1
|
Booi HN, Pang LY, Lee MK, Fung SY, Ng CL, Ng ST, Tan CS, Kong C, Lim KH, Roberts R, Ting KN. Evidence to support cultivated fruiting body of Ophiocordyceps sinensis (Ascomycota)'s role in relaxing airway smooth muscle. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118727. [PMID: 39182700 DOI: 10.1016/j.jep.2024.118727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ophiocordyceps sinensis (O. sinensis) is a genus of Ascomycete fungus that is endemic to the alpine meadows of the Tibetan Plateau and adjoining Himalayas. It has been used traditionally as a tonic to improve respiratory health in ancient China as well as to promote vitality and longevity. Bioactive components found in O. sinensis such as adenosine, cordycepin, 3-deoxyadenosine, L-arginine and polysaccharides have gained increasing interest in recent years due to their antioxidative and other properties, which include anti-asthmatic, antiviral, immunomodulation and improvement of general health. AIM OF THE STUDY This study's primary aim was to investigate the effect of a cultivated fruiting body of O. sinensis strain (OCS02®) on airways patency and the secondary focus was to investigate its effect on the lifespan of Caenorhabditis elegans. MATERIALS AND METHODS A cultivated strain, OCS02®, was employed and the metabolic profile of its cold-water extract (CWE) was analysed through liquid chromatography-mass spectrometry (LC-MS). Organ bath approach was used to investigate the pharmacological properties of OCS02® CWE when applied on airway tissues obtained from adult male Sprague-Dawley rats. The airway relaxation mechanisms of OCS02® CWE were explored using pharmacological tools, where the key regulators in airway relaxation and constriction were investigated. For the longevity study, age-synchronised, pos-1 RNAi-treated wild-type type Caenorhabditis elegans at the L4 stage were utilised for a lifespan assay. RESULTS Various glycopeptides and amino acids, particularly a high concentration of L-arginine, were identified from the LC-MS analysis. In airway tissues, OCS02® CWE induced a significantly greater concentration-dependent relaxation when compared to salbutamol. The relaxation response was significantly attenuated in the presence of NG-Nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) and several K+ channel blockers. The longevity effect induced by OCS02® CWE (5 mg/mL and above) was observed in C. elegans by at least 17%. CONCLUSIONS These findings suggest that the airway relaxation mechanisms of OCS02® CWE involved cGMP-dependent and cGMP-independent nitric oxide signalling pathways. This study provides evidence that the cultivated strain of OCS02® exhibits airway relaxation effects which supports the traditional use of its wild O. sinensis in strengthening respiratory health.
Collapse
Affiliation(s)
- Han-Ni Booi
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Li-Yin Pang
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Mei-Kee Lee
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Shin-Yee Fung
- Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chyan-Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Szu-Ting Ng
- LiGNO Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Chon-Seng Tan
- LiGNO Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Cin Kong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Richard Roberts
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kang-Nee Ting
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia.
| |
Collapse
|
2
|
Zhang B, Zhou F, Yu X, Zhang P, Sun X, Su J, Fan C, Shu W, Dong Q, Zeng C. An enantioselective fluorescent probe for detecting arginine and glutamic acids. Food Chem 2024; 455:139976. [PMID: 38850978 DOI: 10.1016/j.foodchem.2024.139976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Amino acids are important chiral compounds in the human body, and are important basic components that make up the human body and play an important role in the human body. Among them, different enantiomers of an amino acid may have different roles, and different types of amino acids can be interconverted. However, the content of D-amino acids is much lower than that of L-amino acids, which is difficult to be detected. At present, many of the potential roles of D-amino acids, such as the conversion of D-amino acids to each other, have not yet been fully revealed. Hence, we synthesized fluorescent probe (R)-5 by condensation of 1,1'-Bi-2-naphthol (BINOL) and 2-(Aminomethyl)pyridine with Schiff base, which can recognize both D-arginine and D-glutamic acid at low concentrations. Meanwhile, (R)-5 can be applied to paper-based sensors for the detection of arginine and glutamate in living cells and for food amino acid detection.
Collapse
Affiliation(s)
- Binjie Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Feng Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Xianzhe Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Peng Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xiaoqian Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Jiali Su
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Cailing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China.
| | - Qinxi Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| |
Collapse
|
3
|
Kurhaluk N. Supplementation with l-arginine and nitrates vs age and individual physiological reactivity. Nutr Rev 2024; 82:1239-1259. [PMID: 37903373 DOI: 10.1093/nutrit/nuad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Ageing is a natural ontogenetic phenomenon that entails a decrease in the adaptive capacity of the organism, as a result of which the body becomes less adaptable to stressful conditions. Nitrate and nitrite enter the body from exogenous sources and from nitrification of ammonia nitrogen by intestinal microorganisms. This review considers the mechanisms of action of l-arginine, a known inducer of nitric oxide (NO) biosynthesis, and nitrates as supplements in the processes of ageing and aggravated stress states, in which mechanisms of individual physiological reactivity play an important role. This approach can be used as an element of individual therapy or prevention of premature ageing processes depending on the different levels of initial reactivity of the functional systems. A search was performed of the PubMed, Scopus, and Google Scholar databases (n = 181 articles) and the author's own research (n = 4) up to May 5, 2023. The review presents analyses of data on targeted treatment of NO generation by supplementation with l-arginine or nitrates, which is a promising means for prevention of hypoxic conditions frequently accompanying pathological processes in an ageing organism. The review clarifies the role of the individual state of physiological reactivity, using the example of individuals with a high predominance of cholinergic regulatory mechanisms who already have a significant reserve of adaptive capacity. In studies of the predominance of adrenergic influences, a poorly trained organism as well as an elderly organism correspond to low resistance, which is an additional factor of damage at increased energy expenditure. CONCLUSION It is suggested that the role of NO synthesis from supplementation of dietary nitrates and nitrites increases with age rather than from oxygen-dependent biosynthetic reactions from l-arginine supplementation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
4
|
Cheng M, Tao X, Wang F, Shen N, Xu Z, Hu Y, Huang P, Luo P, He Q, Zhang Y, Yan F. Underlying mechanisms and management strategies for regorafenib-induced toxicity in hepatocellular carcinoma. Expert Opin Drug Metab Toxicol 2024; 20:907-922. [PMID: 39225462 DOI: 10.1080/17425255.2024.2398628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) accounts for 85% of liver cancer cases and is the third leading cause of cancer death. Regorafenib is a multi-target inhibitor that dramatically prolongs progression-free survival in HCC patients who have failed sorafenib therapy. However, one of the primary factors limiting regorafenib's clinical utilization is toxicity. Using Clinical Trials.gov and PubMed, we gathered clinical data on regorafenib and conducted a extensive analysis of the medication's adverse reactions and mechanisms. Next, we suggested suitable management techniques to improve regorafenib's effectiveness. AREAS COVERED We have reviewed the mechanisms by which regorafenib-induced toxicity occurs and general management strategies through clinical trials of regorafenib. Furthermore, by examining the literature on regorafenib and other tyrosine kinase inhibition, we summarized the mechanics of the onset of regorafenib toxicity and mechanism-based intervention strategies by reviewing the literature related to regorafenib and other tyrosine kinase inhibition. EXPERT OPINION One of the primary factors restricting regorafenib's clinical utilization and combination therapy is its toxicity reactions. To optimize regorafenib treatment regimens, it is especially important to further understand the specific toxicity mechanisms of regorafenib as a multi-kinase inhibitor.
Collapse
Affiliation(s)
- Mengting Cheng
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Yuhuai Hu
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Fangjie Yan
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Młynarska E, Hajdys J, Czarnik W, Fularski P, Leszto K, Majchrowicz G, Lisińska W, Rysz J, Franczyk B. The Role of Antioxidants in the Therapy of Cardiovascular Diseases-A Literature Review. Nutrients 2024; 16:2587. [PMID: 39203723 PMCID: PMC11357572 DOI: 10.3390/nu16162587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Antioxidants are endogenous and exogenous substances with the ability to inhibit oxidation processes by interacting with reactive oxygen species (ROS). ROS, in turn, are small, highly reactive substances capable of oxidizing a wide range of molecules in the human body, including nucleic acids, proteins, lipids, carbohydrates, and even small inorganic compounds. The overproduction of ROS leads to oxidative stress, which constitutes a significant factor contributing to the development of disease, not only markedly diminishing the quality of life but also representing the most common cause of death in developed countries, namely, cardiovascular disease (CVD). The aim of this review is to demonstrate the effect of selected antioxidants, such as coenzyme Q10 (CoQ10), flavonoids, carotenoids, and resveratrol, as well as to introduce new antioxidant therapies utilizing miRNA and nanoparticles, in reducing the incidence and progression of CVD. In addition, new antioxidant therapies in the context of the aforementioned diseases will be considered. This review emphasizes the pleiotropic effects and benefits stemming from the presence of the mentioned substances in the organism, leading to an overall reduction in cardiovascular risk, including coronary heart disease, dyslipidaemia, hypertension, atherosclerosis, and myocardial hypertrophy.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| |
Collapse
|
6
|
Caminiti R, Carresi C, Mollace R, Macrì R, Scarano F, Oppedisano F, Maiuolo J, Serra M, Ruga S, Nucera S, Tavernese A, Gliozzi M, Musolino V, Palma E, Muscoli C, Rubattu S, Volterrani M, Federici M, Volpe M, Mollace V. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front Cardiovasc Med 2024; 11:1345218. [PMID: 38370153 PMCID: PMC10869541 DOI: 10.3389/fcvm.2024.1345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.
Collapse
Affiliation(s)
- Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
7
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Tain YL, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Perinatal Use of Citrulline Rescues Hypertension in Adult Male Offspring Born to Pregnant Uremic Rats. Int J Mol Sci 2024; 25:1612. [PMID: 38338891 PMCID: PMC10855562 DOI: 10.3390/ijms25031612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The growing recognition of the association between maternal chronic kidney disease (CKD) and fetal programming highlights the increased vulnerability of hypertension in offspring. Potential mechanisms involve oxidative stress, dysbiosis in gut microbiota, and activation of the renin-angiotensin system (RAS). Our prior investigation showed that the administration of adenine to pregnant rats resulted in the development of CKD, ultimately causing hypertension in their adult offspring. Citrulline, known for enhancing nitric oxide (NO) production and possessing antioxidant and antihypertensive properties, was explored for its potential to reverse high blood pressure (BP) in offspring born to CKD dams. Male rat offspring, both from normal and adenine-induced CKD models, were randomly assigned to four groups (8 animals each): (1) control, (2) CKD, (3) citrulline-treated control rats, and (4) citrulline-treated CKD rats. Citrulline supplementation successfully reversed elevated BP in male progeny born to uremic mothers. The protective effects of perinatal citrulline supplementation were linked to an enhanced NO pathway, decreased expression of renal (pro)renin receptor, and changes in gut microbiota composition. Citrulline supplementation led to a reduction in the abundance of Monoglobus and Streptococcus genera and an increase in Agothobacterium Butyriciproducens. Citrulline's ability to influence taxa associated with hypertension may be linked to its protective effects against maternal CKD-induced offspring hypertension. In conclusion, perinatal citrulline treatment increased NO availability and mitigated elevated BP in rat offspring from uremic mother rats.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
9
|
Harrington RN. Effects of branched chain amino acids, l-citrulline, and alpha-glycerylphosphorylcholine supplementation on exercise performance in trained cyclists: a randomized crossover trial. J Int Soc Sports Nutr 2023; 20:2214112. [PMID: 37229544 DOI: 10.1080/15502783.2023.2214112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Nutrition plays a key role in training and athletic performance and dietary supplements can make a small, but potentially valuable, contribution to achieving peak athletic performance. This study is the first to investigate the effects of supplementation from the combination of BCAAs, L-citrulline, and A-GPC on exercise performance. METHODS In this randomized, double-blind, crossover study 30 male trained cyclists (age: 43.7 ± 8.5 years) completed a 20 km cycling time trial (TT) test and a high intensity endurance cycling (HIEC) test following a 7-day supplementation period with either a supplement containing 8 g BCAAs, 6 g L-citrulline, and 300 mg A-GPC or a placebo (15 g maltodextrin). For each trial, mean values for time to completion, peak and average power output, OMNI rating of perceived exertion, and visual analogue scale (VAS) responses on perceived exertion were computed for the 20 km TT test. Mean values for time to fatigue and VAS responses on perceived exertion were computed for the HIEC test. Procedures for dietary intake and exercise patterns were implemented to achieve consistency throughout the study period. RESULTS There was a significant increase (p = .003) in peak power in the 20 km TT (354.27 ± 87.88 and 321.67 ± 63.65, for supplement and placebo trials, respectively) and a significant increase (p = .001) in time to fatigue in the HIEC test (0:19:49 ± 0:11:13 min and 0:14:33 ± 0:09:59 min, for supplement and placebo trials, respectively) with the test supplement compared to the placebo. With the test supplement, there was an average increase in TT peak power of 11% and an average increase in time to fatigue of 36.2% in the HIEC test compared to the placebo. There was no significant improvement in time to completion, average power, OMNI rating of perceived exertion, or VAS responses on perceived exertion in the TT test and no significant improvement in VAS measures of perceived exertion in the HIEC test. CONCLUSIONS The combination of BCAAs, L-citrulline, and A-GPC used in this study improves cycling performance and may be useful for individuals seeking to improve athletic performance, particularly in disciplines requiring lower body muscular strength and endurance.
Collapse
Affiliation(s)
- Renee Nicole Harrington
- Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Kaya S, Yalcın T. In an experimental myocardial infarction model, L-arginine pre-intervention may exert cardioprotective effects by regulating OTULIN levels and mitochondrial dynamics. Cell Stress Chaperones 2023; 28:811-820. [PMID: 37644219 PMCID: PMC10746646 DOI: 10.1007/s12192-023-01373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
The experimental myocardial infarction (MI) model originating from isoproterenol (ISO) is frequently preferred in research due to its similarity to MI-induced damage in humans. Beneficial effects of L-arginine (L-Arg), a semi-essential amino acid, in cardiovascular diseases have been shown in many studies. This study was carried out to determine whether L-Arg pre-intervention has protective effects on heart tissue in the experimental MI model. The 28 rats used in the study were randomly divided into 4 equal groups: control, L-Arg, ISO, and L-Arg+ISO. Upon completion of all applications, cardiac markers in serum and biochemical, histopathological, and immunohistochemical examinations in cardiac tissues were performed. Cardiac markers, histopathological changes, oxidative stress, inflammation, and apoptosis were increased in the experimental MI model. In addition, administration of ISO deregulated OTULIN levels and mitochondrial dynamics in heart tissue. However, L-Arg pre-intervention showed a significant protective effect against changes in ISO-induced MI. L-Arg supplementation with cardioprotective effect may reduce the risks of possible pathophysiological processes in MI.
Collapse
Affiliation(s)
- Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey.
| | - Tuba Yalcın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| |
Collapse
|
11
|
Sindhu R, Supreeth M, Prasad SK, Thanmaya M. Shuttle between arginine and lysine: influence on cancer immunonutrition. Amino Acids 2023; 55:1461-1473. [PMID: 37728630 DOI: 10.1007/s00726-023-03327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Amino acids which are essential nutrients for all cell types' survival are also recognised to serve as opportunistic/alternative fuels in cancers auxotrophic for specific amino acids. Accordingly, restriction of amino acids has been utilised as a therapeutic strategy in these cancers. Contrastingly, amino acid deficiencies in cancer are found to greatly impair immune functions, increasing mortality and morbidity rates. Dietary and supplemental amino acids in such conditions have revealed their importance as 'immunonutrients' by modulating cellular homeostasis processes and halting malignant progression. L-arginine specifically has attracted interest as an immunonutrient by acting as a nodal regulator of immune responses linked to carcinogenesis processes through its versatile signalling molecule, nitric oxide (NO). The quantum of NO generated directly influences the cytotoxic and cytostatic processes of cell cycle arrest, apoptosis, and senescence. However, L-lysine, a CAT transporter competitor for arginine effectively limits arginine input at high L-lysine concentrations by limiting arginine-mediated effects. The phenomenon of arginine-lysine antagonism can, therefore, be hypothesised to influence the immunonutritional effects exerted by arginine. The review highlights aspects of lysine's interference with arginine-mediated NO generation and its consequences on immunonutritional and anti-cancer effects, and discusses possible alternatives to manage the condition. However, further research that considers monitoring lysine levels in arginine immunonutritional therapy is essential to conclude the hypothesis.
Collapse
Affiliation(s)
- R Sindhu
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India.
| | - M Supreeth
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - M Thanmaya
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| |
Collapse
|
12
|
Xie W, Xing N, Qu J, Liu D, Pang Q. The Physiological Function of nNOS-Associated CAPON Proteins and the Roles of CAPON in Diseases. Int J Mol Sci 2023; 24:15808. [PMID: 37958792 PMCID: PMC10647562 DOI: 10.3390/ijms242115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this review, the structure, isoform, and physiological role of the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) are summarized. There are three isoforms of CAPON in humans, including long CAPON protein (CAPON-L), short CAPON protein (CAPON-S), and CAPON-S' protein. CAPON-L includes three functional regions: a C-terminal PDZ-binding motif, carboxypeptidase (CPE)-binding region, and N-terminal phosphotyrosine (PTB) structural domain. Both CAPON-S and CAPON-S' only contain the C-terminal PDZ-binding motif. The C-terminal PDZ-binding motif of CAPON can bind with neuronal nitric oxide synthase (nNOS) and participates in regulating NO production and neuronal development. An overview is given on the relationship between CAPON and heart diseases, diabetes, psychiatric disorders, and tumors. This review will clarify future research directions on the signal pathways related to CAPON, which will be helpful for studying the regulatory mechanism of CAPON. CAPON may be used as a drug target, which will provide new ideas and solutions for treating human diseases.
Collapse
Affiliation(s)
| | | | | | - Dongwu Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| | - Qiuxiang Pang
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| |
Collapse
|
13
|
Rajcic D, Kromm F, Hernández-Arriaga A, Brandt A, Baumann A, Staltner R, Camarinha-Silva A, Bergheim I. Supplementing L-Citrulline Can Extend Lifespan in C. elegans and Attenuate the Development of Aging-Related Impairments of Glucose Tolerance and Intestinal Barrier in Mice. Biomolecules 2023; 13:1579. [PMID: 38002262 PMCID: PMC10669166 DOI: 10.3390/biom13111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
L-Citrulline (L-Cit) is discussed to possess a protective effect on intestinal barrier dysfunction but also to diminish aging-associated degenerative processes. Here, the effects of L-Cit on lifespan were assessed in C. elegans, while the effects of L-Cit on aging-associated decline were determined in C57BL/6J mice. For lifespan analysis, C. elegans were treated with ±5 mM L-Cit. Twelve-month-old male C57BL/6J mice (n = 8-10/group) fed a standard chow diet received drinking water ± 2.5 g/kg/d L-Cit or 5 g/kg/d hydrolyzed soy protein (Iso-N-control) for 16 or 32 weeks. Additionally, 4-month-old C57BL/6J mice were treated accordingly for 8 weeks. Markers of senescence, glucose tolerance, intestinal barrier function, and intestinal microbiota composition were analyzed in mice. L-Cit treatment significantly extended the lifespan of C. elegans. The significant increase in markers of senescence and signs of impaired glucose tolerance found in 16- and 20-month-old control mice was attenuated in L-Cit-fed mice, which was associated with protection from intestinal barrier dysfunction and a decrease in NO2- levels in the small intestine, while no marked differences in intestinal microbiota composition were found when comparing age-matched groups. Our results suggest that pharmacological doses of L-Cit may have beneficial effects on lifespan in C. elegans and aging-associated decline in mice.
Collapse
Affiliation(s)
- Dragana Rajcic
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | | | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany (A.C.-S.)
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Costanti-Nascimento AC, Brelaz-Abreu L, Bragança-Jardim E, Pereira WDO, Camara NOS, Amano MT. Physical exercise as a friend not a foe in acute kidney diseases through immune system modulation. Front Immunol 2023; 14:1212163. [PMID: 37928533 PMCID: PMC10623152 DOI: 10.3389/fimmu.2023.1212163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Regular and moderate exercise is being used for therapeutic purposes in treating several diseases, including cancer, cardiovascular diseases, arthritis, and even chronic kidney diseases (CKDs). Conversely, extenuating physical exercise has long been pointed out as one of the sources of acute kidney injury (AKI) due to its severe impact on the body's physiology. AKI development is associated with increased tubular necrosis, which initiates a cascade of inflammatory responses. The latter involves cytokine production, immune cell (macrophages, lymphocytes, and neutrophils, among others) activation, and increased oxidative stress. AKI can induce prolonged fibrosis stimulation, leading to CKD development. The need for therapeutic alternative treatments for AKI is still a relevant issue. In this context arises the question as to whether moderate, not extenuating, exercise could, on some level, prevent AKI. Several studies have shown that moderate exercise can help reduce tissue damage and increase the functional recovery of the kidneys after an acute injury. In particular, the immune system can be modulated by exercise, leading to a better recovery from different pathologies. In this review, we aimed to explore the role of exercise not as a trigger of AKI, but as a modulator of the inflammatory/immune system in the prevention or recovery from AKI in different scenarios. In AKI induced by ischemia and reperfusion, sepsis, diabetes, antibiotics, or chemotherapy, regular and/or moderate exercise could modulate the immune system toward a more regulatory immune response, presenting, in general, an anti-inflammatory profile. Exercise was shown to diminish oxidative stress, inflammatory markers (caspase-3, lactate dehydrogenase, and nitric oxide), inflammatory cytokines (interleukin (IL)-1b, IL-6, IL-8, and tumor necrosis factor-α (TNF-α)), modulate lymphocytes to an immune suppressive phenotype, and decrease tumor necrosis factor-β (TGF-β), a cytokine associated with fibrosis development. Thus, it creates an AKI recovery environment with less tissue damage, hypoxia, apoptosis, or fibrosis. In conclusion, the practice of regular moderate physical exercise has an impact on the immune system, favoring a regulatory and anti-inflammatory profile that prevents the occurrence of AKI and/or assists in the recovery from AKI. Moderate exercise should be considered for patients with AKI as a complementary therapy.
Collapse
Affiliation(s)
- Ana Carolina Costanti-Nascimento
- Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leonilia Brelaz-Abreu
- Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Welbert de Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mariane Tami Amano
- Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
- Departamento de Oncologia Clínica e Experimental, Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
| |
Collapse
|
15
|
Tian Y, Zhou Q, Li W, Liu M, Li Q, Chen Q. Efficacy of L-arginine and Pycnogenol ® in the treatment of male erectile dysfunction: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1211720. [PMID: 37908749 PMCID: PMC10614297 DOI: 10.3389/fendo.2023.1211720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 11/02/2023] Open
Abstract
Background The objective of this meta-analysis was to review clinical trials of the combination of Pycnogenol ® and L-arginine (PAL) in the treatment of erectile dysfunction in men and to observe the effect of PAL combined therapy on sexual function in patients with erectile dysfunction (ED), and we hope to provide more choices of drugs for treating patients with ED. Methods and analysis The study was constructed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. We searched seven databases from inception to 15 February 2023, for a comprehensive search of clinical trials using relevant keywords. Continuous variables in this meta-analysis were calculated using the mean difference and 95% confidence interval. All relevant statistical analyses were performed using RevMan v. 5.4 software. Results Three studies with 184 patients were included in the present meta-analysis. There were no significant differences in the basic characteristics of the included studies. The results of the current meta-analysis showed that there were significant differences in the international index of erectile function scores (erectile domain), intercourse satisfaction scores, orgasmic function scores, overall satisfaction scores, and sexual desire scores between the combination treatment group and the control group. There was no significant difference in improving the testosterone levels between the two groups. Conclusion These results indicate that the combination of PAL may have a significant effect on improving sexual function in patients with mild to moderate ED. This study will provide clinicians with more options for treating patients with ED. More randomized controlled trials are needed in the future to further demonstrate the effect of combination therapy on sexual function in patients with ED. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#myprosperoUnique, Identifier: CRD42023411781.
Collapse
Affiliation(s)
- Yuting Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meixi Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Tryfonos A, Christodoulou F, Pamboris GM, Christodoulides S, Theodorou AA. Short-Term L-Citrulline Supplementation Does Not Affect Blood Pressure, Pulse Wave Reflection, or Arterial Stiffness at Rest and during Isometric Exercise in Older Males. Sports (Basel) 2023; 11:177. [PMID: 37755854 PMCID: PMC10535063 DOI: 10.3390/sports11090177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Hypertension and arterial stiffness are significant factors contributing to cardiovascular disease. L-citrulline, a nitric oxide precursor, has been proposed as a nutritional, non-pharmacological blood pressure-lowering intervention. This study aimed to investigate the impact of L-citrulline on central and peripheral blood pressure, pulse wave reflection, and central arterial stiffness at rest and during an isometric knee extension exercise protocol. Twelve older males received 6 g of L-citrulline or a placebo for six days using a double-blind crossover design. Blood hemodynamics parameters (i.e., aortic and brachial systolic and diastolic blood pressure, mean arterial pressure, pulse pressure, heart rate), pulse wave reflection (i.e., augmented pressure, augmentation index, forward/backward wave pressure), and arterial stiffness (i.e., carotid-femoral pulse wave velocity) were measured at baseline, post-supplementation, and during isometric exercise. No significant effects of L-citrulline supplementation were observed at rest or during exercise on blood pressure, pulse wave reflection, or arterial stiffness. Both central and peripheral blood pressure were increased during the exercise, which is consistent with isometric contractions. The results of the present study do not support any blood pressure-lowering effect of short-term L-citrulline at rest or during low-intensity isometric exercise compared to the pre-exercise values in older males.
Collapse
Affiliation(s)
- Andrea Tryfonos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus; (A.T.); (F.C.); (G.M.P.); (S.C.)
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Filippos Christodoulou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus; (A.T.); (F.C.); (G.M.P.); (S.C.)
| | - George M. Pamboris
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus; (A.T.); (F.C.); (G.M.P.); (S.C.)
| | - Stephanos Christodoulides
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus; (A.T.); (F.C.); (G.M.P.); (S.C.)
- School of Medicine, European University Cyprus, Nicosia 1516, Cyprus
| | - Anastasios A. Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus; (A.T.); (F.C.); (G.M.P.); (S.C.)
| |
Collapse
|
17
|
Wang S, Zuo Z, Ye B, Zhang L, Cheng Y, Xie S, Zou J, Xu G. Microbiome-Metabolomic Analysis Reveals Beneficial Effects of Dietary Kelp Resistant Starch on Intestinal Functions of Hybrid Snakeheads ( Channa maculata ♀ × Channa argus ♂). Antioxidants (Basel) 2023; 12:1631. [PMID: 37627626 PMCID: PMC10451247 DOI: 10.3390/antiox12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome-metabolomic analysis. Hybrid snakeheads (initial weight: 11.4 ± 0.15 g) were fed experimental diets for 60 days. Fish were fed a basic wheat starch diet and the KRS diet. Dietary KRS improved intestinal morphology and enhanced intestinal antioxidant and digestive capabilities, as evidenced by decreased intestinal damage and upregulated intestinal biochemical markers. The microbiome analysis showed that KRS administration elevated the proportion of butyrate-producing bacteria and the abundance of beneficial bacteria that increases insulin sensitivity. Furthermore, significant alterations in metabolic profiles were observed to mainly associate with the amino acid metabolism (particularly arginine production), the metabolism of cofactors and vitamins, fat metabolism, glutathione metabolism, and the biosynthesis of other secondary metabolites. Additionally, alterations in intestinal microbiota composition were significantly associated with metabolites. Collectively, changes in intestinal microbiota and metabolite profiles produced by the replacement of common starch with dietary KRS appears to play an important role in the development of intestinal metabolism, thus leading to improved intestinal function and homeostasis.
Collapse
Affiliation(s)
- Shaodan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| |
Collapse
|
18
|
Inokuma K, Sasaki D, Kurata K, Ichikawa M, Otsuka Y, Kondo A. Sulfated and non-sulfated chondroitin affect the composition and metabolism of human colonic microbiota simulated in an in vitro fermentation system. Sci Rep 2023; 13:12313. [PMID: 37516730 PMCID: PMC10387111 DOI: 10.1038/s41598-023-38849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023] Open
Abstract
Chondroitin sulfate (CS) is a family of glycosaminoglycans and have a wide range of applications in dietary supplements and pharmaceutical drugs. In this study, we evaluated the effects of several types of CS, differing in their sulfated positions, on the human colonic microbiota and their metabolites. CS (CSA, CSC, and CSE) and non-sulfated chondroitin (CH) were added into an in vitro human colonic microbiota model with fecal samples from 10 healthy individuals. CS addition showed a tendency to increase the relative abundance of Bacteroides, Eubacterium, and Faecalibacterium, and CSC and CSE addition significantly increased the total number of eubacteria in the culture of the Kobe University Human Intestinal Microbiota Model. CSE addition also resulted in a significant increase in short-chain fatty acid (SCFA) levels. Furthermore, addition with CSC and CSE increased the levels of a wide range of metabolites including lysine, ornithine, and Ile-Pro-Pro, which could have beneficial effects on the host. However, significant increases in the total number of eubacteria, relative abundance of Bacteroides, and SCFA levels were also observed after addition with CH, and the trends in the effects of CH addition on metabolite concentrations were identical to those of CSC and CSE addition. These results provide novel insight into the contribution of the colonic microbiota to the beneficial effects of dietary CS.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Kaoru Kurata
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Megumi Ichikawa
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Yuya Otsuka
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
19
|
Wang Y, Zhang E, Ye C, Wu B. Refractory Hypotension in a Late-Onset Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS) Male with m.3243 A>G Mutation: A Case Report. Brain Sci 2023; 13:1080. [PMID: 37509011 PMCID: PMC10377322 DOI: 10.3390/brainsci13071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Introduction: Symptom spectrum can be of great diversity and heterogeneity in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) patients in clinical practice. Here, we report a case of MELAS presenting asymptomatic refractory hypotension with m.3243 A>G mutation. (2) Case representation: A 51-year-old male patient presented with a headache, vertigo, and difficulty in expression and understanding. The magnetic resonance imaging of the brain revealed an acute stroke-like lesion involving the left temporoparietal lobe. A definitive diagnosis of MELAS was given after the genetic test identified the chrM-3243 A>G mutation. The patient suffered recurrent stroke-like episodes in the 1-year follow-up. Notably, refractory hypotension was observed during hospitalizations, and no significant improvement in blood pressure was found after continuous use of vasopressor drugs and fluid infusion therapy. (3) Conclusions: We report a case of refractory hypotension which was unresponsive to fluid infusion therapy found in a patient with MELAS. Our case suggests that comprehensive management should be paid attention to during treatment. A further study on the pathological mechanism of the multisystem symptoms in MELAS would be beneficial to the treatment of patients.
Collapse
Affiliation(s)
- Youjie Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Enhui Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Reginato GDS, de Jager L, Martins AB, Lucchetti BFC, de Campos BH, Lopes FNC, Araujo EJDA, Zaia CTBV, Pinge-Filho P, Martins-Pinge MC. Differential benefits of physical training associated or not with L-arginine supplementation in rats with metabolic syndrome: evaluation of cardiovascular, autonomic and metabolic parameters. Physiol Behav 2023:114251. [PMID: 37253403 DOI: 10.1016/j.physbeh.2023.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
Metabolic syndrome (MetS) is characterized by endocrine-metabolic and cardiac alterations that increase the risk of cardiovascular disease, dyslipidemia, and type-2 diabetes mellitus. Dietary supplementation with L-Arginine (L-Arg) is beneficial for fat loss, while chronic aerobic exercise has several benefits in reversing cardiovascular, autonomic, and metabolic dysfunctions caused by obesity. However, the association between these two approaches has not yet been described. This study aimed to evaluate the possible benefits of physical training, with or without L-Arg supplementation, on cardiovascular, autonomic, and metabolic parameters in rats with MetS, which was induced by the subcutaneous administration of monosodium glutamate at 4 mg g-1day-1 in rats from the first to fifth day of life. Physical training on a treadmill and supplementation with L-Arg in adulthood were carried out concomitantly for 8 weeks. After this, the animals underwent femoral artery catheterization to record their cardiovascular parameters and autonomic modulation. Organs and blood were removed to measure levels of nitrite, glucose, and hepatic steatosis. In adult rats with MetS, supplementation with L-Arg in combination with physical training reduced hypertension, tachycardia, adipose tissue mass, free fatty acids, and hepatic steatosis. Supplementation with L-Arg and physical training separately was beneficial in reducing several aspects of MetS, but a combination of both was especially effective in reducing adipose tissue and hepatic steatosis. Together, the two therapies can form a good strategy to combat MetS.
Collapse
Affiliation(s)
- Gabriela de Souza Reginato
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Lorena de Jager
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Andressa Busetti Martins
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | | | - Blenda Hyedra de Campos
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Fernanda Novi Cortegoso Lopes
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | | | - Cássia Thaïs B Vieira Zaia
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil.
| |
Collapse
|
21
|
Kurhaluk N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int J Mol Sci 2023; 24:ijms24098205. [PMID: 37175912 PMCID: PMC10179183 DOI: 10.3390/ijms24098205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the role of nitric oxide in the modulation of individual physiological reactivity to hypoxia. The review considers the possibility of eliminating methodological conflicts in the case of L-arginine, which can be solved by taking into account individual physiological reactivity (or the hypoxia resistance factor). Considerable attention is paid to genetic and epigenetic mechanisms of adaptation to hypoxia and conditions of adaptation in different models. The article presents data on the clinical effectiveness of L-arginine in cardiovascular system diseases (hypertension, atherosclerosis, coronary heart disease, etc.) and stress disorders associated with these diseases. The review presents a generalised analysis of techniques, data on L-arginine use by athletes, and the ambiguous role of NO in the physiology and pathology of hypoxic states shown via nitric oxide synthesis. Data on the protective effects of adaptation in the formation of individual high reactivity in sportsmen are demonstrated. The review demonstrates a favourable effect of supplementation with L-arginine and its application depending on mitochondrial oxidative phosphorylation processes and biochemical indices in groups of individuals with low and high capacity of adaptation to hypoxia. In individuals with high initial anti-hypoxic reserves, these favourable effects are achieved by the blockade of NO-dependent biosynthesis pathways. Therefore, the methodological tasks of physiological experiments and the therapeutic consequences of treatment should include a component depending on the basic level of physiological reactivity.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
22
|
Park HY, Kim SW, Seo J, Jung YP, Kim H, Kim AJ, Kim S, Lim K. Dietary Arginine and Citrulline Supplements for Cardiovascular Health and Athletic Performance: A Narrative Review. Nutrients 2023; 15:1268. [PMID: 36904267 PMCID: PMC10005484 DOI: 10.3390/nu15051268] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The global market for nutritional supplements (NS) is growing rapidly, and the use of L-arginine (Arg), L-citrulline (Cit), and citrulline malate (CitMal) supplements has been shown to enhance cardiovascular health and athletic performance. Over the past decade, Arg, Cit, and CitMal supplements have received considerable attention from researchers in the field of exercise nutrition, who have investigated their potential effects on hemodynamic function, endothelial function, aerobic and anaerobic capacity, strength, power, and endurance. Previous studies were reviewed to determine the potential impact of Arg, Cit, and CitMal supplements on cardiovascular health and exercise performance. By synthesizing the existing literature, the study aimed to provide insight into the possible uses and limitations of these supplements for these purposes. The results showed that both recreational and trained athletes did not see improved physical performance or increased nitric oxide (NO) synthesis with 0.075 g or 6 g doses of Arg supplement per body weight. However, 2.4 to 6 g of Cit per day for 7 to 16 days of various NSs had a positive impact, increasing NO synthesis, enhancing athletic performance indicators, and reducing feelings of exertion. The effects of an 8 g acute dose of CitMal supplement were inconsistent, and more research is needed to determine its impact on muscle endurance performance. Based on the positive effects reported in previous studies, further testing is warranted in various populations that may benefit from nutritional supplements, including aerobic and anaerobic athletes, resistance-trained individuals, elderly people, and clinical populations, to determine the impact of different doses, timing of ingestion, and long-term and acute effects of Arg, Cit, and CitMal supplements on cardiovascular health and athletic performance.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Jisoo Seo
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Yanghoon P. Jung
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Hyunji Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Ah-Jin Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Sonwoo Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
23
|
Saad AE, Zoghroban HS, Ghanem HB, El-Guindy DM, Younis SS. The effects of L-citrulline adjunctive treatment of Toxoplasma gondii RH strain infection in a mouse model. Acta Trop 2023; 239:106830. [PMID: 36638878 DOI: 10.1016/j.actatropica.2023.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Toxoplasma gondii is a zoonotic intracellular protozoan parasite and its therapeutic limitations are one of its major problems. L-citrulline is an organic compound that has beneficial effects on many diseases. The purpose of this study was to assess the impact of L-citrulline, alone or in combination with sulfamethoxazole-trimethoprim (SMZ-TMP) on acute toxoplasmosis caused by Toxoplasma gondii RH virulent strain. In our study, 60 Swiss albino mice were divided into two main groups; the control group and the infected treated group, which was subdivided into group IIa: infected treated with L-citrulline, group IIb: infected treated with SMZ-TMP, and group IIc: infected treated with L-citrulline combined with SMZ-TMP. The effects of treatment were assessed by parasitological study, electron microscopic study of tachyzoites, and histopathological study of the liver. Moreover, ELISA measurement of the serum level of Interferon-gamma, Interleukin 10, Nitric oxide, and apoptotic markers was used. It was noticed that L-citrulline combined with SMZ-TMP significantly increased the survival time of infected mice with a significant decrease in the number of tachyzoites compared to the other groups. Moreover, it increased the levels of measured cytokines and serum anti-apoptotic proteins Bcl-2 and improved the extent of liver cell damage associated with a decrease in inflammatory infiltration. In conclusion, L-citrulline supplementation was found to be effective against acute toxoplasmosis, especially when combined with SMZ-TMP as it has multifactorial mechanisms; nitric oxide production, anti-inflammatory, anti-apoptotic, and immune stimulator.
Collapse
Affiliation(s)
- Abeer E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt.; Medical Parasitology sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Hager S Zoghroban
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Heba B Ghanem
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Dina M El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Salwa S Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
24
|
Uyanga VA, Sun L, Liu Y, Zhang M, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Effects of arginine replacement with L-citrulline on the arginine/nitric oxide metabolism in chickens: An animal model without urea cycle. J Anim Sci Biotechnol 2023; 14:9. [PMID: 36721201 PMCID: PMC9890773 DOI: 10.1186/s40104-022-00817-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND This study examined the efficacy of L-citrulline supplementation on the arginine/nitric oxide metabolism, and intestinal functions of broilers during arginine deficiency. A total of 288 day-old Arbor Acre broilers were randomly assigned to either an arginine deficient basal diet (NC diet), NC diet + 0.50% L-arginine (PC diet), or NC diet + 0.50% L-citrulline (NCL diet). Production performance was recorded, and at 21 days old, chickens were euthanized for tissue collection. RESULTS The dietary treatments did not affect the growth performance of broilers (P > 0.05), although NC diet increased the plasma alanine aminotransferase, urate, and several amino acids, except arginine (P < 0.05). In contrast, NCL diet elevated the arginine and ornithine concentration higher than NC diet, and it increased the plasma citrulline greater than the PC diet (P < 0.05). The nitric oxide concentration in the kidney and liver tissues, along with the plasma and liver eNOS activities were promoted by NCL diet higher than PC diet (P < 0.05). In the liver, the activities of arginase 1, ASS, and ASL, as well as, the gene expression of iNOS and OTC were induced by PC diet greater than NC diet (P < 0.05). In the kidney, the arginase 1, ASS and ASL enzymes were also increased by PC diet significantly higher than the NC and NCL diets. Comparatively, the kidney had higher abundance of nNOS, ASS, ARG2, and OTC genes than the liver tissue (P < 0.05). In addition, NCL diet upregulated (P < 0.05) the mRNA expression of intestinal nutrient transporters (EAAT3 and PEPT1), tight junction proteins (Claudin 1 and Occludin), and intestinal mucosal defense (MUC2 and pIgR). The intestinal morphology revealed that both PC and NCL diets improved (P < 0.05) the ileal VH/CD ratio and the jejunal VH and VH/CD ratio compared to the NC fed broilers. CONCLUSION This study revealed that NCL diet supported arginine metabolism, nitric oxide synthesis, and promoted the intestinal function of broilers. Thus, L-citrulline may serve as a partial arginine replacement in broiler's diet without detrimental impacts on the performance, arginine metabolism and gut health of chickens.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Lijing Sun
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Yu Liu
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Meiming Zhang
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Jingpeng Zhao
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Xiaojuan Wang
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Hongchao Jiao
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Okanlawon M. Onagbesan
- grid.448723.eDepartment of Animal Physiology, Federal University of Agriculture, Ogun State, Abeokuta P.M.B, 2240 Nigeria
| | - Hai Lin
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| |
Collapse
|
25
|
Ajibade TO, Awodele OA, Tijani MO, Adejumobi OA, Adetona MO, Oyagbemi AA, Adedapo AD, Omobowale TO, Aro AO, Ola-Davies OE, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Oguntibeju OO, Yakubu MA. L-arginine and lisinopril supplementation protects against sodium fluoride-induced nephrotoxicity and hypertension by suppressing mineralocorticoid receptor and angiotensin-converting enzyme 3 activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23263-23275. [PMID: 36319925 DOI: 10.1007/s11356-022-23784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Sodium fluoride (NaF) is one of the neglected environmental toxicants that has continued to silently cause toxicity to both humans and animals. NaF is universally present in water, soil, and atmosphere. The persistent and alarming rate of increase in cardiovascular and renal diseases caused by chemicals such as NaF in mammalian tissues has led to the use of various drugs for the treatment of these diseases. The present study aimed at evaluating the renoprotective and antihypertensive effects of L-arginine against NaF-induced nephrotoxicity. Thirty male Wistar rats (150-180 g) were used in this study. The rats were randomly divided into five groups of six rats each as follows: Control, NaF (300 ppm), NaF + L-arginine (100 mg/kg), NaF + L-arginine (200 mg/kg), and NaF + lisinopril (10 mg/kg). Histopathological examination and immunohistochemistry of renal angiotensin-converting enzyme (ACE) and mineralocorticoid receptor (MCR) were performed. Markers of renal damage, oxidative stress, antioxidant defense system, and blood pressure parameters were determined. L-arginine and lisinopril significantly (P < 0.05) ameliorated the hypertensive effects of NaF. The systolic, diastolic, and mean arterial blood pressure of the treated groups were significantly (P < 0.05) reduced compared with the hypertensive group. This finding was concurrent with significantly increased serum bioavailability of nitric oxide in the hypertensive rats treated with L-arginine and lisinopril. Also, there was a significant reduction in the level of blood urea nitrogen and creatinine of hypertensive rats treated with L-arginine and lisinopril. There was a significant (P < 0.05) reduction in markers of oxidative stress such as malondialdehyde and protein carbonyl and concurrent increase in the levels of antioxidant enzymes in the kidney of hypertensive rats treated with L-arginine and lisinopril. The results of this study suggest that L-arginine and lisinopril normalized blood pressure, reduced oxidative stress, and the expression of renal ACE and mineralocorticoid receptor, and improved nitric oxide production. Thus, L-arginine holds promise as a potential therapy against hypertension and renal damage.
Collapse
Affiliation(s)
- Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusola Adedayo Awodele
- Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - Monsuru Oladunjoye Tijani
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola Obemisola Aro
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Pretoria, Onderstepoort, 0110, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Pretoria, Onderstepoort, 0110, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, TX, USA
| |
Collapse
|
26
|
Supplementation with Nitric Oxide Precursors for Strength Performance: A Review of the Current Literature. Nutrients 2023; 15:nu15030660. [PMID: 36771366 PMCID: PMC9921013 DOI: 10.3390/nu15030660] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Nitric-oxide-stimulating dietary supplements are widely available and marketed to strength athletes and weightlifters seeking to increase muscle performance and augment training adaptations. These supplements contain ingredients classified as nitric oxide (NO) precursors (i.e., "NO boosters"). Endogenous NO is generated via a nitric oxide synthase (NOS)-dependent pathway and a NOS-independent pathway that rely on precursors including L-arginine and nitrates, with L-citrulline serving as an effective precursor of L-arginine. Nitric oxide plays a critical role in endothelial function, promoting relaxation of vascular smooth muscle and subsequent dilation which may favorably impact blood flow and augment mechanisms contributing to skeletal muscle performance, hypertrophy, and strength adaptations. The aim of this review is to describe the NO production pathways and summarize the current literature on the effects of supplementation with NO precursors for strength and power performance. The information will allow for an informed decision when considering the use of L-arginine, L-citrulline, and nitrates to improve muscular function by increasing NO bioavailability.
Collapse
|
27
|
Busnatu ȘS, Andronic O, Pană MA, Stoian AP, Scafa-Udriște A, Păun N, Stanciu S. Oral Arginine Supplementation in Healthy Individuals Performing Regular Resistance Training. Healthcare (Basel) 2023; 11:healthcare11020182. [PMID: 36673550 PMCID: PMC9891176 DOI: 10.3390/healthcare11020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Resistance exercise training is well documented as having cardiovascular benefits, but paradoxically, it seems to increase arterial stiffness, favoring the development of high blood pressure. The present study investigates the potential effects of oral supplementation with arginine in healthy individuals performing exercise resistance training. We studied 70 non-smoking male subjects between the ages of 30 and 45 with normal or mildly increased blood pressure on ambulatory monitoring (for 24 h) and normal blood samples and echocardiography, who performed regular resistance exercise training for at least five years with a minimum of three workouts per week. They were divided into two groups in a random manner: 35 males were placed in the arginine group (AG) that followed a 6-month supplementation of their regular diets with 5 g of oral arginine powder taken before their exercise workout, and the control (non-arginine) group (NAG) consisted of 35 males. All subjects underwent body composition analysis, 24 h blood pressure monitoring and pulse wave analysis at enrollment and at six months. After six months of supplementation, blood pressure values did not change in the NAG, while in the AG, we found a decrease of 5.6 mmHg (p < 0.05) in mean systolic blood pressure and a decrease of 4.5 mmHg (p < 0.05) in diastolic values. There was also a 0.62% increase in muscle mass in the AG vs. the NAG (p < 0.05), while the body fat decreased by 1% (p < 0.05 in AG vs. NAG). Overall, the AG gained twice the amount of muscle mass and lost twice as much body fat as the NAG. No effects on the mean weighted average heart rate were recorded in the subjects. The results suggest that oral supplementation with arginine can improve blood pressure and body composition, potentially counteracting the stress induced by resistance exercise training. Supplementation with arginine can be a suitable adjuvant for these health benefits in individuals undertaking regular resistance training.
Collapse
Affiliation(s)
- Ștefan-Sebastian Busnatu
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania
| | - Octavian Andronic
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Maria-Alexandra Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania
- Correspondence:
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Scafa-Udriște
- Department of Cardio-Thoracic, Carol Davila University of Medicine and Pharmacy, Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Nicolae Păun
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Theodor Burghele Clinical Hospital, 020021 Bucharest, Romania
| | - Silviu Stanciu
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Central Military Hospital, 010825 Bucharest, Romania
| |
Collapse
|
28
|
Bürkle F, Doll J, Neide A, Gantz S, Tsitlakidis S, Fischer C. New perspectives for investigating muscular perfusion response after dietary supplement intake: an exploratory, randomized, double-blind, placebo-controlled crossover trial in healthy young athletes using contrast-enhanced ultrasound (CEUS). J Int Soc Sports Nutr 2022; 19:397-416. [PMID: 35859621 PMCID: PMC9291664 DOI: 10.1080/15502783.2022.2097018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Various dietary supplements have been reported to enhance muscular perfusion in athletes practicing resistance training, especially through modulation of nitric oxide signaling. Objectives The aim of this study was therefore to investigate selected ‘NO-boosting’ supplements in a real-life setting i) to generate novel hypotheses and perfusion estimates for power calculation in view of a definitive trial and ii) to assess the feasibility of the study design with particular focus on the use of contrast-enhanced ultrasound (CEUS) for perfusion quantification. Methods Thirty young male athletes (24 ± 4 years) regularly practicing resistance training were enrolled in this three-arm, placebo(PL)-controlled crossover trial with ingestion of two commercially available supplements: an amino acid combination (AA) (containing 3 g of L-arginine-hydrochloride and 8 g of L-citrulline-malate) and 300 mg of a specific green tea extract (GTE). After intake, CEUS examinations of the dominant biceps brachii muscle were performed under resting conditions and following standardized resistance exercising. Quantitative parameters of biceps perfusion (peak enhancement, PE; wash-in perfusion index, WiPI) and caliber were derived from corresponding CEUS video files. Additionally, subjective muscle pump was determined after exercise. Results For PE, WiPI, and biceps caliber, the standard deviation (SD) of the within-subject differences between PL, AA, and GTE was determined, thereby allowing future sample size calculations. No significant differences between PL, AA, and GTE were observed for biceps perfusion, caliber, or muscle pump. When comparing resting with post-exercise measurements, the increase in biceps perfusion significantly correlated with the caliber increase (PE: r = 0.266, p = 0.0113; WiPI: r = 0.269, p = 0.0105). Similarly, the biceps perfusion correlated with muscle pump in the post-exercise conditions (PE: r = 0.354, p = 0.0006; WiPI: r = 0.350, p = 0.0007). A high participant adherence was achieved, and the acquisition of good quality CEUS video files was feasible. No adverse events occurred. Conclusion Based on our novel examination protocol, CEUS seems to be feasible following higher-load resistance exercising and may be used as a new method for high-resolution perfusion quantification to investigate the effects of pre-exercise dietary supplementation on muscle perfusion and related muscle size dynamics.
Collapse
Affiliation(s)
- Franziska Bürkle
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Doll
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Arndt Neide
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Simone Gantz
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanos Tsitlakidis
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Fischer
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
30
|
Wei Y, Wang Z, Liu Y, Liao B, Zong Y, Shi Y, Liao M, Wang J, Zhou X, Cheng L, Ren B. Extracellular vesicles of Candida albicans regulate its own growth through the l-arginine/nitric oxide pathway. Appl Microbiol Biotechnol 2022; 107:355-367. [PMCID: PMC9703431 DOI: 10.1007/s00253-022-12300-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Wei
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Yawen Zong
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Min Liao
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Biao Ren
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| |
Collapse
|
31
|
Ba T, Zhao D, Chen Y, Zeng C, Zhang C, Niu S, Dai H. L-Citrulline Supplementation Restrains Ferritinophagy-Mediated Ferroptosis to Alleviate Iron Overload-Induced Thymus Oxidative Damage and Immune Dysfunction. Nutrients 2022; 14:4549. [PMID: 36364817 PMCID: PMC9655478 DOI: 10.3390/nu14214549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 09/14/2023] Open
Abstract
L-citrulline (L-cit) is a key intermediate in the urea cycle and is known to possess antioxidant and anti-inflammation characteristics. However, the role of L-cit in ameliorating oxidative damage and immune dysfunction against iron overload in the thymus remains unclear. This study explored the underlying mechanism of the antioxidant and anti-inflammation qualities of L-cit on iron overload induced in the thymus. We reported that L-cit administration could robustly alleviate thymus histological damage and reduce iron deposition, as evidenced by the elevation of the CD8+ T lymphocyte number and antioxidative capacity. Moreover, the NF-κB pathway, NCOA4-mediated ferritinophagy, and ferroptosis were attenuated. We further demonstrated that L-cit supplementation significantly elevated the mTEC1 cells' viability and reversed LDH activity, iron levels, and lipid peroxidation caused by FAC. Importantly, NCOA4 knockdown could reduce the intracellular cytoplasmic ROS, which probably relied on the Nfr2 activation. The results subsequently indicated that NCOA4-mediated ferritinophagy was required for ferroptosis by showing that NCOA4 knockdown reduced ferroptosis and lipid ROS, accompanied with mitochondrial membrane potential elevation. Intriguingly, L-cit treatment significantly inhibited the NF-κB pathway, which might depend on restraining ferritinophagy-mediated ferroptosis. Overall, this study indicated that L-cit might target ferritinophagy-mediated ferroptosis to exert antioxidant and anti-inflammation capacities, which could be a therapeutic strategy against iron overload-induced thymus oxidative damage and immune dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, China
| |
Collapse
|
32
|
Effects of L-Citrulline Supplementation on Endothelial Function and Blood Pressure in Hypertensive Postmenopausal Women. Nutrients 2022; 14:nu14204396. [PMID: 36297080 PMCID: PMC9609406 DOI: 10.3390/nu14204396] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Aging and menopause are associated with decreased nitric oxide bioavailability due to reduced L-arginine (L-ARG) levels contributing to endothelial dysfunction (ED). ED precedes arterial stiffness and hypertension development, a major risk factor for cardiovascular disease. This study investigated the effects of L-citrulline (L-CIT) on endothelial function, aortic stiffness, and resting brachial and aortic blood pressures (BP) in hypertensive postmenopausal women. Twenty-five postmenopausal women were randomized to 4 weeks of L-CIT (10 g) or placebo (PL). Serum L-ARG, brachial artery flow-mediated dilation (FMD), aortic stiffness (carotid-femoral pulse wave velocity, cfPWV), and resting brachial and aortic BP were assessed at 0 and 4 weeks. L-CIT supplementation increased L-ARG levels (Δ13 ± 2 vs. Δ−2 ± 2 µmol/L, p < 0.01) and FMD (Δ1.4 ± 2.0% vs. Δ−0.5 ± 1.7%, p = 0.03) compared to PL. Resting aortic diastolic BP (Δ−2 ± 4 vs. Δ2 ± 5 mmHg, p = 0.01) and mean arterial pressure (Δ−2 ± 4 vs. Δ2 ± 6 mmHg, p = 0.04) were significantly decreased after 4 weeks of L-CIT compared to PL. Although not statistically significant (p = 0.07), cfPWV decreased after L-CIT supplementation by ~0.66 m/s. These findings suggest that L-CIT supplementation improves endothelial function and aortic BP via increased L-ARG availability.
Collapse
|
33
|
Mohammadi A, Higazy R, Gauda EB. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front Physiol 2022; 13:997619. [PMID: 36225305 PMCID: PMC9548560 DOI: 10.3389/fphys.2022.997619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Extremely low gestational age neonates (ELGANs) are born in a relatively hyperoxic environment with weak antioxidant defenses, placing them at high risk for mitochondrial dysfunction affecting multiple organ systems including the nervous, respiratory, ocular, and gastrointestinal systems. The brain and lungs are highly affected by mitochondrial dysfunction and dysregulation in the neonate, causing white matter injury (WMI) and bronchopulmonary dysplasia (BPD), respectively. Adequate mitochondrial function is important in providing sufficient energy for organ development as it relates to alveolarization and axonal myelination and decreasing oxidative stress via reactive oxygen species (ROS) and reactive nitrogen species (RNS) detoxification. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a master regulator of mitochondrial biogenesis and function. Since mitochondrial dysfunction is at the root of WMI and BPD pathobiology, exploring therapies that can regulate PGC-1α activity may be beneficial. This review article describes several promising therapeutic agents that can mitigate mitochondrial dysfunction through direct and indirect activation and upregulation of the PGC-1α pathway. Metformin, resveratrol, omega 3 fatty acids, montelukast, L-citrulline, and adiponectin are promising candidates that require further pre-clinical and clinical studies to understand their efficacy in decreasing the burden of disease from WMI and BPD in preterm infants.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
| | - Estelle B. Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Estelle B. Gauda,
| |
Collapse
|
34
|
Wang H, Dong P, Liu X, Zhang Z, Li H, Li Y, Zhang J, Dai L, Wang S. Active Peptide AR-9 From Eupolyphaga sinensis Reduces Blood Lipid and Hepatic Lipid Accumulation by Restoring Gut Flora and Its Metabolites in a High Fat Diet–Induced Hyperlipidemia Rat. Front Pharmacol 2022; 13:918505. [PMID: 36176455 PMCID: PMC9514323 DOI: 10.3389/fphar.2022.918505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The dysbiosis of gut flora and its metabolites plays important roles in the progression of hyperlipidemia (HL), and some bioactive peptides are available for HL treatment. In this study, we aimed to isolate an active peptide (AR-9) from active peptides of E. sinensis (APE) and determine whether AR-9 could improve many symptoms of a HL rat induced by a high-fat diet (HFD) by modulating gut flora and its metabolites. Above all, AR-9 was derived from APE using ion-exchange chromatography, and its structure was deconstructed by Fourier transform infrared spectrometer (FT-IR), circular dichroism (CD) spectroscopy, and UHPLC-Q-Exactive-Orbitrap MS. Then, an HFD-induced HL model in SD rats was established and used to clarify the regulatory effects of AR-9 (dose of 3 mg/kg) on HL. Normal diet–fed rats were taken as the control. The plasma samples and liver were harvested for biochemical and histopathological examinations. 16S rRNA gene sequencing and untargeted metabolomics were sequenced to assess changes in gut flora and its metabolites from rat fecal samples. Finally, Spearman’s correlation analysis was used to assess the relationship between lipid-related factors, gut flora, and its metabolites so as to evaluate the mechanism of AR-9 against HL. The results of the separation experiments showed that the amino acid sequence of AR-9 was AVFPSIVGR, which was a fragment of the actin protein from Blattaria insects. Moreover, HFD rats developed exaltation of index factors, liver lipid accumulation, and simple fibrosis for 8 weeks, and the profiles of gut flora and its metabolites were significantly altered. After treatment, AR-9 decreased the levels of lipid factors in plasma and the extent of liver damage. 16S rRNA gene sequencing results indicated that AR-9 significantly increased the relative abundance of beneficial bacteria Bacteroidetes and reduced the relative abundance of the obesity-associated bacteria Firmicutes. Furthermore, AR-9 changed gut microbiota composition and increased the relative abundance of beneficial bacteria: Lactobacillus, Clostridium, Dehalobacterium, and Candidatus arthromitus. Fecal metabolomics showed that the pathway regulated by AR-9 was “arginine biosynthesis”, in which the contents were citrulline and ornithine. Spearman’s correlation analysis revealed that two metabolites (ornithine and citrulline) showed significantly negative correlations with obesity-related parameters and positive correlations with the gut genera (Clostridium) enriched by AR-9. Overall, our results suggested interactions between gut microbial shifts and fecal amino acid/lipid metabolism and revealed the mechanisms underlying the anti-HL effect of AR-9. The abovementioned results not only reveal the initial anti-HL mechanism of AR-9 but also provide a theoretical basis for the continued development of AR-9.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Macao SAR, China
| | - Xin Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhen Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Huajian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| |
Collapse
|
35
|
Li JY, Guo YC, Zhou HF, Yue TT, Wang FX, Sun F, Wang WZ. Arginine metabolism regulates the pathogenesis of inflammatory bowel disease. Nutr Rev 2022; 81:578-586. [PMID: 36040377 PMCID: PMC10086623 DOI: 10.1093/nutrit/nuac070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is related to genetic susceptibility, enteric dysbiosis, and uncontrolled, chronic inflammatory responses that lead to colonic tissue damage and impaired intestinal absorption. As a consequence, patients with IBD are prone to nutrition deficits after each episode of disease resurgence. Nutritional supplementation, especially for protein components, is often implemented during the remission phase of IBD. Notably, ingested nutrients could affect the progression of IBD and the prognostic outcome of patients; therefore, they should be cautiously evaluated prior to being used for IBD intervention. Arginine (Arg) is a semi-essential amino acid required for protein synthesis and intimately associated with gut pathophysiology. To help optimize arginine-based nutritional intervention strategies, the present work summarizes that during the process of IBD, patients manifest colonic Arg deficiency and the turbulence of Arg metabolic pathways. The roles of Arg–nitric oxide (catalyzed by inducible nitric oxide synthase) and Arg–urea (catalyzed by arginases) pathways in IBD are debatable; the Arg–polyamine and Arg–creatine pathways are mainly protective. Overall, supplementation with Arg is a promising therapeutic strategy for IBD; however, the dosage of Arg may need to be carefully tailored for different individuals at different disease stages. Additionally, the combination of Arg supplementation with inhibitors of Arg metabolic pathways as well as other treatment options is worthy of further exploration.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Chao Guo
- Huazhong University of Science and Technology Department of Clinical Nutrition, Tongji Medical College, , Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Huazhong University of Science and Technology Department of Clinical Nutrition, Tongji Medical College, , Wuhan, China
| | - Fa-Xi Wang
- Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan, China
| | - Fei Sun
- Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan, China
| | - Wen-Zhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
The Effects of Consuming Amino Acids L-Arginine, L-Citrulline (and Their Combination) as a Beverage or Powder, on Athletic and Physical Performance: A Systematic Review. BEVERAGES 2022. [DOI: 10.3390/beverages8030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Consumption of amino acids L-arginine (L-Arg) and L-citrulline (L-Cit) are purported to increase nitric oxide (NO) production and improve physical performance. Clinical trials have shown relatively more favorable outcomes than not after supplementing with L-Cit and combined L-Arg and L-Cit. However, in most studies, other active ingredients such as malate were included in the supplement. Therefore, the aim of this study was to determine the efficacy of consuming standalone L-Arg, L-Cit, and their combination (in the form of powder or beverage) on blood NO level and physical performance markers. A systematic review was undertaken following PRISMA 2020 guidelines (PROSPERO: CRD42021287530). Four electronic databases (PubMed, Ebscohost, Science Direct, and Google scholar) were used. An acute dose of 0.075 g/kg of L-Arg or 6 g L-Arg had no significant increase in NO biomarkers and physical performance markers (p > 0.05). Consumption of 2.4 to 6 g/day of L-Cit over 7 to 16 days significantly increased NO level and physical performance markers (p < 0.05). Combined L-Arg and L-Cit supplementation significantly increased circulating NO, improved performance, and reduced feelings of exertion (p < 0.05). Standalone L-Cit and combined L-Arg with L-Cit consumed over several days effectively increases circulating NO and improves physical performance and feelings of exertion in recreationally active and well-trained athletes.
Collapse
|
37
|
Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152:113238. [PMID: 35687909 DOI: 10.1016/j.biopha.2022.113238] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/07/2022] Open
Abstract
Oxidative stress is a complex biological process characterized by the excessive production of reactive oxygen species (ROS) that act as destroyers of the REDOX balance in the body and, implicitly, inducing oxidative damage. All the metabolisms are impaired in oxidative stress and even nucleic acid balance is influenced. ROS will promote structural changes of the tissues and organs due to interaction with proteins and phospholipids. The constellation of the cardiovascular risk factors (CVRFs) will usually develop in subjects with predisposition to cardiac disorders. Oxidative stress is usually related with hypertension (HTN), diabetes mellitus (DM), obesity and cardiovascular diseases (CVDs) like coronary artery disease (CAD), cardiomyopathy or heart failure (HF), that can develop in subjects with the above-mentioned diseases. Elements describing the complex relationship between CVD and oxidative stress should be properly explored and described because prevention may be the optimal approach. Our paper aims to expose in detail the complex physiopathology of oxidative stress in CVD occurrence and novelties regarding the phenomenon. Biomarkers assessing oxidative stress or therapy targeting specific pathways represent a major progress that actually change the outcome of subjects with CVD. New antioxidants therapy specific for each CVD represents a captivating and interesting future perspective with tremendous benefits on subject's outcome.
Collapse
Affiliation(s)
- Dragos Rotariu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Emilia Elena Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Madalina Moisi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | | | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
38
|
Tian J, Xu Y, Xiong Y, Zuo L, Zhou M, Cao C, Huang X, Wang J. Metabolomics combined with network pharmacology to explore the mechanisms of modified Guishen pill to ameliorate polycystic ovary syndrome. Comput Biol Med 2022; 148:105790. [PMID: 35839542 DOI: 10.1016/j.compbiomed.2022.105790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND The modified Guishen pill (MGP) has a prominent therapeutic effect on polycystic ovary syndrome (PCOS). However, its mechanism is still unclear. This study aimed to uncover the mechanism of MGP for PCOS treatment through a comprehensive strategy integrating metabolomics and network pharmacology. METHODS A letrozole-induced PCOS model was used to evaluate ovarian function in rats. Plasma metabolomics was used to authenticate differential metabolites and enriched related pathways using the MetaboAnalyst platform. Network pharmacology was utilized to explore the endogenous targets of MGP treatment for PCOS. Finally, the potential targets and related biological functions were verified experimentally. RESULTS MGP improved PCOS symptoms by regulating abnormal levels of sex hormones and alleviating ovarian pathological changes in rats; fifty-four potential differential metabolites involved in MGP treatment for PCOS, and the hub genes derived from network pharmacology were consistent with the metabolomic analysis results to varying degrees. The comprehensive analysis identified that a key novel target for endothelial nitric oxide synthase (eNOS/NOS3), five key metabolites (ornithine, citrulline, l-glutamic acid, acetylornithine, and hydroxyproline), and one pathway (arginine and proline metabolism) were related to the therapy of PCOS with MGP. Subsequently, we verified the localization and expression of eNOS in the ovaries, and it significantly improved insulin resistance, apoptosis, and oxidative stress in letrozole-induced PCOS rats. CONCLUSION Our work reveals the complex mechanism of MGP therapy for PCOS. This study is a successful paradigm for elucidating the pharmacological mechanism of the traditional Chinese medicine compound.
Collapse
Affiliation(s)
- Jiayu Tian
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yanqiu Xu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Xiong
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ling Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Min Zhou
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chunhao Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuekuan Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
39
|
Jin B, Li G, Zhou L, Fan Z. Mechanism Involved in Acute Liver Injury Induced by Intestinal Ischemia-Reperfusion. Front Pharmacol 2022; 13:924695. [PMID: 35694264 PMCID: PMC9185410 DOI: 10.3389/fphar.2022.924695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022] Open
Abstract
Intestinal ischemia-reperfusion (I/R) is a common pathophysiological process, which can occur in many conditions such as acute enteric ischemia, severe burns, small intestinal transplantation, etc,. Ischemia-reperfusion of the intestine is often accompanied by distal organ injury, especially liver injury. This paper outlined the signal pathways and cytokines involved in acute liver injury induced by intestinal I/R: the NF-κB Signaling Pathway, the P66shc Signaling Pathway, the HMGB1 Signaling Pathway, the Nrf2-ARE Signaling Pathway, the AMPK-SIRT-1 Signaling Pathway and other cytokines, providing new ideas for the prevention and treatment of liver injury caused by reperfusion after intestinal I/R.
Collapse
Affiliation(s)
- Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Guangyao Li
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Lin Zhou
- Department of Outpatient, the NO. 967 Hospital of PLA Joint Logistics Support Force, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Wang W, Sang S. Biotransformation of Barley Phenolamide by Mice and the Human Gut Microbiota and Quantitative Analysis of the Major Metabolites in Mice. Mol Nutr Food Res 2022; 66:e2200134. [PMID: 35532207 DOI: 10.1002/mnfr.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
SCOPE This study investigates the metabolism of p-coumaroylagmatine (pCAA), one of the phenolamides in barley, in mice, and by human gut microbiota, and measures the concentrations of its main metabolites in mice. METHODS AND RESULTS Nine major metabolites are identified from fecal and urinary samples collected from pCAA treated mice via analysis of their LC chromatograms and tandem mass spectra compared to the commercial and synthesized standards. These nine metabolites are generated through four different biotransformation pathways: double bond reduction, amide bond hydrolyzation, cleavage of guanidine, and oxidation of guanidine. Furthermore, interindividual differences in the formation of dihydro-pCAA (M3), high and low metabolizers, are observed in human in vitro intestinal microbial conversion. Moreover, significant amount of pCAA is detected in mice (29.33 ± 1.58 µmol g-1 in feces and 2020.44 ± 130.07 µM in urine), and the concentrations of agmatine (M1) are increased to 177.6 times and 3.2 times in mouse feces and urine, respectively. CONCLUSION This study demonstrates that pCAA is metabolized in mice and by human gut microbiota to generate potential bioactive metabolites through four major metabolic pathways. pCAA and its metabolites have the potential to be used as the exposure biomarkers to reflect the intake of whole grain barley.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| |
Collapse
|
41
|
Kobia FM, Maiti K, Obimbo MM, Smith R, Gitaka J. Potential pharmacologic interventions targeting TLR signaling in placental malaria. Trends Parasitol 2022; 38:513-524. [DOI: 10.1016/j.pt.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
42
|
The Role of Amino Acids in Endothelial Biology and Function. Cells 2022; 11:cells11081372. [PMID: 35456051 PMCID: PMC9030017 DOI: 10.3390/cells11081372] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022] Open
Abstract
The vascular endothelium acts as an important component of the vascular system. It is a barrier between the blood and vessel wall. It plays an important role in regulating blood vessel tone, permeability, angiogenesis, and platelet functions. Several studies have shown that amino acids (AA) are key regulators in maintaining vascular homeostasis by modulating endothelial cell (EC) proliferation, migration, survival, and function. This review summarizes the metabolic and signaling pathways of AAs in ECs and discusses the importance of AA homeostasis in the functioning of ECs and vascular homeostasis. It also discusses the challenges in understanding the role of AA in the development of cardiovascular pathophysiology and possible directions for future research.
Collapse
|
43
|
Moyad MA. Nutraceuticals and Phytotherapy in Men's Health: Antioxidants, Pro-oxidants, and a Novel Opportunity for Lifestyle Changes. Urol Clin North Am 2022; 49:239-248. [DOI: 10.1016/j.ucl.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Price D, Jackson KG, Lovegrove JA, Givens DI. The effects of whey proteins, their peptides and amino acids on vascular function. NUTR BULL 2022; 47:9-26. [DOI: 10.1111/nbu.12543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Drew Price
- Hugh Sinclair Unit of Human Nutrition Department of Food and Nutritional Sciences University of Reading Reading UK
- Institute of Food Nutrition and Health University of Reading Reading UK
| | - Kim G. Jackson
- Hugh Sinclair Unit of Human Nutrition Department of Food and Nutritional Sciences University of Reading Reading UK
- Institute of Food Nutrition and Health University of Reading Reading UK
- Institute of Cardiovascular and Metabolic Research University of Reading Reading UK
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition Department of Food and Nutritional Sciences University of Reading Reading UK
- Institute of Food Nutrition and Health University of Reading Reading UK
- Institute of Cardiovascular and Metabolic Research University of Reading Reading UK
| | - David Ian Givens
- Institute of Food Nutrition and Health University of Reading Reading UK
| |
Collapse
|
45
|
Nosratabadi R, Rahmani M, Ramezani M, Zainodini N, Yousefpoor Y, Taghipour Z, Abbasifard M. Phytosomal curcumin alleviates collagen-induced arthritis by downregulating Th17 and upregulating Treg cell responses in rats. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.360562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Tran N, Garcia T, Aniqa M, Ali S, Ally A, Nauli SM. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: in Physiology and in Disease States. AMERICAN JOURNAL OF BIOMEDICAL SCIENCE & RESEARCH 2022; 15:153-177. [PMID: 35072089 PMCID: PMC8774925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) plays a critical role in regulating and maintaining a healthy cardiovascular system. The importance of eNOS can be emphasized from the genetic polymorphisms of the eNOS gene, uncoupling of eNOS dimerization, and its numerous signaling regulations. The activity of eNOS on the cardiac myocytes, vasculature, and the central nervous system are discussed. The effects of eNOS on the sympathetic autonomic nervous system (SANS) and the parasympathetic autonomic nervous system (PANS), both of which profoundly influence the cardiovascular system, will be elaborated. The relationship between the eNOS protein with cardiovascular autonomic reflexes such as the baroreflex and the Exercise Pressor Reflex will be discussed. For example, the effects of endogenous nitric oxide (NO) are shown to be mediated by the eNOS protein and that eNOS-derived endothelial NO is most effective in regulating blood pressure oscillations via modulating the baroreflex mechanisms. The protective action of eNOS on the CVS is emphasized here because dysfunction of the eNOS enzyme is intricately correlated with the pathogenesis of several cardiovascular diseases such as hypertension, arteriosclerosis, myocardial infarction, and stroke. Overall, our current understanding of the eNOS protein with a focus on its role in the modulation, regulation, and control of the cardiovascular system in a normal physiological state and in cardiovascular diseases are discussed.
Collapse
Affiliation(s)
- N Tran
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - T Garcia
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - M Aniqa
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - S Ali
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - A Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA,Corresponding author: Surya M Nauli, Chapman University and University of California, Irvine, CA, USA
| | - SM Nauli
- Chapman University and University of California, Irvine, CA, USA,Corresponding author: Surya M Nauli, Chapman University and University of California, Irvine, CA, USA
| |
Collapse
|
47
|
Alves Porto A, Almeida Gonzaga L, Benjamim C, Garner D, Adami F, Valenti V. Effect of oral l-arginine supplementation on post-exercise blood pressure in hypertensive adults: A systematic review with meta-analysis of randomized double-blind, placebo-controlled studies. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Shiraseb F, Asbaghi O, Bagheri R, Wong A, Figueroa A, Mirzaei K. Effect of l-Arginine Supplementation on Blood Pressure in Adults: A Systematic Review and Dose-Response Meta-analysis of Randomized Clinical Trials. Adv Nutr 2021; 13:1226-1242. [PMID: 34967840 PMCID: PMC9340976 DOI: 10.1093/advances/nmab155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/08/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
A decade-old meta-analytic work indicated that l-arginine supplementation might have a blood pressure (BP)-lowering effect in different populations. However, several relevant investigations have emerged in the last 10 y, and an up-to-date systematic review and meta-analysis on this topic is currently lacking. Therefore, we aimed to examine the impact of l-arginine supplementation on BP by conducting a systematic review and dose-response meta-analysis of randomized placebo-controlled clinical trials (RCTs). We searched online databases using relevant keywords up to April 2021 to identify RCTs using oral l-arginine on systolic BP (SBP) and diastolic BP (DBP) in adults. Inclusion criteria were adult participants and an intervention duration ≥4 d. Exclusion criteria were the use of l-arginine infusion and acute interventions. A random-effects model was used to estimate the weighted mean difference (WMD) and 95% CI. Twenty-two RCTs with 30 effect sizes were included in this meta-analysis. The pooled analysis demonstrated significant decreases in SBP (WMD = -6.40 mmHg; 95% CI: -8.74, -4.05; P < 0.001) and DBP (WMD = -2.64 mmHg; 95% CI: -3.94, -1.40; P < 0.001) after l-arginine supplementation. Subgroup analysis showed significant reductions in SBP and DBP regardless of baseline BP category (normotensive, hypertensive), study duration (≤24 d, >24 d), sex (female, male), health status (healthy, unhealthy), and BMI (normal, overweight, obese). No significant changes were observed with dosages >9 g/d, trial duration >24 d, or in obese individuals. l-Arginine supplementation also appears to decrease DBP more effectively in females than in males. Moreover, meta-regression analysis for DBP demonstrated a significant relation between the dose of l-arginine intake and changes in DBP (P = 0.020). In the nonlinear dose-response analysis, the effective dosage of l-arginine supplementation was detected to be ≥4 g/d for SBP (P = 0.034), independent of trial duration. Overall, l-arginine supplementation may be effective for decreasing BP. This study was registered at PROSPERO as CRD42021242772.
Collapse
Affiliation(s)
- Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
49
|
Man AWC, Zhou Y, Lam UDP, Reifenberg G, Werner A, Habermeier A, Closs EI, Daiber A, Münzel T, Xia N, Li H. L-citrulline ameliorates pathophysiology in a rat model of superimposed preeclampsia. Br J Pharmacol 2021; 179:3007-3023. [PMID: 34935131 DOI: 10.1111/bph.15783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Preeclampsia, characterized by hypertension, proteinuria, and fetal growth restriction, is one of the leading causes of maternal and perinatal mortality. By far, there is no effective pharmacological therapy for preeclampsia. The present study was conducted to investigate the effects of L-citrulline supplementation in Dahl salt-sensitive rat, a model of superimposed preeclampsia. EXPERIMENTAL APPROACH Parental DSSR were treated with L-citrulline (2.5 g/L in drinking water) from the day of mating to the end of lactation period. Blood pressure of the rats was monitored throughout pregnancy and markers of preeclampsia were assessed. Endothelial function of the pregnant DSSR was assessed by wire myograph. KEY RESULTS L-citrulline supplementation significantly reduced maternal blood pressure, proteinuria, and levels of circulating soluble fms-like tyrosine kinase 1 in DSSR. L-citrulline improved maternal endothelial function by augmenting the production of nitric oxide in the aorta and improving endothelium-derived hyperpolarizing factor-mediated vasorelaxation in resistance arteries. L-citrulline supplementation improved placental insufficiency and fetal growth, which were associated with an enhancement of angiogenesis and reduction of fibrosis and senescence in the placentas. In addition, L-citrulline downregulated genes involved in the toll-like receptor 4 and nuclear factor-κB signaling pathway. CONCLUSION AND IMPLICATIONS This study shows that L-citrulline supplementation reduces gestational hypertension, improves placentation and fetal growth in a rat model of superimposed preeclampsia. L-citrulline supplementation may represent an effective and safe therapeutic strategy for preeclampsia that benefit both the mother and the fetus.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Uyen D P Lam
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Biomedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Gisela Reifenberg
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anke Werner
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Alice Habermeier
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ellen I Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
50
|
Han C, Yu Q, Jiang J, Zhang X, Wang F, Jiang M, Yu R, Deng T, Yu C. Bioenzyme-responsive L-arginine-based carbon dots: the replenishment of nitric oxide for nonpharmaceutical therapy. Biomater Sci 2021; 9:7432-7443. [PMID: 34609389 DOI: 10.1039/d1bm01184g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a short-lived, bioactive gas that has been found to have affinitive effects on cardiovascular diseases as well as cancer biology, while NO deficiency may cause serious pathological responses. The existing chemically-synthesized NO donors have inevitable systemic toxicity and cannot be released adaptively. Hence, L-arginine, an endogenous NO precursor, merits investigation as a natural efficient NO donor. Herein, we designed amino acid-doped L-arginine CDs-based bioenzyme-responsive NO donors, which could adaptively replenish NO/ONOO- in response to different microenvironments. Our results indicated the mechanism of the NO/ONOO- supplementation of L-arginine-based CDs and their potential for nonpharmaceutical gas-involving theranostics for the first time.
Collapse
Affiliation(s)
- Chuyi Han
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qinghua Yu
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Junhao Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xianming Zhang
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fan Wang
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mingyue Jiang
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ruihong Yu
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Centre, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Deng
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chao Yu
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Centre, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|