composite-based electrochemical biosensors for POC diagnostic devices.
Collapse
Affiliation(s)
- Heru Agung Saputra
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Khatun A Jannath
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Deog-Su Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Liu W, Ali W, Liu Y, Li M, Li Z. Sensitive Detection of Trace Explosives by a Self-Assembled Monolayer Sensor. MICROMACHINES 2023; 14:2179. [PMID: 38138348 PMCID: PMC10745381 DOI: 10.3390/mi14122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Fluorescence probe technology holds great promise in the application of trace explosive detection due to its high sensitivity, fast response speed, good selectivity, and low cost. In this work, a designed approach has been employed to prepare the TPE-PA-8 molecule, utilizing the classic aggregation-induced emission (AIE) property of 1,1,2,2-tetraphenylethene (TPE), for the development of self-assembled monolayers (SAMs) targeting the detection of trace nitroaromatic compound (NAC) explosives. The phosphoric acid acts as an anchoring unit, connecting to TPE through an alkyl chain of eight molecules, which has been found to play a crucial role in promoting the aggregation of TPE luminogens, leading to the enhanced light-emission property and sensing performance of SAMs. The SAMs assembled on Al2O3-deposited fiber film exhibit remarkable detection performances, with detection limits of 0.68 ppm, 1.68 ppm, and 2.5 ppm for trinitrotoluene, dinitrotoluene, and nitrobenzene, respectively. This work provides a candidate for the design and fabrication of flexible sensors possessing the high-performance and user-friendly detection of trace NACs.
Collapse
Affiliation(s)
- Weitao Liu
- Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Wajid Ali
- Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Ye Liu
- Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mingliang Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Ziwei Li
- Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Sipuka D, Olorundare FOG, Makaluza S, Midzi N, Sebokolodi TI, Arotiba OA, Nkosi D. Dendrimer-Gold Nanocomposite-Based Electrochemical Aptasensor for the Detection of Dopamine. ACS OMEGA 2023; 8:33403-33411. [PMID: 37744816 PMCID: PMC10515171 DOI: 10.1021/acsomega.3c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/07/2023] [Indexed: 09/26/2023]
Abstract
Dopamine is an important neurotransmitter and biomarker that plays a vital role in our neurological system and body. Thus, it is important to monitor the concentration levels of dopamine in our bodies. We report an aptamer-based sensor fabricated through an electro-co-deposition of a generation 3 poly(propylene imine) (PPI) dendrimer and gold nanoparticles (AuNPs) on a glassy carbon (GC) electrode by cyclic voltammetry. Through self-assembly, a single-stranded thiolated dopamine aptamer was immobilized on the GC/PPI/AuNPs electrode to prepare an aptasensor. Voltammetry and electrochemical impedance spectroscopy (EIS) were used to characterize the modified electrodes. The readout for the biorecognition event between the aptamer and various dopamine concentrations was attained from square wave voltammetry and EIS. The aptasensor detected dopamine from the range of 10-200 nM, with a limit of detection of 0.26 and 0.011 nM from SWV and EIS, respectively. The aptasensor was selective toward dopamine when different amounts of epinephrine and ascorbic acid were present. The aptasensor was applicable in a more complex matrix of human serum.
Collapse
Affiliation(s)
- Dimpo
S. Sipuka
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Foluke O. G. Olorundare
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| | - Sesethu Makaluza
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Nyasha Midzi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| | - Tsholofelo I. Sebokolodi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Omotayo A. Arotiba
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Duduzile Nkosi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| |
Collapse
|
9
|
Ziyatdinova G, Gimadutdinova L. Recent Advances in Electrochemical Sensors for Sulfur-Containing Antioxidants. MICROMACHINES 2023; 14:1440. [PMID: 37512751 PMCID: PMC10384414 DOI: 10.3390/mi14071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Sulfur-containing antioxidants are an important part of the antioxidant defense systems in living organisms under the frame of a thiol-disulfide equilibrium. Among them, l-cysteine, l-homocysteine, l-methionine, glutathione, and α-lipoic acid are the most typical representatives. Their actions in living systems are briefly discussed. Being electroactive, sulfur-containing antioxidants are interesting analytes to be determined using various types of electrochemical sensors. Attention is paid to the chemically modified electrodes with various nanostructured coverages. The analytical capabilities of electrochemical sensors for sulfur-containing antioxidant quantification are summarized and discussed. The data are summarized and presented on the basis of the electrode surface modifier applied, i.e., carbon nanomaterials, metal and metal oxide nanoparticles (NPs) and nanostructures, organic mediators, polymeric coverage, and mixed modifiers. The combination of various types of nanomaterials provides a wider linear dynamic range, lower limits of detection, and higher selectivity in comparison to bare electrodes and sensors based on the one type of surface modifier. The perspective of the combination of chromatography with electrochemical detection providing the possibility for simultaneous determination of sulfur-containing antioxidants in a complex matrix has also been discussed.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
10
|
Hamid Kargari S, Ahour F, Mahmoudian M. An electrochemical sensor for the detection of arsenic using nanocomposite-modified electrode. Sci Rep 2023; 13:8816. [PMID: 37258602 DOI: 10.1038/s41598-023-36103-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
The aim of this research is to develop an electrochemical sensor based on a conducting polymer, polyaniline, and a cationic polymer, poly(diallyldimethylammonium chloride), reinforced with graphene oxide nanosheets functionalized with acrylic acid. The two-dimensional nature of acrylic acid functionalized graphene oxide nanosheets and clusters made of conductive polymers and acrylic acid functionalized graphene oxide nanosheets were confirmed by microscopic tests. The prepared nanocomposite was deposited on the glassy carbon electrode in order to prepare an electrochemical sensor for the detection of arsenic by cyclic voltammetry and differential pulse voltammetry methods. It should be mentioned that the presence of acrylic acid functionalized graphene oxide nanosheets increases the surface area due to the nano size effect and better dispersion of this nanomaterial, poly(diallyldimethylammonium chloride), increases the adsorption capacity of the analyte due to electrostatic interaction between the negatively charged analyte and positively charged surface, and polyanilin increases the charge transfer rate due to the good conductivity. The results show that the prepared electrode has a sensitivity equal to 1.79 A/M with 0.12 μM as the detection limit. The proposed sensor could be used for the determination of total inorganic arsenic by first oxidative pretreatment for conversion of As(III) to As(V).
Collapse
Affiliation(s)
- Sara Hamid Kargari
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Fatemeh Ahour
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran.
- Institute of Nanotechnology, Urmia University, Urmia, Iran.
| | - Mehdi Mahmoudian
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
- Institute of Nanotechnology, Urmia University, Urmia, Iran
| |
Collapse
|
11
|
Ivanišević I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3692. [PMID: 37050752 PMCID: PMC10099384 DOI: 10.3390/s23073692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Irena Ivanišević
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Zhang X, Tan X, Wang P, Qin J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:674. [PMID: 36839042 PMCID: PMC9967576 DOI: 10.3390/nano13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Although colorectal cancer (CRC) is easy to treat surgically and can be combined with postoperative chemotherapy, its five-year survival rate is still not optimistic. Therefore, developing sensitive, efficient, and compliant detection technology is essential to diagnose CRC at an early stage, providing more opportunities for effective treatment and intervention. Currently, the widely used clinical CRC detection methods include endoscopy, stool examination, imaging modalities, and tumor biomarker detection; among them, blood biomarkers, a noninvasive strategy for CRC screening, have shown significant potential for early diagnosis, prediction, prognosis, and staging of cancer. As shown by recent studies, electrochemical biosensors have attracted extensive attention for the detection of blood biomarkers because of their advantages of being cost-effective and having sound sensitivity, good versatility, high selectivity, and a fast response. Among these, nano-conductive polymer materials, especially the conductive polymer polypyrrole (PPy), have been broadly applied to improve sensing performance due to their excellent electrical properties and the flexibility of their surface properties, as well as their easy preparation and functionalization and good biocompatibility. This review mainly discusses the characteristics of PPy-based biosensors, their synthetic methods, and their application for the detection of CRC biomarkers. Finally, the opportunities and challenges related to the use of PPy-based sensors for diagnosing CRC are also discussed.
Collapse
|
13
|
Electropolymerized 4-Aminobenzoic Acid Based Voltammetric Sensor for the Simultaneous Determination of Food Azo Dyes. Polymers (Basel) 2022; 14:polym14245429. [PMID: 36559795 PMCID: PMC9783049 DOI: 10.3390/polym14245429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Electrochemical sensors with polymeric films as a sensitive layer are of high interest in current electroanalysis. A voltammetric sensor based on multi-walled carbon nanotubes (MWCNTs) and electropolymerized 4-aminobenzoic acid (4-ABA) has been developed for the simultaneous determination of synthetic food azo dyes (sunset yellow FCF and tartrazine). Based on the voltammetric response of the dyes' mixture, the optimal conditions of electropolymerization have been found to be 30-fold potential scanning between -0.3 and 1.5 V, at 100 mV s-1 in the 100 µmol L-1 monomer solution in phosphate buffer pH 7.0. The poly (4-ABA)-based electrode shows a 10.5-fold increase in its effective surface area and a 17.2-fold lower electron transfer resistance compared to the glassy carbon electrode (GCE). The sensor gives a sensitive and selective response to sunset yellow FCF and tartrazine, with the peak potential separation of 232 mV in phosphate buffer pH 4.8. The electrooxidation parameters of dyes have been calculated. Simultaneous quantification is possible in the dynamic ranges of 0.010-0.75 and 0.75-5.0 µmol L-1 for both dyes, with detection limits of 2.3 and 3.0 nmol L-1 for sunset yellow FCF and tartrazine, respectively. The sensor has been tested on orange-flavored drinks and validated with chromatography.
Collapse
|
14
|
Izadyar A, Van MN, Miranda M, Weatherford S, Hood EE, Seok I. Development of a highly sensitive glucose nanocomposite biosensor based on recombinant enzyme from corn. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6530-6538. [PMID: 35587543 DOI: 10.1002/jsfa.12019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Enzymes are biocatalysts that play a vital role in the production of biomolecules. Plants can be a valuable and cost-effective source for producing well-structured recombinant enzymes. Glucose is one of the most important biological molecules, providing energy to most living systems. An electrochemical method for immobilization of enzyme is promising because it is economic, generates less component waste, improves the signal-to-noise ratio, leads to a lower limit of detection, and stabilizes and protects the enzyme structure. RESULTS A glucose biosensor was constructed using polyaniline (PANI) and a recombinant enzyme from corn, plant-produced manganese peroxidase (PPMP), with polymerization of aniline as a monomer in the presence of gold nanoparticles (AuNPs)-glucose oxidase (GOx), and bovine serum albumin. Using linear sweep voltammetry and cyclic voltammetry techniques, PANI-AuNPs-GOx-PPMP/Au electrode exhibited a superior sensing property with a wider linear range of 0.005-16.0 mm, and a lower detection limit of 0.001 mm compared to PANI-GOx-PPMP/Au electrode and PANI-GOx-PPMP/AuNPs/Au electrode. The biosensor selectivity was assessed by determining glucose concentrations in the presence of ascorbic acid, dopamine, aspartame, and caffeine. CONCLUSION We conclude that a plant-produced Mn peroxidase enzyme combined with conductive polymers and AuNPs results in a promising nanocomposite biosensor for detecting glucose. The use of such devices for quality control in the food industry can have a significant economic impact. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anahita Izadyar
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - My Ni Van
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Marcela Miranda
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Scout Weatherford
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Elizabeth E Hood
- Arkansas Biosciences Institute and College of Agriculture, Arkansas State University, Jonesboro, AR, USA
| | - Ilwoo Seok
- College of Engineering and Computer Science, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
15
|
Kil MS, Kim SJ, Park HJ, Yoon JH, Jeong JM, Choi BG. Highly Stretchable Sensor Based on Fluid Dynamics-Assisted Graphene Inks for Real-Time Monitoring of Sweat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48072-48080. [PMID: 36222414 DOI: 10.1021/acsami.2c10638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graphene inks have recently attracted attention for the development of printed wearable and flexible electronics and sensors not only because of their high conductivity and low cost but also because they are suitable for high-speed printing. Although reliable and scalable printing technologies are well established, further improvement in graphene inks in terms of electrical conductivity, stretchability/flexibility, and mass production is necessary for sensors for real-time monitoring. Herein, highly stretchable and conductive graphene inks were prepared by an efficient and scalable fluid dynamics-assisted exfoliation of graphite and a mixing process with elastomeric Ecoflex. After printing inks onto textile substrates, the serpentine-patterned conductors exhibited high conductivity and stable resistance even under a mechanically stretched state (a strain of 150%). Electrochemical sensors that detect sodium ions were fabricated on this conducting platform. These sensors indicated high potentiometric sensing ability under different mechanical deformations. To demonstrate the on-body performance of the developed sensors, real-time monitoring of sodium-ion concentration in the sweat of a human subject was carried out during an indoor stationary cycling exercise.
Collapse
Affiliation(s)
- Min Sik Kil
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Seo Jin Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Hong Jun Park
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Jo Hee Yoon
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Jae-Min Jeong
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| |
Collapse
|
16
|
Banakar M, Hamidi M, Khurshid Z, Zafar MS, Sapkota J, Azizian R, Rokaya D. Electrochemical Biosensors for Pathogen Detection: An Updated Review. BIOSENSORS 2022; 12:bios12110927. [PMID: 36354437 PMCID: PMC9688024 DOI: 10.3390/bios12110927] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 05/30/2023]
Abstract
Electrochemical biosensors are a family of biosensors that use an electrochemical transducer to perform their functions. In recent decades, many electrochemical biosensors have been created for pathogen detection. These biosensors for detecting infections have been comprehensively studied in terms of transduction elements, biorecognition components, and electrochemical methods. This review discusses the biorecognition components that may be used to identify pathogens. These include antibodies and aptamers. The integration of transducers and electrode changes in biosensor design is a major discussion topic. Pathogen detection methods can be categorized by sample preparation and secondary binding processes. Diagnostics in medicine, environmental monitoring, and biothreat detection can benefit from electrochemical biosensors to ensure food and water safety. Disposable and reusable biosensors for process monitoring, as well as multiplexed and conformal pathogen detection, are all included in this review. It is now possible to identify a wide range of diseases using biosensors that may be applied to food, bodily fluids, and even objects' surfaces. The sensitivity of optical techniques may be superior to electrochemical approaches, but optical methods are prohibitively expensive and challenging for most end users to utilize. On the other hand, electrochemical approaches are simpler to use, but their efficacy in identifying infections is still far from satisfactory.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa 31982, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Janak Sapkota
- Research Center of Applied Sciences and Technology, Kritipur 44600, Nepal
| | - Reza Azizian
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran 14197-33151, Iran
- Biomedical Innovation & Start-Up Association (Biomino), Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| |
Collapse
|
17
|
Rodriguez N, Morales DP, Rivadeneyra A. Editorial: Functional Nanomaterials for Sensor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3750. [PMID: 36364526 PMCID: PMC9655613 DOI: 10.3390/nano12213750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Functional nanomaterials have become one of the most fascinating fields in nanotechnology [...].
Collapse
|
18
|
Mohamed DE, Mohamed AS, El-Dib FI. Role of mixed surfactants system in preparation of silver nanoparticles. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2022-2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Different morphologies of silver nanoparticles (AgNPs) are prepared by reducing silver nitrate with hydrazine hydrate in an aqueous solution in the presence of the anionic surfactant sodium 6,6′-((oxybis(ethane-2,1-diyl))bis(oxy))bis(3-dodecanoylbenzenesulfonate) (SOBS), the cationic surfactant cetyltrimethylammonium bromide (CTAB) and mixtures of these two surfactants as template. By mixing these cationic and anionic surfactants, different aggregates (template) were formed. The properties of the nanoproducts are studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray analysis and Fourier transform infrared spectroscopy. The results show that the morphology of the nanosilver can be controlled by changing the ratio of cationic to anionic surfactant in the mixture, resulting in silver nanoparticles with high crystallinity and low aggregation.
Collapse
Affiliation(s)
- Dalia E. Mohamed
- Petrochemicals Department , Egyptian Petroleum Research Institute (EPRI) , Nasr City , Cairo , Egypt
| | - Ammona S. Mohamed
- Petrochemicals Department , Egyptian Petroleum Research Institute (EPRI) , Nasr City , Cairo , Egypt
| | - Fawzia I. El-Dib
- Petrochemicals Department , Egyptian Petroleum Research Institute (EPRI) , Nasr City , Cairo , Egypt
| |
Collapse
|
19
|
Khan ME, Mohammad A, Yoon T. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. CHEMOSPHERE 2022; 302:134815. [PMID: 35526688 DOI: 10.1016/j.chemosphere.2022.134815] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon quantum dots (CQDs), the intensifying nanostructured form of carbon material, have exhibited incredible impetus in several research fields such as bio-imaging, bio-sensing, drug delivery systems, optoelectronics, photovoltaics, and photocatalysis, thanks to their exceptional properties. The CQDs show extensive photonic and electronic properties, as well as their light-collecting, tunable photoluminescence, remarkable up-converted photoluminescence, and photo-induced transfer of electrons were widely studied. These properties have great advantages in a variety of visible-light-induced catalytic applications for the purpose of fully utilizing the energy from the solar spectrum. The major purpose of this review is to validate current improvements in the fabrication of CQDs, characteristics, and visible-light-induced catalytic applications, with a focus on CQDs multiple functions in photo-redox processes. We also examine the problems and future directions of CQD-based nanostructured materials in this growing research field, with an eye toward establishing a decisive role for CQDs in photocatalysis, bio-imaging, and bio-sensing applications that are enormously effective and stable over time. In the end, a look forward to future developments is presented, with a view to overcoming challenges and encouraging further research into this promising field.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan, 45971, Saudi Arabia.
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
20
|
Vahidifar M, Es'haghi Z, Oghaz NM, Mohammadi AA, Kazemi MS. Multi-template molecularly imprinted polymer hybrid nanoparticles for selective analysis of nonsteroidal anti-inflammatory drugs and analgesics in biological and pharmaceutical samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47416-47435. [PMID: 35182341 DOI: 10.1007/s11356-021-18308-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The multi-template molecularly imprinted polymers reinforced with hybrid oxide nanoparticles were developed for the selective separation and determination of the trace level of naproxen (NPX), methocarbamol (MTH), and omeprazole (OMZ) simultaneously from biological and pharmaceutical samples. The polymers were constructed by magnetic core@shell molecularly imprinted polymer nanocomposite (Fe3O4/ZnO/CuO/MWCNT@MIP). An electrochemical sensor has been fabricated for this purpose. Fe3O4/ZnO/CuO/MWCNT nanocomposite was introduced to improve the electron transport capability and increase the sensor surface area, as well as enhance the electronic conductivity. The triple-template MIP-coated layer provides simultaneous selective identification of three analytes by using [Fe (CN)6]3-/4-as the redox probe. Electrochemical behavior of MTH, NPX, and OMZ on the modified electrode (Fe3O4/ZnO/CuO/MWCNT@MIP) by various techniques such as cyclic voltammetry, differential pulse voltammetry, and chronoamperometry was examined. The morphology of the modified and unmodified carbon paste electrodes was performed by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The average crystal size for fabricated nanoparticles obtained by calculating the X-ray diffraction technique was 17 nm in the Scherer method. The particle size which was determined by SEM was 48 nm. Some electrochemical parameters such as the diffusion coefficient and electron transfer coefficient were determined. The effect of many variables such as the pH and scan rate was also investigated. Under optimal conditions, the sensor is designed in the linear range 5.0 nM-100 μM and 5.0 nM-100 μM and 1.0 nM-130 μM with a detection limit of 1.5 nM, 1.0 nM, and 0.7 nM for measurement OMZ, NPX, and MTH, respectively. The relative standard deviation (RSD) of the five measurements was 1.21%, 2.23%, and 2.56% for NPX, MTH, and OMZ. Finally, the designed sensor was successfully used for simultaneous detection of target analytes in the real samples; tablets, water samples, and biological samples.
Collapse
Affiliation(s)
- Mohammad Vahidifar
- Department of Chemistry, Payame Noor University (PNU), 19395-3697, Tehran, Islamic Republic of Iran
| | - Zarrin Es'haghi
- Department of Chemistry, Payame Noor University (PNU), 19395-3697, Tehran, Islamic Republic of Iran.
| | | | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Sciences, Bojnourd Branch. Islamic Azad University, Bojnourd, Iran
| |
Collapse
|
21
|
Bitew Z, Kassa A, Misgan B. Poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode for voltammetric determination of gallic acid in honey and peanut samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
22
|
Radhakrishnan S, Lakshmy S, Santhosh S, Kalarikkal N, Chakraborty B, Rout CS. Recent Developments and Future Perspective on Electrochemical Glucose Sensors Based on 2D Materials. BIOSENSORS 2022; 12:467. [PMID: 35884271 PMCID: PMC9313175 DOI: 10.3390/bios12070467] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/09/2023]
Abstract
Diabetes is a health disorder that necessitates constant blood glucose monitoring. The industry is always interested in creating novel glucose sensor devices because of the great demand for low-cost, quick, and precise means of monitoring blood glucose levels. Electrochemical glucose sensors, among others, have been developed and are now frequently used in clinical research. Nonetheless, despite the substantial obstacles, these electrochemical glucose sensors face numerous challenges. Because of their excellent stability, vast surface area, and low cost, various types of 2D materials have been employed to produce enzymatic and nonenzymatic glucose sensing applications. This review article looks at both enzymatic and nonenzymatic glucose sensors made from 2D materials. On the other hand, we concentrated on discussing the complexities of many significant papers addressing the construction of sensors and the usage of prepared sensors so that readers might grasp the concepts underlying such devices and related detection strategies. We also discuss several tuning approaches for improving electrochemical glucose sensor performance, as well as current breakthroughs and future plans in wearable and flexible electrochemical glucose sensors based on 2D materials as well as photoelectrochemical sensors.
Collapse
Affiliation(s)
- Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| | - Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Shilpa Santhosh
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Brahmananda Chakraborty
- High Pressure and Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, Maharashtra, India
- Homi Bhabha National Institute, Mumbai 400 094, Maharashtra, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| |
Collapse
|
23
|
Romero-Fierro D, Bustamante-Torres M, Bravo-Plascencia F, Magaña H, Bucio E. Polymer-Magnetic Semiconductor Nanocomposites for Industrial Electronic Applications. Polymers (Basel) 2022; 14:2467. [PMID: 35746043 PMCID: PMC9228222 DOI: 10.3390/polym14122467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanocomposite materials have acquired great importance, as have similar composite materials on a macroscopic scale, because the reinforcement complements the defects in the properties of the matrix, thus obtaining materials with better mechanical, thermal, and electrical properties, among others. At the same time, the importance and research of polymeric nanocomposites reinforced with nanoparticles of various types have grown. Among those that have stood out the most in the electronics industry are polymeric matrices reinforced with nanoparticles that present dual behavior, that is, both magnetic and semiconductor. This property has been very well used in developing electronic devices such as televisions, computers, and smartphones, which are part of everyday life. In this sense, this review presents a compilation of the synthetic methods to produce polymer nanocomposites with dual magnetic and semiconductor behavior and their potential applications within electronic fields and new relevant trends.
Collapse
Affiliation(s)
- David Romero-Fierro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Moises Bustamante-Torres
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Francisco Bravo-Plascencia
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Toluca 50200, Mexico;
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan 04510, Mexico
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
24
|
Hydroxyapatite/L-Lysine Composite Coating as Glassy Carbon Electrode Modifier for the Analysis and Detection of Nile Blue A. MATERIALS 2022; 15:ma15124262. [PMID: 35744321 PMCID: PMC9230729 DOI: 10.3390/ma15124262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
An amperometric sensor was developed by depositing a film coating of hydroxyapatite (HA)/L-lysine (Lys) composite material on a glassy carbon electrode (GCE). It was applied for the detection of Nile blue A (NBA). Hydroxyapatite was obtained from snail shells and its structural properties before and after its combination with Lys were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analyses. The coupling of Lys to HA was attributed to favorable interaction between negatively charged -COO- groups of Lys and divalent ions Ca2+ of HA. Electrochemical investigations pointed out the improvement in sensitivity of the GCE/Lys/HA sensor towards the detection of NBA in solution. The dependence of the peak current and potential on the pH, scan rate, and NBA concentration was also investigated. Under optimal conditions, the GCE/Lys/HA sensor showed a good reproducibility, selectivity, and a NBA low detection limit of 5.07 × 10-8 mol L-1. The developed HA/Lys-modified electrode was successfully applied for the detection of NBA in various water samples.
Collapse
|
25
|
Abdelwahab A, Naggar A, Abdelmotaleb M, Abdel-Hakim M. A sensor for selective dopamine determination based on overoxidized poly‐1,5‐diaminonaphthalene on graphene nanosheets. ELECTROANAL 2022. [DOI: 10.1002/elan.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Zeynaloo E, Zahran EM, Yang YP, Dikici E, Head T, Bachas LG, Daunert S. Reagentless electrochemical biosensors through incorporation of unnatural amino acids on the protein structure. Biosens Bioelectron 2022; 200:113861. [PMID: 34986438 PMCID: PMC9404255 DOI: 10.1016/j.bios.2021.113861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022]
Abstract
Typical protein biosensors employ chemical or genetic labeling of the protein, thus introducing an extraneous molecule to the wild-type parent protein, often changing the overall structure and properties of the protein. While these labeling methods have proven successful in many cases, they also have a series of disadvantages associated with their preparation and function. An alternative route for labeling proteins is the incorporation of unnatural amino acid (UAA) analogues, capable of acting as a label, into the structure of a protein. Such an approach, while changing the local microenvironment, poses less of a burden on the overall structure of the protein. L-DOPA is an analog of phenylalanine and contains a catechol moiety that participates in a quasi-reversible, two-electron redox process, thus making it suitable as an electrochemical label/reporter. The periplasmic glucose/galactose binding protein (GBP) was chosen to demonstrate this detection principle. Upon glucose binding, GBP undergoes a significant conformational change that is manifested as a change in the electrochemistry of L-DOPA. The electroactive GBP was immobilized onto gold nanoparticle-modified, polymerized caffeic acid, screen-printed carbon electrodes (GBP-LDOPA/AuNP/PCA/SPCE) for the purpose of direct measurement of glucose levels and serves as a proof-of-concept of the use of electrochemically-active unnatural amino acids as the label. The resulting reagentless GBP biosensors exhibited a highly selective and sensitive binding affinity for glucose in the micromolar range, laying the foundation for a new biosensing methodology based on global incorporation of an electroactive amino acid into the protein's primary sequence for highly selective electrochemical detection of compounds of interest.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Chemistry, University of Miami, Miami, FL, 33134, United States
| | - Elsayed M Zahran
- Department of Chemistry, Ball State University, Muncie, IN, 47306, United States
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States; Clinical and Translational Science Institute, University of Miami, Miami, FL, 33136, United States
| | - Trajen Head
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, Miami, FL, 33134, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States; Clinical and Translational Science Institute, University of Miami, Miami, FL, 33136, United States.
| |
Collapse
|
27
|
Motshakeri M, Sharma M, Phillips ARJ, Kilmartin PA. Electrochemical Methods for the Analysis of Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2427-2449. [PMID: 35188762 DOI: 10.1021/acs.jafc.1c06350] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The milk and dairy industries are some of the most profitable sectors in many countries. This business requires close control of product quality and continuous testing to ensure the safety of the consumers. The potential risk of contaminants or degradation products and undesirable chemicals necessitates the use of fast, reliable detection tools to make immediate production decisions. This review covers studies on the application of electrochemical methods to milk (i.e., voltammetric and amperometric) to quantify different analytes, as reported over the last 10 to 15 years. The review covers a wide range of analytes, including allergens, antioxidants, organic compounds, nitrogen- and aldehyde containing compounds, biochemicals, heavy metals, hydrogen peroxide, nitrite, and endocrine disruptors. The review also examines pretreatment procedures applied to milk samples and the use of novel sensor materials. Final perspectives are provided on the future of cost-effective and easy-to-use electrochemical sensors and their advantages over conventional methods.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Anthony R J Phillips
- School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Paul A Kilmartin
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
28
|
Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Zhang Z, Li M, Zuo Y, Chen S, Zhuo Y, Lu M, Shi G, Gu H. In Vivo Monitoring of pH in Subacute PD Mouse Brains with a Ratiometric Electrochemical Microsensor Based on Poly(melamine) Films. ACS Sens 2022; 7:235-244. [PMID: 34936337 DOI: 10.1021/acssensors.1c02051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In vivo monitoring of cerebral pH is of great significance because its disturbance is related to some pathological processes such as neurodegenerative diseases, for example, Parkinson's disease (PD). In this study, we developed an electrochemical microsensor based on poly(melamine) (PMel) films for ratiometric monitoring of pH in subacute PD mouse brains. In this microsensor, PMel films were prepared from a simple electropolymerization approach in a melamine-containing solution, serving as the selective pH recognition membrane undergoing a 2H+/2e- process. Meanwhile, electrochemically oxidized graphene oxide (EOGO) produced a built-in correction signal which helped avoid the environmental interference of the complicated brain systems. The potential difference between the peaks generated from EOGO and PMel gradually decreased with the aqueous pH increasing from 4.0 to 9.0, constituting the detection foundation of the ratiometric electrochemical microsensor (REM). The in vitro studies demonstrated that this proposed method exhibited a high sensitivity (a Nernstian response of -61.35 mV/pH) and remarkable selectivity against amino acids, anions, cations, and biochemical and reactive oxygen species coexisting in the brain. Coupled with its excellent stability and reproducibility and good antibiofouling based on short-term detection, the developed REM could serve as a disposable sensor for the determination of cerebral pH in vivo. Its following successful application in the real-time measurement of pH in the striatum, hippocampus, and cortex of rat brains in the events of global cerebral ischemia/reperfusion verified the reliability of this method. Finally, we adopted this robust REM to systematically analyze and compare the average pH in different regions of normal and subacute PD mouse brains.
Collapse
Affiliation(s)
- Ziyi Zhang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Mengyin Li
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
30
|
Anrango-Camacho C, Pavón-Ipiales K, Frontana-Uribe BA, Palma-Cando A. Recent Advances in Hole-Transporting Layers for Organic Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:443. [PMID: 35159788 PMCID: PMC8840354 DOI: 10.3390/nano12030443] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC's advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.
Collapse
Affiliation(s)
- Cinthya Anrango-Camacho
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| | - Karla Pavón-Ipiales
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM, Carretera Toluca Atlacomulco, Km 14.5, Toluca 50200, Mexico;
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| |
Collapse
|
31
|
Kulkarni BB, Suvina V, Balakrishna RG, Nagaraju DH, Jagadish K. 1D GNR‐PPy Composite for Remarkably Sensitive Detection of Heavy Metal Ions in Environmental Water**. ChemElectroChem 2022. [DOI: 10.1002/celc.202101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bhakti B. Kulkarni
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| | - V. Suvina
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| | - R. Geetha Balakrishna
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| | - D. H. Nagaraju
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| | - Kusuma Jagadish
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| |
Collapse
|
32
|
Dinu A, Apetrei C. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan. Int J Mol Sci 2022; 23:1218. [PMID: 35163145 PMCID: PMC8835779 DOI: 10.3390/ijms23031218] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the studies on developing sensors and biosensors-with an obvious interdisciplinary character-have drawn the attention of many researchers specializing in various fundamental, but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and is aimed at synthesizing the most relevant studies on the construction and functioning of versatile devices, of electrochemical sensors and biosensors, respectively. The first part presents examples of the most representative scientific research focusing on the role and the importance of the phenylalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure and their impact on the central nervous system. The second part is dedicated to presenting and exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors and biosensors developed so far to detect amino acids with the aid of conductor polymers and molecularly imprinted polymers from the point of view of the performances obtained, with emphasis on the detection methods, on the electrochemical reactions that take place upon detection, and on the electroanalytical performances. The present study was carried out with a view to highlighting, for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing efficient devices that might be used in the quality control of medicines, as well as in studying and monitoring diseases associated with these amino acids.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, RO-800008 Galati, Romania;
| |
Collapse
|
33
|
Abstract
π-conducting materials such as chiral polythiophenes exhibit excellent electrochemical stability in doped and undoped states on electrode surfaces (chiral electrodes), which help tune their physical and electronic properties for a wide range of uses. To overcome the limitations of traditional surface immobilization methods, an alternative pathway for the detection of organic and bioorganic targets using chiral electrodes has been developed. Moreover, chiral electrodes have the ability to carry functionalities, which helps the immobilization and recognition of bioorganic molecules. In this review, we describe the use of polythiophenes for the design of chiral electrodes and their applications as electrochemical biosensors.
Collapse
|
34
|
Beaver K, Dantanarayana A, Minteer SD. Materials Approaches for Improving Electrochemical Sensor Performance. J Phys Chem B 2021; 125:11820-11834. [PMID: 34677956 DOI: 10.1021/acs.jpcb.1c07063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors have emerged as important diagnostic tools in recent years, due to their simplicity and ease of use. Compared to instrumental analysis methods that use complicated experimental and data analysis techniques─such as mass spectrometry, nuclear magnetic resonance (NMR), spectrophotometric methods, and chromatography─electrochemical sensors show promise for use in a wide range of real-time and in situ applications such as pharmaceutical testing, environmental monitoring, and medical diagnostics. In order to identify analytes in complex and/or biological samples, materials used for both the electrode materials and the chemically selective layer have been evolving throughout the years for optimizing the analytical performance of electrochemical sensors to increase sensitivity, selectivity and linear range. In this Perspective, attention will be focused on different types of materials that have been used for electrochemical sensing, including new combinations of well-studied materials as well as novel strategies to enhance the performance of sensing devices. The Perspective will also discuss existing challenges in the field and future strategies for addressing those challenges.
Collapse
Affiliation(s)
- Kevin Beaver
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ashwini Dantanarayana
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
35
|
Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been known for years that the phenolic compounds are able to exert harmful effects toward living organisms including humans due to their high toxicity. Living organisms were exposed to these phenolic compounds as they were released into the environment as waste products from several fast-growing industries. In this regard, tremendous efforts have been made by researchers to develop sensing methods for the detection of these phenolic compounds. Graphene and conducting polymers-based materials have arisen as a high potential sensing layer to improve the performance of the developed sensors. Henceforth, this paper reviews the existing investigations on graphene and conducting polymer-based materials incorporated with various sensors that aimed to detect hazardous phenolic compounds, i.e., phenol, 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2,4-dimethylphenol. The whole picture and up-to-date information on the graphene and conducting polymers-based sensors are arranged in systematic chronological order to provide a clearer insight in this research area. The future perspectives of this study are also included, and the development of sensing methods for hazardous phenolic compounds using graphene and conducting polymers-based materials is expected to grow more in the future.
Collapse
|
36
|
Villani E, Shida N, Inagi S. Electrogenerated chemiluminescence of luminol on wireless conducting polymer films. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|