1
|
Flores Ventura E, Bernabeu M, Callejón-Leblic B, Cabrera-Rubio R, Yeruva L, Estañ-Capell J, Martínez-Costa C, García-Barrera T, Collado MC. Human milk metals and metalloids shape infant microbiota. Food Funct 2024; 15:12134-12145. [PMID: 39584920 DOI: 10.1039/d4fo01929f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Background: The profile of metal(loid)s in human milk is essential for infant growth and development, yet its impact on the development of the infant microbiota remains unclear. Elements, such as manganese, zinc, iron or copper, play crucial roles in influencing infant health. Aim: To investigate the metal(loid) content within human milk and its influence on the infant's gut microbiota within the first 2 months after birth. Methods: Human milk samples and infant stool samples from 77 mother-infant dyads in the MAMI cohort were collected at two time points: the early transitional stage and the mature stage. Metallomic profiling of human milk was conducted using inductively coupled plasma-mass spectrometry (ICP-MS). The infant gut microbiota was profiled through 16S rRNA amplicon sequencing and maternal-infant clinical data were available. Spearman's rank correlation coefficientsprovided insights into metal(loid)-microbiota relationships. Results: Independent cross-sectional analyses of mother-infant pairs at two time points, significant variations in metal concentrations and differences in microbial abundances and diversities were observed. Notably, Bifidobacterium genus abundance was higher during the mature lactation stage. During early lactation, we found a significant positive correlation between infant gut Corynebacterium and human milk nickel concentrations, and negative correlations between Veillonella spp. and antimony, and Enterobacter spp. and copper. Additionally, Simpson's diversity was negatively correlated with iron. In the mature lactation stage, we identified eleven significant correlations between metals and microbiota. Notably, Klebsiella genus showed multiple negative correlations with iron, antimony, and vanadium. Conclusion: Our study highlights the significance of metal(loid)-microbiota interactions in early infant development, indicating that infant gut Klebsiella genus may be particularly vulnerable to fluctuations in metal(loid) levels present in human milk, when compared to other genera. Future research should explore these interactions at a strain level and the implications on infant health and development. This trial was registered as NCT03552939.
Collapse
Affiliation(s)
- Eduard Flores Ventura
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Manuel Bernabeu
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Belén Callejón-Leblic
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Javier Estañ-Capell
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Tamara García-Barrera
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
2
|
Sychterz C, Shen H, Zhang Y, Sinz M, Rostami‐Hodjegan A, Schmidt BJ, Gaohua L, Galetin A. A close examination of BCRP's role in lactation and methods for predicting drug distribution into milk. CPT Pharmacometrics Syst Pharmacol 2024; 13:1856-1869. [PMID: 39292199 PMCID: PMC11578132 DOI: 10.1002/psp4.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Breastfeeding is the most complete nutritional method of feeding infants, but several impediments affect the decision to breastfeed, including questions of drug safety for medications needed during lactation. Despite recent FDA guidance, few labels provide clear dosing advice during lactation. Physiologically based pharmacokinetic modeling (PBPK) is well suited to mechanistically explore pharmacokinetics and dosing paradigms to fill gaps in the absence of extensive clinical studies and complement existing real-world data. For lactation-focused PBPK (Lact-PBPK) models, information on system parameters (e.g., expression of drug transporters in mammary epithelial cells) is sparse. The breast cancer resistance protein (BCRP) is expressed on the apical side of mammary epithelial cells where it actively transports drugs/substrates into milk (reported milk: plasma ratios range from 2 to 20). A critical review of BCRP and its role in lactation was conducted. Longitudinal changes in BCRP mRNA expression have been identified in women with a maximum reached around 5 months postpartum. Limited data are available on the ontogeny of BCRP in infant intestine; however, data indicate lower BCRP abundance in infants compared to adults. Current status of incorporation of drug transporter information in Lact-PBPK models to predict active secretion of drugs into breast milk and consequential exposure of breast-fed infants is discussed. In addition, this review highlights novel clinical tools for evaluation of BCRP activity, namely a potential non-invasive BCRP biomarker (riboflavin) and liquid biopsy that could be used to quantitatively elucidate the role of this transporter without the need for administration of drugs and to inform Lact-PBPK models.
Collapse
Affiliation(s)
- Caroline Sychterz
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Hong Shen
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | | | | - Amin Rostami‐Hodjegan
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Certara Predictive Technologies, Certara UKSheffieldUK
| | | | - Lu Gaohua
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Aleksandra Galetin
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
3
|
Pansari A, Pan X, Almond LM, Rowland-Yeo K. A tutorial on physiologically based pharmacokinetic approaches in lactation research. CPT Pharmacometrics Syst Pharmacol 2024; 13:1841-1855. [PMID: 39283747 DOI: 10.1002/psp4.13232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
In breastfeeding mothers, managing medical conditions presents unique challenges, particularly concerning medication use and breastfeeding practices. The transfer of drugs into breast milk and subsequent exposure to nursing infants raises important considerations for drug safety and efficacy. Modeling approaches are increasingly employed to predict infant exposure levels, crucial for assessing drug safety during breastfeeding. Physiologically-based pharmacokinetic (PBPK) modeling provides a valuable tool for predicting drug exposure in lactating individuals and their infants. This tutorial offers an overview of PBPK modeling in lactation research, covering key concepts, prediction approaches, and best practices for model development and application. We delve into milk composition dynamics and its influence on drug transfer into breast milk, addressing modeling considerations, knowledge gaps, and future research directions. Practical examples and case studies illustrate PBPK modeling application in lactation studies. We demonstrate how prediction algorithms for Milk-to-Plasma (M/P) ratios within a PBPK framework can support scenarios lacking clinical lactation data or extend the utility of available lactation clinical data to support further untested clinical scenarios. This tutorial aims to assist researchers and clinicians in understanding and applying PBPK modeling to understand and support clinical scenarios in breastfeeding mothers. Advances in PBPK modeling techniques, along with ongoing research on lactation physiology and drug disposition, promise further insights into drug transfer during lactation.
Collapse
Affiliation(s)
- Amita Pansari
- Certara Predictive Technologies Division, Sheffield, UK
| | - Xian Pan
- Certara Predictive Technologies Division, Sheffield, UK
| | - Lisa M Almond
- Certara Predictive Technologies Division, Sheffield, UK
| | | |
Collapse
|
4
|
Corum O, Uney K, Coskun D, Durna Corum D, Cetin G, Elmas M. Plasma and Milk Pharmacokinetics and Estimated Milk Withdrawal Time of Tolfenamic Acid in Lactating Sheep. Vet Med Sci 2024; 10:e70047. [PMID: 39321188 PMCID: PMC11423908 DOI: 10.1002/vms3.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the plasma and milk pharmacokinetics, as well as the withdrawal time (WT) from milk of tolfenamic acid (2 and 4 mg/kg) following intravenous (IV) administration to eight healthy lactating Akkaraman sheep. METHODS The trial was conducted in two periods in accordance with a crossover pharmacokinetic design. The concentrations of tolfenamic acid in the plasma and milk were determined using high-pressure liquid chromatography and evaluated using non-compartmental analysis. The WT of tolfenamic acid in milk was calculated using the WT 1.4 software. RESULTS Compared to the 2 mg/kg dose, plasma volume of distribution at steady state (from 0.43 to 0.50 L/kg), terminal elimination half-life (from 2.41 to 4.14 h) and dose-normalized area under the plasma concentration-time curve (AUC0-∞, from 9.46 to 30.11 h µg/mL) increased, whereas total body clearance (from 0.21 to 0.13 L/h/kg) decreased at the 4 mg/kg dose. The peak milk concentration (Cmax) and AUC0-∞ values in milk were 0.26 µg/mL and 0.28 h µg/mL, respectively, for 2 mg/kg, and 0.43 µg/mL and 0.55 h µg/mL, respectively, for 4 mg/kg. Although the dose-normalized Cmax of milk decreased depending on the dose, no difference was observed in dose-normalized AUC0-∞. The AUC0-∞ milk/AUC0-∞ plasma ratio was 0.03 for 2 mg/kg and 0.02 for 4 mg/kg. The WT values calculated for milk at dosages of 2 and 4 mg/kg were 3 and 4 h, respectively. CONCLUSIONS A decrease in plasma elimination and an increase in plasma concentration of tolfenamic acid were observed depending on the dose. Tolfenamic acid lowly passed into sheep's milk at 2 and 4 mg/kg doses. This study may provide valuable information for clinicians' decision-making processes.
Collapse
Affiliation(s)
- Orhan Corum
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of Hatay Mustafa KemalAntakyaHatayTürkiye
| | - Kamil Uney
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of SelcukKonyaTürkiye
| | - Devran Coskun
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of SiirtSiirtTürkiye
| | - Duygu Durna Corum
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of Hatay Mustafa KemalAntakyaHatayTürkiye
| | - Gul Cetin
- Department of PharmacologyFaculty of PharmacyUniversity of Erzincan Binali YıldırımErzincanTürkiye
| | - Muammer Elmas
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of SelcukKonyaTürkiye
| |
Collapse
|
5
|
Aminuddin AI, Jamaluddin R, Sabran MR, Mohd Shukri NH. Aflatoxin M 1 levels in urine and breast milk of lactating mothers in Kuala Lumpur, Malaysia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1360-1367. [PMID: 39092907 DOI: 10.1080/19440049.2024.2386462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Aflatoxins are carcinogens that can contaminate food and affect various body organs especially liver and kidney. When consumed, aflatoxin B1 (AFB1) is partially metabolised into aflatoxin M1 (AFM1), which is excreted in the urine. Breast milk may also contain AFM1 due to maternal dietary intake from contaminated food. This cross-sectional study aimed to determine the levels of AFM1 in both urine and breast milk among breastfeeding mothers (n = 256). The mother's demographic information was collected during recruitment. Mothers were then scheduled for an appointment to provide a morning urine sample along with five to ten mL samples of breast milk. AFM1 levels in both samples were analysed using an enzyme-linked immunosorbent assay (ELISA). Spearman's rho and Chi-square were used to determine the associations between mean levels of AFM1 in urine and breast milk. Findings show 68.0% of urine samples were contaminated with AFM1 (mean levels = 0.08 ± 0.04 ng/mL), while 14.8% of breast milk samples had AFM1 (mean levels = 5.94 ± 1.81 ng/kg). Urine AFM1 levels were not significantly associated with AFM1 levels in breast milk (p > 0.05). This study can act as a baseline for future research examining long-term aflatoxin exposure among both mothers and infants.
Collapse
Affiliation(s)
- Alyaa Izzati Aminuddin
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rosita Jamaluddin
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Guinn D, Kratz K, Baisden K, Ridge S, McClymont S, Fletcher EP, Johnson T, Wang Y. On placental and lactational transfer of IgG-based therapeutic proteins - Current understanding and knowledge gaps from a clinical pharmacology perspective. Clin Transl Sci 2024; 17:e70049. [PMID: 39436322 PMCID: PMC11495133 DOI: 10.1111/cts.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Maternal medication use may expose the developing fetus through placental transfer or the infant through lactational transfer. Because pregnant and lactating individuals have been historically excluded from early drug development trials, there is often limited to no human data available to inform pharmacokinetics (PK) and safety in these populations at the time of drug approval. We describe the known mechanisms of placental or lactational transfer of IgG-based therapeutic proteins and use clinical examples to highlight the potential for fetal or infant exposure during pregnancy and lactation. Placental transfer of IgG-based therapeutic proteins may result in systemic exposure to the developing fetus. A lactational transfer may be associated with local gastrointestinal (GI) exposure in the infant and may also result in systemic exposure, although data are very limited as proteins have shown instability in the GI tract. Understanding of PK and pharmacodynamic (PD) effects of IgG-based therapeutic proteins in infants exposed in utero as well as the potential exposure through human milk and its clinical implications is critical for developing treatment strategies for pregnant or lactating individuals. We share the current knowledge gaps and considerations for future evaluations to inform PK, PD, and the safety of IgG-based therapeutic proteins for safe use during pregnancy and lactation. With the increasing use of IgG-based therapeutic proteins in treating chronic diseases during pregnancy and lactation, there is a need to improve the quantity and quality of data to inform the safe use in pregnant and lactating individuals.
Collapse
Affiliation(s)
- Daphne Guinn
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Katherine Kratz
- Division of Pediatrics and Maternal Health, Office of Rare Diseases, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Kristie Baisden
- Division of Pediatrics and Maternal Health, Office of Rare Diseases, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Sarah Ridge
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Sonaly McClymont
- Division of Pediatrics and Maternal Health, Office of Rare Diseases, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Elimika Pfuma Fletcher
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Tamara Johnson
- Division of Pediatrics and Maternal Health, Office of Rare Diseases, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Yow‐Ming Wang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
7
|
Millán-García A, Álvarez-Fernández L, Blanco-Paniagua E, Álvarez AI, Merino G. The ABCG2 Transporter Affects Plasma Levels, Tissue Distribution and Milk Secretion of Lumichrome, a Natural Derivative of Riboflavin. Int J Mol Sci 2024; 25:9884. [PMID: 39337371 PMCID: PMC11431963 DOI: 10.3390/ijms25189884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The ABCG2 membrane transporter affects bioavailability and milk secretion of xenobiotics and natural compounds, including vitamins such as riboflavin. We aimed to characterize the in vitro and in vivo interaction of ABCG2 with lumichrome, the main photodegradation product of riboflavin, which has proven in vitro anti-cancer activity and a therapeutical role in antibacterial photodynamic therapy as an efficient photosensitizer. Using MDCK-II polarized cells overexpressing murine Abcg2 and human ABCG2 we found that lumichrome was efficiently transported by both variants. After lumichrome administration to wild-type and Abcg2-/- mice, plasma AUC20-120 min was 1.8-fold higher in Abcg2-/- mice compared with wild-type mice. The liver and testis from Abcg2-/- mice showed significantly higher lumichrome levels compared with wild-type, whereas lumichrome accumulation in small intestine content of wild-type mice was 2.7-fold higher than in Abcg2-/- counterparts. Finally, a 4.1-fold-higher lumichrome accumulation in milk of wild-type versus Abcg2-/- mice was found. Globally, our results show that ABCG2 plays a crucial role in plasma levels, tissue distribution and milk secretion of lumichrome potentially conditioning its biological activity.
Collapse
Affiliation(s)
- Alicia Millán-García
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| | - Laura Álvarez-Fernández
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| | - Ana I Álvarez
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| |
Collapse
|
8
|
Zhang C, Zhao X, Pan X, Zaya G, Lyu B, Li S, Li J, Zhao Y, Wu Y, Chen D. The mother-offspring transfer of chlorothalonil through human breast milk: A multi-city cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173511. [PMID: 38825210 DOI: 10.1016/j.scitotenv.2024.173511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
4-Hydroxychlorothalonil (4-OH CHT), the main metabolite of chlorothalonil and the most widely used fungicide, has been frequently detected in human samples during monitoring. 4-OH CHT may exhibit higher toxicity and persistence in the environment compared to its prototype. In this study, a total of 540 paired serum and breast milk samples from pregnant women in three provinces in China were monitored for contaminant residues. 4-OH CHT was analyzed in the samples using ultra high-performance liquid chromatography - high-resolution mass spectrometry with a detection limit of 20 ng/L. The study investigated the effects of demographic factors, such as BMI, region of residence, and education level, on the levels of 4-OH CHT residues in serum and breast milk. Among the three provinces, the highest median concentration of 4-OH CHT in serum samples was observed in Hebei (1.04 × 103 ng/L), while the highest median concentration of 4-OH CHT in breast milk samples was observed in Hubei and Guangdong (491 ng/L). Multiple linear regression was used to investigate the significant positive correlation between 4-OH CHT in serum and breast milk (p = 0.000) after adjusting for personal characteristics. Based on this, the study further explored the influencing factors of transfer efficiencies (TEs) in conjunction with the individual TEs and the personal characteristics of the participants. Our results demonstrated that the age of the volunteers and their exercise habits had an effect on TEs, but further studies are needed to determine whether exercise leads to an increase in TEs.
Collapse
Affiliation(s)
- Chi Zhang
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xuezhen Zhao
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xingqi Pan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Gerili Zaya
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Shaohua Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; School of Public Health, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
9
|
Gunes Y, Blanco-Paniagua E, Anlas C, Sari AB, Bakirel T, Ustuner O, Merino G. Role of the Abcg2 transporter in plasma, milk, and tissue levels of the anthelmintic monepantel in mice. Chem Biol Interact 2024; 398:111117. [PMID: 38906501 DOI: 10.1016/j.cbi.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Breast cancer resistance protein/ATP-binding cassette subfamily G2 (BCRP/ABCG2) is an ATP-binding cassette efflux (ABC) transporter expressed in the apical membrane of cells in tissues, such as the liver, intestine, kidney, testis, brain, and mammary gland. It is involved in xenobiotic pharmacokinetics, potentially affecting the efficacy and toxicity of many drugs. In this study, the role of ABCG2 in parasiticide monepantel (MNP) and its primary metabolite, monepantel sulfone (MNPSO2)'s systemic distribution and excretion in milk, was tested using female and male wild-type and Abcg2-/- mice. Liquid chromatography coupled with a tandem mass spectrometer (LC-MS/MS) was used for the analysis in a 10-min run time using positive-mode atmospheric pressure electrospray ionization (ESI+) and multiple reaction monitoring (MRM) scanning. For the primary metabolite tested, milk concentrations were 1.8-fold higher in wild-type mice than Abcg2-/- female lactating mice (P = 0.042) after intravenous administration of MNP. Finally, despite the lack of a difference between groups, we investigated potential differences in MNP and MNPSO2's plasma and tissue accumulation levels between wild-type and Abcg2-/- male mice. In this study, we demonstrated that MNPSO2 milk levels were affected by Abcg2, with potential pharmacological and toxicological consequences, contributing to the undesirable xenobiotic residues in milk.
Collapse
Affiliation(s)
- Yigit Gunes
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey.
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071, Leon, Spain
| | - Ceren Anlas
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Ataman Bilge Sari
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Tulay Bakirel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Oya Ustuner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071, Leon, Spain
| |
Collapse
|
10
|
Bernardini C, Nesci S, La Mantia D, Salaroli R, Nauwelaerts N, Ventrella D, Elmi A, Trombetti F, Zannoni A, Forni M. Isolation and characterization of mammary epithelial cells derived from Göttingen Minipigs: A comparative study versus hybrid pig cells from the IMI-ConcePTION Project. Res Vet Sci 2024; 172:105244. [PMID: 38554548 DOI: 10.1016/j.rvsc.2024.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The value of pig as "large animal model" is a well-known tool for translational medicine, but it can also be beneficial in studying animal health in a one-health vision. The ConcePTION Project aims to provide new information about the risks associated with medication use during breastfeeding, as this information is not available for most commonly used drugs. In the IMI-Conception context, Göttingen Minipigs have been preferred to hybrid pigs for their genetic stability and microbiological control. For the first time, in the present research, three primary cell cultures of mammary epithelial cells were isolated and characterized from Göttingen Minipigs (mpMECs), including their ability to create the epithelial barrier. In addition, a comparative analysis between Göttingen Minipigs and commercial hybrid pig mammary epithelial cells (pMECs) was conducted. Epithelial markers: CKs, CK18, E-CAD, ZO-1 and OCL, were expressed in both mpMECs and pMECs. RT2 Profiler PCR Array Pig Drug Transporters showed a similar profile in mRNA drug transporters. No difference in energy production under basal metabolic condition was evidenced, while under stressed state, a different metabolic behaviour was shown between mpMECs vs pMECs. TEER measurement and sodium fluorescein transport, indicated that mpMECs were able to create an epithelial barrier, although, this turned out to be less compact than pMECs. By comparing mpMECs with mammary epithelial cells isolated from Hybrid pigs (pMECs), although both cell lines have morphological and phenotypic characteristics that make them both useful in barrier studies, some specific differences exist and must be considered in a translational perspective.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Nina Nauwelaerts
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven University, Belgium.
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| |
Collapse
|
11
|
Nilkant R, Kathiresan C, Kumar N, Caritis S, Shaik IH, Venkataramanan R. Selection of a suitable animal model to evaluate secretion of drugs in the human milk: a systematic approach. Xenobiotica 2024; 54:288-303. [PMID: 38634455 PMCID: PMC11326520 DOI: 10.1080/00498254.2024.2345283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Lack of data on drug secretion in human milk is a concern for safe use of drugs during postpartum.Clinical studies are often difficult to perform; despite substantial improvements in computational methodologies such as physiologically based pharmacokinetic modelling, there is limited clinical data to validate such models for many drugs.Various factors that are likely to impact milk to plasma ratio were identified. A literature search was performed to gather available data on milk composition, total volume of milk produced per day, milk pH, haematocrit, and renal blood flow and glomerular filtration rate in various animal models.BLAST nucleotide and protein tools were used to evaluate the similarities between humans and animals in the expression and predominance of selected drug transporters, metabolic enzymes, and blood proteins.A multistep analysis of all the potential variables affecting drug secretion was considered to identify most appropriate animal model. The practicality of using the animal in a lab setting was also considered.Donkeys and goats were identified as the most suitable animals for studying drug secretion in milk and future studies should be performed in goats and donkeys to validate the preliminary observations.
Collapse
Affiliation(s)
- Riya Nilkant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chintha Kathiresan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namrata Kumar
- Department of Molecular Biology and Developmental Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve Caritis
- Department of Obstetrics Gynaecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Alshogran OY, Dodeja P, Albukhaytan H, Laffey T, Chaphekar N, Caritis S, Shaik IH, Venkataramanan R. Drugs in Human Milk Part 1: Practical and Analytical Considerations in Measuring Drugs and Metabolites in Human Milk. Clin Pharmacokinet 2024; 63:561-588. [PMID: 38748090 DOI: 10.1007/s40262-024-01374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 05/22/2024]
Abstract
Human milk is a remarkable biofluid that provides essential nutrients and immune protection to newborns. Breastfeeding women consuming medications could pass the drug through their milk to neonates. Drugs can be transferred to human milk by passive diffusion or active transport. The physicochemical properties of the drug largely impact the extent of drug transfer into human milk. A comprehensive understanding of the physiology of human milk formation, composition of milk, mechanisms of drug transfer, and factors influencing drug transfer into human milk is critical for appropriate selection and use of medications in lactating women. Quantification of drugs in the milk is essential for assessing the safety of pharmacotherapy during lactation. This can be achieved by developing specific, sensitive, and reproducible analytical methods using techniques such as liquid chromatography coupled with mass spectrometry. The present review briefly discusses the physiology of human milk formation, composition of human milk, mechanisms of drug transfer into human milk, and factors influencing transfer of drugs from blood to milk. We further expand upon and critically evaluate the existing analytical approaches/assays used for the quantification of drugs in human milk.
Collapse
Affiliation(s)
- Osama Y Alshogran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Prerna Dodeja
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hamdan Albukhaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor Laffey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nupur Chaphekar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve Caritis
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, UPMC Magee-Women's Hospital, Pittsburgh, PA, USA
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Room 7406, Salk Hall, Pittsburgh, PA, 15261, USA.
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Bernardini C, La Mantia D, Forni M. Evaluation of the Epithelial Barrier Integrity in Primary Cultures of Pig Mammary Epithelial Cells. Methods Mol Biol 2024; 2749:151-164. [PMID: 38133782 DOI: 10.1007/978-1-0716-3609-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A major feature of epithelial and endothelial cells is the creation of biological barriers able to protect the body against stressors that could compromise homeostasis. The ability to characterize biological barriers in vitro is an important study tool especially used for the intestinal barrier, the blood-brain barrier, and the lung barrier. The strength and integrity of biological barriers may be assessed by the measurement of the transepithelial/transendothelial electrical resistance (TEER) that reflects the ionic conductance of the paracellular pathway. The TEER measurement is a quantitative, non-invasive, highly useful, and representative method that must be strictly standardized. Here we describe a quantitative protocol to assess the mammary epithelial barrier integrity by combining the TEER measurement with a test for studying the passage of the sodium fluorescein, that is, a hydrophilic paracellular marker. Being the swine species an excellent translational model, primary cultures of mammary epithelial cells, isolated from hybrid pig tissue collected at slaughterhouse, are used.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Blanco-Paniagua E, Álvarez-Fernández L, Millán-García A, Rivas G, Álvarez AI, Merino G. Coadministration of ivermectin and abamectin affects milk pharmacokinetics of the antiparasitic clorsulon in Assaf sheep. Front Vet Sci 2023; 10:1268658. [PMID: 37929285 PMCID: PMC10622746 DOI: 10.3389/fvets.2023.1268658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
In veterinary field, drug exposure during milk production in dairy cattle is considered a major health problem which concerns dairy consumers. The induced expression of the ABC transporter G2 (ABCG2) in the mammary gland during lactation plays a significant role in the active secretion of many compounds into milk. The main objective of this study was to determine the involvement of ABCG2 in the secretion into milk of the antiparasitic clorsulon in sheep as well as the possible effect of the coadministration of model ABCG2 inhibitors such as macrocyclic lactones on this process. Cells transduced with the ovine variant of ABCG2 were used to carry out in vitro transepithelial transport assays in which we showed that clorsulon is a substrate of the ovine transporter. In addition, ivermectin and abamectin significantly inhibited clorsulon transport mediated by ovine ABCG2. In vivo interactions were studied in Assaf sheep after coadministration of clorsulon (in DMSO, 2 mg/kg, s.c.) with ivermectin (Ivomec®, 0.2 mg/kg, s.c.) or abamectin (in DMSO, 0.2 mg/kg, s.c.). After ivermectin and abamectin treatment, no relevant statistically significant differences in plasma levels of clorsulon were reported between the experimental groups since there were no differences in the area under the plasma concentration-curve (AUC) between clorsulon treatment alone and coadministration with macrocyclic lactones. With regard to milk, total amount of clorsulon, as percentage of dose excreted, did not show statistically significant differences when macrocyclic lactones were coadministered. However, the AUC for clorsulon significantly decreased (p < 0.05) after coadministration with ivermectin (15.15 ± 3.17 μg h/mL) and abamectin (15.30 ± 3.25 μg h/mL) compared to control group (20.73 ± 4.97 μg h/mL). Moreover, milk parameters such as half-life (T1/2) and mean residence time (MRT) were significantly lower (p < 0.05) after coadministration of macrocyclic lactones. This research shows that the milk pharmacokinetics of clorsulon is affected by the coadministration of ABCG2 inhibitors, reducing drug persistence in milk.
Collapse
Affiliation(s)
- Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary, University of León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
| | - Laura Álvarez-Fernández
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary, University of León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
| | - Alicia Millán-García
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary, University of León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
| | - Guillermo Rivas
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
| | - Ana I. Álvarez
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary, University of León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary, University of León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
| |
Collapse
|
15
|
Blanco-Paniagua E, Álvarez-Fernández L, Rodríguez-Alonso A, Millán-Garcia A, Álvarez AI, Merino G. Role of the Abcg2 Transporter in Secretion into Milk of the Anthelmintic Clorsulon: Interaction with Ivermectin. Antimicrob Agents Chemother 2023; 67:e0009523. [PMID: 37078871 PMCID: PMC10190675 DOI: 10.1128/aac.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
Clorsulon is a benzenesulfonamide drug that is effective in treating helminthic zoonoses such as fascioliasis. When used in combination with the macrocyclic lactone ivermectin, it provides high broad-spectrum antiparasitic efficacy. The safety and efficacy of clorsulon should be studied by considering several factors such as drug-drug interactions mediated by ATP-binding cassette (ABC) transporters due to their potential effects on the pharmacokinetics and drug secretion into milk. The aim of this work was to determine the role of ABC transporter G2 (ABCG2) in clorsulon secretion into milk and the effect of ivermectin, a known ABCG2 inhibitor, on this process. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we report that clorsulon was transported in vitro by both transporter variants and that ivermectin inhibited its transport mediated by murine Abcg2 and human ABCG2. Wild-type and Abcg2-/- lactating female mice were used to carry out in vivo assays. The milk concentration and the milk-to-plasma ratio were higher in wild-type mice than in Abcg2-/- mice after clorsulon administration, showing that clorsulon is actively secreted into milk by Abcg2. The interaction of ivermectin in this process was shown after the coadministration of clorsulon and ivermectin to wild-type and Abcg2-/- lactating female mice. Treatment with ivermectin had no effect on the plasma concentrations of clorsulon, but the milk concentrations and milk-to-plasma ratios of clorsulon decreased in comparison to those with treatment without ivermectin, only in wild-type animals. Consequently, the coadministration of clorsulon and ivermectin reduces clorsulon secretion into milk due to drug-drug interactions mediated by ABCG2.
Collapse
Affiliation(s)
- Esther Blanco-Paniagua
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Laura Álvarez-Fernández
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Andrea Rodríguez-Alonso
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Alicia Millán-Garcia
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Ana I. Álvarez
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Gracia Merino
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| |
Collapse
|
16
|
Ben Halima N, Álvarez-Fernández L, Blanco-Paniagua E, Abid-Essefi S, Guedri Y, Merino G. In vitro interaction of the pesticides flupyradifurone, bupirimate and its metabolite ethirimol with the ATP-binding cassette transporter G2 (ABCG2). Toxicol Lett 2023; 380:23-30. [PMID: 37011773 DOI: 10.1016/j.toxlet.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
ABCG2 is an ATP-binding cassette efflux transporter that is expressed in absorptive and excretory organs such as liver, intestine, kidney, brain and testis where it plays a crucial physiological and toxicological role in protecting cells against xenobiotics, affecting pharmacokinetics of its substrates. In addition, the induction of ABCG2 expression in mammary gland during lactation is related to active secretion of many toxicants into milk. In this study, the in vitro interactions between ABCG2 and three pesticides flupyradifurone, bupirimate and its metabolite ethirimol were investigated to check whether these compounds are substrates and/or inhibitors of this transporter. Using in vitro transepithelial assays with cells transduced with murine, ovine and human ABCG2, we showed that ethirimol and flupyradifurone were transported efficiently by murine Abcg2 and ovine ABCG2 but not by human ABCG2. Bupirimate was not found to be an in vitro substrate of ABCG2 transporter. Accumulation assays using mitoxantrone in transduced MDCK-II cells suggest that none of the tested pesticides were efficient ABCG2 inhibitors, at least in our experimental conditions. Our studies disclose that ethirimol and flupyradifurone are in vitro substrates of murine and ovine ABCG2, opening the possibility of a potential relevance of ABCG2 in the toxicokinetics of these pesticides.
Collapse
Affiliation(s)
- Nada Ben Halima
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia; Faculty of Pharmacy, University of Monastir, Tunisia
| | - Laura Álvarez-Fernández
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Yosra Guedri
- Department of Nephrology, Dialysis, and Renal Transplantation, Sahloul Universitary Hospital, Sousse, Tunisia
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain.
| |
Collapse
|
17
|
Fujiwara N, Mukai R, Nishikawa M, Ikushiro S, Murakami A, Ishisaka A. Transfer of quercetin ingested by maternal mice to neonatal mice via breast milk. Biosci Biotechnol Biochem 2023; 87:442-447. [PMID: 36669760 DOI: 10.1093/bbb/zbad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
This is the first study that quantified quercetin (QUE) and its 16 metabolites in the breast milk of QUE-fed maternal mice, the plasma and urine of that, and neonatal mice. Interestingly, the QUE aglycone concentration in the milk was much higher than in the plasma of maternal mice, suggesting that QUE may exert biological activity in neonates.
Collapse
Affiliation(s)
- Nao Fujiwara
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Rie Mukai
- Department of Food Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Akira Murakami
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
- Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| | - Akari Ishisaka
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
- Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| |
Collapse
|
18
|
Li S, Jin J, Jiang Y, Shi J, Jiang X, Lin N, Ma Z. Low levels of tenofovir in breast milk support breastfeeding in HBV-infected mothers treated with tenofovir disoproxil fumarate. Int J Antimicrob Agents 2023; 61:106726. [PMID: 36646229 DOI: 10.1016/j.ijantimicag.2023.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/03/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Tenofovir disoproxil fumarate (TDF) is recommended for the prevention of mother-to-infant transmission of the hepatitis B virus (HBV). This study investigated the safety of infants whose mothers continued to receive TDF while breastfeeding. PATIENTS AND METHOD Thirty women taking TDF daily from the second or third trimester of pregnancy to three months postpartum were enrolled. Tenofovir (TFV) concentrations in breast milk were determined and compared with those in umbilical cord (UC) blood and amniotic fluid. Infant growth parameters were assessed at birth, and at 3, 6, and 12 months. TFV uptake experiments were conducted in vitro to elucidate the mechanisms of TFV exposure via breast milk. RESULTS TFV concentrations in breast milk ranged from 1.4 to 11.7 ng/mL within 24 h after dosing in the third month postpartum. The median trough concentration of TFV in breast milk was 3.7 (interquartile range, 2.6-6.2) ng/mL, which is lower than that in UC blood (median = 53.5 ng/mL) and amniotic fluid (median = 531.0 ng/mL). The low permeability of TFV in MCF-10A cells may explain the minimal exposure to TFV in breast milk. Body weights, body lengths, and head circumferences of the breastfed infants were comparable to the national standards for physical development. CONCLUSION Infant exposure to TFV from breast milk is much lower than the exposure from placental transfer and swallowing from amniotic fluid. The physical growth parameters of all infants in this study were normal. The findings indicate that breastfeeding is safe for infants of HBV-infected mothers who continue to receive TDF through three months postpartum.
Collapse
Affiliation(s)
- Siying Li
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Jin
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Jiang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfeng Shi
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxian Jiang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nengming Lin
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhiyuan Ma
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Maeshima T, Yoshida S, Watanabe M, Itagaki F. Prediction model for milk transfer of drugs by primarily evaluating the area under the curve using QSAR/QSPR. Pharm Res 2023; 40:711-719. [PMID: 36720832 PMCID: PMC10036427 DOI: 10.1007/s11095-023-03477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE Information on milk transferability of drugs is important for patients who wish to breastfeed. The purpose of this study is to develop a prediction model for milk-to-plasma drug concentration ratio based on area under the curve (M/PAUC). The quantitative structure-activity/property relationship (QSAR/QSPR) approach was used to predict compounds involved in active transport during milk transfer. METHODS We collected M/P ratio data from literature, which were curated and divided into M/PAUC ≥ 1 and M/PAUC < 1. Using the ADMET Predictor® and ADMET Modeler™, we constructed two types of binary classification models: an artificial neural network (ANN) and a support vector machine (SVM). RESULTS M/P ratios of 403 compounds were collected, M/PAUC data were obtained for 173 compounds, while 230 compounds only had M/Pnon-AUC values reported. The models were constructed using 129 of the 173 compounds, excluding colostrum data. The sensitivity of the ANN model was 0.969 for the training set and 0.833 for the test set, while the sensitivity of the SVM model was 0.971 for the training set and 0.667 for the test set. The contribution of the charge-based descriptor was high in both models. CONCLUSIONS We built a M/PAUC prediction model using QSAR/QSPR. These predictive models can play an auxiliary role in evaluating the milk transferability of drugs.
Collapse
Affiliation(s)
- Tae Maeshima
- Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma Science, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Shin Yoshida
- Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma Science, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Machiko Watanabe
- Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma Science, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Fumio Itagaki
- Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma Science, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
20
|
Álvarez-Fernández L, Gomez-Gomez A, Haro N, García-Lino AM, Álvarez AI, Pozo OJ, Merino G. ABCG2 transporter plays a key role in the biodistribution of melatonin and its main metabolites. J Pineal Res 2023; 74:e12849. [PMID: 36562106 PMCID: PMC10078363 DOI: 10.1111/jpi.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The ATP-binding cassette G2 (ABCG2) is an efflux transporter expressed in the apical membrane of cells from a large number of tissues, directly affecting bioavailability, tissue accumulation, and secretion into milk of both xenobiotics and endogenous compounds. The aim of this work was to characterize the role of ABCG2 in the systemic distribution and secretion into milk of melatonin and its main metabolites, 6-hydroxymelatonin, and 6-sulfatoxymelatonin. For this purpose, we first showed that these three molecules are transported by this transporter using in vitro transepithelial assays with MDCK-II polarized cells transduced with different species variants of ABCG2. Second, we tested the in vivo effect of murine Abcg2 in the systemic distribution of melatonin and its metabolites using wild-type and Abcg2-/- mice. Our results show that after oral administration of melatonin, the plasma concentration of melatonin metabolites in Abcg2-/- mice was between 1.5 and 6-fold higher compared to the wild-type mice. We also evaluated in these animals differences in tissue accumulation of melatonin metabolites. The most relevant differences between both types of mice were found for small intestine and kidney (>sixfold increase for 6-sulfatoxymelatonin in Abcg2-/- mice). Finally, melatonin secretion into milk was also affected by the murine Abcg2 transporter, with a twofold higher milk concentration in wild-type compared with Abcg2-/- lactating female mice. In addition, melatonin metabolites showed a higher milk-to-plasma ratio in wild-type mice. Overall, our results show that the ABCG2 transporter plays a critical role in the biodistribution of melatonin and its main metabolites, thereby potentially affecting their biological and therapeutic activity.
Collapse
Affiliation(s)
- Laura Álvarez-Fernández
- Department of Biomedical Sciences-Physiology, Animal Health Institute (INDEGSAL), Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Noemí Haro
- Applied Metabolomics Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Alba M García-Lino
- Department of Biomedical Sciences-Physiology, Animal Health Institute (INDEGSAL), Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Ana I Álvarez
- Department of Biomedical Sciences-Physiology, Animal Health Institute (INDEGSAL), Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Animal Health Institute (INDEGSAL), Faculty of Veterinary Medicine, Universidad de León, León, Spain
| |
Collapse
|
21
|
Blomberg AJ, Norén E, Haug LS, Lindh C, Sabaredzovic A, Pineda D, Jakobsson K, Nielsen C. Estimated Transfer of Perfluoroalkyl Substances (PFAS) from Maternal Serum to Breast Milk in Women Highly Exposed from Contaminated Drinking Water: A Study in the Ronneby Mother-Child Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17005. [PMID: 36688826 PMCID: PMC9869870 DOI: 10.1289/ehp11292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Infancy perfluoroalkyl substances (PFAS) exposure from breastfeeding is partially determined by the transfer efficiencies (TEs) of PFAS from maternal serum into breast milk. However, to our knowledge there are no studies of such TEs in highly exposed populations. OBJECTIVES We estimated the TEs of PFAS from maternal serum into colostrum and breast milk in a cohort of women with a wide range of PFAS exposures. METHODS The Ronneby Mother-Child Cohort was established in 2015 after PFAS contamination was discovered in the public drinking water of Ronneby, Sweden. We measured seven PFAS in matched samples of maternal serum at delivery and colostrum and breast milk. We calculated the TE (in percentage) as the ratio of PFAS in colostrum or breast milk to serum multiplied by 100 and evaluated whether TEs varied by PFAS, lactation stage, or exposure level using a series of linear mixed-effects models with a random intercept for each woman. RESULTS This study included 126 mothers. PFAS associated with firefighting foams [i.e., perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS)] were substantially elevated in the serum, colostrum, and breast milk samples of highly exposed women in the cohort and showed strong correlation. PFHxS and PFOS also contributed the largest fraction of total PFAS on average in colostrum and breast milk. Median TEs varied from 0.9% to 4.3% and were higher for perfluoroalkyl carboxylic acids, including perfluorooctanoic acid, than perfluoroalkane sulfonic acids, including PFHxS and PFOS. TEs varied by exposure level, but there was not a consistent pattern in this variation. DISCUSSION PFAS concentrations in the colostrum and breast milk of highly exposed women were higher than the concentrations in low-exposed women, and TEs were of a similar magnitude across exposure categories. This implies that breastfeeding may be an important route of PFAS exposure for breastfeeding infants with highly exposed mothers, although the relative contribution of breastfeeding vs. prenatal transplacental transfer remains to be clarified. https://doi.org/10.1289/EHP11292.
Collapse
Affiliation(s)
- Annelise J. Blomberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Erika Norén
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Line S. Haug
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christel Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
22
|
Blanco-Paniagua E, Garcia-Lino AM, Alvarez-Fernández L, Alvarez AI, Merino G. Ivermectin inhibits ovine ABCG2-mediated in vitro transport of meloxicam and reduces its secretion into milk in sheep. Res Vet Sci 2022; 153:88-91. [PMID: 36327623 DOI: 10.1016/j.rvsc.2022.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The ATP-binding cassette transporter G2 (ABCG2) is an efflux protein involved in the bioavailability and secretion into milk of several compounds including anti-inflammatory drugs. The aim of this work was to determine the effect in sheep of an ABCG2 inhibitor, such as the macrocyclic lactone ivermectin, on the secretion into milk of meloxicam, a non-steroidal anti-inflammatory drug widely used in veterinary medicine, and recently reported as an ABCG2 substrate. In vitro meloxicam transport assays in ovine ABCG2-transduced cells have shown that ivermectin is an efficient inhibitor of in vitro transport of meloxicam mediated by ovine ABCG2, with a 75% inhibition in the transport ratio (24.85 ± 4.62 in controls vs 6.31 ± 1.37 in presence of ivermectin). In addition, the role of ovine ABCG2 in secretion into milk of meloxicam was corroborated using Assaf lactating sheep coadministered with ivermectin. Animals were administered subcutaneously with meloxicam (0.5 mg/kg) with or without ivermectin (0.2 mg/kg). No difference in plasma pharmacokinetic parameters was found between treatments. In the case of milk, a significant reduction in the area under concentration-time curve (AUC) (3.92 ± 0.66 vs 2.26 ± 1.52 μg·h/mL) and the AUC milk-to-plasma ratio (0.17 ± 0.03 vs 0.09 ± 0.06) was reported for ivermectin-treated animals compared to controls.
Collapse
Affiliation(s)
- Esther Blanco-Paniagua
- Departmento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, University of León, Campus de Vegazana s/n, 24071 León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, Campus de Vegazana, 24071 León, Spain
| | - Alba M Garcia-Lino
- Departmento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, University of León, Campus de Vegazana s/n, 24071 León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, Campus de Vegazana, 24071 León, Spain
| | - Laura Alvarez-Fernández
- Departmento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, University of León, Campus de Vegazana s/n, 24071 León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, Campus de Vegazana, 24071 León, Spain
| | - Ana I Alvarez
- Departmento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, University of León, Campus de Vegazana s/n, 24071 León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, Campus de Vegazana, 24071 León, Spain
| | - Gracia Merino
- Departmento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, University of León, Campus de Vegazana s/n, 24071 León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, Campus de Vegazana, 24071 León, Spain.
| |
Collapse
|
23
|
Benkerroum N, Ismail A. Human Breast Milk Contamination with Aflatoxins, Impact on Children's Health, and Possible Control Means: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16792. [PMID: 36554670 PMCID: PMC9779431 DOI: 10.3390/ijerph192416792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Aflatoxins are natural toxicants produced mainly by species of the Aspergillus genus, which contaminate virtually all feeds and foods. Apart from their deleterious health effects on humans and animals, they can be secreted unmodified or carried over into the milk of lactating females, thereby posing health risks to suckling babies. Aflatoxin M1 (AFM1) is the major and most toxic aflatoxin type after aflatoxin B1 (AFB1). It contaminates human breast milk upon direct ingestion from dairy products or by carry-over from the parent molecule (AFB1), which is hydroxylated in the liver and possibly in the mammary glands by cytochrome oxidase enzymes and then excreted into breast milk as AFM1 during lactation via the mammary alveolar epithelial cells. This puts suckling infants and children fed on this milk at a high risk, especially that their detoxifying activities are still weak at this age essentially due to immature liver as the main organ responsible for the detoxification of xenobiotics. The occurrence of AFM1 at toxic levels in human breast milk and associated health conditions in nursing children is well documented, with developing countries being the most affected. Different studies have demonstrated that contamination of human breast milk with AFM1 represents a real public health issue, which should be promptly and properly addressed to reduce its incidence. To this end, different actions have been suggested, including a wider and proper implementation of regulatory measures, not only for breast milk but also for foods and feeds as the upstream sources for breast milk contamination with AFM1. The promotion of awareness of lactating mothers through the organization of training sessions and mass media disclosures before and after parturition is of a paramount importance for the success of any action. This is especially relevant that there are no possible control measures to ensure compliance of lactating mothers to specific regulatory measures, which can yet be appropriate for the expansion of breast milk banks in industrialized countries and emergence of breast milk sellers. This review attempted to revisit the public health issues raised by mother milk contamination with AFM1, which remains undermined despite the numerous relevant publications highlighting the needs to tackle its incidence as a protective measure for the children physical and mental health.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Expertise Aliments Santé, Food Health Consultancy, 7450 Dollier Str., Montréal, QC H1S 2J6, Canada
| | - Amir Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan
| |
Collapse
|
24
|
Zhang T, Zou P, Fang Y, Li Y. Physiologically based pharmacokinetic model to predict drug concentrations of breast cancer resistance protein substrates in milk. Biopharm Drug Dispos 2022; 43:221-232. [PMID: 36265038 DOI: 10.1002/bdd.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2023]
Abstract
Many mothers need to take some medications during breastfeeding, which may carry a risk to breastfed infants. Thus, determining the amount of a drug transferred into breast milk is critical for risk-benefit analysis of breastfeeding. Breast cancer resistance protein (BCRP), an efflux transporter which usually protects the body from environmental and dietary toxins, was reported to be highly expressed in lactating mammary glands. In this study, we developed a mechanistic lactation physiologically based pharmacokinetic (PBPK) modeling approach incorporating BCRP mediated transport kinetics to simulate the concentration-time profiles of five BCRP drug substrates (acyclovir, bupropion, cimetidine, ciprofloxacin, and nitrofurantoin) in nursing women's plasma and milk. Due to the lack of certain physiological parameters and scaling factors in nursing women, we combine the bottom up and top down PBPK modeling approaches together with literature reported data to optimize and determine a set of parameters that are applicable for all five drugs. The predictive performance of the PBPK models was assessed by comparing predicted pharmacokinetic profiles and the milk-to-plasma (M/P) ratio with clinically reported data. The predicted M/P ratios for acyclovir, bupropion, cimetidine, ciprofloxacin, and nitrofurantoin were 2.48, 3.70, 3.55, 1.21, and 5.78, which were all within 1.5-fold of the observed values. These PBPK models are useful to predict the PK profiles of those five drugs in the milk for different dosing regimens. Furthermore, the approach proposed in this study will be applicable to predict pharmacokinetics of other transporter substrates in the milk.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pharmaceutical Sciences, SUNY-Binghamton University, Johnson City, New York, USA
| | - Peng Zou
- Daiichi Sankyo, Inc, Basking Ridge, New Jersey, USA
| | - Yingsi Fang
- Department of Pharmaceutical Sciences, SUNY-Binghamton University, Johnson City, New York, USA
| | - Yanyan Li
- School of Food and Agriculture, College of Natural Sciences, Forestry, and Agriculture, University of Maine, Orono, Maine, USA
| |
Collapse
|
25
|
Kayes T, Crane H, Symonds A, Dumond J, Cottrell M, Di Girolamo J, Manandhar S, Lim TH, Gane E, Kashuba A, Levy MT. Plasma and breast milk pharmacokinetics of tenofovir alafenamide in mothers with chronic hepatitis B infection. Aliment Pharmacol Ther 2022; 56:510-518. [PMID: 35599363 DOI: 10.1111/apt.17040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Antenatal antiviral therapy (AVT) is effective in preventing mother-to-child transmission (MTCT) in chronic hepatitis B (CHB); tenofovir disoproxil fumarate (TDF) is the preferred agent. Tenofovir alafenamide (TAF) is a prodrug of tenofovir (TFV) similar to TDF, with improved bone and renal safety. There are no data on TAF breast milk pharmacokinetics and exposure to breastfeeding infants in CHB. AIM To assess the pharmacokinetics of TAF/TFV in breastfeeding women with CHB on TAF monotherapy. METHODS Pregnant women with CHB requiring AVT commenced TAF 25 mg daily at third trimester or postpartum. Sample collection occurred while breastfeeding and taking TAF for minimum 4 weeks. Maternal blood, breast milk and infant urine samples were collected. Drug concentrations were measured by LCMS/MS analyses using validated methods. Non-compartmental analyses were performed to quantify the pharmacokinetic parameters. RESULTS Eight women provided samples. In breast milk and plasma, median TAF half-life was 0.81 and 0.94 h, respectively, and Cmax 1.69 and 120.5 ng/ml, respectively. Median maternal breast milk to plasma (M/P) ratio of TAF was 0.029; for and TFV it was 2.809. The relative infant dose of TAF was 0.005% of maternal dose, well below safety threshold of 5-10%. TFV was detectable in three out of seven infant urine samples with median steady-state concentration of 5 ng/ml being 300-2500 times less than reported adult steady-state urine concentrations in those taking TAF and TDF, respectively. CONCLUSIONS In this first pharmacokinetic study of TAF monotherapy in breastfeeding women with CHB, concentrations of TAF and TFV were low in breast milk with negligible infant exposure, supporting the use of TAF to prevent MTCT.
Collapse
Affiliation(s)
- Tahrima Kayes
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - Harry Crane
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - Allison Symonds
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Julie Dumond
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Mackenzie Cottrell
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Julia Di Girolamo
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - Sicha Manandhar
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - Tien Huey Lim
- Department of Gastroenterology and Hepatology, Middlemore Hospital, Auckland, New Zealand
| | - Edward Gane
- Faculty of Medicine, University of Auckland, Auckland, New Zealand
| | - Angela Kashuba
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Miriam T Levy
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales Sydney, Liverpool, New South Wales, Australia
| |
Collapse
|
26
|
Secretion into Milk of the Main Metabolites of the Anthelmintic Albendazole Is Mediated by the ABCG2/BCRP Transporter. Antimicrob Agents Chemother 2022; 66:e0006222. [PMID: 35736132 PMCID: PMC9295555 DOI: 10.1128/aac.00062-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Albendazole (ABZ) is an anthelmintic with a broad-spectrum activity, widely used in human and veterinary medicine. ABZ is metabolized in all mammalian species to albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO2) and albendazole 2-aminosulphone (ABZSO2-NH2). ABZSO and ABZSO2 are the main metabolites detected in plasma and all three are detected in milk. The ATP-binding cassette transporter G2 (ABCG2) is an efflux transporter that is involved in the active secretion of several compounds into milk. Previous studies have reported that ABZSO was in vitro transported by ABCG2. The aim of this work is to correlate the in vitro interaction between ABCG2 and the other ABZ metabolites with their secretion into milk by this transporter. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we show that ABZSO2 and ABZSO2-NH2 are in vitro substrates of both. In vivo assays carried out with wild-type and Abcg2-/- lactating female mice demonstrated that secretion into milk of these ABZ metabolites was mediated by Abcg2. Milk concentrations and milk-to-plasma ratio were higher in wild-type compared to Abcg2-/- mice for all the metabolites tested. We conclude that ABZ metabolites are undoubtedly in vitro substrates of ABCG2 and actively secreted into milk by ABCG2.
Collapse
|
27
|
Varsi K, Huber S, Averina M, Brox J, Bjørke-Monsen AL. Quantitation of linear and branched perfluoroalkane sulfonic acids (PFSAs) in women and infants during pregnancy and lactation. ENVIRONMENT INTERNATIONAL 2022; 160:107065. [PMID: 34959199 DOI: 10.1016/j.envint.2021.107065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are associated with negative health effects, and exposure during fetal life and infancy are of concern. A subgroup of PFAS, linear and branched perfluoroalkane sulfonic acids (PFSA), have significant differences in biochemical reactions, bioaccumulation and potential toxic exposure effects, and data on transfer of PFSA isomers from mother to baby through placenta or in breastmilk are scarce. OBJECTIVES The objective was to investigate differences in branched and linear PFSA isomers in never-pregnant, pregnant and postpartum women and infants. METHODS Serum concentrations of branched and linear, perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS) and perfluorooctane sulfonate (PFOS) were measured in never-pregnant women (n = 158), pregnant and postpartum women (n = 114) and their infants (n = 94) at age six months. RESULTS There was a linear relation between maternal PFSA concentrations in pregnancy week 18 and the infant at age six months. The PFSA concentrations in maternal and infant serum varied with a factor up to 20. The maternal branched/ linear PFHxS ratio increased in the latter part of pregnancy (+45%) and remained high postpartum, and was substantially lower in the infants. Branched/linear PFHpS ratio increased during pregnancy and was highest in the infants, while the branched/linear PFOS ratio decreased in the mothers and was high in the infants. DISCUSSION The linear relations between PFSA concentrations in infants aged six months and mothers in pregnancy week 18 confirm that pregnancy and lactation are major excretion routes for PFSA, but accumulate in the infant. The observed great variability in PFSA burden among mothers and infants, as well as the reduced maternal transfer of branched PFHxS isoforms and increased transfer of branched PFOS isoforms compared to the respective linear isoforms to the infant, might impact adverse health effects associated with PFSA exposure, but this should be confirmed in future studies.
Collapse
Affiliation(s)
- Kristin Varsi
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Community Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Laboratory of Medical Biochemistry, Innlandet Hospital Trust, 2609 Lillehammer, Norway; Unilabs, Oslo, Norway.
| |
Collapse
|
28
|
Pochini L, Galluccio M, Scalise M, Console L, Pappacoda G, Indiveri C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. Int J Mol Sci 2022; 23:ijms23020914. [PMID: 35055100 PMCID: PMC8776198 DOI: 10.3390/ijms23020914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.
Collapse
Affiliation(s)
- Lorena Pochini
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Michele Galluccio
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Lara Console
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Gilda Pappacoda
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Cesare Indiveri
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council—CNR, Via Amendola 122/O, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
29
|
Gründemann D, Hartmann L, Flögel S. The Ergothioneine Transporter (ETT): Substrates and Locations, an Inventory. FEBS Lett 2021; 596:1252-1269. [PMID: 34958679 DOI: 10.1002/1873-3468.14269] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
In all vertebrates including mammals, the ergothioneine transporter ETT (obsolete name OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). ETT is not expressed ubiquitously and only cells with high ETT cell-surface levels can accumulate ET to high concentration. Without ETT, there is no uptake because the plasma membrane is essentially impermeable to this hydrophilic zwitterion. Here, we review the substrate specificity and localization of ETT, which is prominently expressed in neutrophils, monocytes/macrophages, and developing erythrocytes. Most sites of strong expression are conserved across species, but there are also major differences. In particular, we critically analyze the evidence for the expression of ETT in the brain as well as recent data suggesting that the transporter SLC22A15 may transport also ET. We conclude that, to date, ETT remains the only well-defined biomarker for intracellular ET activity. In humans, the ability to take up, distribute, and retain ET depends principally on this transporter.
Collapse
Affiliation(s)
- Dirk Gründemann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Lea Hartmann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Svenja Flögel
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| |
Collapse
|
30
|
Kacirova I, Grundmann M, Brozmanova H. Valproic Acid Concentrations in Mothers, Colostrum and Breastfed Infants during the Early Postpartum Period: Comparison with Concentrations Determined during Delivery and in the Mature Milk Period. Pharmaceutics 2021; 13:pharmaceutics13122074. [PMID: 34959355 PMCID: PMC8708593 DOI: 10.3390/pharmaceutics13122074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
To obtain information on the transport of valproic acid from mothers to colostrum and breastfed infants, in this cohort study, valproic acid concentrations in maternal serum (90 subjects), colostrum and the serum of breastfed infants were analyzed in years 1993–2018, between the 2nd and 5th postnatal days. Valproic acid concentrations ranged from 4.3 to 66.5 mg/L (mean 31.2 ± 13.6 mg/L) in maternal serum, from 0.5 to 5.9 mg/L (mean 1.1 ± 1.2 mg/L) in milk, and from 0.5 to 42.9 mg/L (mean 15.4 ± 9.4 mg/L) in infant serum. The milk/maternal serum concentration ratio ranged from 0.01 to 0.22 (mean 0.04 ± 0.04), and the infant/maternal serum concentration ratio ranged from 0.01 to 1.61 (mean 0.51 ± 0.28). A significant correlation was found between serum concentrations of breastfed infants and milk concentrations, maternal serum concentrations, maternal daily dose, and dose related to maternal body weight. Valproic acid concentrations in milk and infant serum did not reach the lower limit of the reference range used for the general epileptic population, and three-quarters of the concentrations in milk were lower than the lower limit of quantification. Routine monitoring of serum concentrations of breastfed infants is not necessary. If signs of potential adverse reactions are noted, serum concentrations of the infants should be measured.
Collapse
Affiliation(s)
- Ivana Kacirova
- Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic; (I.K.); (H.B.)
- Department of Laboratory Medicine, Institute of Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic
| | - Milan Grundmann
- Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic; (I.K.); (H.B.)
- Department of Laboratory Medicine, Institute of Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic
- Correspondence: ; Tel.: +420-59-737-4389
| | - Hana Brozmanova
- Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic; (I.K.); (H.B.)
- Department of Laboratory Medicine, Institute of Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic
| |
Collapse
|
31
|
Mu R, Ma Z, Lu C, Wang H, Cheng X, Tuo B, Fan Y, Liu X, Li T. Role of succinylation modification in thyroid cancer and breast cancer. Am J Cancer Res 2021. [PMID: 34765287 DOI: 10.2156/j.ajcr.2021.11.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The incidence of thyroid cancer and breast cancer is increasing year by year, and the specific pathogenesis is unclear. Posttranslational modifications constitute an important regulatory mechanism that affects the function of almost all proteins, are essential for a diverse and well-functioning proteome and can integrate metabolism with physiological and pathological processes. In recent years, posttranslational modifications, which mainly include metabolic enzyme-mediated protein posttranslational modifications, such as methylation, phosphorylation, acetylation and succinylation, have become a research hotspot. Among these modifications, lysine succinylation is a newly discovered broad-spectrum, dynamic, non-enzymatic protein post-translational modification, and it plays an important regulatory role in a variety of tumors. Studies have shown that succinylation can affect the synthesis of thyroid hormones, and the regulation of this post-translational modification can inhibit the apoptosis and migration of thyroid cancer cell lines, and promote breast cancer cell proliferation, DNA damage repair and autophagy-related regulation. However, the specific regulatory mechanism of succinylation in thyroid cancer and breast cancer is currently unclear. Therefore, this article mainly reviews the research progress of succinylation modification in thyroid cancer and breast cancer. It is expected to provide new directions and targets for the prevention and treatment of thyroid cancer and breast cancer.
Collapse
Affiliation(s)
- Renmin Mu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China.,Digestive Disease Institute of Guizhou Province Zunyi 563003, Guizhou Province, China
| | - Chengli Lu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China.,Digestive Disease Institute of Guizhou Province Zunyi 563003, Guizhou Province, China
| | - Yi Fan
- Endoscopy Center, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China.,Digestive Disease Institute of Guizhou Province Zunyi 563003, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| |
Collapse
|
32
|
Evolutionary Analysis of OAT Gene Family in River and Swamp Buffalo: Potential Role of SLCO3A1 Gene in Milk Performance. Genes (Basel) 2021; 12:genes12091394. [PMID: 34573376 PMCID: PMC8472334 DOI: 10.3390/genes12091394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
The organic anion transporter (OAT) family is the subfamily of the solute carrier (SLC) superfamily, which plays a vital role in regulating essential nutrients in milk. However, little is known about the members’ identification, evolutionary basis, and function characteristics of OAT genes associated with milk performance in buffalo. Comparative genomic analyses were performed to identify the potential role of buffalo OAT genes in milk performance in this study. The results showed that a total of 10 and 7 OAT genes were identified in river buffalo and swamp buffalo, respectively. These sequences clustered into three groups based on their phylogenetic relationship and had similar motif patterns and gene structures in the same groups. Moreover, the river-specific expansions and homologous loss of OAT genes occurred in the two buffalo subspecies during the evolutionary process. Notably, the duplicated SLCO3A1 gene specific to river buffalo showed higher expression level in mammary gland tissue than that of swamp buffalo. These findings highlight some promising candidate genes that could be potentially utilized to accelerate the genetic progress in buffalo breeding programs. However, the identified candidate genes require further validation in a larger cohort for use in the genomic selection of buffalo for milk production.
Collapse
|
33
|
Marques ES, Agudelo J, Kaye EM, Modaresi SMS, Pfohl M, Bečanová J, Wei W, Polunas M, Goedken M, Slitt AL. The role of maternal high fat diet on mouse pup metabolic endpoints following perinatal PFAS and PFAS mixture exposure. Toxicology 2021; 462:152921. [PMID: 34464680 DOI: 10.1016/j.tox.2021.152921] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a family of chemicals that are ubiquitous in the environment. Some of these chemicals, such as perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorooctanoic acid (PFOA), are found in human sera and have been shown to cause liver steatosis and reduce postnatal survival and growth in rodents. The purpose of this work is to evaluate the impact of diet and PFAS exposure to mouse dam (mus musculus) on the risk to pup liver and metabolism endpoints later in life, as well as evaluate PFAS partitioning to pups. Timed-pregnant dams were fed a standard chow diet or 60 % kcal high fat diet (HFD). Dams were administered either vehicle, 1 mg/kg PFOA, 1 mg/kg PFOS, 1 mg/kg PFHxS, or a PFAS mixture (1 mg/kg of each PFOA, PFOS, and PFHxS) daily via oral gavage from gestation day 1 until postnatal day (PND) 20. At PND 21, livers of dams and 2 pups of each sex were evaluated for lipid changes while remaining pups were weaned to the same diet as the dam for an additional 10 weeks. Dam and pup serum at PND 21 and PND 90 were also evaluated for PFAS concentration, alanine aminotransferase (ALT), leptin and adiponectin, and glycosylated hemoglobin A1c. Perinatal exposure to a HFD, as expected, increased pup body weight, maternal liver weight, pup liver triglycerides, pup serum ALT, and pup serum leptin. PFOA and the PFAS mixture increased liver weights, and. treatment with all three compounds increased liver triglycerides. The maternal HFD increased dam and pup serum PFAS levels, however, was protective against PFOA-induced increase in serum ALT and observed increases in liver triglycerides. The PFAS mixture had very distinct effects when compared to single compound treatment, suggesting some cumulative effects, particularly when evaluating PFAS transfer from dam to pup. This data highlights the importance of diet and mixtures when evaluating liver effect of PFAS and PFAS partitioning.
Collapse
Affiliation(s)
- Emily S Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Juliana Agudelo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Emily M Kaye
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Seyed Mohamad Sadegh Modaresi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Jitka Bečanová
- Graduate School of Oceanography, University of Rhode Island, 215 S Ferry Rd, Narragansett, RI 02882, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Marianne Polunas
- Rutgers Translational Sciences, Rutgers University, 33 Knightsbridge Road, Piscataway, NJ 08854, USA
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, 33 Knightsbridge Road, Piscataway, NJ 08854, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA.
| |
Collapse
|
34
|
Zhou M, Liu G, Liu W, Zhu M, Wang C. Cloning, tissue distribution and functional characterization of the donkey (Equus asinus) oligopeptide transporter 2. J Anim Physiol Anim Nutr (Berl) 2021; 105:1165-1172. [PMID: 34314070 DOI: 10.1111/jpn.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Oligopeptide transporter 2 (PepT2) is an important transporter of oligopeptides. In the present study, we describe the molecular cloning, tissue distribution and functional characterization of a donkey (Equus asinus) PepT2. The cloned cDNA sequence was 2202 bp at full length, encoding a 733 amino acid peptide with a molecular weight of 81.9 kDa and a theoretical pI of 8.92. Bioinformatics analysis showed that the deduced peptide sequence possessed all the characteristic features of PepT2. The expression of PepT2 in the kidney and lung was significantly higher than that observed in the ileum, duodenum, jejunum, spleen, liver, heart and stomach. Functional characterization by heterologous expression in Chinese hamster ovary cells showed that the uptake of β-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid (β-Ala-Lys-AMCA) by donkey PepT2-Chinese hamster ovary cells was dependent on time, pH and substrate concentration, with a low Km value of 91.51 ± 14.14 μM and a maximum velocity of 41.37 ± 2.193 pmol/min/mg protein. In the present study, for the first time, the expression and functional characteristics of donkey PepT2 were evaluated, the results of which provide new insights and a better understanding of its crucial role in oligopeptide transport in donkeys.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Guiqin Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| |
Collapse
|
35
|
Development of a Pig Mammary Epithelial Cell Culture Model as a Non-Clinical Tool for Studying Epithelial Barrier-A Contribution from the IMI-ConcePTION Project. Animals (Basel) 2021; 11:ani11072012. [PMID: 34359140 PMCID: PMC8300391 DOI: 10.3390/ani11072012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The information about the risks related to the use of medication during breastfeeding is lacking for most commonly used drugs. The ConcePTION project aims to fill this gap using multiple approaches. Within the project, the pig has been selected as the most appropriate in vivo animal model. In agreement with the application of the “3Rs” principle (Replacement, Reduction and Refinement) and international legislations, the present paper reports the establishment of cellular lines of porcine mammary epithelial cells as a valid tool to study the mammary epithelial barrier function in vitro. Abstract The ConcePTION project aims at generating further knowledge about the risks related to the use of medication during breastfeeding, as this information is lacking for most commonly used drugs. Taking into consideration multiple aspects, the pig model has been considered by the consortium as the most appropriate choice. The present research was planned to develop an efficient method for the isolation and culture of porcine Mammary Epithelial Cells (pMECs) to study the mammary epithelial barrier in vitro. Mammary gland tissues were collected at a local slaughterhouse, dissociated and the selected cellular population was cultured, expanded and characterized by morphology, cell cycle analysis and immunophenotyping. Their ability to create a barrier was tested by TEER measurement and sodium fluorescein transport activity. Expression of 84 genes related to drug transporters was evaluated by a PCR array. Our results show that primary cells express epithelial cell markers: CKs, CK18, E-Cad and tight junctions molecules ZO-1 and OCL. All the three pMEC cellular lines were able to create a tight barrier, although with different strengths and kinetics, and express the main ABC and SLC drug transporters. In conclusion, in the present paper we have reported an efficient method to obtain primary pMEC lines to study epithelial barrier function in the pig model.
Collapse
|
36
|
Teng Z, Wang L, Du H, Yang G, Fu T, Lian H, Sun Y, Liu S, Zhang L, Gao T. Metabolomic and Lipidomic Approaches to Evaluate the Effects of Eucommia ulmoides Leaves on Milk Quality and Biochemical Properties. Front Vet Sci 2021; 8:644967. [PMID: 34141731 PMCID: PMC8204049 DOI: 10.3389/fvets.2021.644967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Eucommia ulmoides leaves (EUL) contain a variety of natural bioactive compounds including chlorogenic acid, geniposide acid, and aucubin. These bioactive chemicals improve immune function and regulate lipid metabolism. The aim of this study was to investigate the effects of EUL on the biochemical properties of milk. Twenty Holstein dairy cows were randomly allocated to two groups fed a control (CTR, diet without EUL, n = 10) or EUL (diet containing 3% EUL, dry matter, n = 10) diet for 55 d. At the end of the experimental period (d 55), milk samples were collected and analyzed to determine their composition. Though levels of milk fat, protein, lactose, and total milk solids were similar between the groups, small molecules, metabolites, lipids, and cytokines differed. Compared with the CTR group, the EUL group had an improved cluster of differentiation (CD)4/CD8 ratio (P < 0.05) and lower interleukin (IL)-8 and IL-6 content (P < 0.05). Metabolomics analysis identified 14 metabolites including 7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenoic acid (FC = 3.129), adrenic acid (FC = 2.830), and eicosapentaenoic acid (FC=1.685) as having significantly increased in the EUL group (P < 0.05) while 11 metabolites, including indole-2-carboxylic acid (FC = 0.636), cholic acid (FC = 0.430), and creatine (FC = 0.784) had significantly decreased (P < 0.05). Based on a constructed metabolome map, linoleic acid metabolism had the highest impact value for EUL. A total of 21 lipid classes and 1,094 lipid species were detected in the milk by lipidomic analysis, among which 40 differed significantly between the CTR and EUL groups. The present findings showed that the EUL altered milk composition. Correlation analysis showed that 7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenoic acid, adrenic acid, and eicosapentaenoic acid levels were negatively correlated with those of the inflammatory factors IL-6 and IL-8 (P < 0.05), indicating that EUL improved milk quality by reducing inflammatory factors and increasing the CD4/CD8 ratio. Overall, our data demonstrate that EUL had positive effects on milk antioxidant parameters, immune indices, and micro-composition metabolism, thereby improving milk quality.
Collapse
Affiliation(s)
- Zhanwei Teng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Linfeng Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Du
- Economic Forestry Research and Development Centre, Chinese Academy of Forestry Sciences, Zhengzhou, China
| | - Gaiqing Yang
- Modern Experimental Technique and Management Centre, Henan Agricultural University, Zhengzhou, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongxia Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yu Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shenhe Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Liyang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
37
|
Role of the Abcg2 transporter in plasma levels and tissue accumulation of the anti-inflammatory tolfenamic acid in mice. Chem Biol Interact 2021; 345:109537. [PMID: 34062171 DOI: 10.1016/j.cbi.2021.109537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023]
Abstract
The Breast Cancer Resistance Protein (BCRP/ABCG2) is an ATP-binding cassette efflux transporter that is expressed in the apical membrane of cells from relevant tissues involved in drug pharmacokinetics such as liver, intestine, kidney, testis, brain and mammary gland, among others. Tolfenamic acid is an anti-inflammatory drug used as an analgesic and antipyretic in humans and animals. Recently, tolfenamic acid has been repurposed as an antitumoral drug and for use in chronic human diseases such as Alzheimer. The aim of this work was to study whether tolfenamic acid is an in vitro Abcg2 substrate, and to investigate the potential role of Abcg2 in plasma exposure, secretion into milk and tissue accumulation of this drug. Using in vitro transepithelial assays with cells transduced with Abcg2, we showed that tolfenamic acid is an in vitro substrate of Abcg2. The in vivo effect of this transporter was tested using wild-type and Abcg2-/- mice, showing that after oral and intravenous administration of tolfenamic acid, its area under the plasma concentration-time curve in Abcg2-/- mice was between 1.7 and 1.8-fold higher compared to wild-type mice. Abcg2-/- mice also showed higher liver and testis accumulation of tolfenamic acid after intravenous administration. In this study, we demonstrate that tolfenamic acid is transported in vitro by Abcg2 and that its plasma levels as well as its tissue distribution are affected by Abcg2, with potential pharmacological and toxicological consequences.
Collapse
|
38
|
Karthikeyan BS, Ravichandran J, Aparna SR, Samal A. ExHuMId: A curated resource and analysis of Exposome of Human Milk across India. CHEMOSPHERE 2021; 271:129583. [PMID: 33460906 DOI: 10.1016/j.chemosphere.2021.129583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Human milk is a vital source of nourishment for infants. However, numerous environmental contaminants also find their way into human milk, making up the major part of a newborn's external exposome. While there are chemical regulations in India and scientific literature on environmental contaminants is available, the systematic compilation, monitoring, and risk management of human milk contaminants are inadequate. We have harnessed the potential of this large body of literature to develop the Exposome of Human Milk across India (ExHuMId) version 1.0 containing detailed information on 101 environmental contaminants detected in human milk samples across 13 Indian states, compiled from 36 research articles. ExHuMId also compiles the detected concentrations of the contaminants, structural and physicochemical properties, and factors associated with the donor of the sample. We also present findings from a three-pronged analysis of ExHuMId and two other resources on human milk contaminants, with a focus on the Indian scenario. Through a comparative analysis with global chemical regulations and guidelines, we identify human milk contaminants of high concern, such as potential carcinogens, endocrine disruptors and neurotoxins. We then study the physicochemical properties of the contaminants to gain insights on their propensity to transfer into human milk. Lastly, we employ a systems biology approach to shed light on potential effects of human milk contaminants on maternal and infant health, by identifying contaminant-gene interactions associated with lactation, cytokine signalling and production, and protein-mediated transport. ExHuMId 1.0 is accessible online at: https://cb.imsc.res.in/exhumid/.
Collapse
Affiliation(s)
| | - Janani Ravichandran
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India; Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| | - S R Aparna
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India; Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
39
|
Garcia-Lino AM, Garcia-Mateos D, Alvarez-Fernandez I, Blanco-Paniagua E, Medina JM, Merino G, Alvarez AI. Role of eprinomectin as inhibitor of the ruminant ABCG2 transporter: Effects on plasma distribution of danofloxacin and meloxicam in sheep. Res Vet Sci 2021; 136:478-483. [PMID: 33838457 DOI: 10.1016/j.rvsc.2021.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/17/2023]
Abstract
Therapeutic outcome results of the coadministration of several drugs in veterinary medicine is affected by, among others, the relationship between drugs and ATP-binding cassette (ABC) transporters, such as ABCG2. ABCG2 is an efflux protein involved in the bioavailability and milk secretion of drugs. The aim of this work was to determine the role of eprinomectin, a macrocyclic lactone (ML) member of avermectin class, as inhibitor of ABCG2. The experiments were carried out through in vitro inhibition assays based on mitoxantrone accumulation and transport assays in ovine ABCG2 transduced cells using the antimicrobial drug danofloxacin and the anti-inflammatory drug meloxicam, both widely used in veterinary medicine and well known ABCG2 substrates. The inhibition results obtained showed that eprinomectin was an efficient in vitro ABCG2 inhibitor, tested in mitoxantrone accumulation assays. In addition, this ML decreased ovine ABCG2-mediated transport of danofloxacin and meloxicam. To evaluate the role of eprinomectin in systemic exposure of drugs, pharmacokinetic assays based on subcutaneous coadministration of eprinomectin with danofloxacin (1.25 mg/kg) or meloxicam (0.5 mg/kg) in sheep were performed obtaining a significant increase of systemic exposure of these drugs. Especially relevant was the increase of the systemic concentration of meloxicam, since coadministration with eprinomectin increased significantly the plasma concentration of meloxicam, obtaining an increase of AUC (0-72 h) value of more than 40%.
Collapse
Affiliation(s)
- Alba M Garcia-Lino
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Dafne Garcia-Mateos
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Indira Alvarez-Fernandez
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Esther Blanco-Paniagua
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Juan M Medina
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Gracia Merino
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Ana I Alvarez
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain.
| |
Collapse
|
40
|
Nauwelaerts N, Deferm N, Smits A, Bernardini C, Lammens B, Gandia P, Panchaud A, Nordeng H, Bacci ML, Forni M, Ventrella D, Van Calsteren K, DeLise A, Huys I, Bouisset-Leonard M, Allegaert K, Annaert P. A comprehensive review on non-clinical methods to study transfer of medication into breast milk - A contribution from the ConcePTION project. Biomed Pharmacother 2021; 136:111038. [PMID: 33526310 DOI: 10.1016/j.biopha.2020.111038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Breastfeeding plays a major role in the health and wellbeing of mother and infant. However, information on the safety of maternal medication during breastfeeding is lacking for most medications. This leads to discontinuation of either breastfeeding or maternal therapy, although many medications are likely to be safe. Since human lactation studies are costly and challenging, validated non-clinical methods would offer an attractive alternative. This review gives an extensive overview of the non-clinical methods (in vitro, in vivo and in silico) to study the transfer of maternal medication into the human breast milk, and subsequent neonatal systemic exposure. Several in vitro models are available, but model characterization, including quantitative medication transport data across the in vitro blood-milk barrier, remains rather limited. Furthermore, animal in vivo models have been used successfully in the past. However, these models don't always mimic human physiology due to species-specific differences. Several efforts have been made to predict medication transfer into the milk based on physicochemical characteristics. However, the role of transporter proteins and several physiological factors (e.g., variable milk lipid content) are not accounted for by these methods. Physiologically-based pharmacokinetic (PBPK) modelling offers a mechanism-oriented strategy with bio-relevance. Recently, lactation PBPK models have been reported for some medications, showing at least the feasibility and value of PBPK modelling to predict transfer of medication into the human milk. However, reliable data as input for PBPK models is often missing. The iterative development of in vitro, animal in vivo and PBPK modelling methods seems to be a promising approach. Human in vitro models will deliver essential data on the transepithelial transport of medication, whereas the combination of animal in vitro and in vivo methods will deliver information to establish accurate in vitro/in vivo extrapolation (IVIVE) algorithms and mechanistic insights. Such a non-clinical platform will be developed and thoroughly evaluated by the Innovative Medicines Initiative ConcePTION.
Collapse
Affiliation(s)
- Nina Nauwelaerts
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| | - Neel Deferm
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| | - Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, UZ Leuven, Neonatology, Herestraat 49, 3000, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Belgium.
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | | | - Peggy Gandia
- Laboratoire de Pharmacocinétique et Toxicologie, Centre Hospitalier Universitaire de Toulouse, France.
| | - Alice Panchaud
- Service of Pharmacy Service, Lausanne University Hospital and University of Lausanne, Switzerland; Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
| | - Hedvig Nordeng
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, PB. 1068 Blindern, 0316, Oslo, Norway.
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | | | - Anthony DeLise
- Novartis Pharmaceuticals Corporation, Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, NJ, 07936, USA.
| | - Isabelle Huys
- KU Leuven, Department of Clinical Pharmacology and Pharmacotherapy, ON II Herestraat 49 - bus, 521 3000, Leuven, Belgium.
| | - Michele Bouisset-Leonard
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, Werk Klybeck Postfach, Basel, CH-4002, Switzerland.
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Belgium; KU Leuven, Department of Clinical Pharmacology and Pharmacotherapy, ON II Herestraat 49 - bus, 521 3000, Leuven, Belgium; Department of Clinical Pharmacy, Erasmus MC, Rotterdam, the Netherlands.
| | - Pieter Annaert
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| |
Collapse
|
41
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
42
|
Fernandes JO, Tella SOC, Ferraz IS, Ciampo LAD, Tanus-Santos JE. Assessment of nitric oxide metabolites concentrations in plasma, saliva, and breast milk and their relationship in lactating women. Mol Cell Biochem 2020; 476:1293-1302. [PMID: 33237454 DOI: 10.1007/s11010-020-03994-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) plays a role in many biological mechanisms. The amounts of physiologically produced NO are associated with the concentrations of its metabolites nitrate and nitrite. This study investigated whether there is any association between the concentrations of NO metabolites nitrate, nitrite, and nitrosylated species (RXNO) in mature breast milk, saliva, and plasma in healthy lactating women (N = 30). We hypothesized that the NO metabolites concentrations in plasma are associated with those found in saliva and in breast milk. NO metabolites concentrations were measured using chemiluminensce-based assays. Nitrate concentrations in breast milk are twice as much as plasma concentrations, whereas nitrate concentrations in saliva are about eightfold higher (both P < 0.001). Similar differences were found when nitrite concentrations were taken into consideration. RXNO concentrations in breast milk were negligible, and RXNO concentrations in saliva were approximately sixfold higher than those found in plasma samples (P < 0.0001). Nitrate concentrations in plasma are associated with nitrate concentrations in saliva (rs = 0.474, P = 0.004). However, no significant association was found between nitrate concentrations in breast milk and in plasma (P > 0.05). Our results show a significant association between nitrate concentrations in plasma with those found in saliva, whereas all other relationships were not significant. In conclusion, this report shows for the first time that the physiological concentrations of NO metabolites in human breast milk are probably independent of circulating NO metabolites concentrations and may depend mostly on endogenous NO synthesis in the breast. These findings may have clinical implications for newborns and lactating women.
Collapse
Affiliation(s)
- Juliana O Fernandes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Sandra O C Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Ivan S Ferraz
- Department of Puericulture and Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Luiz A D Ciampo
- Department of Puericulture and Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
43
|
Garcia-Lino AM, Gomez-Gomez A, Garcia-Mateos D, de la Fuente A, Alvarez AI, Pozo OJ, Merino G. Analysis of the interaction between tryptophan-related compounds and ATP-binding cassette transporter G2 (ABCG2) using targeted metabolomics. Food Chem 2020; 344:128665. [PMID: 33250293 DOI: 10.1016/j.foodchem.2020.128665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
ATP-binding cassette transporter G2 (ABCG2) is involved in the secretion of several compounds in milk. The in vitro and in vivo interactions between tryptophan-related compounds and ABCG2 were investigated. The tryptophan metabolome was determined by liquid chromatography-tandem mass spectrometry in milk and plasma from wild-type and Abcg2-/- mice as well as dairy cows carrying the ABCG2 Y581S polymorphism (Y/S) and noncarrier animals (Y/Y). The milk-to-plasma ratios of tryptophan, kynurenic acid, kynurenine, anthranilic acid, and xanthurenic acid were higher in wild-type mice than in Abcg2-/- mice. The ratio was 2-fold higher in Y/S than in Y/Y cows for kynurenine. In vitro transport assays confirmed that some of these compounds were in vitro substrates of the transporter and validated the differences observed between the two variants of the bovine protein. These findings show that the secretion of metabolites belonging to the kynurenine pathway into milk is mediated by ABCG2.
Collapse
Affiliation(s)
- Alba M Garcia-Lino
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Alex Gomez-Gomez
- Integrative Pharmacology and Systems Neuroscience Group, IMIM-Hospital del Mar Medical Research Institute, 88 Doctor Aiguader, 08003 Barcelona, Spain
| | - Dafne Garcia-Mateos
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Alvaro de la Fuente
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Ana I Alvarez
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Group, IMIM-Hospital del Mar Medical Research Institute, 88 Doctor Aiguader, 08003 Barcelona, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain.
| |
Collapse
|
44
|
Yalçin SS, Güneş B, Yalçin S. Incredible pharmaceutical residues in human milk in a cohort study from Şanlıurfa in Turkey. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103502. [PMID: 32961279 DOI: 10.1016/j.etap.2020.103502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Maternal milk is essential for optimum growth and development of an infant. The aim was to examine the presence of pharmaceutical residuals in breastmilk. This cohort study enrolled 90 healthy mother-infant pairs at 5-14 days after delivery and a control examination was performed 4-8 weeks later. Milk samples were taken at both visits. RANDOX Infiniplex kit performed residual analysis. More than half of mothers (54.4 %) had anti-inflammatory drug residues in at least one milk sample: those were 52.2 % for tolfenamic acid and 2.2 % for meloxicam and 1.1 % for metamizole. The most frequent residue group included the beta-lactam antibiotic group, which was detected in 93.3 % of mothers' milk. The second one was the quinolone group (81.1 %). One-third of mothers expressed nitroxynil and one-fifth polymyxin in at least one sample. Almost all mothers had some unexpected drug residues in their milk. Additional studies from other countries can display maternal environmental exposures.
Collapse
Affiliation(s)
| | - Bülent Güneş
- Özel Şan Med Hospital, Child Health and Disease Service, Şanlıurfa, Turkey.
| | - Suzan Yalçin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey.
| |
Collapse
|
45
|
Golan Y, Assaraf YG. Genetic and Physiological Factors Affecting Human Milk Production and Composition. Nutrients 2020; 12:E1500. [PMID: 32455695 PMCID: PMC7284811 DOI: 10.3390/nu12051500] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk is considered the optimal nutrition for infants as it provides additional attributes other than nutritional support for the infant and contributes to the mother's health as well. Although breastfeeding is the most natural modality to feed infants, nowadays, many mothers complain about breastfeeding difficulties. In addition to environmental factors that may influence lactation outcomes including maternal nutrition status, partner's support, stress, and latching ability of the infant, intrinsic factors such as maternal genetics may also affect the quantitative production and qualitative content of human milk. These genetic factors, which may largely affect the infant's growth and development, as well as the mother's breastfeeding experience, are the subject of the present review. We specifically describe genetic variations that were shown to affect quantitative human milk supply and/or its qualitative content. We further discuss possible implications and methods for diagnosis as well as treatment modalities. Although cases of nutrient-deficient human milk are considered rare, in some ethnic groups, genetic variations that affect human milk content are more abundant, and they should receive greater attention for diagnosis and treatment when necessary. From a future perspective, early genetic diagnosis should be directed to target and treat breastfeeding difficulties in real time.
Collapse
Affiliation(s)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|
46
|
Garcia-Lino AM, Blanco-Paniagua E, Astorga-Simon EN, Alvarez-Fernandez L, Garcia-Mateos D, Alvarez-Fernandez I, Alvarez AI, Merino G. Abcg2 transporter affects plasma, milk and tissue levels of meloxicam. Biochem Pharmacol 2020; 175:113924. [PMID: 32217099 DOI: 10.1016/j.bcp.2020.113924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
ATP-binding cassette (ABCG2) is an efflux transporter that extrudes xenotoxins from cells in liver, intestine, mammary gland, brain and other organs, affecting the pharmacokinetics, brain accumulation and secretion into milk of several compounds, including antitumoral, antimicrobial and anti-inflammatory drugs. The aim of this study was to investigate whether the widely used anti-inflammatory drug meloxicam is an Abcg2 sustrate, and how this transporter affects its systemic distribution. Using polarized ABCG2-transduced cell lines, we found that meloxicam is efficiently transported by murine Abcg2 and human ABCG2. After oral administration of meloxicam, the area under the plasma concentration-time curve in Abcg2-/- mice was 2-fold higher than in wild type mice (146.06 ± 10.57 µg·h/ml versus 73.80 ± 10.00 µg·h/ml). Differences in meloxicam distribution were reported for several tissues after oral and intravenous administration, with a 20-fold higher concentration in the brain of Abcg2-/- after oral administration. Meloxicam secretion into milk was also affected by the transporter, with a 2-fold higher milk-to-plasma ratio in wild-type compared with Abcg2-/- lactating female mice after oral and intravenous administration. We conclude that Abcg2 is an important determinant of the plasma and brain distribution of meloxicam and is clearly involved in its secretion into milk.
Collapse
Affiliation(s)
- Alba M Garcia-Lino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Elsa N Astorga-Simon
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Laura Alvarez-Fernandez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Dafne Garcia-Mateos
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Indira Alvarez-Fernandez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Ana I Alvarez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain.
| |
Collapse
|
47
|
Anderson PO, Momper JD. Clinical lactation studies and the role of pharmacokinetic modeling and simulation in predicting drug exposures in breastfed infants. J Pharmacokinet Pharmacodyn 2020; 47:295-304. [PMID: 32034606 DOI: 10.1007/s10928-020-09676-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
The relative lack of information on medication use during breastfeeding is an ongoing problem for health professionals and mothers alike. Most nursing mothers are prescribed some form of medication, yet some mothers either discontinue breastfeeding or avoid medications entirely. Although regulatory authorities have proposed a framework for clinical lactation studies, data on drug passage into breastmilk are often lacking. Model-based approaches can potentially be used to estimate the passage of drugs into milk, predict exposures in breastfed infants, and identify drugs that need clinical lactation studies. When a human study is called for, measurement of the drug concentration in milk are often adequate to characterize safety. Data from these studies can be leveraged to further refine pharmacokinetic models with subsequent Monte Carlo simulations to estimate the spread of exposure values. Both clinical lactation studies and model-based approaches have some limitations and pitfalls which are discussed.
Collapse
Affiliation(s)
- Philip O Anderson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|