1
|
Zhao K, Yang J, Wang P, Zhou Z, Long H, Xin K, Liu C, Han Z, Liu K, Wei Z. β-Ga 2O 3 Nanoribbon with Ultra-High Solar-Blind Ultraviolet Polarization Ratio. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406559. [PMID: 39295477 DOI: 10.1002/adma.202406559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/26/2024] [Indexed: 09/21/2024]
Abstract
Solar-blind ultraviolet (UV) detection plays a critical role in imaging and communication due to its low-noise background, high signal-to-noise ratio, and strong anti-interference capabilities. Detecting the polarization state of UV light can enhance image information and expand the communication dimension. Although polarization detection is explored in visible and infrared light, and applied in fields such as astrophysics and submarine seismic wave detection, solar-blind UV polarization detection remains largely unreported. This is primarily due to the challenge of creating UV polarizers with high transmittance, high extinction ratio, and strong resistance to UV radiation. In this study, it is discovered that the space symmetry breaking of the β-Ga2O3's b-c plane results in a significant optical absorption dichroic ratio. Leveraging β-Ga2O3's high solar-blind UV response, a lensless solar-blind UV polarization-sensitive photodetector, circumventing the challenges associated with solar-blind UV polarizers is designed. This photodetector exhibits an exceptionally high intrinsic polarization ratio under 254 nm linearly polarized light, approximately two orders of magnitude higher than other reported nanomaterial-based polarization-sensitive photodetectors. Additionally, it demonstrates significant advantages in solar-blind UV imaging and light communication. This work introduces a novel strategy for solar-blind ultraviolet polarization detection and offers a promising approach for solar-blind light communication.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Pan Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, 100871, China
| | - Haoran Long
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Liu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, 100871, China
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, 100871, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Santos P, Silva AP, Reis PNB. The Effect of Carbon Nanofibers on the Mechanical Performance of Epoxy-Based Composites: A Review. Polymers (Basel) 2024; 16:2152. [PMID: 39125179 PMCID: PMC11314623 DOI: 10.3390/polym16152152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
This review is a fundamental tool for researchers and engineers involved in the design and optimization of fiber-reinforced composite materials. The aim is to provide a comprehensive analysis of the mechanical performance of composites with epoxy matrices reinforced with carbon nanofibers (CNFs). The review includes studies investigating the static mechanical response through three-point bending (3PB) tests, tensile tests, and viscoelastic behavior tests. In addition, the properties of the composites' resistance to interlaminar shear strength (ILSS), mode I and mode II interlaminar fracture toughness (ILFT), and low-velocity impact (LVI) are analyzed. The incorporation of small amounts of CNFs, mostly between 0.25 and 1% by weight was shown to have a notable impact on the static and viscoelastic properties of the composites, leading to greater resistance to time-dependent deformation and better resistance to creep. ILSS and ILFT modes I and II of fiber-reinforced composites are critical parameters in assessing structural integrity through interfacial bonding and were positively affected by the introduction of CNFs. The response of composites to LVI demonstrates the potential of CNFs to increase impact strength by reducing the energy absorbed and the size of the damage introduced. Epoxy matrices reinforced with CNFs showed an average increase in stiffness of 15% and 20% for bending and tensile, respectively. The laminates, on the other hand, showed an increase in bending stiffness of 20% and 15% for tensile and modulus, respectively. In the case of ILSS and ILFT modes I and II, the addition of CNFs promoted average increases in the order of 50%, 100%, and 50%, respectively.
Collapse
Affiliation(s)
- Paulo Santos
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - Abílio P. Silva
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - Paulo N. B. Reis
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| |
Collapse
|
3
|
Zhou Z, Tian Y, Zou L, Liu Y, Zhang X, Huang X, Ren H, Li Z, Niu H, Liao H, Zhang X, Pan H, Rong S, Ma H. An electrochemical ratiometric immunosensor for the detection of NMP22 based on ZIF-8@MWCNTs@Chit@Fc@AuNPs and AuPt-MB. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39046279 DOI: 10.1039/d4ay01066c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Nuclear matrix protein 22 (NMP22) is one of the most important tumor markers of bladder cancer and is significantly elevated in the urine of bladder cancer patients. Therefore, in this work, a highly sensitive ratiometric electrochemical immunosensor was constructed to detect NMP22 based on ZIF-8@MWCNTs@Chit@Fc@AuNPs composites. ZIF-8 had a large surface area and good adsorption ability. Multi-Walled Carbon Nanotubes (MWCNTs) can optimize the electrical conductivity of ZIF-8, so that the electrode surface of ferrocene (Fc) obtains a stable and strong electrochemical signal. In addition, AuPt-MB provided another strong detection signal methylene blue (MB) while immobilizing the secondary antibody (Ab2) through Au-N and Pt-N bonds. A ratiometric electrochemical sensor was formed based on ZIF-8@MWCNTs@Chit@Fc@AuNPs and AuPt-MB, which showed a great linear connection between IMB/IFc and the logarithmic concentration of NMP22 with a detection limit of 3.33 fg mL-1 (S/N = 3) under optimized specifications in the concentration interval of 0.01 pg mL-1 to 1000 ng mL-1. In addition, the ratiometric immunosensor showed good selectivity and stability.
Collapse
Affiliation(s)
- Zhiren Zhou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Yuting Tian
- School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xueqing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xiaojing Huang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
4
|
Zhou Y, Li L, Tong J, Chen X, Deng W, Chen Z, Xiao X, Yin Y, Zhou Q, Gao Y, Hu X, Wang Y. Advanced nanomaterials for electrochemical sensors: application in wearable tear glucose sensing technology. J Mater Chem B 2024; 12:6774-6804. [PMID: 38920094 DOI: 10.1039/d4tb00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiale Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xiaoli Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yong Yin
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
5
|
Shukla S, Jana S, Gupta A, Ghosh S, Ray SK, Srivastava SK. Photoresponse of Carbon Nanofiber-Based Photodetector and Its Enhancement on CuNi Nanoparticle Adsorption. ACS OMEGA 2024; 9:27232-27247. [PMID: 38947801 PMCID: PMC11209913 DOI: 10.1021/acsomega.4c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
We explore the photodetection properties of a carbon nanofiber (CNF)-based p-CNF/n-Si heterojunction device in the 400-800 nm wavelength range and investigate the changes brought in by adsorption of CuNi (CN) nanoparticles on the CNFs. The nanoparticles and CN-CNF nanocomposites were synthesized by using chemical hydrothermal routes. The p-type semiconducting nature of the CNFs and nanocomposites was determined using X-ray photoelectron (XPS) and UV-vis spectroscopies. The p-CNF/n-Si device is found to be better than many carbon-nanotube-based devices in terms of its peak responsivity (0.6 A/W) and gain (1.6), with an acceptably moderate peak detectivity (1.3 × 109 Jones) at 450 nm and a -5 V bias. The p-CN-CNF/n-Si device displays an appreciable enhancement in the photoresponse with respect to the p-CNF/n-Si device, with a peak responsivity of 2.8 A/W, peak detectivity of 9.4 × 109 Jones, and gain of 8. With the aid of valence band XPS and Raman spectra, the enhancement is explainable in terms of a CN to CNF charge transfer and the resulting increase in the built-in potential at the heterojunction.
Collapse
Affiliation(s)
- Shivam Shukla
- Department
of Physics, Indian Institute of Technology
Kharagpur, Kharagpur WB - 721302, India
| | - Subhajit Jana
- Department
of Physics, Indian Institute of Technology
Kharagpur, Kharagpur WB - 721302, India
| | - Anu Gupta
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Subhadip Ghosh
- Department
of Physics, Indian Institute of Technology
Kharagpur, Kharagpur WB - 721302, India
| | - Samit K. Ray
- Department
of Physics, Indian Institute of Technology
Kharagpur, Kharagpur WB - 721302, India
| | - Sanjeev K. Srivastava
- Department
of Physics, Indian Institute of Technology
Kharagpur, Kharagpur WB - 721302, India
| |
Collapse
|
6
|
Ferlazzo A, Celesti C, Iannazzo D, Ampelli C, Giusi D, Costantino V, Neri G. Functionalization of Carbon Nanofibers with an Aromatic Diamine: Toward a Simple Electrochemical-Based Sensing Platform for the Selective Sensing of Glucose. ACS OMEGA 2024; 9:27085-27092. [PMID: 38947806 PMCID: PMC11209887 DOI: 10.1021/acsomega.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 07/02/2024]
Abstract
Despite a variety of glucose sensors being available today, the development of nonenzymatic devices for the determination of this biologically relevant analyte is still of particular interest in several applicative sectors. Here, we report the development of an impedimetric, enzyme-free electrochemical glucose sensor based on carbon nanofibers (CNFs) functionalized with an aromatic diamine via a simple wet chemistry functionalization. The electrochemical performance of the chemically modified carbon-based screen-printed electrodes (SPCEs) was evaluated by electrical impedance spectroscopy (EIS), demonstrating a high selectivity of the sensor for glucose with respect to other sugars, such as fructose and sucrose. The sensing parameters to obtain a reliable calibration curve and the selective glucose sensing mechanism are discussed here, highlighting the performance of this novel electrochemical sensor for the selective sensing of this important analyte. Two linear trends were noted, one at low concentrations (0-1200 μM) and the other from 1200 to 5000 μM. The limit of detection (LOD), calculated as the (standard error/slope)*3.3, was 18.64 μM. The results of this study highlight the performance of the developed novel electrochemical sensor for the selective sensing of glucose.
Collapse
Affiliation(s)
- Angelo Ferlazzo
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, I-95125 Catania, Italy
| | - Consuelo Celesti
- Department
of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Daniela Iannazzo
- Department
of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Claudio Ampelli
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(ChiBioFarAm), University of Messina and
INSTM, Via F. Stagno
d’Alcontres 31, I-98166 Messina, Italy
| | - Daniele Giusi
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(ChiBioFarAm), University of Messina and
INSTM, Via F. Stagno
d’Alcontres 31, I-98166 Messina, Italy
| | - Veronica Costantino
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(ChiBioFarAm), University of Messina and
INSTM, Via F. Stagno
d’Alcontres 31, I-98166 Messina, Italy
| | - Giovanni Neri
- Department
of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| |
Collapse
|
7
|
Alvarado A, Baykara H, Riofrio A, Cornejo M, Merchan-Merchan W. Preparation, characterization, electrical conductivity, and life cycle assessment of carbon nanofibers-reinforced Ecuadorian natural zeolite-based geopolymer composites. Heliyon 2024; 10:e28079. [PMID: 38524539 PMCID: PMC10957430 DOI: 10.1016/j.heliyon.2024.e28079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Geopolymers are inorganic crosslinked polymers with much less carbon footprint than ordinary Portland cement. Geopolymers and geopolymer-based materials have superior mechanical and durability properties with extreme thermal and chemical resistance. Carbon nano- or microfibers-reinforced geopolymers show potential properties such as electric conductivity, enhanced mechanical and thermal stability, and multi-functionality. This study evaluated the effect of incorporating carbon nanofibers in natural zeolite-based geopolymers and their impact on the mechanical, thermal, and electric conductivity of yielded geopolymer composites. Additionally, a life cycle assessment for 1 m3 geopolymer and its carbon fiber reinforced geopolymers' production has been conducted to evaluate the environmental impact of the processes.
Collapse
Affiliation(s)
- Adriana Alvarado
- Bert S. Turner Dept. of Construction Management, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Haci Baykara
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica de Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador
- Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica de Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador
| | - Ariel Riofrio
- Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica de Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, Hong Kong
| | - Mauricio Cornejo
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica de Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador
- Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica de Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador
| | - Wilson Merchan-Merchan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, 73019, United States
| |
Collapse
|
8
|
Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, Sasmazel HT, Kaji H, Deigner HP, Pedraz JL, Kim HW, Shi Z, Marrazza G. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. DISCOVER NANO 2023; 18:58. [PMID: 37032711 PMCID: PMC10066940 DOI: 10.1186/s11671-023-03842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.
Collapse
Affiliation(s)
- Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Liang Lan
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062 Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
9
|
Štukovnik Z, Fuchs-Godec R, Bren U. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. BIOSENSORS 2023; 13:899. [PMID: 37887092 PMCID: PMC10605062 DOI: 10.3390/bios13100899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Impedimetric biosensors measure changes in the electrical impedance due to a biochemical process, typically the binding of a biomolecule to a bioreceptor on the sensor surface. Nanomaterials can be employed to modify the biosensor's surface to increase the surface area available for biorecognition events, thereby improving the sensitivity and detection limits of the biosensor. Various nanomaterials, such as carbon nanotubes, carbon nanofibers, quantum dots, metal nanoparticles, and graphene oxide nanoparticles, have been investigated for impedimetric biosensors. These nanomaterials have yielded promising results in improving sensitivity, selectivity, and overall biosensor performance. Hence, they offer a wide range of possibilities for developing advanced biosensing platforms that can be employed in various fields, including healthcare, environmental monitoring, and food safety. This review focuses on the recent developments in nanoparticle-functionalized electrochemical-impedimetric biosensors.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Regina Fuchs-Godec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, 6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Li J, Liu X, Xi J, Deng L, Yang Y, Li X, Sun H. Recent Development of Polymer Nanofibers in the Field of Optical Sensing. Polymers (Basel) 2023; 15:3616. [PMID: 37688242 PMCID: PMC10489887 DOI: 10.3390/polym15173616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, owing to the continuous development of polymer nanofiber manufacturing technology, various nanofibers with different structural characteristics have emerged, allowing their application in the field of sensing to continually expand. Integrating polymer nanofibers with optical sensors takes advantage of the high sensitivity, fast response, and strong immunity to electromagnetic interference of optical sensors, enabling widespread use in biomedical science, environmental monitoring, food safety, and other fields. This paper summarizes the research progress of polymer nanofibers in optical sensors, classifies and analyzes polymer nanofiber optical sensors according to different functions (fluorescence, Raman, polarization, surface plasmon resonance, and photoelectrochemistry), and introduces the principles, structures, and properties of each type of sensor and application examples in different fields. This paper also looks forward to the future development directions and challenges of polymer nanofiber optical sensors, and provides a reference for in-depth research of sensors and industrial applications of polymer nanofibers.
Collapse
Affiliation(s)
- Jinze Li
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Xin Liu
- School of Physics, Xidian University, Xi'an 710071, China
| | - Jiawei Xi
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Li Deng
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Yanxin Yang
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Xiang Li
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Hao Sun
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| |
Collapse
|
11
|
Meenakshi GA, Sakthinathan S, Chiu TW. Fabrication of Carbon Nanofiber Incorporated with CuWO 4 for Sensitive Electrochemical Detection of 4-Nitrotoluene in Water Samples. SENSORS (BASEL, SWITZERLAND) 2023; 23:5668. [PMID: 37420832 DOI: 10.3390/s23125668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
In the current work, copper tungsten oxide (CuWO4) nanoparticles are incorporated with carbon nanofiber (CNF) to form CNF/CuWO4 nanocomposite through a facile hydrothermal method. The prepared CNF/CuWO4 composite was applied to the electrochemical detection of hazardous organic pollutants of 4-nitrotoluene (4-NT). The well-defined CNF/CuWO4 nanocomposite is used as a modifier of glassy carbon electrode (GCE) to form CuWO4/CNF/GCE electrode for the detection of 4-NT. The physicochemical properties of CNF, CuWO4, and CNF/CuWO4 nanocomposite were examined by various characterization techniques, such as X-ray diffraction studies, field emission scanning electron microscopy, EDX-energy dispersive X-ray microanalysis, and high-resolution transmission electron microscopy. The electrochemical detection of 4-NT was evaluated using cyclic voltammetry (CV) the differential pulse voltammetry detection technique (DPV). The aforementioned CNF, CuWO4, and CNF/CuWO4 materials have better crystallinity with porous nature. The prepared CNF/CuWO4 nanocomposite has better electrocatalytic ability compared to other materials such as CNF, and CuWO4. The CuWO4/CNF/GCE electrode exhibited remarkable sensitivity of 7.258 μA μM-1 cm-2, a low limit of detection of 86.16 nM, and a long linear range of 0.2-100 μM. The CuWO4/CNF/GCE electrode exhibited distinguished selectivity, acceptable stability of about 90%, and well reproducibility. Meanwhile, the GCE/CNF/CuWO4 electrode has been applied to real sample analysis with better recovery results of 91.51 to 97.10%.
Collapse
Affiliation(s)
- Ganesh Abinaya Meenakshi
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
12
|
Li Y, Gao X, Fang Y, Cui B, Shen Y. Nanomaterials-driven innovative electrochemiluminescence aptasensors in reporting food pollutants. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Wyss KM, Li JT, Advincula PA, Bets KV, Chen W, Eddy L, Silva KJ, Beckham JL, Chen J, Meng W, Deng B, Nagarajaiah S, Yakobson BI, Tour JM. Upcycling of Waste Plastic into Hybrid Carbon Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209621. [PMID: 36694364 DOI: 10.1002/adma.202209621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Graphitic 1D and hybrid nanomaterials represent a powerful solution in composite and electronic applications due to exceptional properties, but large-scale synthesis of hybrid materials has yet to be realized. Here, a rapid, scalable method to produce graphitic 1D materials from polymers using flash Joule heating (FJH) is reported. This avoids lengthy chemical vapor deposition and uses no solvent or water. The flash 1D materials (F1DM), synthesized using a variety of earth-abundant catalysts, have controllable diameters and morphologies by parameter tuning. Furthermore, the process can be modified to form hybrid materials, with F1DM bonded to turbostratic graphene. In nanocomposites, F1DM outperform commercially available carbon nanotubes. Compared to current 1D material synthetic strategies using life cycle assessment, FJH synthesis represents an 86-92% decrease in cumulative energy demand and 92-94% decrease in global-warming potential. This work suggests that FJH affords a cost-effective and sustainable route to upcycle waste plastic into valuable 1D and hybrid nanomaterials.
Collapse
Affiliation(s)
- Kevin M Wyss
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - John T Li
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Paul A Advincula
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Ksenia V Bets
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Weiyin Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Applied Physics Graduate Program, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Karla J Silva
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jacob L Beckham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jinhang Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Wei Meng
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Bing Deng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Satish Nagarajaiah
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Boris I Yakobson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
14
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
15
|
Costanzo H, Gooch J, Frascione N. Nanomaterials for optical biosensors in forensic analysis. Talanta 2023; 253:123945. [PMID: 36191514 DOI: 10.1016/j.talanta.2022.123945] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Biosensors are compact analytical devices capable of transducing a biological interaction event into a measurable signal outcome in real-time. They can provide sensitive and affordable analysis of samples without the need for additional laboratory equipment or complex preparation steps. Biosensors may be beneficial for forensic analysis as they can facilitate large-scale high-throughput, sensitive screening of forensic samples to detect target molecules that are of high evidential value. Nanomaterials are gaining attention as desirable components of biosensors that can enhance detection and signal efficiency. Biosensors that incorporate nanomaterials within their design have been widely reported and developed for medical purposes but are yet to find routine employment within forensic science despite their proven potential. In this article, key examples of the use of nanomaterials within optical biosensors designed for forensic analysis are outlined. Their design and mechanism of detection are both considered throughout, discussing how nanomaterials can enhance the detection of the target analyte. The critical evaluation of the optical biosensors detailed within this review article should help to guide future optical biosensor design via the incorporation of nanomaterials, for not only forensic analysis but alternative analytical fields where such biosensors may prove a valuable addition to current workflows.
Collapse
Affiliation(s)
- Hayley Costanzo
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - James Gooch
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
16
|
Arjmandi SK, Khademzadeh Yeganeh J, Zare Y, Rhee KY. Development of Kovacs model for electrical conductivity of carbon nanofiber-polymer systems. Sci Rep 2023; 13:7. [PMID: 36593230 PMCID: PMC9807566 DOI: 10.1038/s41598-022-26139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
This study develops a model for electrical conductivity of polymer carbon nanofiber (CNF) nanocomposites (PCNFs), which includes two steps. In the first step, Kovacs model is developed to consider the CNF, interphase and tunneling regions as dissimilar zones in the system. In the second step, simple equations are expressed to estimate the resistances of interphase and tunnels, the volume fraction of CNF and percolation onset. Although some earlier models were proposed to predict the electrical conductivity of PCNFs, developing of Kovacs model causes a better understanding of the effects of main factors on the nanocomposite conductivity. The developed model is supported by logical influences of all factors on the conductivity and by experimented conductivity of several samples. The calculations show good accordance to the experimented data and all factors rationally manage the conductivity of PCNFs. The highest conductivity of PCNF is gained as 0.019 S/m at the lowest ranges of polymer tunnel resistivity (ρ = 500 Ω m) and tunneling distance (d = 2 nm), whereas the highest levels of these factors (ρ > 3000 Ω m and d > 6 nm) cannot cause a conductive sample. Also, high CNF volume fraction, poor waviness, long and thin CNF, low "k", thick interphase, high CNF conduction, high percentage of percolated CNFs, low percolation onset and high interphase conductivity cause an outstanding conductivity in PCNF.
Collapse
Affiliation(s)
- Sajad Khalil Arjmandi
- grid.459900.1Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, P.O. Box: 37195-1519, Qom, Iran
| | - Jafar Khademzadeh Yeganeh
- grid.459900.1Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, P.O. Box: 37195-1519, Qom, Iran
| | - Yasser Zare
- grid.417689.5Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Kyong Yop Rhee
- grid.289247.20000 0001 2171 7818Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
17
|
Yao M, Sun F, Nie J, Yang QL, Wu W, Zhao F. Electrospinning in Food Safety Detection: Diverse Nanofibers Promote Sensing Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2146135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Mingru Yao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Feifei Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Jiyun Nie
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Agricultural University, Qingdao, China
| | - Qing-Li Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|
19
|
Mohd Saidi N, Abdullah N, Norizan MN, Janudin N, Mohd Kasim NA, Osman MJ, Mohamad IS, Mohd Rosli MA. Surface-Oxidised Carbon Nanofibre-Based Nanofluids: Structural, Morphological, Stability and Thermal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3922. [PMID: 36364698 PMCID: PMC9658691 DOI: 10.3390/nano12213922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The reputation of nanofluids as a convenient heat transfer media has grown in recent years. The synthesis of nanofluids is often challenging, particularly carbon-based nanofluids, due to the rapid agglomeration of the nanoparticles and the instability of the nanofluids. In this regard, surface modification and surfactant addition are potential approaches to improve the physical and thermal properties of carbon-based nanofluids that have been studied and the structural, morphological, and thermal characteristics of surface-oxidised carbon nanofibre (CNF)-based nanofluids has been characterised. Commercial CNF was first subjected to three different acid treatments to introduce surface oxygen functional groups on the CNF surface. Following the physical and thermal characterisation of the three surface-oxidised CNFs (CNF-MA, CNF-MB, and CNF-MC), including Raman spectroscopy, Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM), the CNF-MB was selected as the best method to synthesise the surface-oxidised CNF-based nanofluid. A total of 40 mL of ultrapure water was used as a pure base fluid and mixed with the surface-oxidised CNF at a concentration range of 0.1-1.0 wt.%, with a fixed of 10 wt.% amount of polyvinylpyrrolidone (PVP). The thermal conductivity of CNF-based nanofluid was then characterised at different temperatures (6, 25, and 40 °C). Based on the results, surface oxidation via Method B significantly affected the extent of surface defects and effectively enhanced the group functionality on the CNF surface. Aside from the partially defective and rough surface of CNF-MB surfaces from the FESEM analysis, the presence of surface oxygen functional groups on the CNF wall was confirmed via the Raman analysis, TGA curve, and FTIR analysis. The visual sedimentation observation also showed that the surface-oxidised CNF particles remained dispersed in the nanofluid due to the weakened van der Waals interaction. The dispersion of CNF particles was improved by the presence of PVP, which further stabilised the CNF-based nanofluids. Ultimately, the thermal conductivity of the surface-oxidised CNF-based nanofluid with PVP was significantly improved with the highest enhancement percentage of 18.50, 16.84, and 19.83% at 6, 25, and 40 °C, respectively, at an optimum CNF concentration of 0.7 wt.%.
Collapse
Affiliation(s)
- Norshafiqah Mohd Saidi
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Norli Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nurjahirah Janudin
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Noor Azilah Mohd Kasim
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Junaedy Osman
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Imran Syakir Mohamad
- Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| | - Mohd Afzanizam Mohd Rosli
- Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| |
Collapse
|
20
|
Mariyappan V, Sundaresan R, Chen SM, Ramachandran R. Ultrasensitive electrochemical sensor for the detection of carbamazepine based on gadolinium vanadate nanostructure decorated functionalized carbon nanofiber nanocomposite. CHEMOSPHERE 2022; 307:135803. [PMID: 35931253 DOI: 10.1016/j.chemosphere.2022.135803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The gadolinium vanadate nanostructure decorated functionalized carbon nanofiber (GdVO4/f-CNF) nanocomposite was prepared by the hydrothermal method, which is fabricated on a glassy carbon electrode (GCE) for the determination of carbamazepine (CBZ). The structural morphology of the hydrothermally synthesized GdVO4/f-CNF material was investigated by several spectroscopy methods such as FESEM, HRTEM, EDS-mapping, XRD, XPS, and Raman. Moreover, the electrical conductivity of our synthesized material was inspected by the electrochemical impedance spectroscopy (EIS) analysis, and the electrochemical performance towards CBZ was inspected by the cyclic voltammetry (CV) and amperometry (AMP) analysis under optimized conditions. The AMP determination of CBZ exhibits the lowest level LOD of 0.0018 μM and a good linear range of 0.01-157 μM. Additionally, our proposed sensor was used to determine the CBZ in the pharmaceutical and, human urine samples which have exposed the acceptable recoveries.
Collapse
Affiliation(s)
- Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Ruspika Sundaresan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai, 625 011, Tamil Nadu, India
| |
Collapse
|
21
|
Araújo R, González-González RB, Martinez-Ruiz M, Coronado-Apodaca KG, Reyes-Pardo H, Morreeuw ZP, Oyervides-Muñoz MA, Sosa-Hernández JE, Barceló D, Parra-Saldívar R, Iqbal HM. Expanding the Scope of Nanobiocatalysis and Nanosensing: Applications of Nanomaterial Constructs. ACS OMEGA 2022; 7:32863-32876. [PMID: 36157779 PMCID: PMC9494649 DOI: 10.1021/acsomega.2c03155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 05/25/2023]
Abstract
The synergistic interaction between advanced biotechnology and nanotechnology has allowed the development of innovative nanomaterials. Those nanomaterials can conveniently act as supports for enzymes to be employed as nanobiocatalysts and nanosensing constructs. These systems generate a great capacity to improve the biocatalytic potential of enzymes by improving their stability, efficiency, and product yield, as well as facilitating their purification and reuse for various bioprocessing operating cycles. The different specific physicochemical characteristics and the supramolecular nature of the nanocarriers obtained from different economical and abundant sources have allowed the continuous development of functional nanostructures for different industries such as food and agriculture. The remarkable biotechnological potential of nanobiocatalysts and nanosensors has generated applied research and use in different areas such as biofuels, medical diagnosis, medical therapies, environmental bioremediation, and the food industry. The objective of this work is to present the different manufacturing strategies of nanomaterials with various advantages in biocatalysis and nanosensing of various compounds in the industry, providing great benefits to society and the environment.
Collapse
Affiliation(s)
- Rafael
G. Araújo
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Manuel Martinez-Ruiz
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Humberto Reyes-Pardo
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
| | - Zoé P. Morreeuw
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Damià Barceló
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
- Catalan
Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability
Cluster, School of Engineering, UPES, 248007 Dehradun, India
| | - Roberto Parra-Saldívar
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M.N. Iqbal
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
22
|
Kundu A, Shetti NP, Basu S, Mondal K, Sharma A, Aminabhavi TM. Versatile Carbon Nanofiber-Based Sensors. ACS APPLIED BIO MATERIALS 2022; 5:4086-4102. [PMID: 36040854 DOI: 10.1021/acsabm.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon nanofibers (CNFs) display colossal potential in different fields like energy, catalysis, biomedicine, sensing, and environmental science. CNFs have revealed extensive uses in various sensing platforms due to their distinctive structure, properties, function, and accessible surface functionalization capabilities. This review presents insight into various fabrication methods for CNFs like electrospinning, chemical vapor deposition, and template methods with merits and demerits of each technique. Also, we give a brief overview of CNF functionalization. Their unique physical and chemical properties make them promising candidates for the sensor applications. This review offers detailed discussion of sensing applications (strain sensor, biosensor, small molecule detection, food preservative detection, toxicity biomarker detection, and gas sensor). Various sensing applications of CNF like human motion monitoring and energy storage and conversion are discussed in brief. The challenges and obstacles associated with CNFs for futuristic applications are discussed. This review will be helpful for readers to understand the different fabrication methods and explore various applications of the versatile CNFs.
Collapse
Affiliation(s)
- Aayushi Kundu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| |
Collapse
|
23
|
An ultrasensitive immunosensor based on cellulose nanofibrils/polydopamine/Cu-Ag nanocomposite for the detection of AFP. Bioelectrochemistry 2022; 147:108200. [PMID: 35816908 DOI: 10.1016/j.bioelechem.2022.108200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022]
Abstract
In this work, an ultrasensitive immunosensor for amperometric determination of alpha-fetoprotein (AFP) was developed utilizing Ag and Cu nanoparticles on polydopamine (PDA) functionalized cellulose nanofibrils (CNFs) composite (CNFs/PDA/Cu-Ag) as signal amplifier. PDA was first prepared by self-polymerizing of dopamine, and then was adsorbed on CNFs. The obtained CNFs/PDA was applied as substrate to electrolessly deposit Cu-Ag nanoparticles, using NaBH4 as reducing agent. The structure and morphology of the synthesized CNFs/PDA/Cu-Ag nanocomposite were analyzed through Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, scanning electron microscopy, particle size analyzer and transmission electron microscopy. The CNFs/PDA/Cu-Ag modified glassy carbon electrode can fix AFP antibody (Ab), and further capture AFP specifically. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the assembly process of immunosensor. The immunoreaction was amplified by electrocatalytical reduction of H2O2 on Cu-Ag nanoparticles, through which AFP was quantitatively detected. The developed sensor exhibits wide linear range of 0.01-100 ng mL-1 (R2 = 0.9963) with low detection limit of 4.27 pg mL-1 (S/N = 3). In addition, it has been used for the detection of AFP in human serum, manifesting its preeminent application prospect in early liver cancer diagnosis.
Collapse
|
24
|
Baytak A, Aslanoglu M. Praseodymium doped dysprosium oxide‐carbon nanofibers based voltammetric platform for the simultaneous determination of sunset yellow and tartrazine. ELECTROANAL 2022. [DOI: 10.1002/elan.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Chen Y, Kong H, Guo L, Wei G. Biomimetic Organic-Inorganic Hybrid Membranes for Removal of Fluoride Ions. MATERIALS 2022; 15:ma15103457. [PMID: 35629484 PMCID: PMC9147820 DOI: 10.3390/ma15103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Carbon nanofibers (CaNFs) exhibit promising applications in the fields of environmental science and nanotechnology, and self-assembled peptide nanofibers (PNFs) are useful for the biomimetic synthesis of organic-inorganic hybrid nanomaterials and the fabrication of functional hybrid membranes for the removal of various pollutants from water. In this work, we report the biomimetic synthesis of hybrid nanomaterials by the interweaving of CaNFs and PNFs. Using the biomimetic mineralization properties of PNFs, ZrO2 nanoparticles were synthesized along the nanofiber surface, and then functional nanohybrid porous membranes were prepared by the vacuum filtration technology. For the fabrication of membranes, the amount of PNFs and ZrO2 precursors in the hybrid membrane were optimized. The designed organic-inorganic hybrid membranes exhibited high removal performance for fluorine ion (F−) from water, and the removal efficiency of the fabricated membranes towards F− ion-containing aqueous solution with a concentration of 50–100 mg/L reached more than 80%. In addition, the nanofiltration membranes revealed good adsorption capacity for F− ions. It is expected that the strategies shown in this study will be beneficial for the design, biomimetic synthesis, and fabrication of nanoporous membranes for economic, rapid, and efficient water purification.
Collapse
Affiliation(s)
- Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.C.); (H.K.)
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.C.); (H.K.)
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
- Correspondence: (L.G.); (G.W.); Tel.: +86-150-6624-2101 (G.W.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.C.); (H.K.)
- Correspondence: (L.G.); (G.W.); Tel.: +86-150-6624-2101 (G.W.)
| |
Collapse
|
26
|
Amouzadeh Tabrizi M, Acedo P. An Electrochemical Impedance Spectroscopy-Based Aptasensor for the Determination of SARS-CoV-2-RBD Using a Carbon Nanofiber-Gold Nanocomposite Modified Screen-Printed Electrode. BIOSENSORS 2022; 12:bios12030142. [PMID: 35323412 PMCID: PMC8945915 DOI: 10.3390/bios12030142] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/17/2023]
Abstract
Worldwide, human health is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the fabrication of the biosensors to diagnose SARS-CoV-2 is critical. In this paper, we report an electrochemical impedance spectroscopy (EIS)-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the carbon nanofibers (CNFs) were first decorated with gold nanoparticles (AuNPs). Then, the surface of the carbon-based screen-printed electrode (CSPE) was modified with the CNF-AuNP nanocomposite (CSPE/CNF-AuNP). After that, the thiol-terminal aptamer probe was immobilized on the surface of the CSPE/CNF-AuNP. The surface coverage of the aptamer was calculated to be 52.8 pmol·cm-2. The CSPE/CNF-AuNP/Aptamer was then used for the measurement of SARS-CoV-2-RBD by using the EIS method. The obtained results indicate that the signal had a linear-logarithmic relationship in the range of 0.01-64 nM with a limit of detection of 7.0 pM. The proposed aptasensor had a good selectivity to SARS-CoV-2-RBD in the presence of human serum albumin; human immunoglobulins G, A, and M, hemagglutinin, and neuraminidase. The analytical performance of the aptasensor was studied in human saliva samples. The present study indicates a practical application of the CSPE/CNF-AuNP/Aptamer for the determination of SARS-CoV-2-RBD in human saliva samples with high sensitivity and accuracy.
Collapse
|
27
|
Enhancement of Room Temperature Ethanol Sensing by Optimizing the Density of Vertically Aligned Carbon Nanofibers Decorated with Gold Nanoparticles. MATERIALS 2022; 15:ma15041383. [PMID: 35207925 PMCID: PMC8879461 DOI: 10.3390/ma15041383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/17/2023]
Abstract
An ethanol gas sensor based on carbon nanofibers (CNFs) with various densities and nanoparticle functionalization was investigated. The CNFs were grown by means of a Plasma-Enhanced Chemical Vapor Deposition (PECVD), and the synthesis conditions were varied to obtain different number of fibers per unit area. The devices with a larger density of CNFs lead to higher responses, with a maximal responsivity of 10%. Furthermore, to simultaneously improve the sensitivity and selectivity, CNFs were decorated with gold nanoparticles by an impaction printing method. After metal decoration, the devices showed a response 300% higher than pristine devices toward 5 ppm of ethanol gas. The morphology and structure of the different samples deposited on a silicon substrate were characterized by TEM, EDX, SEM, and Raman spectroscopy, and the results confirmed the presence of CNF decorated with gold. The influence of operating temperature (OT) and humidity were studied on the sensing devices. In the case of decorated samples with a high density of nanofibers, a less-strong cross-sensitivity was observed toward a variation in humidity and temperature.
Collapse
|
28
|
Rabajczyk A, Zielecka M, Popielarczyk T, Sowa T. Nanotechnology in Fire Protection-Application and Requirements. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7849. [PMID: 34947443 PMCID: PMC8707653 DOI: 10.3390/ma14247849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
Nanotechnology is used, to an increasing extent, in practically every aspect of the economy and society. One area where nanotechnology is constantly advancing is fire protection. Nanostructures are found in elements used in direct protection, such as in protective clothing, filters, and helmets. Solutions in the field of nanotechnology are also used in elements reducing the fire risk and increasing the fire safety, such as building materials and structures, paints, coatings, or fire safety equipment (e.g., fire detectors). However, new solutions may also pose a threat to the safety of people and the environment. As a result of operation or combustion and degradation processes, the emission of nano-substances with toxic properties may occur. Therefore, knowledge in this field is necessary, as it allows for the appropriate targeting and use of nanotechnology.
Collapse
Affiliation(s)
- Anna Rabajczyk
- Scientific and Research Center for Fire Protection, National Research Institute, Nadwiślańska 213, 05-420 Jozefow, Poland; (M.Z.); (T.P.); (T.S.)
| | | | | | | |
Collapse
|
29
|
Chai AW, Wang CC, Chen CY. Magnetic-field-induced acicular nickel immobilized on carbon nanofibers as electrodes for electrochemical glucose sensing. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Bongiovanni Abel S, Martinez MV, Bruno MM, Barbero CA, Abraham GA, Acevedo DF. A modular platform based on electrospun carbon nanofibers and poly(
N
‐isopropylacrylamide) hydrogel for sensor applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Silvestre Bongiovanni Abel
- Research Institute of Materials Science and Technology (INTEMA) National University of Mar del Plata (UNMdP)‐National Council of Scientific and Technical Research (CONICET) Mar del Plata Argentina
| | - María V. Martinez
- Research Institute for Energy Technologies and Advanced Materials (IITEMA) National University of Río Cuarto (UNRC)‐National Council of Scientific and Technical Research (CONICET) Río Cuarto Argentina
| | - Mariano M. Bruno
- Research Institute for Energy Technologies and Advanced Materials (IITEMA) National University of Río Cuarto (UNRC)‐National Council of Scientific and Technical Research (CONICET) Río Cuarto Argentina
| | - Cesar A. Barbero
- Research Institute for Energy Technologies and Advanced Materials (IITEMA) National University of Río Cuarto (UNRC)‐National Council of Scientific and Technical Research (CONICET) Río Cuarto Argentina
| | - Gustavo A. Abraham
- Research Institute of Materials Science and Technology (INTEMA) National University of Mar del Plata (UNMdP)‐National Council of Scientific and Technical Research (CONICET) Mar del Plata Argentina
| | - Diego F. Acevedo
- Research Institute for Energy Technologies and Advanced Materials (IITEMA) National University of Río Cuarto (UNRC)‐National Council of Scientific and Technical Research (CONICET) Río Cuarto Argentina
| |
Collapse
|
31
|
Trabelsi M, Mamun A, Klöcker M, Moulefera I, Pljonkin A, Elleuch K, Sabantina L. Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:7873. [PMID: 34883875 PMCID: PMC8659674 DOI: 10.3390/s21237873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
Electrospinning enables simple and cost-effective production of magnetic nanofibers by adding nanoparticles to a polymer solution. In order to increase the electrical conductivity of such nanofibers, the carbonization process is crucial. In this study, the chemical and morphological properties of magnetic nanofiber mats prepared from polyacrylonitrile (PAN)/magnetite were investigated. In our previous studies, PAN/magnetite nanofiber mats were carbonized at 500 °C, 600 °C, and 800 °C. Here, PAN/magnetite nanofiber mats were carbonized at 1000 °C. The surface morphology of these PAN/magnetite nanofiber mats is not significantly different from nanofiber mats thermally treated at 800 °C and have remained relatively flexible at 1000 °C, which can be advantageous for various application fields. The addition of nanoparticles increased the average fiber diameter compared to pure PAN nanofiber mats and improved the dimensional stability during thermal processes. The high conductivity, the high magnetization properties, as well as shielding against electromagnetic interference of such carbonized nanofibers can be proposed for use in single photon avalanche diode (SPAD), where these properties are advantageous.
Collapse
Affiliation(s)
- Marah Trabelsi
- Ecole Nationale d’Ingénieurs de Sfax, Laboratory LGME, University of Sfax, Sfax 3038, Tunisia; (M.T.); (K.E.)
| | - Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Michaela Klöcker
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Imane Moulefera
- L.M.A.E. Laboratory, Department of Process Engineering, Faculty of Science and Technology, University of Mustapha Stambouli, Mascara 29000, Algeria;
| | - Anton Pljonkin
- Institute of Computer Technology and Information Security, Southern Federal University (SFedU), 347900 Taganrog, Russia;
| | - Khaled Elleuch
- Ecole Nationale d’Ingénieurs de Sfax, Laboratory LGME, University of Sfax, Sfax 3038, Tunisia; (M.T.); (K.E.)
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| |
Collapse
|
32
|
Haque MA, Lavrik NV, Hensley D, Briggs DP, McFarlane N. Carbonized Polymer for Joule Heating Processing Towards Biosensor Development. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7578-7581. [PMID: 34892844 DOI: 10.1109/embc46164.2021.9630908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents the experimental findings towards developing carbonized microelectrodes using a Joule heating process within a temperature window that is compatible with CMOS. Bridge-on-pillars polymer structures have been 3D-printed using two-photon polymerization (2PP). They have been annealed in various processing conditions to increase the fraction of carbon in the precursor material and to achieve appreciable electric conductivity so that they can be used to drive current to enable Joule heating. To evaluate the outcome of the processing sequences, Raman spectroscopy has been performed to assess the degree of carbonization. Such CMOS-compatible carbon electrodes are important for monolithic, low-cost biosensor development.Clinical relevance- This establishes the potential of carbonized polymer electrode for low-cost, CMOS-compatible monolithic biosensor platform for implementation in medical diagnosis and treatment.
Collapse
|
33
|
Elfiky M, Matsuda A, Salahuddin N. An Electrospun Nanofibrous Sensor Based on a Porous (Cr/Zn) Slats Oxide for Voltammetric Detection of Ezetimibe Drug in Real Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mona Elfiky
- Department of Chemistry Faculty of Science Tanta University Egypt
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering Toyohashi University of Technology Japan
| | - Nehal Salahuddin
- Department of Chemistry Faculty of Science Tanta University Egypt
| |
Collapse
|
34
|
Simsek M, Wongkaew N. Carbon nanomaterial hybrids via laser writing for high-performance non-enzymatic electrochemical sensors: a critical review. Anal Bioanal Chem 2021; 413:6079-6099. [PMID: 33978780 PMCID: PMC8440307 DOI: 10.1007/s00216-021-03382-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
Non-enzymatic electrochemical sensors possess superior stability and affordability in comparison to natural enzyme-based counterparts. A large variety of nanomaterials have been introduced as enzyme mimicking with appreciable sensitivity and detection limit for various analytes of which glucose and H2O2 have been mostly investigated. The nanomaterials made from noble metal, non-noble metal, and metal composites, as well as carbon and their derivatives in various architectures, have been extensively proposed over the past years. Three-dimensional (3D) transducers especially realized from the hybrids of carbon nanomaterials either with metal-based nanocatalysts or heteroatom dopants are favorable owing to low cost, good electrical conductivity, and stability. In this critical review, we evaluate the current strategies to create such nanomaterials to serve as non-enzymatic transducers. Laser writing has emerged as a powerful tool for the next generation of devices owing to their low cost and resultant remarkable performance that are highly attractive to non-enzymatic transducers. So far, only few works have been reported, but in the coming years, more and more research on this topic is foreseeable.
Collapse
Affiliation(s)
- Marcel Simsek
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
35
|
Special Issue: Carbon-Based Nanomaterials for (Bio)Sensors Development. NANOMATERIALS 2021; 11:nano11092430. [PMID: 34578746 PMCID: PMC8469388 DOI: 10.3390/nano11092430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
Carbon-based nanomaterials have been increasingly used in the design of sensors and biosensors due to their advantageous intrinsic properties, which include, but are not limited to, high electrical and thermal conductivity, chemical stability, optical properties, large specific surface, biocompatibility, and easy functionalization [...].
Collapse
|
36
|
Goldmann E, Górski M, Klemczak B. Recent Advancements in Carbon Nano-Infused Cementitious Composites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5176. [PMID: 34576410 PMCID: PMC8466471 DOI: 10.3390/ma14185176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
A rising demand for efficient functional materials brings forth research challenges regarding improvements in existing materials. Carbon infused cementitious composites, regardless of being an important research topic worldwide, still present many questions concerning their functionality and properties. The paper aims to highlight the most important materials used for cementitious composites, their properties, and their uses while also including the most relevant of the latest research in that area.
Collapse
Affiliation(s)
- Eryk Goldmann
- Department of Structural Engineering, Faculty of Civil Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (M.G.); (B.K.)
| | | | | |
Collapse
|
37
|
Guo L, Wan K, Liu B, Wang Y, Wei G. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. NANOTECHNOLOGY 2021; 32:442001. [PMID: 34325413 DOI: 10.1088/1361-6528/ac18d5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanofibers (CNFs) exhibit the advantages of high mechanical strength, good conductivity, easy production, and low cost, which have shown wide applications in the fields of materials science, nanotechnology, biomedicine, tissue engineering, sensors, wearable electronics, and other aspects. To promote the applications of CNF-based nanomaterials in wearable devices, the flexibility, electronic conductivity, thickness, weight, and bio-safety of CNF-based films/membranes are crucial. In this review, we present recent advances in the fabrication of CNF-based composite nanomaterials for flexible wearable devices. For this aim, firstly we introduce the synthesis and functionalization of CNFs, which promote the optimization of physical, chemical, and biological properties of CNFs. Then, the fabrication of two-dimensional and three-dimensional CNF-based materials are demonstrated. In addition, enhanced electric, mechanical, optical, magnetic, and biological properties of CNFs through the hybridization with other functional nanomaterials by synergistic effects are presented and discussed. Finally, wearable applications of CNF-based materials for flexible batteries, supercapacitors, strain/piezoresistive sensors, bio-signal detectors, and electromagnetic interference shielding devices are introduced and discussed in detail. We believe that this work will be beneficial for readers and researchers to understand both structural and functional tailoring of CNFs, and to design and fabricate novel CNF-based flexible and wearable devices for advanced applications.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
38
|
Suhdi S, Wang SC. The Production of Carbon Nanofiber on Rubber Fruit Shell-Derived Activated Carbon by Chemical Activation and Hydrothermal Process with Low Temperature. NANOMATERIALS 2021; 11:nano11082038. [PMID: 34443869 PMCID: PMC8399015 DOI: 10.3390/nano11082038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Recently, the conversion of biomass into carbon nanofibers has been extensively studied. In this study, carbon nanofibers (CNFs) were prepared from rubber fruit shell (RFS) by chemical activation with H3PO4, followed by a simple hydrothermal process at low temperature and without a vacuum and gas catalyst. XRD and Raman studies show that the structure formed is an amorphous graphite formation. From the thermal analysis, it is shown that CNFs have a high thermal stability. Furthermore, an SEM/TEM analysis showed that CNFs’ morphology varied in size and thickness. The obtained results reveal that by converting RFS into an amorphous carbon through chemical activation and hydrothermal processes, RFS is considered a potential biomass source material to produce carbon nanofibers.
Collapse
|
39
|
Electrochemical detection of CA125 using thionine and gold nanoparticles supported on heteroatom-doped graphene nanocomposites. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Aziz A, Shah SS, Jafar Mazumder MA, Oyama M, Al‐Betar A. Carbon Nanofiber and Poly[2‐(methacryloyloxy) ethyl] Trimethylammonium Chloride Composite as a New Benchmark Carbon‐based Electrocatalyst for Sulfide Oxidation. Chem Asian J 2021; 16:1570-1583. [DOI: 10.1002/asia.202100309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT) King Fahd University of Petroleum & Minerals KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT) King Fahd University of Petroleum & Minerals KFUPM Box 5040 Dhahran 31261 Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals KFUPM Box 5047 Dhahran 31261 Saudi Arabia
| | | | - Munetaka Oyama
- Department of Material Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8520 Japan
| | - Abdul‐Rahman Al‐Betar
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
41
|
Tsiamis A, Diaz Sanchez F, Hartikainen N, Chung M, Mitra S, Lim YC, Tan HL, Radacsi N. Graphene Wrapping of Electrospun Nanofibers for Enhanced Electrochemical Sensing. ACS OMEGA 2021; 6:10568-10577. [PMID: 34056211 PMCID: PMC8153741 DOI: 10.1021/acsomega.0c05823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 05/28/2023]
Abstract
This paper presents a scalable method of developing ultrasensitive electrochemical biosensors. This is achieved by maximizing sensor conductivity through graphene wrapping of carbonized electrospun nanofibers. The effectiveness of the graphene wrap was determined visually by scanning electron microscopy and chemically by Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction. The sensing performance of different electrode samples was electrochemically characterized using cyclic voltammetry and electrochemical impedance spectroscopy, with the graphene-wrapped carbonized nanofiber electrode showing significantly improved performance. The graphene-wrapped carbonized nanofibers exhibited a relative conductivity of ∼14 times and an electroactive surface area of ∼2 times greater compared to the bare screen-printed carbon electrode despite experiencing inhibitive effects from the carbon glue used to bind the samples to the electrode. The results indicate potential for a highly conductive, inert sensing platform.
Collapse
Affiliation(s)
- Andreas Tsiamis
- School
of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, Scottish Microelectronics Centre, Edinburgh EH9 3FF, U.K.
| | - Francisco Diaz Sanchez
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Mayfield
Road, Edinburgh EH9 3JL, U.K.
| | - Niklas Hartikainen
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Mayfield
Road, Edinburgh EH9 3JL, U.K.
| | - Michael Chung
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Mayfield
Road, Edinburgh EH9 3JL, U.K.
| | - Srinjoy Mitra
- School
of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, Scottish Microelectronics Centre, Edinburgh EH9 3FF, U.K.
| | - Ying Chin Lim
- Faculty
of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Huey Ling Tan
- Faculty
of Chemical Engineering, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Norbert Radacsi
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Mayfield
Road, Edinburgh EH9 3JL, U.K.
| |
Collapse
|
42
|
Disposable and Low-Cost Colorimetric Sensors for Environmental Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228331. [PMID: 33187161 PMCID: PMC7697538 DOI: 10.3390/ijerph17228331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Environmental contamination affects human health and reduces the quality of life. Therefore, the monitoring of water and air quality is important, ensuring that all areas are acquiescent with the current legislation. Colorimetric sensors deliver quick, naked-eye detection, low-cost, and adequate determination of environmental analytes. In particular, disposable sensors are cheap and easy-to-use devices for single-shot measurements. Due to increasing requests for in situ analysis or resource-limited zones, disposable sensors’ development has increased. This review provides a brief insight into low-cost and disposable colorimetric sensors currently used for environmental analysis. The advantages and disadvantages of different colorimetric devices for environmental analysis are discussed.
Collapse
|
43
|
Application trends of nanofibers in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115992
expr 834212330 + 887677890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
44
|
Prasad Aryal K, Kyung Jeong H. Electrochemical detection of ascorbic acid with chemically functionalized carbon nanofiber/β-cyclodextrin composite. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
|
46
|
Titoiu AM, Necula-Petrareanu G, Visinescu D, Dinca V, Bonciu A, Mihailescu CN, Purcarea C, Boukherroub R, Szunerits S, Vasilescu A. Flow injection enzymatic biosensor for aldehydes based on a Meldola Blue-Ni complex electrochemical mediator. Mikrochim Acta 2020; 187:550. [PMID: 32888083 DOI: 10.1007/s00604-020-04477-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Carbon nanofibers (CNF) are efficient electrode modifiers in electrochemical biosensors that enhance the electrochemical active area, induce electrocatalytic effect toward the oxidation of the enzymatic cofactor nicotinamide adenine dinucleotide (reduced form, NADH), and enable the quantitative immobilization of enzymes. Combining CNF with efficient and stable mediators radically augments the speed of electron transfer between NADH and solid electrodes and leads to electrochemical sensors characterized by high sensitivity and stability. The main aim of this work was to investigate the performance of a novel mediator for NADH with advantageously low solubility in an electrochemical detector based on a screen-printed CNF electrode as well as its potential in biosensing. Using a mediator, prepared from Meldola Blue and Ni hexamine chloride, a stable and sensitive electrochemical NADH sensor is provided with a detection limit of 0.5 μmol L-1. Further on, covalent immobilization of a recently described aldehyde dehydrogenase from the Antarctic Flavobacterium PL002 strain on the surface of the mediator-modified electrode produced a stable biosensor for the detection of aldehydes. When integrated in a flow injection analysis (FIA) setup with amperometric detection at 0.1 V vs. Ag/AgCl, the measurement of benzaldehyde with a detection limit of 10 μmol L-1 over a linear range of 30-300 μmol L-1 is possible. Determination of trace benzaldehyde impurities in a pharmaceutical excipient was also demonstrated and results compared with a chromatographic method. Graphical abstract.
Collapse
Affiliation(s)
- Ana Maria Titoiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania
| | | | - Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021, Bucharest, Romania
| | - Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania
| | - Anca Bonciu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania.,Faculty of Physics, University of Bucharest, 077125, Magurele, Romania
| | - Cristian N Mihailescu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania
| | - Cristina Purcarea
- Institute of Biology, 296 Splaiul Independentei, 060031, Bucharest, Romania
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania.
| |
Collapse
|
47
|
Simsek M, Hoecherl K, Schlosser M, Baeumner AJ, Wongkaew N. Printable 3D Carbon Nanofiber Networks with Embedded Metal Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39533-39540. [PMID: 32805926 DOI: 10.1021/acsami.0c08926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanofiber (CNF) nanocatalyst hybrids hold great promise in fields such as energy storage, synthetic chemistry, and sensors. Current strategies to generate such hybrids are laborious and utterly incompatible with miniaturization and large-scale production. Instead, this work demonstrates that Ni nanoparticles embedded in three-dimensional (3D) CNFs of any shape and design can be easily prepared using electrospinning, followed by laser carbonization under ambient conditions. Specifically, a solution of nickel acetylacetonate /polyimide is electrospun and subsequently a design is printed via CO2 laser (Ni-laser-induced carbon nanofiber (LCNFs)). This creates uniformly distributed small Ni nanoparticles (∼8 nm) very tightly adhered to the CNF network. Morphological and performance characteristics can be directly influenced by metal content and lasing power and hence adapted for the desired application. Here, Ni-LCNFs are optimized for nonenzymatic electrochemical sensing of glucose with great sensitivity of 2092 μA mM-1 cm-2 and a detection limit down to 0.3 μM. Its selectivity for glucose vs interfering species (ascorbic and uric acid) is essentially governed by the Ni content. Most importantly, this strategy can be adapted to a whole range of metal precursors and hence provide opportunities for such 3D CNF-nanocatalyst hybrids in point-of-care applications where high-performance but also sustainable and low-cost fabrications are of utmost importance.
Collapse
Affiliation(s)
- Marcel Simsek
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Kilian Hoecherl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Marc Schlosser
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
48
|
Yadav D, Amini F, Ehrmann A. Recent advances in carbon nanofibers and their applications – A review. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109963] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Simon R, Chakraborty S, Konikkara N, Mary NL. Functionalized polystyrene maleic anhydride copolymer/ZnO nanocomposites for enhanced electrochemical performance. J Appl Polym Sci 2020. [DOI: 10.1002/app.48945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Remya Simon
- Department of Chemistry, Stella Maris College (Autonomous)University of Madras Chennai 600086 Tamil Nadu India
| | - Sohini Chakraborty
- Department of Chemistry, Stella Maris College (Autonomous)University of Madras Chennai 600086 Tamil Nadu India
| | - Niketha Konikkara
- Department of Physics, Stella Maris College (Autonomous)University of Madras Chennai 600086 Tamil Nadu India
| | - N. L. Mary
- Department of Chemistry, Stella Maris College (Autonomous)University of Madras Chennai 600086 Tamil Nadu India
| |
Collapse
|
50
|
Review on applications of carbon nanomaterials for simultaneous electrochemical sensing of environmental contaminant dihydroxybenzene isomers. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|