1
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2621-7. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Sousa JA, McKay DM, Raman M. Selenium, Immunity, and Inflammatory Bowel Disease. Nutrients 2024; 16:3620. [PMID: 39519453 PMCID: PMC11547411 DOI: 10.3390/nu16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Dietary intervention is a subject of growing interest in the management of inflammatory bowel disease (IBD), as new incident cases across the globe are rapidly rising, suggesting environmental factors as contributing elements. Dietary components and micronutrients have been associated with IBD pathogenesis or reductions in disease severity. Selenium, a diet-derived essential micronutrient that is important for proper immune system function, has received limited attention in the context of IBD. Selenium deficiency is a common finding in patients with IBD, but few clinical trials have been published to address the consequences of this deficiency. Here, we review the physiological and immunological roles of selenium and its putative role in IBD, and draw attention to knowledge gaps and unresolved issues, with the goal of stimulating more research on selenium in IBD.
Collapse
Affiliation(s)
- James A. Sousa
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Derek M. McKay
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Alarfaj H. Selenium in Surgery. Cureus 2024; 16:e72168. [PMID: 39583421 PMCID: PMC11582387 DOI: 10.7759/cureus.72168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Selenium, a micronutrient essential for many enzymatic functions, is crucial for maintaining human health. Its presence in the human diet is of paramount importance for metabolism and support of the immune system. Many diseases of surgical importance are related to the level of selenoproteins and their influence on different organs. The aim of this concise narrative review is to highlight the role of selenium as a trace element in various surgical morbidities, a concept that is often neglected or not well perceived by most surgeons.
Collapse
|
4
|
Shi Z, Han Z, Chen J, Zhou JC. Endoplasmic reticulum-resident selenoproteins and their roles in glucose and lipid metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167246. [PMID: 38763408 DOI: 10.1016/j.bbadis.2024.167246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Glucose and lipid metabolic disorders (GLMDs), such as diabetes, dyslipidemia, metabolic syndrome, nonalcoholic fatty liver disease, and obesity, are significant public health issues that negatively impact human health. The endoplasmic reticulum (ER) plays a crucial role at the cellular level for lipid and sterol biosynthesis, intracellular calcium storage, and protein post-translational modifications. Imbalance and dysfunction of the ER can affect glucose and lipid metabolism. As an essential trace element, selenium contributes to various human physiological functions mainly through 25 types of selenoproteins (SELENOs). At least 10 SELENOs, with experimental and/or computational evidence, are predominantly found on the ER membrane or within its lumen. Two iodothyronine deiodinases (DIOs), DIO1 and DIO2, regulate the thyroid hormone deiodination in the thyroid and some external thyroid tissues, influencing glucose and lipid metabolism. Most of the other eight members maintain redox homeostasis in the ER. Especially, SELENOF, SELENOM, and SELENOS are involved in unfolded protein responses; SELENOI catalyzes phosphatidylethanolamine synthesis; SELENOK, SELENON, and SELENOT participate in calcium homeostasis regulation; and the biological significance of thioredoxin reductase 3 in the ER remains unexplored despite its established function in the thioredoxin system. This review examines recent research advances regarding ER SELENOs in GLMDs and aims to provide insights on ER-related pathology through SELENOs regulation.
Collapse
Affiliation(s)
- Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyu Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jingyi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China.
| |
Collapse
|
5
|
Imam RA, Hassan FE, Ali IH, Alghamdi MA, Aboulhoda BE. Effect of Selenium nanoparticles on Paraquat-induced-neuroinflammation and oligodendocyte modulation: Implication of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Tissue Cell 2024; 89:102454. [PMID: 38905876 DOI: 10.1016/j.tice.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1β and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Leszto K, Biskup L, Korona K, Marcinkowska W, Możdżan M, Węgiel A, Młynarska E, Rysz J, Franczyk B. Selenium as a Modulator of Redox Reactions in the Prevention and Treatment of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:688. [PMID: 38929127 PMCID: PMC11201165 DOI: 10.3390/antiox13060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases stand as the predominant global cause of mortality, exerting a profound impact on both life expectancy and its quality. Given their immense public health burden, extensive efforts have been dedicated to comprehending the underlying mechanisms and developing strategies for prevention and treatment. Selenium, a crucial participant in redox reactions, emerges as a notable factor in maintaining myocardial cell homeostasis and influencing the progression of cardiovascular disorders. Some disorders, such as Keshan disease, are directly linked with its environmental deficiency. Nevertheless, the precise extent of its impact on the cardiovascular system remains unclear, marked by contradictory findings in the existing literature. High selenium levels have been associated with an increased risk of developing hypertension, while lower concentrations have been linked to heart failure and atrial fibrillation. Although some trials have shown its potential effectiveness in specific groups of patients, large cohort supplementation attempts have generally yielded unsatisfactory outcomes. Consequently, there persists a significant need for further research aimed at delineating specific patient cohorts and groups of diseases that would benefit from selenium supplementation.
Collapse
Affiliation(s)
- Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Klaudia Korona
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Weronika Marcinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Andrzej Węgiel
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| |
Collapse
|
7
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
8
|
Jing J, Wang J, Xiang X, Yin S, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Selenomethionine alleviates chronic heat stress-induced breast muscle injury and poor meat quality in broilers via relieving mitochondrial dysfunction and endoplasmic reticulum stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:363-375. [PMID: 38362514 PMCID: PMC10867585 DOI: 10.1016/j.aninu.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 02/17/2024]
Abstract
In the present study, the chronic heat stress (CHS) broiler model was developed to investigate the potential protection mechanism of organic selenium (selenomethionine, SeMet) on CHS-induced skeletal muscle growth retardation and poor meat quality. Four hundred Arbor Acres male broilers (680 ± 70 g, 21 d old) were grouped into 5 treatments with 8 replicates of 10 broilers per replicate. Broilers in the control group were raised in a thermoneutral environment (22 ± 2 °C) and fed with a basal diet. The other four treatments were exposed to hyperthermic conditions (33 ± 2 °C, 24 h in each day) and fed on the basal diet supplied with SeMet at 0.0, 0.2, 0.4, and 0.6 mg Se/kg, respectively, for 21 d. Results showed that CHS reduced (P < 0.05) the growth performance, decreased (P < 0.05) the breast muscle weight and impaired the meat quality of breast muscle in broilers. CHS induced protein metabolic disorder in breast muscle, which increased (P < 0.05) the expression of caspase 3, caspase 8, caspase 9 and ubiquitin proteasome system related genes, while decreased the protein expression of P-4EBP1. CHS also decreased the antioxidant capacity and induced mitochondrial stress and endoplasmic reticulum (ER) stress in breast muscle, which increased (P < 0.05) the ROS levels, decreased the concentration of ATP, increased the protein expression of HSP60 and CLPX, and increased (P < 0.05) the expression of ER stress biomarkers. Dietary SeMet supplementation linearly increased (P < 0.05) breast muscle Se concentration and exhibited protective effects via up-regulating the expression of the selenotranscriptome and several key selenoproteins, which increased (P < 0.05) body weight, improved meat quality, enhanced antioxidant capacity and mitigated mitochondrial stress and ER stress. What's more, SeMet suppressed protein degradation and improved protein biosynthesis though inhibiting the caspase and ubiquitin proteasome system and promoting the mTOR-4EBP1 pathway. In conclusion, dietary SeMet supplementation increases the expression of several key selenoproteins, alleviates mitochondrial dysfunction and ER stress, improves protein biosynthesis, suppresses protein degradation, thus increases the body weight and improves meat quality of broilers exposed to CHS.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayi Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoyu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
9
|
Wright DE, O’Donoghue P. Biosynthesis, Engineering, and Delivery of Selenoproteins. Int J Mol Sci 2023; 25:223. [PMID: 38203392 PMCID: PMC10778597 DOI: 10.3390/ijms25010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.
Collapse
Affiliation(s)
- David E. Wright
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
10
|
Zhou Y, Zhou L, Li Q, Zhu X, Yu Z, Ke H, Chen Q, Ren B. Transcriptome analysis and identification of genes related to environmental adaptation of Grylloprimevala jilina Zhou & Ren 2023. Ecol Evol 2023; 13:e10717. [PMID: 38020696 PMCID: PMC10659822 DOI: 10.1002/ece3.10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Grylloprimevala jilina is a true cave insect living in the dark areas of caves. It has the characteristics of sparse skin pigmentation, degeneration of the compound eyes and monocular eyes, and obvious preference for high-humidity and low-temperature environments. Given the highly specialized, rare, and limited distribution, G. jilina is considered an endangered species and also a first-level national protected insect in China. Cave creatures often undergo dramatic morphological changes in their sensory systems to adapt to the cave environment. Most previous studies mainly focused on morphological adaptive changes in cave insects, and only a few studied the changes at the gene level. In this study, we performed transcriptome analysis of G. jilina and constructed phylogenetic trees of genes that are related to environmental adaptation, including chemosensory, visual-related, reproduction-related, temperature adaptation-related, and winged morph differentiation-related genes. Besides, the expression levels of environmental adaption-related genes in different tissues, including antennae, heads, thoraxes, abdomens, legs, and tails, were analyzed. The results showed the loss of chemosensory genes and vision-related genes, the conservation of reproduction-related genes and temperature adaptation-related genes, and the conservation of wing-related genes despite the loss of wings, and the results were consistent with other cave insects. The identification and expression study of genes possibly related to the environmental adaptability in G. jilina provided basic data for the protection of this endangered species and increased knowledge about insect evolution in general.
Collapse
Affiliation(s)
- Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Lin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
- Istitude of Plant Protection Jilim Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast ChinaMinistry of Agriculture and Rural AreasGongzhlingChina
| | - Qiuyao Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Zhongbo Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Haoqin Ke
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| |
Collapse
|
11
|
Jiang J, Chen B, Tang B, Wei Q. Selenium in Prostate Cancer: Prevention, Progression, and Treatment. Pharmaceuticals (Basel) 2023; 16:1250. [PMID: 37765058 PMCID: PMC10536940 DOI: 10.3390/ph16091250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Selenium, a trace mineral with various biological functions, has become a focal point in prostate cancer research. This review aims to present a comprehensive overview of selenium's involvement in prostate cancer, covering its impact on prevention, development, treatment, and underlying mechanisms. Observational studies have revealed a link between selenium levels and selenoproteins with prostate cancer progression. However, randomized controlled studies have shown that selenium supplementation does not prevent prostate cancer (HR: 0.95; 95% CI 0.80-1.13). This discrepancy might be attributed to selenoprotein single nucleotide polymorphisms. In the context of combinatorial therapy, selenium has demonstrated promising synergistic potential in the treatment of prostate cancer. Emerging evidence highlights the significant role of selenium and selenoproteins in prostate cancer, encompassing AR signaling, antioxidative properties, cell death, cell cycle regulation, angiogenesis, epigenetic regulation, immunoregulation, epithelial-mesenchymal transformation, and redox signal. In conclusion, selenium's diverse properties make it a promising trace mineral in prostate cancer prevention, development, and treatment and as a platform for exploring novel agents.
Collapse
Affiliation(s)
- Jinjiang Jiang
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China
- Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China
- Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bo Tang
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China
- Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China
- Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Jing J, He Y, Liu Y, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Che L, Kang B, Zhao H. Selenoproteins synergistically protect porcine skeletal muscle from oxidative damage via relieving mitochondrial dysfunction and endoplasmic reticulum stress. J Anim Sci Biotechnol 2023; 14:79. [PMID: 37270539 DOI: 10.1186/s40104-023-00877-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The skeletal muscle of pigs is vulnerable to oxidative damage, resulting in growth retardation. Selenoproteins are important components of antioxidant systems for animals, which are generally regulated by dietary selenium (Se) level. Here, we developed the dietary oxidative stress (DOS)-inducing pig model to investigate the protective effects of selenoproteins on DOS-induced skeletal muscle growth retardation. RESULTS Dietary oxidative stress caused porcine skeletal muscle oxidative damage and growth retardation, which is accompanied by mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and protein and lipid metabolism disorders. Supplementation with Se (0.3, 0.6 or 0.9 mg Se/kg) in form of hydroxy selenomethionine (OH-SeMet) linearly increased muscular Se deposition and exhibited protective effects via regulating the expression of selenotranscriptome and key selenoproteins, which was mainly reflected in lower ROS levels and higher antioxidant capacity in skeletal muscle, and the mitigation of mitochondrial dysfunction and ER stress. What's more, selenoproteins inhibited DOS induced protein and lipid degradation and improved protein and lipid biosynthesis via regulating AKT/mTOR/S6K1 and AMPK/SREBP-1 signalling pathways in skeletal muscle. However, several parameters such as the activity of GSH-Px and T-SOD, the protein abundance of JNK2, CLPP, SELENOS and SELENOF did not show dose-dependent changes. Notably, several key selenoproteins such as MSRB1, SELENOW, SELENOM, SELENON and SELENOS play the unique roles during this protection. CONCLUSIONS Increased expression of selenoproteins by dietary OH-SeMet could synergistically alleviate mitochondrial dysfunction and ER stress, recover protein and lipid biosynthesis, thus alleviate skeletal muscle growth retardation. Our study provides preventive measure for OS-dependent skeletal muscle retardation in livestock husbandry.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
Jobson J, Tsegay PS, Beltran MT, Taher EA, Rein SR, Liu Y, Rein KS. Brevetoxin induces a shift in the redox state of the proteome and unfolded protein response in human lymphoblast cells that can be alleviated with the acrolein scavenger MESNA. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104137. [PMID: 37127110 DOI: 10.1016/j.etap.2023.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/03/2023]
Abstract
Human lymphoblast cells were treated with the marine algal toxin, brevetoxin-2 (PbTx-2), and its effects on the proteome were assessed by redox proteomics using cysteine reactive tandem mass tags (TMT). Additionally, cells were simultaneously treated with PbTx-2 and the antioxidant and acrolein scavenger sodium 2-mercaptoethylsulfonate (MESNA) to determine if MESNA could prevent the proteomic effects of brevetoxin-2. A massive shift in the redox state of the proteome of brevetoxin-2 treated cells was observed. The main pathway affected was genetic information processing. Significantly oxidized proteins included Trx-1, peroxyredoxins (Prxs), ribosomal proteins, and the eukaryotic initiation factor 2 β subunit (eIF2β). Proteins that were overexpressed in brevetoxin-treated cells included four folding chaperones. These effects were diminished in the presence of MESNA indicating that MESNA may act through its antioxidant properties or as a brevetoxin scavenger. These studies provide novel insights into new prophylactics for brevetoxicosis in humans and wildlife.
Collapse
Affiliation(s)
- Jordan Jobson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Pawlos S Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Mayra Tabares Beltran
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Eman A Taher
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Samuel R Rein
- The School District of Philadelphia, Philadelphia, PA 19130, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Current address: The Water School, Department of Marine and Earth Science and Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965.
| |
Collapse
|
14
|
Toh P, Nicholson JL, Vetter AM, Berry MJ, Torres DJ. Selenium in Bodily Homeostasis: Hypothalamus, Hormones, and Highways of Communication. Int J Mol Sci 2022; 23:15445. [PMID: 36499772 PMCID: PMC9739294 DOI: 10.3390/ijms232315445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Collapse
Affiliation(s)
- Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jessica L. Nicholson
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Alyssa M. Vetter
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- School of Human Nutrition, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
15
|
Chen C, Wen M, Wang C, Yuan Z, Jin Y. Differential proteomic analysis of mouse cerebrums with high-fat diet (HFD)-induced hyperlipidemia. PeerJ 2022; 10:e13806. [PMID: 35942128 PMCID: PMC9356585 DOI: 10.7717/peerj.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
Hyperlipidemia is a chronic disease characterized by elevated blood cholesterol and triglycerides and there is accumulated evidence that the disease might affect brain functions. Here we report on a proteomic analysis of the brain proteins in hyperlipidemic mice. Hyperlipidemia was successfully induced in mice by a 20 week high-fat diet (HFD) feeding (model group). A control group with a normal diet and a treatment group with HFD-fed mice treated with a lipid-lowering drug simvastatin (SIM) were established accordingly. The proteins were extracted from the left and right cerebrum hemispheres of the mice in the three groups and subjected to shotgun proteomic analysis. A total of 4,422 proteins were detected in at least half of the samples, among which 324 proteins showed significant difference (fold change >1.5 or <0.67, p < 0.05) in at least one of the four types of comparisons (left cerebrum hemispheres of the model group versus the control group, right cerebrums of model versus control, left cerebrums of SIM versus model, right cerebrums of SIM versus model). Biological process analysis revealed many of these proteins were enriched in the processes correlated with lipid metabolism, neurological disorders, synaptic events and nervous system development. For the first time, it has been reported that some of the proteins have been altered in the brain under the conditions of HFD feeding, obesity or hyperlipidemia. Further, 22 brain processes-related proteins showed different expression in the two cerebrum hemispheres, suggesting changes of the brain proteins caused by hyperlipidemia might also be asymmetric. We hope this work will provide useful information to understand the effects of HFD and hyperlipidemia on brain proteins.
Collapse
Affiliation(s)
- Changming Chen
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Meiling Wen
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Caixia Wang
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Zhongwen Yuan
- The Third Clinical School of Guangzhou Medical University, Department of Pharmacy, Guangzhou, Guangdong, China,Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China
| | - Ya Jin
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Advances in the Study of the Mechanism by Which Selenium and Selenoproteins Boost Immunity to Prevent Food Allergies. Nutrients 2022; 14:nu14153133. [PMID: 35956310 PMCID: PMC9370097 DOI: 10.3390/nu14153133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Selenium (Se) is an essential micronutrient that functions in the body mainly in the form of selenoproteins. The selenoprotein contains 25 members in humans that exhibit a number of functions. Selenoproteins have immunomodulatory functions and can enhance the ability of immune system to regulate in a variety of ways, which can have a preventive effect on immune-related diseases. Food allergy is a specific immune response that has been increasing in number in recent years, significantly reducing the quality of life and posing a major threat to human health. In this review, we summarize the current understanding of the role of Se and selenoproteins in regulating the immune system and how dysregulation of these processes may lead to food allergies. Thus, we can explain the mechanism by which Se and selenoproteins boost immunity to prevent food allergies.
Collapse
|
17
|
Liao P, Liu H, He C. Chemical synthesis of human selenoprotein F and elucidation of its thiol-disulfide oxidoreductase activity. Chem Sci 2022; 13:6322-6327. [PMID: 35733894 PMCID: PMC9159075 DOI: 10.1039/d2sc00492e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/06/2022] [Indexed: 01/16/2023] Open
Abstract
Selenoprotein F (SelF) is an endoplasmic reticulum-residing eukaryotic protein that contains a selenocysteine (Sec) residue. It has been suggested to be involved in a number of physiological processes by acting as a thiol-disulfide oxidoreductase, but the exact role has remained unclear due to the lack of a reliable production method. We document herein a robust synthesis of the human SelF through a three-segment two-ligation semisynthesis strategy. Highlighted in this synthetic route are the use of a mild desulfurization process to protect the side-chain of the Sec residue from being affected and the simultaneous removal of acetamidomethyl and p-methoxybenzyl protection groups by PdCl2, thus facilitating the synthesis of multi-milligrams of homogenous SelF. The reduction potential of SelF was determined and the thiol-disulfide oxidoreductase activity was further supported by its ability to catalyze the reduction and isomerization of disulfide bonds.
Collapse
Affiliation(s)
- Peisi Liao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518057 China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
18
|
Jing J, Yin S, Liu Y, Liu Y, Wang L, Tang J, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Hydroxy Selenomethionine Alleviates Hepatic Lipid Metabolism Disorder of Pigs Induced by Dietary Oxidative Stress via Relieving the Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:552. [PMID: 35326202 PMCID: PMC8945048 DOI: 10.3390/antiox11030552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
This study used 40 castrated male pigs to determine the protective effects of a new selenium molecule (hydroxy selenomethionine, OH-SeMet) on dietary oxidative stress (DOS) induced hepatic lipid metabolism disorder, and corresponding response of selenotranscriptome. The pigs were randomly grouped into 5 dietary treatments and fed a basal diet formulated with either normal corn and oils or oxidized diet in which the normal corn and oils were replaced by aged corn and oxidized oils, and supplemented with OH-SeMet at 0.0, 0.3, 0.6 and 0.9 mg Se/kg for a period of 16 weeks (n = 8). The results showed that DOS induced liver damage, increased serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels, decreased serum triacylglycerol (TG) level, suppressed antioxidant capacity in the liver, and changed lipid metabolism enzyme activity, thus causing lipid metabolism disorder in the liver. The DOS-induced lipid metabolism disorder was accompanied with endoplasmic reticulum (ER) stress, changes in lipid metabolism-related genes and selenotranscriptome in the liver. Dietary Se supplementation partially alleviated the negative impact of DOS on the lipid metabolism. These improvements were accompanied by increases in Se concentration, liver index, anti-oxidative capacity, selenotranscriptome especially 11 selenoprotein-encoding genes, and protein abundance of GPX1, GPX4 and SelS in the liver, as well as the decrease in SelF abundance. The Se supplementation also alleviated ER stress, restored liver lipid metabolism enzyme activity, increased the mRNA expression of lipid synthesis-related genes, and decreased the mRNA levels of lipidolysis-related genes. In conclusion, the dietary Se supplementation restored antioxidant capacity and mitigated ER stress induced by DOS, thus resisting hepatic lipid metabolism disorders that are associated with regulation of selenotranscriptome.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Yan Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Yonggang Liu
- Adisseo Asia Pacific Pte. Ltd., Singapore 188778, Singapore;
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, China Ministry of Agriculture and Rural Affairs of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.J.); (S.Y.); (Y.L.); (L.W.); (J.T.); (G.J.); (G.L.); (G.T.); (X.C.); (J.C.)
| |
Collapse
|
19
|
Hofstee P, Perkins AV, Cuffe JSM. Selenium Deficiency during Pregnancy in Mice Impairs Exercise Performance and Metabolic Function in Adult Offspring. Nutrients 2022; 14:1125. [PMID: 35268100 PMCID: PMC8912302 DOI: 10.3390/nu14051125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Selenium deficiency during the perinatal period programs metabolic dysfunction in offspring. Postnatal exercise may prevent the development of programmed metabolic disease. This study investigated the impact of selenium deficiency on offspring exercise behavior and whether this improved metabolic health. Female C57BL/6 mice were randomly allocated to control (NormalSe, >190 μg/Se/kg, n = 8) or low-selenium (LowSe, <50 μg/Se/kg, n = 8) diets from four weeks before mating. Male offspring were weaned at postnatal day (PN) twenty-four and placed on a normal chow diet. At PN60, mice were placed in cages with bi-directional running wheels and monitored until PN180. LowSe offspring had a reduced average weekly running speed and distance (p < 0.05). LowSe offspring exhibited glucose intolerance, with increased peak blood glucose (p < 0.05) and area under the curve following an intra-peritoneal injection of glucose (p < 0.05). Furthermore, mRNA expression of several selenoproteins within cardiac and skeletal muscle were increased in LowSe offspring (p < 0.05). The results indicated that selenium deficiency during development reduces exercise behavior. Furthermore, exercise does not prevent programmed glucose intolerance in low-selenium offspring. This highlights that exercise may not be the optimal intervention for metabolic disease in offspring impacted by selenium deficiency in early life.
Collapse
Affiliation(s)
- Pierre Hofstee
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia; (P.H.); (A.V.P.)
| | - Anthony V. Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia; (P.H.); (A.V.P.)
| | - James S. M. Cuffe
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
20
|
Hogan C, Perkins AV. Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life? Nutrients 2022; 14:nu14030628. [PMID: 35276987 PMCID: PMC8838303 DOI: 10.3390/nu14030628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Selenium is an essential trace element required for human health, and selenium deficiency has been associated with many diseases. The daily recommended intake of selenium is 60 µg/day for adults, which increases to 65 µg/day for women when pregnant. Selenium is incorporated into the 21st amino acid, selenocysteine (sec), a critical component of selenoproteins that plays an important role in a variety of biological responses such as antioxidant defence, reactive oxygen species (ROS) signalling, formation of thyroid hormones, DNA synthesis and the unfolded protein response in the endoplasmic reticulum (ER). Although 25 selenoproteins have been identified, the role of many of these is yet to be fully characterised. This review summarises the current evidence demonstrating that selenium is essential for a healthy pregnancy and that poor selenium status leads to gestational disorders. In particular, we focus on the importance of the placental selenoproteome, and the role these proteins may play in a healthy start to life.
Collapse
|
21
|
Comparative Proteomic Analysis of tPVAT during Ang II Infusion. Biomedicines 2021; 9:biomedicines9121820. [PMID: 34944635 PMCID: PMC8698607 DOI: 10.3390/biomedicines9121820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Perivascular adipose tissue (PVAT) homeostasis plays an important role in maintaining vascular function, and PVAT dysfunction may induce several pathophysiological situations. In this study, we investigated the effect and mechanism of the local angiotensin II (Ang II) on PVAT. High-throughput comparative proteomic analysis, based on TMT labeling combined with LC-MS/MS, were performed on an in vivo Ang II infusion mice model to obtain a comprehensive view of the protein ensembles associated with thoracic PVAT (tPVAT) dysfunction induced by Ang II. In total, 5037 proteins were confidently identified, of which 4984 proteins were quantified. Compared with the saline group, 145 proteins were upregulated and 146 proteins were downregulated during Ang II-induced tPVAT pathogenesis. Bioinformatics analyses revealed that the most enriched GO terms were annotated as gene silencing, monosaccharide binding, and extracellular matrix. In addition, some novel proteins, potentially associated with Ang II infusion, were identified, such as acyl-CoA carboxylase α, very long-chain acyl-CoA synthetase (ACSVL), uncoupling protein 1 (UCP1), perilipin, RAS protein-specific guanine nucleotide-releasing factor 2 (RasGRF2), and hypoxia inducible factor 1α (HIF-1α). Ang II could directly participate in the regulation of lipid metabolism, transportation, and adipocyte differentiation by affecting UCP1 and perilipin. Importantly, the key KEGG pathways were involved in fatty acid biosynthesis, FABP3-PPARα/γ, RasGRF2-ERK-HIF-1α, RasGRF2-PKC-HIF-1α, and STAT3-HIF-1α axis. The present study provided the most comprehensive proteome profile of mice tPVAT and some novel insights into Ang II-mediated tPVAT dysfunction and will be helpful for understanding the possible relationship between local RAS activation and PVAT dysfunction.
Collapse
|
22
|
Li T, Zhang J, Wang PJ, Zhang ZW, Huang JQ. Selenoproteins Protect Against Avian Liver Necrosis by Metabolizing Peroxides and Regulating Receptor Interacting Serine Threonine Kinase 1/Receptor Interacting Serine Threonine Kinase 3/Mixed Lineage Kinase Domain-Like and Mitogen-Activated Protein Kinase Signaling. Front Physiol 2021; 12:696256. [PMID: 34456747 PMCID: PMC8397447 DOI: 10.3389/fphys.2021.696256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Liver necroptosis of chicks is induced by selenium (Se)/vitamin E (VE) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms of liver necrosis, a pool of the corn-soy basal diet (10 μg Se/kg; no VE added), a basal diet plus all-rac-α-tocopheryl acetate (50 mg/kg), Se (sodium selenite at 0.3 mg/kg), or both of these nutrients were provided to day-old broiler chicks (n = 40/group) for 6 weeks. High incidences of liver necrosis (30%) of chicks were induced by -SE-VE, starting at day 16. The Se concentration in liver and glutathione peroxidase (GPX) activity were decreased (P < 0.05) by dietary Se deficiency. Meanwhile, Se deficiency elevated malondialdehyde content and decreased superoxide dismutase (SOD) activity in the liver at weeks 2 and 4. Chicks fed with the two Se-deficient diets showed lower (P < 0.05) hepatic mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, Selenoh, Selenok, Selenom, Selenon, Selenoo, Selenop, Selenot, Selenou, Selenow, and Dio1 than those fed with the two Se-supplemented diets. Dietary Se deficiency had elevated (P < 0.05) the expression of SELENOP, but decreased the downregulation (P < 0.05) of GPX1, GPX4, SELENON, and SELENOW in the liver of chicks at two time points. Meanwhile, dietary Se deficiency upregulated (P < 0.05) the abundance of hepatic proteins of p38 mitogen-activated protein kinase, phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, phospho-c-Jun N-terminal kinase, extracellular signal-regulated kinase, phospho-mitogen-activated protein kinase, receptor-interacting serine-threonine kinase 1 (RIPK1), receptor-interacting serine-threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL) at two time points. In conclusion, our data confirmed the differential regulation of dietary Se deficiency on several key selenoproteins, the RIPK1/RIPK3/MLKL, and mitogen-activated protein kinase signaling pathway in chicks and identified new molecular clues for understanding the etiology of nutritional liver necrosis.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jing Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Administrative Engineering College, Xu Zhou University of Technology, Xuzhou, China
| | - Peng-Jie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zi-Wei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Schomburg L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19-A Preventable Trigger for Autoimmune Disease. Int J Mol Sci 2021; 22:8532. [PMID: 34445238 PMCID: PMC8395178 DOI: 10.3390/ijms22168532] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The trace element selenium (Se) is an essential part of the human diet; moreover, increased health risks have been observed with Se deficiency. A sufficiently high Se status is a prerequisite for adequate immune response, and preventable endemic diseases are known from areas with Se deficiency. Biomarkers of Se status decline strongly in pregnancy, severe illness, or COVID-19, reaching critically low concentrations. Notably, these conditions are associated with an increased risk for autoimmune disease (AID). Positive effects on the immune system are observed with Se supplementation in pregnancy, autoimmune thyroid disease, and recovery from severe illness. However, some studies reported null results; the database is small, and randomized trials are sparse. The current need for research on the link between AID and Se deficiency is particularly obvious for rheumatoid arthritis and type 1 diabetes mellitus. Despite these gaps in knowledge, it seems timely to realize that severe Se deficiency may trigger AID in susceptible subjects. Improved dietary choices or supplemental Se are efficient ways to avoid severe Se deficiency, thereby decreasing AID risk and improving disease course. A personalized approach is needed in clinics and during therapy, while population-wide measures should be considered for areas with habitual low Se intake. Finland has been adding Se to its food chain for more than 35 years-a wise and commendable decision, according to today's knowledge. It is unfortunate that the health risks of Se deficiency are often neglected, while possible side effects of Se supplementation are exaggerated, leading to disregard for this safe and promising preventive and adjuvant treatment options. This is especially true in the follow-up situations of pregnancy, severe illness, or COVID-19, where massive Se deficiencies have developed and are associated with AID risk, long-lasting health impairments, and slow recovery.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
24
|
Ekumah JN, Ma Y, Akpabli-Tsigbe NDK, Kwaw E, Ma S, Hu J. Global soil distribution, dietary access routes, bioconversion mechanisms and the human health significance of selenium: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Alcaraz AJG, Potěšil D, Mikulášek K, Green D, Park B, Burbridge C, Bluhm K, Soufan O, Lane T, Pipal M, Brinkmann M, Xia J, Zdráhal Z, Schneider D, Crump D, Basu N, Hogan N, Hecker M. Development of a Comprehensive Toxicity Pathway Model for 17α-Ethinylestradiol in Early Life Stage Fathead Minnows ( Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5024-5036. [PMID: 33755441 DOI: 10.1021/acs.est.0c05942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is increasing pressure to develop alternative ecotoxicological risk assessment approaches that do not rely on expensive, time-consuming, and ethically questionable live animal testing. This study aimed to develop a comprehensive early life stage toxicity pathway model for the exposure of fish to estrogenic chemicals that is rooted in mechanistic toxicology. Embryo-larval fathead minnows (FHM; Pimephales promelas) were exposed to graded concentrations of 17α-ethinylestradiol (water control, 0.01% DMSO, 4, 20, and 100 ng/L) for 32 days. Fish were assessed for transcriptomic and proteomic responses at 4 days post-hatch (dph), and for histological and apical end points at 28 dph. Molecular analyses revealed core responses that were indicative of observed apical outcomes, including biological processes resulting in overproduction of vitellogenin and impairment of visual development. Histological observations indicated accumulation of proteinaceous fluid in liver and kidney tissues, energy depletion, and delayed or suppressed gonad development. Additionally, fish in the 100 ng/L treatment group were smaller than controls. Integration of omics data improved the interpretation of perturbations in early life stage FHM, providing evidence of conservation of toxicity pathways across levels of biological organization. Overall, the mechanism-based embryo-larval FHM model showed promise as a replacement for standard adult live animal tests.
Collapse
Affiliation(s)
- Alper James G Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Connor Burbridge
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Kerstin Bluhm
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Othman Soufan
- Computer Science Department, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Taylor Lane
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Environment and Geography, York University, York YO10 5NG, United Kingdom
| | - Marek Pipal
- RECETOX, Masaryk University, Brno 625 00, Czech Republic
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - David Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| |
Collapse
|
26
|
Ostroverkhova NV. Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera. Vet Sci 2020; 8:vetsci8010002. [PMID: 33383841 PMCID: PMC7823830 DOI: 10.3390/vetsci8010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
The microsporidian Nosema parasites, primarily Nosema ceranae, remain critical threats to the health of the honey bee Apis mellifera. One promising intervention approach is the breeding of Nosema-resistant honey bee colonies using molecular technologies, for example marker-assisted selection (MAS). For this, specific genetic markers used in bee selection should be developed. The objective of the paper is to search for associations between some microsatellite markers and Nosema disease in a dark forest bee Apis mellifera mellifera. For the dark forest bee, the most promising molecular genetic markers for determining resistance to nosemosis are microsatellite loci AC117, Ap243 and SV185, the alleles of which (“177”, “263” and “269”, respectively) were associated with a low level of Nosema infection. This article is the first associative study aimed at finding DNA loci of resistance to nosemosis in the dark forest bee. Nevertheless, microsatellite markers identified can be used to predict the risk of developing the Nosema disease.
Collapse
Affiliation(s)
- Nadezhda V. Ostroverkhova
- Invertebrate Zoology Department, Biology Institute, National Research Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia; ; Tel.: +7-3822-529-461
- Department of Biology and Genetics, Siberian State Medical University, 2 Moskovsky Trakt, 634055 Tomsk, Russia
| |
Collapse
|
27
|
Kuribara T, Totani K. Structural insights into N-linked glycan-mediated protein folding from chemical and biological perspectives. Curr Opin Struct Biol 2020; 68:41-47. [PMID: 33296772 DOI: 10.1016/j.sbi.2020.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/26/2022]
Abstract
About half of all newly synthesized proteins have N-linked glycans. These glycans play pivotal roles in controlling the folding, sorting, and degradation of glycoproteins via several glycan-related proteins. The glycan-mediated protein quality control system is important for cellular homeostasis. In this review, we summarize recent advances in our understanding of the system and discuss structural insights from chemical and biological perspectives. In particular, we focus on the mechanisms by which these mediators respond to several folding states of glycoproteins.
Collapse
Affiliation(s)
- Taiki Kuribara
- Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Kiichiro Totani
- Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| |
Collapse
|
28
|
Zhang C, Huang Y, Talukder M, Ge J, Lv MW, Bi SS, Li JL. Selenium sources differ in their potential to alleviate the cadmium-induced testicular dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115610. [PMID: 33254640 DOI: 10.1016/j.envpol.2020.115610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), a major environmental contaminant, is closely associated with male reproductive health. Selenium (Se) has been recognized as an effective chemo-protectant against Cd toxicity, but the underlying mechanisms remain unclear. The objective of present study was to illustrate the toxic effect of Cd on testis, and then compare the antagonistic effect among different Se sources on growth performance, testicular damage, ion homeostasis, antioxidative potential, and the expression of selenotranscriptome and biosynthetic related factors in Cd-treated chicken. Male chickens were fed with (Ⅰ) Control group: basal diet; (Ⅱ) Cd group: basal diet with 140 mg/kg CdCl2; (Ⅲ) YSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Yeast-Se; (Ⅳ) NSe + Cd group: basal diet with 140 mg/kg CdCl2 and 1 mg/kg Nano-Se; (Ⅴ) SSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Na2SeO3. It was observed that different Se treatments dramatically alleviated Cd-induced testicular developmental disorder, ion homeostasis disorder, hormone secretion disorder and oxidative stress. Simultaneously, Se mitigated Cd-induced testicular toxicity by regulating selenoprotein biosynthetic related factors to promote selenoprotein transcription. Finally, this study indicated that dietary supplementation of Yeast-Se produced an acceptable Se form to protect testis from Cd exposure.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR72701, USA
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
29
|
Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4030057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential micronutrient required for the health of humans and lower plants, but its importance for higher plants is still being investigated. The biological functions of Se related to human health revolve around its presence in 25 known selenoproteins (e.g., selenocysteine or the 21st amino acid). Humans may receive their required Se through plant uptake of soil Se, foods enriched in Se, or Se dietary supplements. Selenium nanoparticles (Se-NPs) have been applied to biofortified foods and feeds. Due to low toxicity and high efficiency, Se-NPs are used in applications such as cancer therapy and nano-medicines. Selenium and nano-selenium may be able to support and enhance the productivity of cultivated plants and animals under stressful conditions because they are antimicrobial and anti-carcinogenic agents, with antioxidant capacity and immune-modulatory efficacy. Thus, nano-selenium could be inserted in the feeds of fish and livestock to improvise stress resilience and productivity. This review offers new insights in Se and Se-NPs biofortification for edible plants and farm animals under stressful environments. Further, extensive research on Se-NPs is required to identify possible adverse effects on humans and their cytotoxicity.
Collapse
|
30
|
The Role of Selenium in Health and Disease: Emerging and Recurring Trends. Nutrients 2020; 12:nu12041049. [PMID: 32290296 PMCID: PMC7230933 DOI: 10.3390/nu12041049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
|
31
|
Zheng X, Ren B, Wang H, Huang R, Zhou J, Liu H, Tian J, Huang K. Hepatic proteomic analysis of selenoprotein F knockout mice by iTRAQ: An implication for the roles of selenoprotein F in metabolism and diseases. J Proteomics 2020; 215:103653. [DOI: 10.1016/j.jprot.2020.103653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 01/02/2023]
|
32
|
Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I. Selenium Anticancer Properties and Impact on Cellular Redox Status. Antioxidants (Basel) 2020; 9:antiox9010080. [PMID: 31963404 PMCID: PMC7023255 DOI: 10.3390/antiox9010080] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
(1) Background: In this review, we provide information published in recent years on the chemical forms, main biological functions and especially on antioxidant and prooxidant activities of selenium. The main focus is put on the impact of selenoproteins on maintaining cellular redox balance and anticancerogenic function. Moreover, we summarize data on chemotherapeutic application of redox active selenium compounds. (2) Methods: In the first section, main aspects of metabolism and redox activity of selenium compounds is reviewed. The second outlines multiple biological functions, asserted when selenium is incorporated into the structure of selenoproteins. The final section focuses on anticancer activity of selenium and chemotherapeutic application of redox active selenium compounds as well. (3) Results: optimal dietary level of selenium ensures its proper antioxidant and anticancer activity. We pay special attention to antioxidant activities of selenium compounds, especially selenoproteins, and their importance in antioxidant defence. It is worth noting, that data on selenium anticancer properties is still contraversive. Moreover, selenium compounds as chemotherapeutic agents usually are used at supranutritional doses. (4) Conclusions: Selenium play a vital role for many organism systems due to its incorporation into selenoproteins structure. Selenium possesses antioxidant activity at optimal doses, while at supranutritional doses, it displays prooxidant activity. Redox active selenium compounds can be used for cancer treatment; recently special attention is put to selenium containing nanoparticles.
Collapse
Affiliation(s)
- Lolita Kuršvietienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (A.M.); (J.Š.)
| | - Aušra Mongirdienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (A.M.); (J.Š.)
| | - Jurga Bernatonienė
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Jurgita Šulinskienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (A.M.); (J.Š.)
- Institute of Neurosciences, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Inga Stanevičienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (A.M.); (J.Š.)
- Correspondence: ; Tel.: +370-6157-4010
| |
Collapse
|
33
|
Yang H, Qazi IH, Pan B, Angel C, Guo S, Yang J, Zhang Y, Ming Z, Zeng C, Meng Q, Han H, Zhou G. Dietary Selenium Supplementation Ameliorates Female Reproductive Efficiency in Aging Mice. Antioxidants (Basel) 2019; 8:antiox8120634. [PMID: 31835711 PMCID: PMC6969897 DOI: 10.3390/antiox8120634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Female reproductive (ovarian) aging is distinctively characterized by a markedly reduced reproductive function due to a remarkable decline in quality and quantity of follicles and oocytes. Selenium (Se) has been implicated in playing many important biological roles in male fertility and reproduction; however, its potential roles in female reproduction, particularly in aging subjects, remain poorly elucidated. Therefore, in the current study we used a murine model of female reproductive aging and elucidated how different Se-levels might affect the reproductive efficiency in aging females. Our results showed that at the end of an 8-week dietary trial, whole-blood Se concentration and blood total antioxidant capacity (TAOC) were significantly reduced in Se-deficient (0.08 mg Se/kg; Se-D) mice, whereas both of these biomarkers were significantly higher in inorganic (0.33 mg/kg; ISe-S) and organic (0.33 mg/kg; OSe-S) Se-supplemented groups. Similarly, compared to the Se-D group, Se supplementation significantly ameliorated the maintenance of follicles and reduced the rate of apoptosis in ovaries. Meanwhile, the rate of in vitro-produced embryos resulting from germinal vesicle (GV) oocytes was also significantly improved in Se-supplemented (ISe-S and OSe-S) groups compared to the Se-D mice, in which none of the embryos developed to the hatched blastocyst stage. RT-qPCR results revealed that mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, p21, and Bcl-2 genes in ovaries of aging mice was differentially modulated by dietary Se levels. A considerably higher mRNA expression of Gpx1, Gpx3, Gpx4, and Selenof was observed in Se-supplemented groups compared to the Se-D group. Similarly, mRNA expression of Bcl-2 and p21 was significantly lower in Se-supplemented groups. Immunohistochemical assay also revealed a significantly higher expression of GPX4 in Se-supplemented mice. Our results reasonably indicate that Se deficiency (or marginal levels) can negatively impact the fertility and reproduction in females, particularly those of an advancing age, and that the Se supplementation (inorganic and organic) can substantiate ovarian function and overall reproductive efficiency in aging females.
Collapse
Affiliation(s)
- Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Zhang Ming
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China;
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.); Tel.: +86-10-6273-2681 (H.H.); +86-159-081-89189 (G.Z.)
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
- Correspondence: (H.H.); (G.Z.); Tel.: +86-10-6273-2681 (H.H.); +86-159-081-89189 (G.Z.)
| |
Collapse
|
34
|
Tax G, Lia A, Santino A, Roversi P. Modulation of ERQC and ERAD: A Broad-Spectrum Spanner in the Works of Cancer Cells? JOURNAL OF ONCOLOGY 2019; 2019:8384913. [PMID: 31662755 PMCID: PMC6791201 DOI: 10.1155/2019/8384913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum glycoprotein folding quality control (ERQC) and ER-associated degradation (ERAD) preside over cellular glycoprotein secretion and maintain steady glycoproteostasis. When cells turn malignant, cancer cell plasticity is affected and supported either by point mutations, preferential isoform selection, altered expression levels, or shifts to conformational equilibria of a secreted glycoprotein. Such changes are crucial in mediating altered extracellular signalling, metabolic behavior, and adhesion properties of cancer cells. It is therefore conceivable that interference with ERQC and/or ERAD can be used to selectively damage cancers. Indeed, inhibitors of the late stages of ERAD are already in the clinic against cancers such as multiple myeloma. Here, we review recent advances in our understanding of the complex relationship between glycoproteostasis and cancer biology and discuss the potential of ERQC and ERAD modulators for the selective targeting of cancer cell plasticity.
Collapse
Affiliation(s)
- Gábor Tax
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| | - Andrea Lia
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Pietro Roversi
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| |
Collapse
|
35
|
Hughes DJ, Kunická T, Schomburg L, Liška V, Swan N, Souček P. Expression of Selenoprotein Genes and Association with Selenium Status in Colorectal Adenoma and Colorectal Cancer. Nutrients 2018; 10:nu10111812. [PMID: 30469315 PMCID: PMC6266908 DOI: 10.3390/nu10111812] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Dietary selenium (Se) intake is essential for synthesizing selenoproteins that are important in countering oxidative and inflammatory processes linked to colorectal carcinogenesis. However, there is limited knowledge on the selenoprotein expression in colorectal adenoma (CRA) and colorectal cancer (CRC) patients, or the interaction with Se status levels. We studied the expression of seventeen Se pathway genes (including fifteen of the twenty-five human selenoproteins) in RNA extracted from disease-normal colorectal tissue pairs, in the discovery phase of sixty-two CRA/CRC patients from Ireland and a validation cohort of a hundred and five CRC patients from the Czech Republic. Differences in transcript levels between the disease and paired control mucosa were assessed by the Mann-Whitney U-test. GPX2 and TXNRD3 showed a higher expression and GPX3, SELENOP, SELENOS, and SEPHS2 exhibited a lower expression in the disease tissue from adenomas and both cancer groups (p-values from 0.023 to <0.001). In the Czech cohort, up-regulation of GPX1, SELENOH, and SOD2 and down-regulation of SELENBP1, SELENON, and SELENOK (p-values 0.036 to <0.001) was also observed. We further examined the correlation of gene expression with serum Se status (assessed by Se and selenoprotein P, SELENOP) in the Irish patients. While there were no significant correlations with both Se status markers, SELENOF, SELENOK, and TXNRD1 tumor tissue expression positively correlated with Se, while TXNRD2 and TXNRD3 negatively correlated with SELENOP. In an analysis restricted to the larger Czech CRC patient cohort, Cox regression showed no major association of transcript levels with patient survival, except for an association of higher SELENOF gene expression with both a lower disease-free and overall survival. Several selenoproteins were differentially expressed in the disease tissue compared to the normal tissue of both CRA and CRC patients. Altered selenoprotein expression may serve as a marker of functional Se status and colorectal adenoma to cancer progression.
Collapse
Affiliation(s)
- David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland.
| | - Tereza Kunická
- Biomedical Centre, Medical and Teaching School Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, University Medical School Berlin, D-13353 Berlin, Germany.
| | - Václav Liška
- Biomedical Centre, Medical and Teaching School Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
- Teaching Hospital and Medical School, Charles University in Prague, 306 05 Pilsen, Czech Republic.
| | - Niall Swan
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, D04 T6F4 Dublin, Ireland.
| | - Pavel Souček
- Biomedical Centre, Medical and Teaching School Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
- Teaching Hospital and Medical School, Charles University in Prague, 306 05 Pilsen, Czech Republic.
| |
Collapse
|