1
|
Chungchunlam SMS, Moughan PJ. Comparative bioavailability of vitamins in human foods sourced from animals and plants. Crit Rev Food Sci Nutr 2024; 64:11590-11625. [PMID: 37522617 DOI: 10.1080/10408398.2023.2241541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitamins are essential components of enzyme systems involved in normal growth and function. The quantitative estimation of the proportion of dietary vitamins, that is in a form available for utilization by the human body, is limited and fragmentary. This review provides the current state of knowledge on the bioavailability of thirteen vitamins and choline, to evaluate whether there are differences in vitamin bioavailability when human foods are sourced from animals or plants. The bioavailability of naturally occurring choline, vitamin D, vitamin E, and vitamin K in food awaits further studies. Animal-sourced foods are the almost exclusive natural sources of dietary vitamin B-12 (65% bioavailable) and preformed vitamin A retinol (74% bioavailable), and contain highly bioavailable biotin (89%), folate (67%), niacin (67%), pantothenic acid (80%), riboflavin (61%), thiamin (82%), and vitamin B-6 (83%). Plant-based foods are the main natural sources of vitamin C (76% bioavailable), provitamin A carotenoid β-carotene (15.6% bioavailable), riboflavin (65% bioavailable), thiamin (81% bioavailable), and vitamin K (16.5% bioavailable). The overview of studies showed that in general, vitamins in foods originating from animals are more bioavailable than vitamins in foods sourced from plants.
Collapse
Affiliation(s)
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-Oxide in Aquatic Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14498-14520. [PMID: 38885200 DOI: 10.1021/acs.jafc.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.
Collapse
Affiliation(s)
- Xiaoyue Li
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chengcheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China
| |
Collapse
|
3
|
Rusnak T, Azarcoya-Barrera J, Makarowski A, Jacobs RL, Richard C. Plant- and Animal-Derived Dietary Sources of Phosphatidylcholine Have Differential Effects on Immune Function in The Context of A High-Fat Diet in Male Wistar Rats. J Nutr 2024; 154:1936-1944. [PMID: 38582387 PMCID: PMC11217025 DOI: 10.1016/j.tjnut.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Phosphatidylcholine (PC) derived from eggs has been shown to beneficially modulate T cell response and intestinal permeability under the context of a high-fat diet. OBJECTIVES The objective of this study was to determine whether there is a differential effect of plant and animal-derived sources of PC on immune function. METHODS Four-week-old male Wistar rats were randomly assigned to consume 1 of 4 diets (n = 10/group) for 12 wk, all containing 1.5 g of total choline/kg of diet but differing in choline forms: 1-Control Low-Fat [CLF, 20% fat, 100% free choline (FC)]; 2-Control High-Fat (CHF, 50% fat, 100% FC); 3-High-Fat Egg-derived PC (EPC, 50% fat, 100% Egg-PC); 4-High-Fat Soy-derived PC (SPC, 50% fat, 100% Soy-PC). Immune cell functions and phenotypes were measured in splenocytes by ex vivo cytokine production after mitogen stimulation and flow cytometry, respectively. RESULTS The SPC diet increased splenocyte IL-2 production after PMA+I stimulation compared with the CHF diet. However, the SPC group had a lower proportion of splenocytes expressing the IL-2 receptor (CD25+, P < 0.05). After PMA+I stimulation, feeding EPC normalized splenocyte production of IL-10 relative to the CLF diet, whereas SPC did not (P < 0.05). In mesenteric lymph node lymphocytes, the SPC diet group produced more IL-2 and TNF-α after PMA+I stimulation than the CHF diet, whereas the EPC diet group did not. CONCLUSIONS Our results suggest that both egg- and soy-derived PC may attenuate high-fat diet-induced T cell dysfunction. However, egg-PC enhances, to a greater extent, IL-10, a cytokine involved in promoting the resolution phase of inflammation, whereas soy-PC appears to elicit a greater effect on gut-associated immune responses.
Collapse
Affiliation(s)
- Tianna Rusnak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Zammit VA, Park SO. In Vivo Monitoring of Glycerolipid Metabolism in Animal Nutrition Biomodel-Fed Smart-Farm Eggs. Foods 2024; 13:722. [PMID: 38472835 DOI: 10.3390/foods13050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Although many studies have examined the biochemical metabolic pathways by which an egg (egg yolk) lowers blood lipid levels, data on the molecular biological mechanisms that regulate and induce the partitioning of hepatic glycerolipids are missing. The aim of this study was to investigate in vivo monitoring in four study groups using an animal nutrition biomodel fitted with a jugular-vein cannula after egg yolk intake: CON (control group, oral administration of 1.0 g of saline), T1 (oral administration of 1.0 g of pork belly fat), T2 (oral administration of 1.0 g of smart-farm egg yolk), and T3 (oral administration of T1 and T2 alternately every week). The eggs induced significant and reciprocal changes in incorporating 14C lipids into the total glycerolipids and releasing 14CO2, thereby regulating esterification and accelerating oxidation in vivo. The eggs increased phospholipid secretion from the liver into the blood and decreased triacylglycerol secretion by regulating the multiple cleavage of fatty acyl-CoA moieties' fluxes. In conclusion, the results of the current study reveal the novel fact that eggs can lower blood lipids by lowering triacylglycerol secretion in the biochemical metabolic pathway of hepatic glycerolipid partitioning while simultaneously increasing phospholipid secretion and 14CO2 emission.
Collapse
Affiliation(s)
- Victor A Zammit
- Metabolic Biochemistry, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Sang O Park
- Institute of Animal Life Science, Kangwon National University, Chuncheon-si 24341, Gangwon State, Republic of Korea
| |
Collapse
|
5
|
Promkhun K, Suwanvichanee C, Tanpol N, Katemala S, Thumanu K, Molee W, Kubota S, Uimari P, Molee A. Effect of carnosine synthesis precursors in the diet on jejunal metabolomic profiling and biochemical compounds in slow-growing Korat chicken. Poult Sci 2023; 102:103123. [PMID: 37832192 PMCID: PMC10568557 DOI: 10.1016/j.psj.2023.103123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
The slow-growing Korat chicken (KR) has been developed to provide an alternative breed for smallholder farmers in Thailand. Carnosine enrichment in the meat can distinguish KR from other chicken breeds. Therefore, our aim was to investigate the effect of enriched carnosine synthesis, obtained by the β-alanine and L-histidine precursor supplementation in the diet, on changes to metabolomic profiles and biochemical compounds in slow-growing KR jejunum tissue. Four hundred 21-day-old female KR chickens were divided into 4 experimental groups: a group with a basal diet, a group with a basal diet supplemented with 1.0% β-alanine, 0.5% L-histidine, and a mix of 1.0% β-alanine and 0.5% L-histidine. The feeding trial lasted 70 d. Ten randomly selected chickens from each group were slaughtered. Metabolic profiles were analyzed using proton nuclear magnetic resonance spectroscopy. In total, 28 metabolites were identified. Significant changes in the concentrations of these metabolites were detected between the groups. Partial least squares discriminant analysis was used to distinguish the metabolites between the experimental groups. Based on the discovered metabolites, 34 potential metabolic pathways showed differentiation between groups, and 8 pathways (with impact values higher than 0.05, P < 0.05, and FDR < 0.05) were affected by metabolite content. In addition, biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy. Supplementation of β-alanine alone in the diet increased the β-sheets and decreased the α-helix content in the amide I region, and supplementation of L-histidine alone in the diet also increased the β-sheets. Furthermore, the relationship between metabolite contents and biochemical compounds were confirmed using principal component analysis (PCA). Results from the PCA indicated that β-alanine and L-histidine precursor group was highly positively correlated with amide I, amide II, creatine, tyrosine, valine, isoleucine, and aspartate. These findings can help to understand the relationships and patterns between the spectral and metabolic processes related to carnosine synthesis.
Collapse
Affiliation(s)
- Kasarat Promkhun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chanadda Suwanvichanee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nathawat Tanpol
- Department of Animal Production Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Sasikan Katemala
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pekka Uimari
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
6
|
Wallace TC, Montenegro‐Bethancourt G, Rohloff P, Jimenez EY, Proaño GV, McCabe GP, Steiber A, Ruosch A, Laessig I, Ladwig E, You H. Comparison of the nutrient composition of eggs produced in the Guatemalan highlands during the wet and dry seasons. Food Sci Nutr 2023; 11:8163-8173. [PMID: 38107147 PMCID: PMC10724625 DOI: 10.1002/fsn3.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 12/19/2023] Open
Abstract
The potential of chicken eggs as a nutritionally complete protein and source of key micronutrients during the first 1000 days post-conception has been progressively recognized across the globe, particularly in resource-poor settings. Fluctuation of egg nutrient content by season is relatively unknown, which may influence international food composition databases and outcomes in intervention studies using egg supplementation. To better interpret the findings of The Saqmolo' Project, we conducted comprehensive nutrient analyses on eggs produced during the wet and dry seasons in the highlands of central Guatemala. We randomly collected 36 shell eggs from a local farm during both seasons, hard-boiled, and prepared them for transport to the United States, where they were pooled and assessed for their nutrient composition. Methods of the Association of Official Analytical Chemists, the American Oil Chemists Society, and the American Association of Cereal Chemists were utilized to determine total energy, moisture, ash, total protein, total fat, fatty acids, total carbohydrates, 12 vitamins, 11 minerals, and carotenoids, by season, in some instances with modifications. Differences in nutrient composition between de-shelled hard-boiled eggs collected between seasons were assessed using an analysis of variance (ANOVA) and Tukey's family error rate comparison test. Most nutrients in eggs produced in the highlands of central Guatemala differed negligibly (but statistically significantly) based on seasonality. Only vitamins A and E, folate, choline, and calcium fluctuated at clinically significant levels relative to the AI/RDA for infants 7-12 months. Total energy, protein, trans fatty acids, moisture, and vitamin D3 levels did not differ between seasons (p > .05). Further multi-year sampling is needed to examine how seasonal variation affects the nutrient composition of eggs. These data may be used to supplement existing national and regional food composition databases.
Collapse
Affiliation(s)
- Taylor C. Wallace
- Think Healthy Group, LLCWashingtonDistrict of ColumbiaUSA
- School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and PolicyTufts UniversityMedfordMassachusettsUSA
| | | | - Peter Rohloff
- Wuqu' Kawoq/Maya Health AllianceTecpanGuatemala
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Elizabeth Yakes Jimenez
- Academy of Nutrition and DieteticsChicagoIllinoisUSA
- College of Population Health and Department of Pediatrics and Internal MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | | | - George P. McCabe
- Department of StatisticsPurdue UniversityWest LafayetteIndianaUSA
| | - Alison Steiber
- Academy of Nutrition and DieteticsChicagoIllinoisUSA
- Department of NutritionCase Western UniversityClevelandOhioUSA
| | - Andrew Ruosch
- Eurofins Food Chemistry Testing Madison, Inc.MadisonWisconsinUSA
- Eurofins U.S. FoodDes MoinesIowaUSA
| | - Ian Laessig
- Eurofins Food Chemistry Testing Madison, Inc.MadisonWisconsinUSA
- Eurofins U.S. FoodDes MoinesIowaUSA
| | - Edward Ladwig
- Eurofins Food Chemistry Testing Madison, Inc.MadisonWisconsinUSA
- Eurofins U.S. FoodDes MoinesIowaUSA
| | - Hong You
- Eurofins U.S. FoodDes MoinesIowaUSA
- Eurofins Botanical Testing US, Inc.BreaCaliforniaUSA
| |
Collapse
|
7
|
Lee C, Lee J, Eor JY, Kwak MJ, Huh CS, Kim Y. Effect of Consumption of Animal Products on the Gut Microbiome Composition and Gut Health. Food Sci Anim Resour 2023; 43:723-750. [PMID: 37701742 PMCID: PMC10493557 DOI: 10.5851/kosfa.2023.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
The gut microbiome is critical in human health, and various dietary factors influence its composition and function. Among these factors, animal products, such as meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut microbiome. However, the correlation and characteristics of livestock consumption with the gut microbiome remain poorly understood. This review aimed to delineate the distinct effects of meat, dairy, and egg products on gut microbiome composition and function. Based on the previous reports, the impact of red meat, white meat, and processed meat consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg products. In particular, we have focused on animal-originated proteins, a significant nutrient in each livestock product, and revealed that the major proteins in each food elicit diverse effects on the gut microbiome. Collectively, this review highlights the need for further insights into the interactions and mechanisms underlying the impact of animal products on the gut microbiome. A deeper understanding of these interactions would be beneficial in elucidating the development of dietary interventions to prevent and treat diseases linked to the gut microbiome.
Collapse
Affiliation(s)
- Chaewon Lee
- WCU Biomodulation Major, Department of
Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul
National University, Seoul 08826, Korea
| | - Junbeom Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Chul Sung Huh
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
8
|
Andersen CJ, Huang L, Zhai F, Esposito CP, Greco JM, Zhang R, Woodruff R, Sloan A, Van Dyke AR. Consumption of Different Egg-Based Diets Alters Clinical Metabolic and Hematological Parameters in Young, Healthy Men and Women. Nutrients 2023; 15:3747. [PMID: 37686779 PMCID: PMC10490185 DOI: 10.3390/nu15173747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Eggs-particularly egg yolks-are a rich source of bioactive nutrients and dietary compounds that influence metabolic health, lipid metabolism, immune function, and hematopoiesis. We investigated the effects of consuming an egg-free diet, three egg whites per day, and three whole eggs per day for 4 weeks on comprehensive clinical metabolic, immune, and hematologic profiles in young, healthy adults (18-35 y, BMI < 30 kg/m2 or <30% body fat for men and <40% body fat for women, n = 26) in a 16-week randomized, crossover intervention trial. We observed that average daily macro- and micronutrient intake significantly differed across egg diet periods, including greater intake of choline during the whole egg diet period, which corresponded to increased serum choline and betaine without altering trimethylamine N-oxide. Egg white and whole egg intake increased serum isoleucine while whole egg intake reduced serum glycine-markers of increased and decreased risk of insulin resistance, respectively-without altering other markers of glucose sensitivity or inflammation. Whole egg intake increased a subset of large HDL particles (H6P, 10.8 nm) and decreased the total cholesterol:HDL-cholesterol ratio and % monocytes in female participants using combined oral contraceptive (COC) medication (n = 11) as compared to female non-users (n = 10). Whole egg intake further increased blood hematocrit whereas egg white and whole egg intake reduced blood platelet counts. Changes in clinical immune cell counts between egg white and whole egg diet periods were negatively correlated with several HDL parameters yet positively correlated with measures of triglyceride-rich lipoproteins and insulin sensitivity. Overall, the intake of whole eggs led to greater overall improvements in micronutrient diet quality, choline status, and HDL and hematologic profiles while minimally-yet potentially less adversely-affecting markers of insulin resistance as compared to egg whites.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Lindsey Huang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Fangyi Zhai
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Christa Palancia Esposito
- Marion Peckham Egan School of Nursing and Health Studies, Fairfield University, Fairfield, CT 06824, USA;
| | - Julia M. Greco
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
| | - Ruijie Zhang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Rachael Woodruff
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Allison Sloan
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
| | - Aaron R. Van Dyke
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, CT 06824, USA;
| |
Collapse
|
9
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
10
|
Zhang N, Li Y, Feng Z. Inhibition effect of choline and parecoxib sodium on chronic constriction nerve injury-induced neuropathic pain in rats. BMC Anesthesiol 2023; 23:22. [PMID: 36639747 PMCID: PMC9837992 DOI: 10.1186/s12871-022-01913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/16/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE The simultaneous use of drugs with different mechanisms of analgesic action is a strategy for achieving effective pain control while minimizing dose-related side effects. Choline was described to potentiate the analgesic action of parecoxib sodium at small doses in several inflammatory pain models. However, these findings are still very limited, and more associated data are required to confirm the effectiveness of the combined choline and parecoxib sodium therapy against inflammatory pain. METHODS Adult rats were randomly divided into 9 groups (N = 6/group). The sham surgery group received an intraperitoneal (i.p.) injection of saline. Rats with chronic constriction injury (CCI) of the sciatic nerve received saline, choline (cho, 6, 12 and 24 mg/kg), parecoxib sodium (pare, 3, 6, and 12 mg/kg), or a combination of choline 6 mg/kg and parecoxib sodium 3 mg/kg. Mechanical and heat pain thresholds were measured at 30 min after drug treatment at Days 3, 5, 7, 10, and 14 after CCI. Another 30 rats were divided into 5 groups (N = 6/group): the sham, CCI + saline, CCI + cho-6 mg/kg, CCI + pare-3 mg/kg, and CCI + cho-6 mg/kg + pare-3 mg/kg groups. After repeated drug treatment for 7 days, five rats were randomly selected from each group, and the lumbar dorsal root ganglia (DRGs) (L4-6) were harvested for western blot analysis. RESULTS Choline significantly attenuated mechanical and heat hypersensitivity in CCI rats at 12 and 24 mg/kg doses (P < 0.05) but was not effective at the 6 mg/kg dose. Parecoxib sodium exerted significant pain inhibitory effects at the 6 and 12 mg/kg doses (P < 0.05) but not at the 3 mg/kg dose. Combining a low dose of choline (6 mg/kg) and parecoxib sodium (3 mg/kg) produced significant pain inhibition in CCI rats and reduced the expression of high mobility group protein 1 (HMGB1) and nuclear factor-kappa Bp65 (NF-κBp65) in L4-6 DRGs. CONCLUSION 1. In a rat model of chronic neuropathic pain (CCI), at a certain dose, choline or parecoxib sodium can alleviate mechanical pain and thermal hyperalgesia caused by CCI. 2. The combination of choline and parecoxib sodium in nonanalgesic doses can effectively relieve neuropathic pain, and its mechanism may be related to the inhibition of the high mobility group protein 1 (HMGB1)/Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway.
Collapse
Affiliation(s)
- Na Zhang
- grid.459327.eAnesthesiology Department, Civil Aviation General Hospital, Beijing, 100123 People’s Republic of China
| | - Yang Li
- grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Zeguo Feng
- grid.414252.40000 0004 1761 8894Department of Pain Medicine, First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| |
Collapse
|
11
|
Obeid R, Derbyshire E, Schön C. Association between Maternal Choline, Fetal Brain Development, and Child Neurocognition: Systematic Review and Meta-Analysis of Human Studies. Adv Nutr 2022; 13:2445-2457. [PMID: 36041182 PMCID: PMC9776654 DOI: 10.1093/advances/nmac082] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 07/25/2022] [Indexed: 01/29/2023] Open
Abstract
We studied associations between prenatal and early postnatal choline intake, brain development, and neurocognitive function of children. We conducted a systematic review followed by a meta-analysis and critical appraisal of human studies published from 1997 to 2021. Thirty publications were identified. The meta-analysis included 5 of 7 case-control studies studying neural tube defects (NTDs) in relation to maternal choline intakes/circulating concentrations. Low maternal choline intake/circulating concentrations were associated with a higher OR for NTDs among 1131 mothers of newborns with NTDs and 4439 control mothers (pooled estimate = 1.36; 95% CI: 1.11, 1.67). The 95% prediction intervals were 0.78, 2.36. Findings and critical evaluation of 10 publications with interventional designs showed that higher maternal choline intakes during the second half of pregnancy and early postnatal period (550 mg up to 1 g/d on top of the diet) or a child intake of 513 to 625 mg/d from supplements were safe and likely to demonstrate favorable effects on several domains of child neurocognition, such as memory, attention, and visuospatial learning versus the comparators. Findings from observational studies (n = 13) partly supported the association between maternal choline intake/serum concentrations and child neurocognition, but there was low confidence in the use of plasma choline concentrations as a choline intake marker. In conclusion, low maternal choline intakes were associated with a higher OR for NTDs. The risk could be up to 2.36-fold in some populations. Despite limitations of available trials and observational studies, higher maternal choline intake was likely to be associated with better child neurocognition/neurodevelopment. The results should be used to guide choline intake recommendations in pregnancy and lactation, especially because most young women are not achieving the reference intake of choline. This meta-analysis is registered at PROSPERO as CRD42021233790.
Collapse
|
12
|
Wolfer JD, Minkoff BB, Sussman MR. Mass spectrometric based analysis of whole eggs dissolved in formic acid. Food Chem 2022; 405:134846. [DOI: 10.1016/j.foodchem.2022.134846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
13
|
Hasson DC, Watanabe-Chailland M, Romick-Rosendale L, Koterba A, Miner DS, Lahni P, Ma Q, Goldstein SL, Devarajan P, Standage SW. Choline supplementation attenuates experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F255-F271. [PMID: 35834274 PMCID: PMC9394731 DOI: 10.1152/ajprenal.00033.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is common in critically ill patients, and sepsis is its leading cause. Sepsis-associated AKI (SA-AKI) causes greater morbidity and mortality than other AKI etiologies, yet the underlying mechanisms are incompletely understood. Metabolomic technologies can characterize cellular energy derangements, but few discovery analyses have evaluated the metabolomic profile of SA-AKI. To identify metabolic derangements amenable to therapeutic intervention, we assessed plasma and urine metabolites in septic mice and critically ill children and compared them by AKI status. Metabolites related to choline and central carbon metabolism were differentially abundant in SA-AKI in both mice and humans. Gene expression of enzymes related to choline metabolism was altered in the kidneys and liver of mice with SA-AKI. Treatment with intraperitoneal choline improved renal function in septic mice. Because pediatric patients with sepsis displayed similar metabolomic profiles to septic mice, choline supplementation may attenuate pediatric septic AKI.NEW & NOTEWORTHY Altered choline metabolism plays a role in both human and murine sepsis-associated acute kidney injury (SA-AKI), and choline administration in experimental SA-AKI improved renal function. These findings indicate that 1) mouse models can help interrogate clinically relevant mechanisms and 2) choline supplementation may ameliorate human SA-AKI. Future research will investigate clinically the impact of choline supplementation on human renal function in sepsis and, using model systems, how choline mediates its effects.
Collapse
Affiliation(s)
- Denise C Hasson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Miki Watanabe-Chailland
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsey Romick-Rosendale
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adeleine Koterba
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dashiell S Miner
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stuart L Goldstein
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stephen W Standage
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
14
|
Thomas MS, Puglisi M, Malysheva O, Caudill MA, Sholola M, Cooperstone JL, Fernandez ML. Eggs Improve Plasma Biomarkers in Patients with Metabolic Syndrome Following a Plant-Based Diet-A Randomized Crossover Study. Nutrients 2022; 14:nu14102138. [PMID: 35631279 PMCID: PMC9147178 DOI: 10.3390/nu14102138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Plant-based (PB) diets are considered a healthy dietary pattern; however, eggs are not always included in this dietary regime. We hypothesized that the addition of two eggs per day would increase HDL cholesterol as well as plasma lutein, zeaxanthin and choline in individuals with metabolic syndrome (MetS). In this randomized controlled crossover intervention, we recruited 30 participants (49.3 ± 8 y) with MetS who followed a PB diet for 13 weeks. A registered dietitian advised all subjects on food selection and followed them through the intervention to ensure compliance. Participants underwent a 2-week washout with no eggs or spinach (a source of dietary lutein and zeaxanthin) and were randomly allocated to consume spinach (70 g) with either two eggs (EGG) or the equivalent amount of egg substitute (SUB) for breakfast for 4 weeks. After a 3-week washout, they were allocated the alternate breakfast. A total of 24 participants (13 women/11 men) finished the intervention. Plasma lipids, glucose, insulin, anthropometrics, plasma lutein, zeaxanthin, choline and trimethylamine oxide (TMAO) were assessed at baseline and the end of each intervention. When we compared individuals consuming the EGG versus the SUB breakfast, we observed a lower body weight (p < 0.02) and a higher HDL cholesterol (p < 0.025) after the EGG diet. There were no differences in plasma LDL cholesterol, triglycerides, glucose, insulin, or blood pressure. The number of large HDL particles measured by NMR was higher after EGG (p < 0.01) as compared to SUB. Plasma choline was higher in both treatments (p < 0.01) compared to baseline (8.3 ± 2.1 μmol/L). However, plasma choline values were higher in EGG (10.54 ± 2.8 μmol/L) compared to SUB (9.47 ± 2.7 μmol/L) p < 0.025. Both breakfasts increased plasma lutein compared to baseline (p < 0.01), while plasma zeaxanthin was only increased in the egg intervention (p < 0.01). These results indicate that consuming a plant-based diet in combination with whole eggs increases plasma HDL cholesterol, choline and zeaxanthin, important biomarkers in subjects with MetS.
Collapse
Affiliation(s)
- Minu S. Thomas
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (M.S.T.); (M.P.)
| | - Michael Puglisi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (M.S.T.); (M.P.)
| | - Olga Malysheva
- Department of Human Nutrition, Division of Nutritional Science, Cornell University, Ithaca, NY 14860, USA; (O.M.); (M.A.C.)
| | - Marie A. Caudill
- Department of Human Nutrition, Division of Nutritional Science, Cornell University, Ithaca, NY 14860, USA; (O.M.); (M.A.C.)
| | - Maria Sholola
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (J.L.C.)
| | - Jessica L. Cooperstone
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (J.L.C.)
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (M.S.T.); (M.P.)
- Correspondence:
| |
Collapse
|
15
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
16
|
Unlike Glycerophosphocholine or Choline Chloride, Dietary Phosphatidylcholine Does Not Increase Plasma Trimethylamine- N-Oxide Levels in Sprague-Dawley Rats. Metabolites 2022; 12:metabo12010064. [PMID: 35050186 PMCID: PMC8779457 DOI: 10.3390/metabo12010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Choline, betaine, and L-carnitine are transformed into trimethylamine (TMA) by gut microbiota, absorbed into the liver, and oxidized into trimethylamine-N-oxide (TMAO) by flavin-containing monooxygenases. Elevated TMAO levels may negatively affect human health. As phosphatidylcholine (PC) is the main source of dietary choline, its intake or PC-rich foods may be harmful to human health; however, quantitative comparative information among dietary choline compounds (PC, glycerophosphocholine [GPC], and choline chloride [CC]) regarding in vivo generation of TMAO is lacking. Here, we compared the effects of PC, GPC, and CC on plasma TMAO levels in rats. Furthermore, we investigated their effects on gut microbiota at the genus level. Dietary PC did not affect plasma TMAO levels, whereas dietary GPC and CC significantly increased them. At the genus level, plasma TMAO levels were significantly negatively correlated with relative abundances of Anaerotruncus, Actinomyces, Enterococcus, Dialister, Clostridium XIVa, and Granulicatella; they were significantly positively correlated with that of Coprobacter. Moreover, the relative abundances of Anaerotruncus and Coprobacter were found to predict plasma TMAO levels. Therefore, dietary PC, unlike GPC or CC, does not increase plasma TMAO levels in rats. Furthermore, several gut microbes are associated with changes in plasma TMAO levels in rats fed with choline compounds.
Collapse
|
17
|
Kang JW, Zivkovic AM. Are eggs good again? A precision nutrition perspective on the effects of eggs on cardiovascular risk, taking into account plasma lipid profiles and TMAO. J Nutr Biochem 2021; 100:108906. [PMID: 34801688 DOI: 10.1016/j.jnutbio.2021.108906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Although eggs are a nutrient dense food delivering high quality protein and micronutrients, given that eggs are also rich in cholesterol and choline, whether egg intake is contraindicated for individuals at risk for cardiovascular disease (CVD) remains controversial. In this mini review, we provide a Precision Nutrition perspective, highlighting the importance of two factors: the effect of egg cholesterol on plasma cholesterol concentrations in most people and in cholesterol hyper-absorbers, and the effect of egg choline on plasma concentrations of trimethylamine-N-oxide (TMAO), a microbe-host co-metabolite independently associated with increased CVD risk. We discuss recent evidence from intervention studies showing that in most individuals egg intake does not have a deleterious effect on plasma lipid profiles, but also highlight that some individuals are cholesterol hyper-absorbers or individuals who are not able to maintain cholesterol homeostasis by suppressing endogenous cholesterol synthesis, and that for these individuals the intake of eggs and other dietary sources of cholesterol would be contraindicated. We also discuss the complex relationship between dietary sources of choline vs. phosphatidylcholine, the gut microbiome, and plasma TMAO concentrations, highlighting the high inter-individual variability in TMAO production and gut microbiome profiles among healthy individuals and those with metabolic conditions. Precision Nutrition approaches that allow the clinician to stratify risk and improve dietary recommendations for individual patients are desirable for improving patient compliance and health outcomes. More clinical studies are needed to determine how to identify individuals at risk for CVD for whom egg intake is contraindicated vs. those for whom egg intake is not associated with negative effects on plasma lipid profiles nor plasma TMAO concentrations.
Collapse
Affiliation(s)
- Jea Woo Kang
- Department of Nutrition, University of California, Davis, California
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, California.
| |
Collapse
|
18
|
Huang K, Yuan Y, Baojun X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1963978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kehao Huang
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Food Science And Agricultural Chemistry, McGill University, Quebec, Canada
| | - Yingzhi Yuan
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Biochemistry, University College London, London, UK
| | - Xu Baojun
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
19
|
Differential metabolism of choline supplements in adult volunteers. Eur J Nutr 2021; 61:219-230. [PMID: 34287673 PMCID: PMC8783899 DOI: 10.1007/s00394-021-02637-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 10/26/2022]
Abstract
BACKGROUND Adequate intake of choline is essential for growth and homeostasis, but its supply does often not meet requirements. Choline deficiency decreases phosphatidylcholine (PC) and betaine synthesis, resulting in organ pathology, especially of liver, lung, and brain. This is of particular clinical importance in preterm infants and cystic fibrosis patients. We compared four different choline supplements for their impact on plasma concentration and kinetics of choline, betaine as a methyl donor and trimethylamine oxide (TMAO) as a marker of bacterial degradation prior to absorption. METHODS Prospective randomized cross-over study (1/2020-4/2020) in six healthy adult men. Participants received a single dose of 550 mg/d choline equivalent in the form of choline chloride, choline bitartrate, α-glycerophosphocholine (GPC), and egg-PC in randomized sequence at least 1 week apart. Blood was taken from t = - 0.1-6 h after supplement intake. Choline, betaine, TMAO, and total PC concentrations were analyzed by tandem mass spectrometry. Results are shown as medians and interquartile range. RESULTS There was no difference in the AUC of choline plasma concentrations after intake of the different supplements. Individual plasma kinetics of choline and betaine differed and concentrations peaked latest for PC (at ≈3 h). All supplements similarly increased plasma betaine. All water-soluble supplements rapidly increased TMAO, whereas egg-PC did not. CONCLUSION All supplements tested rapidly increased choline and betaine levels to a similar extent, with egg-PC showing the latest peak. Assuming that TMAO may have undesirable effects, egg-PC might be best suited for choline supplementation in adults. STUDY REGISTRATION This study was registered at "Deutsches Register Klinischer Studien" (DRKS) (German Register for Clinical Studies), 17.01.2020, DRKS00020454.
Collapse
|
20
|
Wang F, Rico JE, Fontoura ABP, Gervais R, McFadden JW. Short communication: Effects of dietary deoiled soy lecithin supplementation on circulating choline and choline metabolites, and the plasma phospholipid profile in Holstein cows fed palm fat. J Dairy Sci 2021; 104:1838-1845. [PMID: 33246625 DOI: 10.3168/jds.2020-18798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022]
Abstract
Dietary lecithin is a source of choline. Our objective was to evaluate the effects of dietary deoiled soy lecithin feeding on circulating choline, choline metabolites, and the plasma phospholipid profile in lactating dairy cows fed fractionated palm fatty acids. In a split-plot Latin square design, 16 Holstein cows (160 ± 7 d in milk; 3.6 ± 1.2 parity) were randomly allocated to a main plot receiving a corn silage and alfalfa haylage-based diet with palm fat containing either moderate or high palmitic acid content at 1.75% of ration dry matter (moderate and high palmitic acid containing 72 or 99% palmitic acid in fat supplement, respectively; n = 8/palm fat diet). Within each palm fat group, deoiled soy lecithin was top-dressed at 0, 0.12, 0.24, or 0.36% of ration dry matter in a replicated 4 × 4 Latin square design with 14-d experimental periods. A 14-d covariate period was used to acclimate cows to palm fat feeding without lecithin supplementation. Blood sampling occurred during the final 3 d of each experimental period. Plasma choline and choline metabolites were quantified using liquid chromatography and mass spectrometry. Plasma phospholipids were profiled using time-of-flight mass spectrometry. Whereas no effects of treatments were detected for plasma choline or methionine, lecithin feeding increased the plasma concentrations of choline metabolites trimethylamine N-oxide and dimethylglycine (24 and 11%, respectively). Plasma phosphatidylcholine (PC) and sphingomyelin (SM) concentrations increased with deoiled lecithin feeding (e.g., PC 16:0/22:6 and SM d18:1/18:3). Lecithin supplementation also increased plasma lysophosphatidylcholine (LPC) concentrations (e.g., LPC 18:0) while reducing plasma phosphatidylethanolamine (PE) concentrations (e.g., PE 16:0/20:5). Although increases in microbial-derived trimethylamine N-oxide suggest gastrointestinal lecithin degradation, elevations in plasma dimethylglycine, PC, LPC, and SM suggest that choline availability was improved by lecithin feeding in cows, thus supporting enhanced endogenous phospholipid synthesis.
Collapse
Affiliation(s)
- F Wang
- Department of Animal Science, Cornell University, Ithaca, NY 14853; State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - J E Rico
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - A B P Fontoura
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
21
|
Donoso F, Schverer M, Rea K, Pusceddu MM, Roy BL, Dinan TG, Cryan JF, Schellekens H. Neurobiological effects of phospholipids in vitro: Relevance to stress-related disorders. Neurobiol Stress 2020; 13:100252. [PMID: 33344707 PMCID: PMC7739190 DOI: 10.1016/j.ynstr.2020.100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022] Open
Abstract
Nutrition is a crucial component for maintenance of brain function and mental health. Accumulating evidence suggests that certain molecular compounds derived from diet can exert neuroprotective effects against chronic stress, and moreover improve important neuronal processes vulnerable to the stress response, such as plasticity and neurogenesis. Phospholipids are naturally occurring amphipathic molecules with promising potential to promote brain health. However, it is unclear whether phospholipids are able to modulate neuronal function directly under a stress-related context. In this study, we investigate the neuroprotective effects of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), phosphatidic acid (PA), sphingomyelin (SM) and cardiolipin (CL) against corticosterone (CORT)-induced cytotoxicity in primary cultured rat cortical neurons. In addition, we examine their capacity to modulate proliferation and differentiation of hippocampal neural progenitor cells (NPCs). We show that PS, PG and PE can reverse CORT-induced cytotoxicity and neuronal depletion in cortical cells. On the other hand, phospholipid exposure was unable to prevent the decrease of Bdnf expression produced by CORT. Interestingly, PS was able to increase hippocampal NPCs neurosphere size, and PE elicited a significant increase in astrocytic differentiation in hippocampal NPCs. Together, these results indicate that specific phospholipids protect cortical cells against CORT-induced cytotoxicity and improve proliferation and astrocytic differentiation in hippocampal NPCs, suggesting potential implications on neurodevelopmental and neuroprotective pathways relevant for stress-related disorders.
Collapse
Affiliation(s)
- Francisco Donoso
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Marina Schverer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Wang LM, Wang P, Teka T, Zhang YC, Yang WZ, Zhang Y, Wang T, Liu LX, Han LF, Liu CX. 1H NMR and UHPLC/Q-Orbitrap-MS-Based Metabolomics Combined with 16S rRNA Gut Microbiota Analysis Revealed the Potential Regulation Mechanism of Nuciferine in Hyperuricemia Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14059-14070. [PMID: 33146009 DOI: 10.1021/acs.jafc.0c04985] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyperuricemia seriously jeopardizes human health by increasing the risk of several diseases, such as gout and stroke. Nuciferine is able to alleviate hyperuricemia significantly. However, the underlying metabolic regulation mechanism remains unknown. To understand the metabolic effects of nuciferine on hyperuricemia by establishing a rat model of rapid hyperuricemia, 1H NMR and liquid chromatography-mass spectrometry were used to conduct nontargeted metabolomics studies. A total of 21 metabolites were authenticated in plasma and urine to be closely related with hyperuricemia, which were mainly correlated to the six metabolic pathways. Moreover, 16S rRNA analysis indicated that diversified intestinal microorganisms are closely related to changes in differential metabolites, especially bacteria from Firmicutes and Bacteroidetes. We propose that indoxyl sulfate and N-acetylglutamate in urine may be the potential biomarkers besides uric acid for early diagnosis and prevention of hyperuricemia. Gut microbiological analysis found that changes in the gut microbiota are closely related to these metabolites.
Collapse
Affiliation(s)
- Li-Ming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Piao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Tekleab Teka
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie +251-1145, Ethiopia
| | - You-Cai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wen-Zhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Lai-Xing Liu
- School of Management, Wuhan Institute of Technology, Wuhan 430205, China
| | - Li-Feng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Cai-Xiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
23
|
Bernhard W. Choline in cystic fibrosis: relations to pancreas insufficiency, enterohepatic cycle, PEMT and intestinal microbiota. Eur J Nutr 2020; 60:1737-1759. [PMID: 32797252 DOI: 10.1007/s00394-020-02358-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cystic Fibrosis (CF) is an autosomal recessive disorder with life-threatening organ manifestations. 87% of CF patients develop exocrine pancreas insufficiency, frequently starting in utero and requiring lifelong pancreatic enzyme substitution. 99% develop progressive lung disease, and 20-60% CF-related liver disease, from mild steatosis to cirrhosis. Characteristically, pancreas, liver and lung are linked by choline metabolism, a critical nutrient in CF. Choline is a tightly regulated tissue component in the form of phosphatidylcholine (Ptd'Cho) and sphingomyelin (SPH) in all membranes and many secretions, particularly of liver (bile, lipoproteins) and lung (surfactant, lipoproteins). Via its downstream metabolites, betaine, dimethylglycine and sarcosine, choline is the major one-carbon donor for methionine regeneration from homocysteine. Methionine is primarily used for essential methylation processes via S-adenosyl-methionine. CLINICAL IMPACT CF patients with exocrine pancreas insufficiency frequently develop choline deficiency, due to loss of bile Ptd'Cho via feces. ~ 50% (11-12 g) of hepatic Ptd'Cho is daily secreted into the duodenum. Its re-uptake requires cleavage to lyso-Ptd'Cho by pancreatic and small intestinal phospholipases requiring alkaline environment. Impaired CFTR-dependent bicarbonate secretion, however, results in low duodenal pH, impaired phospholipase activity, fecal Ptd'Cho loss and choline deficiency. Low plasma choline causes decreased availability for parenchymal Ptd'Cho metabolism, impacting on organ functions. Choline deficiency results in hepatic choline/Ptd'Cho accretion from lung tissue via high density lipoproteins, explaining the link between choline deficiency and lung function. Hepatic Ptd'Cho synthesis from phosphatidylethanolamine by phosphatidylethanolamine-N-methyltransferase (PEMT) partly compensates for choline deficiency, but frequent single nucleotide polymorphisms enhance choline requirement. Additionally, small intestinal bacterial overgrowth (SIBO) frequently causes intraluminal choline degradation in CF patients prior to its absorption. As adequate choline supplementation was clinically effective and adult as well as pediatric CF patients suffer from choline deficiency, choline supplementation in CF patients of all ages should be evaluated.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children's Hospital, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tübingen, Germany.
| |
Collapse
|