1
|
Sakabe R, Onishi K, Mochizuki J, Toshimitsu T, Shimazu T, Kishino S, Ogawa J, Yamasaki S, Sashihara T. Regulation of IL-10 production in dendritic cells is controlled by the co-activation of TLR2 and Mincle by Lactiplantibacillus plantarum OLL2712. Microbiol Spectr 2025; 13:e0119624. [PMID: 39902909 DOI: 10.1128/spectrum.01196-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025] Open
Abstract
We showed that Lactiplantibacillus plantarum OLL2712 (OLL2712) strongly induces interleukin (IL)-10 production in immune cells. Although beneficial effects of this strain have been observed in both mice and humans, the mechanisms underlying IL-10 induction remain unclear. In this study, we found that OLL2712 co-activates two pattern recognition receptors, leading to IL-10 production in the mouse-derived thermosensitive dendritic cell line, tsDC. We first revealed the involvement of the Toll-like receptor (TLR)2-Myeloid differentiation primary response gene (MYD) 88 pathway in OLL2712-induced IL-10 production in tsDCs. However, stimulation with the TLR2 agonist alone was insufficient to induce IL-10 production. Consequently, we explored additional signaling pathways and found that the phosphorylation of spleen tyrosine kinase (Syk) was important in response to OLL2712, which was not triggered by a TLR2 agonist alone. Notably, the activation of Syk was found to depend on macrophage-inducible C-type lectin receptor (Mincle), one of the C-type lectin receptors. However, the surface-expressed Mincle is not responsible for the IL-10 production by OLL2712. Instead, it depends on the incorporation of OLL2712 into tsDCs, suggesting that Mincle recognizes incorporated OLL2712 intracellularly. In summary, OLL2712 is initially recognized by TLR2, which subsequently induces the expression of Mincle to recognize incorporated OLL2712, ultimately inducing IL-10 production.IMPORTANCEThe objective of this study is to elucidate the mechanism by which Lactiplantibacillus plantarum OLL2712 (OLL2712), previously identified by our research group as a potent stimulator of interleukin-10 production in immune cells, exerts its immunomodulatory effects. Our findings indicate that OLL2712 acts in synergy with two pattern-recognition receptors: Toll-like receptor 2 and Macrophage inducible C-type lectin receptor (Mincle). Additionally, we observed that OLL2712 needs to be internalized intracellularly to be recognized by Mincle. These findings represent the first insights into the detailed mechanism underlying the anti-inflammatory effects of OLL2712.
Collapse
Affiliation(s)
- Ryuhei Sakabe
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Kazumasa Onishi
- Fermentation Development Research Department Food Development Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Takayuki Toshimitsu
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Tomoyuki Shimazu
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Japar KV, Hariyanto TI, Hamzah DV, Prasetya IB, Suastika K. Probiotics Supplementation for Improving Glucolipid Parameters in Individuals with Prediabetes: A Systematic Review and Meta-Analysis of Randomized Trials. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10449-x. [PMID: 39806201 DOI: 10.1007/s12602-025-10449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
The absence of suitable intervention significantly increases the likelihood of type 2 diabetes mellitus (T2DM) development in people with prediabetes. Recent statistical findings indicate that the gut microbiome might influences the development of insulin resistance. The objective of our study was to assess the efficacy and safety of probiotic supplementation in individuals diagnosed with prediabetes. A thorough search was carried out on the Cochrane Library, Medline, Scopus, and ClinicalTrials.gov databases until September 12th, 2024, using a mix of pertinent keywords. This review incorporates randomized clinical trials (RCTs) concerning the effect of probiotics for prediabetes. We used random-effect models to examine the mean difference (MD). A total of eight RCTs were incorporated. The results of our meta-analysis indicated that probiotics supplementation was associated with higher reduction in hemoglobin A1c (HbA1c) (MD -0.07% (95% CI -0.11, -0.03), p = 0.0005, I2 = 0%) among individuals with prediabetes when compared to placebo. Other indicators such as total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and body mass index (BMI) did not differ significantly between probiotics and placebo. No significant difference was observed in the occurrence of adverse events (AEs) between the two groups. This study indicates the efficacy and safety of probiotics supplementation to improve the glycemic parameters in patients with prediabetes.
Collapse
Affiliation(s)
- Karunia Valeriani Japar
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, 15811, Indonesia
| | - Timotius Ivan Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, 15811, Indonesia.
| | - Damian Vidana Hamzah
- Faculty of Medicine, Methodist University, Medan, North Sumatra, 20132, Indonesia
| | - Ignatius Bima Prasetya
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang, 15811, Indonesia
| | - Ketut Suastika
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Bali, 80232, Indonesia
| |
Collapse
|
3
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Lv S, Wang Z, Tao L, Zhang Y. Letter to the editor: Comment on "The effect of dairy products on liver fat and metabolic risk markers in males with abdominal obesity - A four-arm randomized controlled trial". Clin Nutr 2024; 43:1724. [PMID: 38833873 DOI: 10.1016/j.clnu.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Affiliation(s)
- Shengxia Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Zhangcheng Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Linghui Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Yongsheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China.
| |
Collapse
|
5
|
Zhong H, Wang L, Jia F, Yan Y, Xiong F, Li Y, Hidayat K, Guan R. Effects of Lactobacillus plantarum supplementation on glucose and lipid metabolism in type 2 diabetes mellitus and prediabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 61:377-384. [PMID: 38777458 DOI: 10.1016/j.clnesp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Lactobacillus plantarum has been shown to improve glucose and lipid metabolism in mouse models of type 2 diabetes mellitus (T2DM). However, it remains unclear whether such benefits extend to humans. A systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to clarify the effect of L. plantarum supplementation on glucose and lipid metabolism in T2DM and prediabetes. The PubMed, Cochrane, and Web of Science databases were searched. A random-effects model was used to estimate the pooled mean difference with 95% CI (confidence interval). L. plantarum supplementation reduced the levels of fasting plasma glucose (-0.41, 95%CI -0.63, -0.19 mg/dL; n = 5) and hemoglobin A1c (-0.2, 95%CI: -0.3, 0%; n = 4). A non-statistically significant tendency towards improvements in the Homeostatic Model Assessment for Insulin Resistance (MD: -0.74, 95%CI: -1.72, 0.25; n = 3), low-density lipoprotein cholesterol (-6.87; 95%CI: -15.03, 1.29 mg/dL; n = 3), high-density lipoprotein cholesterol (MD: 1.34; 95%CI: -0.78, 3.46 mg/dL; n = 3), triglyceride (MD: -3.90; 95%CI: -11.05, 3.24 mg/dL; n = 3), and total cholesterol (MD: -4.88; 95%CI: -11.84, 2.07 mg/dL; n = 3) was observed with the supplementation. In summary, while the evidence from the currently available RCTs provides a crude indication that L. plantarum supplementation might improve glucose and lipid metabolism in patients with T2DM and prediabetes, the benefits of the supplementation are likely subtle, and its clinical significance requires further investigation.
Collapse
Affiliation(s)
- Hao Zhong
- School of Medicine, Nankai University, Tianjin, 310071, China; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Lingmiao Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuhuai Jia
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Yongqiu Yan
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Feifei Xiong
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Yunhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Khemayanto Hidayat
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Toshimitsu T, Gotou A, Sashihara T, Hojo K, Hachimura S, Shioya N, Iwama Y, Irie J, Ichihara Y. Ingesting probiotic yogurt containing Lactiplantibacillus plantarum OLL2712 improves glycaemic control in adults with prediabetes in a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2024; 26:2239-2247. [PMID: 38454743 DOI: 10.1111/dom.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
AIM The ingestion of Lactiplantibacillus plantarum OLL2712 (OLL2712) cells has been shown to improve glucose metabolism by suppressing chronic inflammation in murine models and clinical studies. This study aimed to clarify the effect of OLL2712 on glycaemic control in healthy adults with prediabetes. MATERIALS AND METHODS The study was a randomized, double-blind, placebo-controlled, parallel-group design. Adult participants with prediabetes [n = 148, glycated haemoglobin (HbA1c) range: 5.6%-6.4%, age range: 20-64 years] were assigned randomly to placebo or OLL2712 groups (n = 74/group) and administered daily for 12 weeks either conventional yogurt or yogurt containing >5 × 109 heat-treated OLL2712 cells, respectively. In addition, the participants were followed for 8 weeks after the discontinuation of either yogurt. The primary outcome was the changes in HbA1c levels at weeks 12 and 16 by analysis of covariance. RESULTS The levels of HbA1c and glycoalbumin decreased significantly in both groups at week 12 in comparison with those at week 0, but only in the OLL2712 group at week 16. HbA1c levels decreased significantly at weeks 12 and 16 in the OLL2712 group in comparison with the placebo group (p = .014 and p = .006, respectively). No significant inter- and intragroup differences in HbA1c levels were observed at week 20. CONCLUSIONS The ingestion of OLL2712 prevents the deterioration of glycaemic control and maintains the HbA1c levels within the normal range in adults with prediabetes; yogurt probably exhibits similar effects, which may contribute to reducing the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Takayuki Toshimitsu
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Ayako Gotou
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Kenichi Hojo
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhiko Shioya
- Statistical Analysis Department, KSO Corporation, Tokyo, Japan
| | | | - Junichiro Irie
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshitatsu Ichihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
7
|
Sun C, Liu Q, Ye X, Li R, Meng M, Han X. The Role of Probiotics in Managing Glucose Homeostasis in Adults with Prediabetes: A Systematic Review and Meta-Analysis. J Diabetes Res 2024; 2024:5996218. [PMID: 38529045 PMCID: PMC10963111 DOI: 10.1155/2024/5996218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Methods The Preferred Reporting Items for Systematic Reviews and Analysis checklist was used. A comprehensive literature search of the PubMed, Embase, and Cochrane Library databases was conducted through August 2022 to assess the impact of probiotics on blood glucose, lipid, and inflammatory markers in adults with prediabetes. Data were pooled using a random effects model and were expressed as standardized mean differences (SMDs) and 95% confidence interval (CI). Heterogeneity was evaluated and quantified as I2. Results Seven publications with a total of 550 patients were included in the meta-analysis. Probiotics were found to significantly reduce the levels of glycosylated hemoglobin (HbA1c) (SMD -0.44; 95% CI -0.84, -0.05; p = 0.03; I2 = 76.13%, p < 0.001) and homeostatic model assessment of insulin resistance (HOMA-IR) (SMD -0.27; 95% CI -0.45, -0.09; p < 0.001; I2 = 0.50%, p = 0.36) and improve the levels of high-density lipoprotein cholesterol (HDL) (SMD -8.94; 95% CI -14.91, -2.97; p = 0.003; I2 = 80.24%, p < 0.001), when compared to the placebo group. However, no significant difference was observed in fasting blood glucose, insulin, total cholesterol, triglycerides, low-density lipoprotein cholesterol, interleukin-6, tumor necrosis factor-α, and body mass index. Subgroup analyses showed that probiotics significantly reduced HbA1c in adults with prediabetes in Oceania, intervention duration of ≥3 months, and sample size <30. Conclusions Collectively, our meta-analysis revealed that probiotics had a significant impact on reducing the levels of HbA1c and HOMA-IR and improving the level of HDL in adults with prediabetes, which indicated a potential role in regulating blood glucose homeostasis. However, given the limited number of studies included in this analysis and the potential for bias, further large-scale, higher-quality randomized controlled trials are needed to confirm these findings. This trial is registered with CRD42022358379.
Collapse
Affiliation(s)
- Chao Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaona Ye
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ronghua Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Miaomiao Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingjun Han
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
9
|
Jayedi A, Aletaha A, Zeraattalab-Motlagh S, Shahinfar H, Mohammadpour S, Mirrafiei A, Jibril AT, Soltani A, Shab-Bidar S. Comparative efficacy and safety of probiotics, prebiotics, and synbiotics for type 2 diabetes management: A systematic review and network meta-analysis. Diabetes Metab Syndr 2024; 18:102923. [PMID: 38134725 DOI: 10.1016/j.dsx.2023.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
AIMS To compare the effects of probiotics, prebiotics, and synbiotics for type 2 diabetes (T2D) management. METHODS We searched PubMed, Scopus, CENTRAL, and grey literature sources to December 2022 for randomized trials of the impacts of probiotics, prebiotics, or synbiotics in patients with T2D. We performed network meta-analyses with a Bayesian framework to calculate mean difference [MD] and 95 % credible interval [CrI] and rated the certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS 68 randomised trials were included. All results are presented in comparison to the placebo. Supplementation with probiotics (MD: -0.25 %, 95%CrI: -0.42, -0.08; GRADE = moderate) and synbiotics (MD: -0.31 %, 95%CrI: -0.61, -0.04; GRADE = very low) resulted in a trivial/unimportant decrease in glycated hemoglobin. Supplementation with probiotics (MD: -0.69 mmol/L, 95%CrI: -0.98, -0.40; GRADE = very low) and synbiotics (MD: -0.82 mmol/L, 95%CrI: -1.22, -0.43; GRADE = very low) resulted in a trivial/unimportant decrease in fasting plasma glucose. Supplementation with probiotics resulted in a small but important decrease in low-density lipoprotein cholesterol (MD: -0.19 mmol/L; 95%CrI: -0.34, -0.05; GRADE = very low). Supplementations had moderate effects on serum triglyceride (GRADE = low). CONCLUSIONS Existing evidence is uncertain and does not support supplementation with probiotics, prebiotics, and synbiotics for T2D management.
Collapse
Affiliation(s)
- Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aletaha
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Shahinfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Mohammadpour
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mirrafiei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliyu Tijani Jibril
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Soltani
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wu T, Yu Q, Luo Y, Dai Z, Zhang Y, Wang C, Shen Q, Xue Y. Whole-Grain Highland Barley Attenuates Atherosclerosis Associated with NLRP3 Inflammasome Pathway and Gut Microbiota in ApoE -/- Mice. Nutrients 2023; 15:4186. [PMID: 37836470 PMCID: PMC10574078 DOI: 10.3390/nu15194186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The efficacy and mechanism of highland barley in the treatment of atherosclerosis have received little attention. Herein, we aimed to explore whether highland barley supplementation can prevent atherosclerosis progression and improve gut microbiota disorder in apolipoprotein E knockout (ApoE-/-) mice. Male ApoE-/- mice were fed a high-fat diet with whole-grain highland barley (WHB) or refined highland barley for 18 weeks. WHB substantially inhibited the formation of atherosclerotic plaques, reduced serum tumor necrosis factor-α, and downregulated the expression of NLRP3 in the aorta. Furthermore, the 16S rRNA analysis revealed that highland barley supplementation helped to restore the dysregulation of the gut microbiota, as evidenced by an increase in the relative abundance of specific beneficial bacteria known for their anti-inflammatory properties, such as Lachnospiraceae, Lactobacillus, Muribaculaceae, and Bifidobacterium. Highland barley supplementation might alleviate atherosclerotic plaque formation by modulating the NLRP3 inflammasome pathway and the synthesis of anti-inflammatory metabolites by the gut microbiota.
Collapse
Affiliation(s)
- Tong Wu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
| | - Qinye Yu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| | - Yingting Luo
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| | - Yuhong Zhang
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 860000, China;
| | - Chao Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| |
Collapse
|
11
|
Xiao R, Wang L, Tian P, Jin X, Zhao J, Zhang H, Wang G, Zhu M. The Effect of Probiotic Supplementation on Glucolipid Metabolism in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3240. [PMID: 37513657 PMCID: PMC10383415 DOI: 10.3390/nu15143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition with an unknown pathophysiology. Moreover, T2DM remains a serious health risk despite advances in medication and preventive care. Randomised controlled trials (RCTs) have provided evidence that probiotics may have positive effects on glucolipid metabolism. Therefore, we performed a meta-analysis of RCTs to measure the effect of probiotic therapy on glucolipid metabolism in patients with T2DM. METHODS With no constraints on the language used in the literature, Excerpta Medica Database, PubMed, the Cochrane Library, and the Web of Science were searched for pertinent RCTs published between the date of creation and 18 August 2022. Stringent inclusion and exclusion criteria were applied by two reviewers to independently examine the literature. The risk of bias associated with the inclusion of the original studies was assessed using the Cochrane risk-of-bias tool, and Stata 15.0 was used to perform the meta-analysis. RESULTS Thirty-seven publications containing a total of 2502 research participants were included in the meta-analysis. The results showed that after a probiotic intervention, the experimental group showed a significant decrease in body mass index (standardised mean difference (SMD) = -0.42, 95% confidence interval (CI) [-0.76, -0.08]), fasting glucose concentration (SMD = -0.73, 95% CI [-0.97, -0.48]), fasting insulin concentration (SMD = -0.67, 95% CI [-0.99, -0.36]), glycated haemoglobin concentration (SMD = -0.55, 95% CI [-0.75, -0.35]), Homeostatic Model Assessment for Insulin Resistance score (SMD = -0.88, 95% CI [-1.17, -0.59]), triglyceride concentration (SMD = -0.30, 95% CI [-0.43, -0.17]), total cholesterol concentration (SMD = -0.27, 95% CI [-0.43, -0.11]), and low-density lipoprotein concentration (SMD = -0.20, 95% CI [-0.37, -0.04]), and an increase in high-density lipoprotein concentration (SMD = 0.31, 95% CI [0.08, 0.54]). Moreover, subgroup analyses showed that patients with a longer intervention time, or those who were treated with multiple strains of probiotics, may benefit more than those with a shorter intervention time or those who were treated with a single probiotic strain, respectively. CONCLUSION Probiotic supplementation improves glucolipid metabolism in patients with T2DM, offering an alternative approach for the treatment of these patients.
Collapse
Affiliation(s)
- Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
12
|
Modulatory effects of Lactiplantibacillus plantarum on chronic metabolic diseases. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Alsubaiei SRM, Alfawaz HA, Bhat RS, El-Ansary A. Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups. Metabolites 2023; 13:738. [PMID: 37367896 DOI: 10.3390/metabo13060738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and Lacticaseibacillus rhamnosus GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD.
Collapse
Affiliation(s)
- Sana Razhan M Alsubaiei
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanan A Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
14
|
Watanabe-Yasuoka Y, Gotou A, Shimizu S, Sashihara T. Lactiplantibacillus plantarum OLL2712 Induces Autophagy via MYD88 and Strengthens Tight Junction Integrity to Promote the Barrier Function in Intestinal Epithelial Cells. Nutrients 2023; 15:2655. [PMID: 37375559 DOI: 10.3390/nu15122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy is an important system conserved in eukaryotes that maintains homeostasis by degrading abnormal proteins. Autophagy incompetence in intestinal epithelial cells causes the abnormal function of intestinal stem cells and other cells and damages intestinal barrier function. The disruption of the intestinal barrier causes chronic inflammation throughout the body, followed by impaired glucose and lipid metabolism. Lactiplantibacillus plantarum OLL2712 (OLL2712) is a lactic acid bacterium that induces interleukin-10 production from immune cells, alleviates chronic inflammation, and improves glucose and lipid metabolism. In this study, we hypothesized that OLL2712 exerts anti-inflammatory effects by inducing autophagy and ameliorating intestinal barrier dysfunction, and we investigated its autophagy-inducing activities and functions. Caco-2 cells stimulated with OLL2712 for 24 h showed an increased number of autolysosomes per cell, compared with unstimulated cells. Therefore, the permeability of fluorescein isothiocyanate dextran 4000 (FD-4) was suppressed by inducing autophagy. In contrast, mucin secretion in HT-29-MTX-E12 cells was also increased by OLL2712 but not via autophagy induction. Finally, the signaling pathway involved in autophagy induction by OLL2712 was found to be mediated by myeloid differentiation factor 88 (MYD88). In conclusion, our findings suggest that OLL2712 induces autophagy in intestinal epithelial cells via MYD88, and that mucosal barrier function is strengthened by inducing autophagy.
Collapse
Affiliation(s)
- Yumiko Watanabe-Yasuoka
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| | - Ayako Gotou
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| |
Collapse
|
15
|
Soltani S, Ashoori M, Dehghani F, Meshkini F, Clayton ZS, Abdollahi S. Effects of probiotic/synbiotic supplementation on body weight in patients with diabetes: a systematic review and meta-analyses of randomized-controlled trials. BMC Endocr Disord 2023; 23:86. [PMID: 37085813 PMCID: PMC10120130 DOI: 10.1186/s12902-023-01338-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE The aim of the present study was to assess the effect of probiotic/synbiotic supplementation on anthropometric measures in adults with diabetes, independent of body weight. METHODS PubMed, Scopus, Web of Sciences and the Cochrane Library were searched for randomized controlled trials (RCTs) up until December 14, 2022. The effect sizes were pooled using an inverse-variance random-effects model. The methodological quality of studies as well as the quality of evidence was assessed using standard tools. RESULTS Thirty-two RCTs met the established inclusion criteria. Overall, compared with the respective control groups, probiotic/synbiotic supplementation resulted in a significant reduction in body weight (weighted mean difference [WMD]: -0.50 kg; 95% CI: -0.83, -0.17; I2 = 79.8%, n = 27 studies]), body mass index (WMD: -0.24 kg/m2; 95% CI: -0.39, -0.09; I2 = 85.7%, n = 30 studies), and waist circumference (WMD: -0.90 cm; 95% CI: -1.13, -0.52; I2 = 0%, n = 11 studies). However, hip circumference and waist to hip ratio were not significantly improved. CONCLUSIONS Our analysis revealed that probiotic/synbiotic supplementation may assist with weight management in patients with diabetes, especially when consumed at higher doses, in younger adults, and in participants with obesity. However, more studies are needed to elucidate the anti-obesity effects of specific strains of probiotics/synbiotics.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marziyeh Ashoori
- School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Dehghani
- Department of nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Fatemeh Meshkini
- Department of Biochemistry, School of medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
16
|
Zhang X, Zhang Y, Luo L, Le Y, Li Y, Yuan F, Wu Y, Xu P. The Beneficial Effects of a Multispecies Probiotic Supplement on Glycaemic Control and Metabolic Profile in Adults with Type 1 Diabetes: A Randomised, Double-Blinded, Placebo-Controlled Pilot-Study. Diabetes Metab Syndr Obes 2023; 16:829-840. [PMID: 36970073 PMCID: PMC10032215 DOI: 10.2147/dmso.s400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
Objective In this pilot-study, the effects of a multispecies probiotic supplement on glycaemic control and metabolic parameters in adults with type 1 diabetes (T1DM) were explored. Material and Methods A total of 50 T1DM patients were enrolled and randomly placed into a group receiving capsules containing multi-probiotic strains (Bifidobacterium longum, Lactobacterium bulagricumi, Streptococcus thermophilus) and insulin (probiotics group, n = 27) or a group receiving a placebo and insulin (placebo group, n = 23). All patients underwent continuous glucose monitoring at baseline and 12 weeks after intervention. The primary outcomes were determined by comparing factors such as changes in fasting blood glucose (FBG) and haemoglobin A1c (HbA1c) between the groups. Results Probiotic supplementation significantly reduced FBG (-1.0 ± 4.7 vs 1.8 ± 4.7 mmol/L, p = 0.048), 30 min postprandial glucose (-0.5 ± 4.6 vs 1.9 ± 3.3 mmol/L, p = 0.0495), and low-density lipoprotein cholesterol (-0.07 ± 0.45 vs 0.32 ± 0.78 mmol/L, p = 0.0413), compared with the placebo. Although not statistically significant, probiotic supplementation also lowered HbA1c levels by 0.49% (-5.33 mmol/mol, p = 0.310). Besides, no significant difference was observed in the continuous glucose monitoring (CGM) parameters between the two groups. Further subgroup analysis revealed a significant reduction in mean sensor glucose (MSG; -0.75 (-2.11, 0.48) mmol/L vs 1.51 (-0.37, 2.74) mmol/L, p = 0.010) and time above range (TAR; -5.47 (-20.1, 3.04)% vs 18.9 (-1.11, 35.6)%, p = 0.006), as well as an greater improvement in the time in range (TIR; 9.32 (-4.84, 16.6)% vs -19.9 (-31.4, 0.69)%, p = 0.005) in male patients than female patients in the probiotics group. Conclusion Multispecies probiotics exerted beneficial effects on fasting and postprandial glucose and lipid profiles in adult T1DM patients, especially for male patients and those with higher baseline FBG levels.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Limei Luo
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ying Le
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ying Li
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Fengyi Yuan
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yan Wu
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
17
|
Tang C, Zhao H, Kong L, Meng F, Zhou L, Lu Z, Lu Y. Probiotic Yogurt Alleviates High-Fat Diet-Induced Lipid Accumulation and Insulin Resistance in Mice via the Adiponectin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1464-1476. [PMID: 36695046 DOI: 10.1021/acs.jafc.2c05670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A high-fat diet (HFD) easily contributes to the pathogenesis of obesity and insulin resistance. Obesity and insulin resistance have been clinical and public health challenges all over the world. Probiotic-fermented yogurt is one type of popular and functional beverage in people's daily lives. This study mainly explored the lipid- and glucose-lowering effects of Lactobacillus acidophilus NX2-6-fermented yogurt (LA-Y) in HFD-fed mice. The results showed that LA-Y administration improved the lipid profile in the serum and liver, reduced fasting blood glucose levels, and enhanced insulin sensitivity. Protein analysis showed that LA-Y treatment promoted fatty acid oxidation and suppressed de novo lipogenesis in the adipose tissue and liver. LA-Y effectively alleviated glucose metabolism disorders by activating the insulin signaling pathway, suppressing gluconeogenesis in the liver and muscle, reducing the concentration of pro-inflammatory cytokines in the serum, and promoting glycolysis and gluconeogenesis in the small intestine. LA-Y supplementation also promoted fat browning via the adiponectin/AMPKα/PGC-1α/UCP1 pathway and enhanced mitochondrial biogenesis in the liver and muscle by activating the adiponectin/AdipoR1/APPL1/AMPKα/PGC-1α pathway, leading to increased energy expenditure. Therefore, LA-Y may be a functional dairy food for preventing and alleviating diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Hongyuan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Liangyu Kong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
18
|
Hu M, Li M, Li C, Miao M, Zhang T. Effects of Human Milk Oligosaccharides in Infant Health Based on Gut Microbiota Alteration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:994-1001. [PMID: 36602115 DOI: 10.1021/acs.jafc.2c05734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The primary active components of breast milk are human milk oligosaccharides (HMOs). HMOs provide many benefits to infants, including regulating their metabolism, immune system, and brain development. Recent studies have emphasized that HMOs act as prebiotics by the metabolism of intestinal microorganisms to produce short-chain fatty acids, which are crucial for infant development. In addition, HMOs with different structural characteristics can form different microbial compositions. HMOs-induced predominant microbes, including Bifidobacterium infantis, B. bifidum, B. breve, and B. longum, and their metabolites demonstrated pertinent health-promoting properties. Meanwhile, HMOs could also directly reduce the occurrence of diseases through the effects of preventing pathogen infection. In this review, we address the probable function of HMOs inside the HMOs-gut microbiota-infant network, by describing the physiological functions of HMOs and the implications of diet on the HMOs-gut microbiota-infant network.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
TOSHIMITSU T. Development of a lactic acid bacteria strain that suppresses chronic inflammation and improves glucose and lipid metabolism. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:3-7. [PMID: 36660597 PMCID: PMC9816046 DOI: 10.12938/bmfh.2022-054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/14/2022] [Indexed: 01/01/2023]
Abstract
Chronic inflammation caused by aging, obesity, and lifestyle disturbances can lead to the production of inflammatory cytokines and insulin resistance, reducing glucose and lipid metabolism. Lactic acid bacteria (LAB) have various bioactivities, and certain types of LAB have been reported to exhibit anti-inflammatory effects. We hypothesized that LAB strains, which can strongly induce the production of anti-inflammatory cytokines by immune cells in the intestinal tract, may improve glucose and lipid metabolism by suppressing chronic inflammation. We selected Lactiplantibacillus plantarum OLL2712 (OLL2712) from the LAB library owned by Meiji Co., Ltd. based on its ability to induce the production of interleukin-10 (IL-10), optimized the culture conditions of OLL2712 for industrial applications, and verified the efficacy of the strain in animal and clinical studies. The results showed that OLL2712 bacterial cells in the exponential phase had notably higher anti-inflammatory properties than the cells in the stationary phase and led to the inhibition of chronic inflammation and improvement of glucose and lipid metabolism in animal studies. Two randomized controlled trials consisting of healthy adults with elevated blood glucose levels or body mass indices (BMIs) also showed that the intake of OLL2712 suppressed the aggravation of chronic inflammation and improved glucose and lipid metabolism. This review identified a novel LAB strain that may contribute to diabetes and obesity prevention and demonstrated its clinical efficacy. In addition, the mechanism of action of this LAB strain through the intestinal immune system was partially elucidated, and the importance of optimizing the culture conditions of LAB was clarified.
Collapse
Affiliation(s)
- Takayuki TOSHIMITSU
- Applied Microbiology Research Department, Food Microbiology
Research Laboratories, Division of Research and Development, Meiji Co., Ltd., 1-29-1
Nanakuni, Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
20
|
Thipsawat S. Dietary Consumption on Glycemic Control Among Prediabetes: A Review of the Literature. SAGE Open Nurs 2023; 9:23779608231218189. [PMID: 38130469 PMCID: PMC10734347 DOI: 10.1177/23779608231218189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Prediabetes is a condition that, if left unaddressed, can lead to various complications, such as neuropathy, retinopathy, and nephropathy. Among the critical factors contributing to the development of type 2 diabetes mellitus, dietary choices stand out as particularly significant. Objective Consequently, our objective is to examine the latest research findings concerning dietary consumption and its impact on glycemic control in individuals with prediabetes. Methods A literature review of randomized controlled trials was performed using databases such as PubMed, Scopus, and ScienceDirect with searches conducted from January 2019 to 2023. The primary reviewer assessed the quality of the selected studies for bias risk using the Joanna Briggs Institute critical appraisal method for randomized controlled trials. Initially, 975 articles were identified through the search, but after applying the inclusion criteria, only 9 articles were ultimately selected. Results The review found that a carrageenan-free diet, yogurt with Lactobacillus plantarum OLL2712, Allium hookeri extract (AHE), and delta-tocotrienol improve HbA1C levels. However, salmon, zinc supplement, and balanced deep-sea water were not effective on HbA1C. In addition, studies on the effectiveness of vitamin D in controlling blood glucose levels are inconsistent. Conclusion Nurses can enhance patient outcomes through collaborative efforts to create individualized dietary strategies. These strategies may encompass the adoption of a carrageenan-free diet, the inclusion of L plantarum OLL2712-enriched yogurt, the utilization of AHE, and the integration of delta-tocotrienol into the dietary plan. This approach is particularly applicable to ambulatory care nurses, health supervisors, and primary care providers.
Collapse
Affiliation(s)
- Sopida Thipsawat
- The Excellent Center of Community Health Promotion, School of Nursing, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
21
|
Awasthi A, Corrie L, Vishwas S, Gulati M, Kumar B, Chellappan DK, Gupta G, Eri RD, Dua K, Singh SK. Gut Dysbiosis and Diabetic Foot Ulcer: Role of Probiotics. Pharmaceutics 2022; 14:pharmaceutics14112543. [PMID: 36432734 PMCID: PMC9699533 DOI: 10.3390/pharmaceutics14112543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a multifactorial disease and one of the complications of diabetes. The global burden of DFU in the health sector is increasing at a tremendous rate due to its cost management related to hospitalization, medical costs and foot amputation. Hence, to manage DFU/DWs, various attempts have been made, including treating wounds systematically/topically using synthetic drugs, herbal drugs, or tissue engineering based surgical dressings. However, less attention has been paid to the intrinsic factors that are also the leading cause of diabetes mellitus (DM) and its complications. One such factor is gut dysbiosis, which is one of the major causes of enhancing the counts of Gram-negative bacteria. These bacteria produce lipopolysaccharides, which are a major contributing factor toward insulin resistance and inflammation due to the generation of oxidative stress and immunopathy. These all lead to DM and DFU. Probiotics are the commercial form of beneficial gut microbes that are taken as nutraceuticals by people of all ages to improve gut immunity and prevent gut dysbiosis. However, the role of probiotics has been less explored in the management of DFU. Hence, the therapeutic potential of probiotics in managing DFU is fully described in the current review. This report covers the linkage between gut dysbiosis and DFU, sources of probiotics, the mechanisms of probiotics in DW healing, and the impact of probiotic supplementation in treating DFU. In addition, techniques for the stabilization of probiotics, market status, and patents related to probiotics have been also covered. The relevant data were gathered from PubMed, Scopus, Taylor and Francis, Science Direct, and Google Scholar. Our systematic review discusses the utilization of probiotic supplementation as a nutraceutical for the management of DFU.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Rajaraman D. Eri
- School of Health Sciences, The University of Tasmania, Launceston, TAS 7248, Australia
- Correspondence: (R.D.E.); or (S.K.S.); Tel.: +61-363245467 (R.D.E.); +91-9888720835 (S.K.S.)
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Correspondence: (R.D.E.); or (S.K.S.); Tel.: +61-363245467 (R.D.E.); +91-9888720835 (S.K.S.)
| |
Collapse
|
22
|
Wang X, Li L, Bai M, Zhao J, Sun X, Gao Y, Yu H, Chen X, Zhang C. Dietary supplementation with Tolypocladium sinense mycelium prevents dyslipidemia inflammation in high fat diet mice by modulation of gut microbiota in mice. Front Immunol 2022; 13:977528. [PMID: 36420262 PMCID: PMC9677100 DOI: 10.3389/fimmu.2022.977528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/19/2022] [Indexed: 03/09/2024] Open
Abstract
Obesity is a risk factor for many serious health problems, associated with inflammation, hyperlipidemia, and gut dysbiosis. Prevention of obesity is especially important for human health. Tolypocladium sinense is one of the fungi isolated from Chinese caterpillar fungus, which is a traditional Chinese medicine with putative gut microbiota modulation effects. Here, we established a high-fat diet (HFD)-induced hyperlipidemia mice model, which was supplemented with lyophilized T. sinense mycelium (TSP) daily to evaluate its anti-obesity effects. The results indicated that TSP supplementation can effectively alleviate the inflammatory response and oxidative stress levels caused by obesity. TSP significantly prevented obesity and suppressed dyslipidemia by regulating the expression of lipid metabolism genes in the liver. TSP is also effective in preventing the HFD-induced decline in short-chain fatty acid (SCFA) content. Gut microbiota profiling showed that TSP supplementation reversed HFD diet-induced bacterial abundance and also altered the metabolic pathways of functional microorganisms, as revealed by KEGG analysis. It is noteworthy that, correlation analysis reveals the up-regulated gut microbiota (Lactobacillus and Prevotella_9) are closely correlated with lipid metabolism parameters, gene expression of liver lipid metabolism and inflammatory. Additionally, the role of TSP in the regulation of lipid metabolism was reconfirmed by fecal microbiota transplantation. To sum up, our results provide the evidence that TSP may be used as prebiotic agents to prevent obesity by altering the gut microbiota, alleviating the inflammatory response and regulating gene expression of liver lipid metabolism.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lin Li
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Mingjian Bai
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jiaxin Zhao
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaojie Sun
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Gao
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Haitao Yu
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xia Chen
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, China
| | - Chunjing Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
23
|
Sakurai K, Toshimitsu T, Okada E, Anzai S, Shiraishi I, Inamura N, Kobayashi S, Sashihara T, Hisatsune T. Effects of Lactiplantibacillus plantarum OLL2712 on Memory Function in Older Adults with Declining Memory: A Randomized Placebo-Controlled Trial. Nutrients 2022; 14:nu14204300. [PMID: 36296983 PMCID: PMC9610166 DOI: 10.3390/nu14204300] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The use of probiotics is expected to be an intervention in neurodegenerative conditions that cause dementia owing to their ability to modulate neuroinflammatory responses via the microbiome-gut–brain axis. Therefore, we selected Lactiplantibacillus plantarum OLL2712 (OLL2712), the optimal anti-inflammatory lactic acid bacteria strain with high IL-10-inducing activity in immune cells, and aimed to verify its protective effects on memory function in older adults. A 12-week, randomized, double-blind, placebo-controlled trial was performed with older adults over the age of 65 years with declining memory. The participants consumed either powder containing heat-treated OLL2712 cells or placebo. Memory function was assessed using a computer-assisted cognitive test, Cognitrax. Daily dietary nutrient intake was assessed using the Brief-type Self-administered Diet History Questionnaire (BDHQ). The composition of the gut microbiota was analyzed by fecal DNA extraction and 16S rDNA sequencing. Data from 78 participants who completed the entire procedure were analyzed, and significant improvements in composite memory and visual memory scores were observed in the active group, after accounting for the effect of daily nutritional intake (p = 0.044 and p = 0.021, respectively). In addition, the active group had a lower abundance ratio of Lachnoclostridium, Monoglobus, and Oscillibacter genera, which have been reported to be involved in inflammation. The present study suggests that OLL2712 ingestion has protective effects against memory function decline in older adults.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Takayuki Toshimitsu
- Food Microbiology Research Laboratories, Applied Microbiology Research Department, Division of Research and Development, Meiji Co., Ltd., Hachiouji 192-0919, Japan
| | - Erika Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Saya Anzai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Izumi Shiraishi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Noriko Inamura
- Urban Design Center Kashiwanoha (UDCK), Kashiwa 277-0871, Japan
- Community Health Promotion Laboratory, Mitsui Fudosan, Co., Ltd., Kashiwa 277-8519, Japan
| | - Satoru Kobayashi
- Community Health Promotion Laboratory, Mitsui Fudosan, Co., Ltd., Kashiwa 277-8519, Japan
| | - Toshihiro Sashihara
- Food Microbiology Research Laboratories, Applied Microbiology Research Department, Division of Research and Development, Meiji Co., Ltd., Hachiouji 192-0919, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Correspondence: ; Tel.: +81-04-7136-3632
| |
Collapse
|
24
|
Teo WZ, See JY, Ramazanu S, Chan JCY, Wu XV. Effect of lactic acid fermented foods on glycemic control in diabetic adults: a systemic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 64:2863-2878. [PMID: 36178255 DOI: 10.1080/10408398.2022.2128032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lactic acid bacteria (LAB) fermented foods are reported to have potential in managing glycemic control. This systematic review aimed to evaluate the effectiveness of LAB-fermented foods on improving glycemic control in adults with prediabetics or type 2 diabetes mellitus (T2DM). Randomized controlled trials (RCTs) on LAB fermentation-related foods were searched on PubMed, Cochrane, Excerpta Medica database (EMBASE), Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Web of Science. Sixteen RCTs were included, and the results concluded LAB-fermented food had significant effects in HbA1c (Z = 6.24, MD = -0.05, CI: -0.07 to -0.04, p ≤ 0.00001), fasting plasma glucose (Z = 2.50, MD = -0.16, CI: -0.29 to -0.04, p = 0.01) and fasting serum insulin (Z = 2.51, MD = -0.20, CI: -0.35 to -0.04, p = 0.01). There were significant effects on lipid profile, inflammatory markers, and body mass index in secondary analyses. Subgroup analysis suggests LAB-fermented consumption with a longer duration, younger age group and adults with T2DM, had a larger effect size. Clinicians could offer LAB-fermented food as dietary recommendations for prediabetic and diabetic adults. Larger trials are warranted to verify LAB-fermented food benefits on glycemic control. Systematic Review Registration: PROSPERO Registration No. CRD42022295220.
Collapse
Affiliation(s)
- Wei Zhou Teo
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jie Yang See
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheena Ramazanu
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - James Chun Yip Chan
- PBTK and Exposomics Platform, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Skin Omics Platform Lead, A*STAR Skin Research Labs (A*SRL), Singapore, Singapore
| | - Xi Vivien Wu
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUSMED Healthy Longevity Translational Research Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Naseri K, Saadati S, Ashtary-Larky D, Asbaghi O, Ghaemi F, Pashayee-Khamene F, Yari Z, de Courten B. Probiotics and Synbiotics Supplementation Improve Glycemic Control Parameters in Subjects with Prediabetes and Type 2 Diabetes Mellitus: A GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Pharmacol Res 2022; 184:106399. [PMID: 35987483 DOI: 10.1016/j.phrs.2022.106399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Probiotics and synbiotics have been proposed to exhibit an important role in glucose homeostasis and maintain the balance of the gut microbiota. However, clinical trials have shown mixed findings. Therefore, we conducted a systematic review and meta-analysis of all eligible randomized controlled trials (RCTs) examining the effects of probiotics and synbiotics intake on glycemic outcomes among individuals with prediabetes and type 2 diabetes mellitus (T2DM). The PubMed/Medline, Scopus, ISI Web of Science, and Cochrane library were searched up to March 2022 for published RCTs exploring the effectiveness of probiotics and synbiotics compared to control on glycemic outcomes. The random-effects model was applied in order to the estimation of 95% confidence interval (CI) and the weighted mean difference (WMD) for each endpoint. Meta-analysis of forty-six RCTs (3067 participants) showed that probiotics and synbiotics supplementation significantly reduced fasting plasma glucose (FPG) (weighted mean difference (WMD): -11.18mg/dl, 95% CI: -13.60, -8.75, p ˂0.001), fasting insulin serum level (WMD: -1.23 µIU/ml, 95% CI: -1.76, -0.71, p ˂0.001), hemoglobin A1c (HbA1c) (WMD: -0.35%, 95% CI: -0.44, -0.26, p˂0.001), and homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: -0.87, 95% CI: -1.09, -0.65, p˂0.001). Additionally, probiotics and synbiotics intake resulted in an increase in values of quantitative insulin-sensitivity check index (QUICKI) (WMD: 0.01, 95% CI: 0.00, 0.01, p˂0.001). However, probiotics and synbiotics consumption did not change glucose values following oral glucose tolerance test (OGTT). Our findings suggest that probiotic and synbiotic intake has favorable effects on glycemic profile in patients with prediabetes and T2DM.
Collapse
Affiliation(s)
- Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farahnaz Ghaemi
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia.
| |
Collapse
|
26
|
Naseri K, Saadati S, Yari Z, Asbaghi O, Hezaveh ZS, Mafi D, Hoseinian P, Ashtary-Larky D, Hekmatdoost A, de Courten B. Beneficial effects of Probiotic and Synbiotic Supplementation on some Cardiovascular Risk Factors among Individuals with Prediabetes and Type 2 Diabetes Mellitus: A GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Pharmacol Res 2022; 182:106288. [PMID: 35680009 DOI: 10.1016/j.phrs.2022.106288] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022]
|
27
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
28
|
Huang R, Wu F, Zhou Q, Wei W, Yue J, Xiao B, Luo Z. Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol Res 2022; 260:127019. [DOI: 10.1016/j.micres.2022.127019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
|
29
|
Beneficial Effects of Partly Milled Highland Barley on the Prevention of High-Fat Diet-Induced Glycometabolic Disorder and the Modulation of Gut Microbiota in Mice. Nutrients 2022; 14:nu14040762. [PMID: 35215411 PMCID: PMC8877997 DOI: 10.3390/nu14040762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
The nutritional functions of highland barley (HB) are superior to those of regular cereals and have attracted increasing attention in recent years. The objective of this study was to investigate whether partly milled highland barley (PHB) can regulate the serum glucose and lipid disorders of mice fed a high-fat diet (HFD) and to further explore their potential gut microbiota modulatory effect. Our results showed that PHB supplementation significantly reduced fasting blood glucose (FBG) and improved oral glucose tolerance. Histological observations confirmed the ability of PHB to alleviate liver and intestine damage. Furthermore, the results of 16S amplicon sequencing revealed that PHB prevented a HFD-induced gut microbiota dysbiosis, enriching some beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Ileibacterium, and reducing several HFD-dependent taxa (norank_f_Desulfovibrionaceae, Blautia, norank_f_Lachnospiraceae, unclassified_f_Lachnospiraceae, and Colidextribacter). In addition, the increase of Lactobacillus and Bifidobacterium presence has a slightly dose-dependent relationship with the amount of the added PHB. Spearman correlation analysis revealed that Lactobacillus and Bifidobacterium were negatively correlated with the blood glucose level of the oral glucose tolerance test. Overall, our results provide important information about the processing of highland barley to retain its hypoglycemic effect and improve its acceptability and biosafety.
Collapse
|
30
|
|
31
|
Slurink IAL, Voortman T, Ochoa-Rosales C, Ahmadizar F, Kavousi M, Kupper N, Smeets T, Soedamah-Muthu SS. Dairy Product Consumption in Relation to Incident Prediabetes and Longitudinal Insulin Resistance in the Rotterdam Study. Nutrients 2022; 14:415. [PMID: 35276774 PMCID: PMC8840212 DOI: 10.3390/nu14030415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Evidence suggests neutral or moderately beneficial effects of dairy intake on type 2 diabetes mellitus risk. Nevertheless, evidence on associations with early phases of type 2 diabetes remains inconsistent. We aimed to examine associations between dairy-type intake with prediabetes risk and longitudinal insulin resistance. The analytic sample consisted of 6770 participants (aged 62 ± 4 years, 59% female) free of (pre-)diabetes at baseline from the prospective population-based Rotterdam Study. Dairy intake was measured at baseline using food frequency questionnaires. Data on prediabetes (fasting blood glucose 6.1-6.9 mmol/L or non-fasting 7.7-11.1 mmol/L) and the longitudinal homeostatic model assessment of insulin resistance (HOMA-IR) were available from 1993-2015. Associations with these outcomes were analyzed with dairy intake in quartiles (Q4 vs. Q1) and continuous using multivariable Cox proportional hazard models and linear mixed models. During a mean follow-up of 11.3 ± 4.8 years, 1139 incident prediabetes cases were documented (18.8%). In models adjusting for sociodemographic, lifestyle and dietary factors, a higher intake of high-fat yogurt was associated with lower prediabetes risk (HRQ4vsQ1 0.70, 95% CI 0.54-0.91 and HRserving/day 0.67, 0.51-0.89). In addition, a higher intake of high-fat milk was associated with lower prediabetes risk (HRQ4vsQ1 0.81, 0.67-0.97, HRserving/day 0.88, 0.79-0.99). Associations were found for low-fat dairy, low-fat milk and total cheese with a higher prediabetes risk (HRserving/day ranging from 1.05-1.07, not significant in quartiles). Associations with longitudinal HOMA-IR were similar to prediabetes for high-fat yogurt, low-fat dairy and low-fat milk. Fermented dairy, low-fat yogurt, high-fat cheese, cream and ice cream were not associated with the outcomes. In conclusion, a higher intake of high-fat yogurt was associated with a lower prediabetes risk and lower longitudinal insulin resistance. Additionally, high-fat milk was associated with a lower prediabetes risk. Some low-fat dairy types were inconsistently associated with these outcomes. Studies are needed to confirm associations and to examine the influence of confounding by population characteristics.
Collapse
Affiliation(s)
- Isabel A. L. Slurink
- Center of Research on Psychological Disorders and Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, 5000 LE Tilburg, The Netherlands; (N.K.); (T.S.); (S.S.S.-M.)
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.V.); (C.O.-R.); (F.A.); (M.K.)
- Division of Human Nutrition and Health, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.V.); (C.O.-R.); (F.A.); (M.K.)
- Centro de Vida Saludable, Universidad de Concepción, Concepción 4070374, Chile
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.V.); (C.O.-R.); (F.A.); (M.K.)
- Julius Global Health, University Utrecht Medical Center, 3584 CG Utrecht, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.V.); (C.O.-R.); (F.A.); (M.K.)
| | - Nina Kupper
- Center of Research on Psychological Disorders and Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, 5000 LE Tilburg, The Netherlands; (N.K.); (T.S.); (S.S.S.-M.)
| | - Tom Smeets
- Center of Research on Psychological Disorders and Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, 5000 LE Tilburg, The Netherlands; (N.K.); (T.S.); (S.S.S.-M.)
| | - Sabita S. Soedamah-Muthu
- Center of Research on Psychological Disorders and Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, 5000 LE Tilburg, The Netherlands; (N.K.); (T.S.); (S.S.S.-M.)
- Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AR, UK
| |
Collapse
|
32
|
Lactobacillus plantarum HAC01 Supplementation Improves Glycemic Control in Prediabetic Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:nu13072337. [PMID: 34371847 PMCID: PMC8308899 DOI: 10.3390/nu13072337] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
A recent animal study demonstrated that administration of Lactobacillus plantarum HAC01 isolated from Korean kimchi improved glycemic control in type 2 diabetic mice. In the present study, we evaluated Lactobacillus plantarum HAC01’s effects on metabolic parameters of prediabetic human subjects. Forty subjects with isolated impaired glucose tolerance were randomly assigned to receive a daily placebo (n = 20) or a dose of Lactobacillus plantarum HAC01 (n = 20) over eight weeks. The primary endpoint was a change in 2 h postprandial glucose (2h-PPG) levels and the secondary endpoints were assessment of other glucose metabolism parameters, including HbA1c, gut microbiota composition, and fecal short-chain fatty acids (SCFAs). The group with a diet supplemented with Lactobacillus plantarum HAC01 saw a significant reduction in 2h-PPG and HbA1c levels compared to the placebo group. Fasting plasma glucose, insulin, HOMA-IR, QUICKI, microbiota composition, and fecal SCFAs, however, were not significantly altered. No serious adverse effects were reported. This is the first clinical trial to show a beneficial effect of single-strain probiotic supplementation administered over eight weeks on HbA1c levels in prediabetic subjects.
Collapse
|
33
|
de la Serna D, Navarro-Ledesma S, Alayón F, López E, Pruimboom L. A Comprehensive View of Frozen Shoulder: A Mystery Syndrome. Front Med (Lausanne) 2021; 8:663703. [PMID: 34046418 PMCID: PMC8144309 DOI: 10.3389/fmed.2021.663703] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/14/2021] [Indexed: 01/12/2023] Open
Abstract
Frozen shoulder is a common epidemiological affliction. Data acquired from people who suffer from this type of damage in other joints such as the hip, wrist and ankle also exist; although these syndromes are less common. Treatment for frozen shoulder is primarily physical (physiotherapy, manual therapy), secondary medical (corticosteroid injections) and finally surgical but with limited success. The difficulty in treating this type of condition successfully lies in the lack of knowledge about the risk factors involved and the pathophysiology underlying this mysterious syndrome. This review gives an overview of the current scientific position of frozen shoulder in terms of evolutionary factors, etiology, the different mechanisms of action involved, current treatment options and other possible interventions based on recent discoveries of pathophysiological mechanisms. The overall objective is to clarify several unknown aspects of a syndrome that affects up to 5% of the world's population.
Collapse
Affiliation(s)
| | | | | | | | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands.,Department of Physiotherapy, Universidad Pontificia de Salamanca, Salamanca, Spain
| |
Collapse
|
34
|
Circulating inflammatory biomarkers in adolescents: evidence of interactions between chronic pain and obesity. Pain Rep 2021; 6:e916. [PMID: 33977184 PMCID: PMC8104468 DOI: 10.1097/pr9.0000000000000916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction The negative effects of chronic pain and obesity are compounded in those with both conditions. Despite this, little research has focused on the pathophysiology in pediatric samples. Objective To examine the effects of comorbid chronic pain and obesity on the concentration of circulating inflammatory biomarkers. Methods We used a multiple-cohort observational design, with 4 groups defined by the presence or absence of obesity and chronic pain: healthy controls, chronic pain alone, obesity alone, as well as chronic pain and obesity. Biomarkers measured were leptin, adiponectin, leptin/adiponectin ratio (primary outcome), tumor necrosis factor-alpha, interleukin 6, and C-reactive protein (CRP). Results Data on 125 adolescents (13-17 years) were analyzed. In females, there was an interaction between chronic pain and obesity such that leptin and CRP were higher in the chronic pain and obesity group than in chronic pain or obesity alone. Within the chronic pain and obesity group, biomarkers were correlated with worsened pain attributes, and females reported worse pain than males. The highest levels of interleukin 6 and CRP were found in youth with elevated weight and functional disability. We conclude that in adolescents, chronic pain and obesity interact to cause dysregulation of the inflammatory system, and this effect is more pronounced in females. Conclusion The augmented levels of inflammatory biomarkers are associated with pain and functional disability, and may be an early marker of future pain and disability.
Collapse
|
35
|
Farag MA, Saleh HA, El Ahmady S, Elmassry MM. Dissecting Yogurt: the Impact of Milk Types, Probiotics, and Selected Additives on Yogurt Quality. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1877301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, the American University in Cairo, New Cairo, Egypt
| | - Haidy A. Saleh
- Department of Chemistry, School of Sciences & Engineering, the American University in Cairo, New Cairo, Egypt
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Egypt
| | - Sherwet El Ahmady
- Pharmacognosy Department, College of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
36
|
Yuan M, Singer MR, Moore LL. Yogurt Consumption Is Associated with Lower Levels of Chronic Inflammation in the Framingham Offspring Study. Nutrients 2021; 13:nu13020506. [PMID: 33557067 PMCID: PMC7913863 DOI: 10.3390/nu13020506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Some studies suggest that dairy foods may be linked with less chronic inflammation. However, few studies have investigated the separate effects of different types of dairy on inflammation. Therefore, the current study aims to examine the separate prospective impacts of milk, yogurt and cheese on biomarkers of chronic inflammation in 1753 community-dwelling participants of the Framingham Offspring Study (FOS). Mean intakes of dairy foods were derived from two sets of three-day diet records. Six inflammatory biomarkers were assessed approximately seven years later at exam 7. Results showed that those who consumed yogurt (vs. those who did not) had statistically significantly lower levels of interleukin-6 (IL-6) (mean log-transformed levels of 1.31 and 1.26 in consumers/non-consumers, respectively, p = 0.02) and fibrin (mean log-transformed levels of 5.91 and 5.89 in consumers/non-consumers, respectively, p = 0.03). The inverse association between IL-6 and yogurt consumption was similar in participants who were of normal weight and those who were overweight. For fibrin, the effects were stronger in overweight individuals. No statistically significant associations were observed between any of these inflammation biomarkers and milk or cheese intakes. Overall, our study compared the separate impacts of three types of dairy foods on chronic inflammation and found that only yogurt intake was linked with lower levels of chronic inflammation.
Collapse
|
37
|
Toshimitsu T, Gotou A, Sashihara T, Furuichi K, Hachimura S, Shioya N, Suzuki S, Asami Y. Ingesting Yogurt Containing Lactobacillus plantarum OLL2712 Reduces Abdominal Fat Accumulation and Chronic Inflammation in Overweight Adults in a Randomized Placebo-Controlled Trial. Curr Dev Nutr 2021; 5:nzab006. [PMID: 33718754 PMCID: PMC7937491 DOI: 10.1093/cdn/nzab006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic inflammation and insulin resistance are factors that are related to obesity. We have suggested that the administration of heat-treated Lactobacillus plantarum OLL2712 (OLL2712) cells can improve glucose and lipid metabolism by suppressing chronic inflammation in mouse models and a preliminary clinical study. OBJECTIVE The aim of this study was to investigate whether ingesting OLL2712 cells can reduce body fat accumulation and improve metabolic risk factors, in overweight, healthy adults. METHODS This study was a randomized, double-blind, placebo-controlled, parallel-group trial conducted at a single center in Japan. The study participants included 100 overweight (BMI range, ≥25 to <30 kg/m2) adults aged 20-64 y. They were randomly assigned to either the placebo or OLL2712 group (n = 50 each) and were administered conventional yogurt or yogurt containing >5 × 109 heat-treated OLL2712 cells, respectively, daily for 12 wk. The primary outcome was the 12-wk change in the abdominal fat area, as assessed by computed tomography, and the secondary outcomes were glucose and lipid metabolism-related parameters and chronic inflammation markers, which were analyzed using a linear mixed model. RESULTS The 12-wk change of abdominal fat area (difference: 8.5 cm2; 95% CI: 0.3, 16.6 cm2; P = 0.040) and fasting plasma glucose (difference: 3.2 mg/dL; 95% CI: 0.8, 5.6 mg/dL; P = 0.021) were significantly less in the OLL2712 group than the placebo group. The overall trend of serum IL-6 was significantly decreased in the OLL2712 group compared with baseline and the placebo group. CONCLUSIONS The ingestion of heat-treated OLL2712 cells reduces body fat accumulation and the deterioration of glycemic control and chronic inflammation, in overweight, healthy adults. We hypothesize that OLL2712 cells may prevent obesity by regulating chronic inflammation. This trial was registered at the University Hospital Medical Information Network Clinical Trials Registry as UMIN000027709.
Collapse
Affiliation(s)
- Takayuki Toshimitsu
- Applied Microbiology Research Department, Food Microbiology Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| | - Ayako Gotou
- Applied Microbiology Research Department, Food Microbiology Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| | - Toshihiro Sashihara
- Applied Microbiology Research Department, Food Microbiology Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| | - Keisuke Furuichi
- Applied Microbiology Research Department, Food Microbiology Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nobuhiko Shioya
- Statistical Analysis Department, KSO Corporation, Minato-ku, Tokyo, Japan
| | - Satoru Suzuki
- Shinagawa Season Terrace Health Care Clinic, Minato-ku, Tokyo, Japan
| | - Yukio Asami
- Applied Microbiology Research Department, Food Microbiology Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| |
Collapse
|
38
|
Khorraminezhad L, Rudkowska I. Effect of Yogurt Consumption on Metabolic Syndrome Risk Factors: a Narrative Review. Curr Nutr Rep 2021; 10:83-92. [PMID: 33405074 DOI: 10.1007/s13668-020-00344-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS) comprises risk factors such as obesity, hypertriglyceridemia, hypertension, and hyperglycemia. Here we described the outcome of various yogurt consumption, either conventional, low-fat, high-fat, Greek, or enriched with nutrients or probiotics: (1) on the parameters of MetS risk factors and (2) on the mechanisms of action of the MetS risk factors. RECENT FINDING The majority (25 studies) of clinical trials and meta-analyses of clinical trials reported a beneficial effect of yogurt consumption in the prevention of MetS risk. Yogurt components, such as calcium, vitamin D, proteins, and probiotics, were associated with the multiple beneficial effects on the prevention of MetS. In general, yogurt consumption may be promoted within healthy dietary patterns to prevent MetS. More studies are needed to determine what type of yogurt has the greatest benefits for specific MetS risk factor prevention.
Collapse
Affiliation(s)
- Leila Khorraminezhad
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, CHUL - 2705, Boulevard. Laurier, Québec, Québec, G1V 4G2, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, CHUL - 2705, Boulevard. Laurier, Québec, Québec, G1V 4G2, Canada. .,Department of Kinesiology, Laval University, Québec, QC, Canada.
| |
Collapse
|