1
|
Bakrim S, Aboulaghras S, Aanniz T, Benali T, El Omari N, El-Shazly M, Lee LH, Mustafa SK, Sahib N, Rebezov M, Ali Shariati M, Lorenzo JM, Bouyahya A. Effects of Mediterranean diets and nutrigenomics on cardiovascular health. Crit Rev Food Sci Nutr 2024; 64:7589-7608. [PMID: 36908235 DOI: 10.1080/10408398.2023.2187622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University, Rabat, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nargis Sahib
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda, Morocco
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food Industry, Semey Branch of the Institute, Almaty, Republic of Kazakhstan
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
La Scala S, Naselli F, Quatrini P, Gallo G, Caradonna F. Drought-Adapted Mediterranean Diet Plants: A Source of Bioactive Molecules Able to Give Nutrigenomic Effects per sè or to Obtain Functional Foods. Int J Mol Sci 2024; 25:2235. [PMID: 38396910 PMCID: PMC10888686 DOI: 10.3390/ijms25042235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The Mediterranean diet features plant-based foods renowned for their health benefits derived from bioactive compounds. This review aims to provide an overview of the bioactive molecules present in some representative Mediterranean diet plants, examining their human nutrigenomic effects and health benefits as well as the environmental advantages and sustainability derived from their cultivation. Additionally, it explores the facilitation of producing fortified foods aided by soil and plant microbiota properties. Well-studied examples, such as extra virgin olive oil and citrus fruits, have demonstrated significant health advantages, including anti-cancer, anti-inflammatory, and neuroprotective effects. Other less renowned plants are presented in the scientific literature with their beneficial traits on human health highlighted. Prickly pear's indicaxanthin exhibits antioxidant properties and potential anticancer traits, while capers kaempferol and quercetin support cardiovascular health and prevent cancer. Oregano and thyme, containing terpenoids like carvacrol and γ-terpinene, exhibit antimicrobial effects. Besides their nutrigenomic effects, these plants thrive in arid environments, offering benefits associated with their cultivation. Their microbiota, particularly Plant Growth Promoting (PGP) microorganisms, enhance plant growth and stress tolerance, offering biotechnological opportunities for sustainable agriculture. In conclusion, leveraging plant microbiota could revolutionize agricultural practices and increase sustainability as climate change threatens biodiversity. These edible plant species may have crucial importance, not only as healthy products but also for increasing the sustainability of agricultural systems.
Collapse
Affiliation(s)
- Silvia La Scala
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Flores Naselli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Paola Quatrini
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Giuseppe Gallo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Fabio Caradonna
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
3
|
Lerma-Aguilera AM, Pérez-Burillo S, Navajas-Porras B, León ED, Ruíz-Pérez S, Pastoriza S, Jiménez-Hernández N, Cämmerer BM, Rufián-Henares JÁ, Gosalbes MJ, Francino MP. Effects of different foods and cooking methods on the gut microbiota: an in vitro approach. Front Microbiol 2024; 14:1334623. [PMID: 38260868 PMCID: PMC10800916 DOI: 10.3389/fmicb.2023.1334623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
To support personalized diets targeting the gut microbiota, we employed an in vitro digestion-fermentation model and 16S rRNA gene sequencing to analyze the microbiota growing on representative foods of the Mediterranean and Western diets, as well as the influence of cooking methods. Plant- and animal-derived foods had significantly different impacts on the abundances of bacterial taxa. Animal and vegetable fats, fish and dairy products led to increases in many taxa, mainly within the Lachnospiraceae. In particular, fats favored increases in the beneficial bacteria Faecalibacterium, Blautia, and Roseburia. However, butter, as well as gouda cheese and fish, also resulted in the increase of Lachnoclostridium, associated to several diseases. Frying and boiling produced the most distinct effects on the microbiota, with members of the Lachnospiraceae and Ruminococcaceae responding the most to the cooking method employed. Nevertheless, cooking effects were highly individualized and food-dependent, challenging the investigation of their role in personalized diets.
Collapse
Affiliation(s)
- Alberto M. Lerma-Aguilera
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
| | - E. Daniel León
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Sonia Ruíz-Pérez
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Nuria Jiménez-Hernández
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Bettina-Maria Cämmerer
- Department of Food Chemistry and Analytics, Technische Universität Berlin, Berlin, Germany
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - M. Pilar Francino
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Naselli F, Bellavia D, Costa V, De Luca A, Raimondi L, Giavaresi G, Caradonna F. Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids. Nutrients 2023; 16:112. [PMID: 38201942 PMCID: PMC10780745 DOI: 10.3390/nu16010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is age-related and progressive. It causes the destruction of articular cartilage and underlying bone, often aggravated by inflammatory processes and oxidative stresses. This pathology impairs the quality of life of the elderly, causing pain, reduced mobility, and functional disabilities, especially in obese patients. Phytochemicals with anti-inflammatory and antioxidant activities may be used for long-term treatment of OA, either in combination with current anti-inflammatories and painkillers, or as an alternative to other products such as glucosamine and chondroitin, which improve cartilage structure and elasticity. The current systematic review provides a comprehensive understanding of the use of flavonoids. It highlights chondrocyte, cartilage, and subchondral bone activities, with a particular focus on their nutrigenomic effects. The molecular mechanisms of these molecules demonstrate how they can be used for the prevention and treatment of OA in the elderly population. However, clinical trials are still needed for effective use in clinical practice.
Collapse
Affiliation(s)
- Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, 90133 Palermo, Italy; (F.N.); (F.C.)
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, 90133 Palermo, Italy; (F.N.); (F.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
5
|
Lehel J, Magyar M, Palotás P, Abonyi-Tóth Z, Bartha A, Budai P. To Eat or Not to Eat?-Food Safety Aspects of Essential Metals in Seafood. Foods 2023; 12:4082. [PMID: 38002139 PMCID: PMC10670376 DOI: 10.3390/foods12224082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The popularity of seafoods is high due to their superb dietary properties and healthy composition. However, it is crucial to understand whether they adequately contribute to our essential nutritional needs. Small amounts of essential metals are indispensable in the human body to proper physiological functioning; their deficiency can manifest in various sets of symptoms that can only be eliminated with their intake during treatment or nutrition. However, the excessive consumption of metals can induce undesirable effects, or even toxicosis. Shellfish, oyster, and squid samples were collected directly from a fish market. After sample preparation, the concentration of essential metals (cobalt, chromium, copper, manganese, molybdenum, nickel, and zinc) was detected by Inductively Coupled Plasma Optical Emission Spectrometry. The results were analyzed statistically using ANOVA and two-sample t-tests. The average concentration of the investigated essential elements and the calculated burden based on the consumption were below the Recommended Dietary Allowances and Tolerable Upper Intake Levels. Based on these results, the trace element contents of the investigated seafoods do not cover the necessary recommended daily intake of them, but their consumption poses no health hazard due to their low levels.
Collapse
Affiliation(s)
- József Lehel
- Department of Food Hygiene, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary;
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István u. 2, 1078 Budapest, Hungary
| | - Márta Magyar
- Department of Food Hygiene, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary;
| | - Péter Palotás
- The Fishmarket Fish Trading Company, Törökbálinti u. 23, 2040 Budaörs, Hungary;
| | - Zsolt Abonyi-Tóth
- Department of Biomathematics and Informatics, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary;
| | - András Bartha
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary;
| | - Péter Budai
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák F. u. 16, 8360 Keszthely, Hungary
| |
Collapse
|
6
|
Jiang J, Shi H, Jiang S, Wang A, Zou X, Wang Y, Li W, Zhang Y, Sun M, Ren Q, Xu J. Nutrition in Alzheimer's disease: a review of an underappreciated pathophysiological mechanism. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2257-2279. [PMID: 37058185 DOI: 10.1007/s11427-022-2276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older individuals and is an escalating challenge to global public health. Pharmacy therapy of AD is one of the well-funded areas; however, little progress has been made due to the complex pathogenesis. Recent evidence has demonstrated that modifying risk factors and lifestyle may prevent or delay the incidence of AD by 40%, which suggests that the management should pivot from single pharmacotherapy toward a multipronged approach because AD is a complex and multifaceted disease. Recently, the gut-microbiota-brain axis has gained tremendous traction in the pathogenesis of AD through bidirectional communication with multiple neural, immune, and metabolic pathways, providing new insights into novel therapeutic strategies. Dietary nutrition is an important and profound environmental factor that influences the composition and function of the microbiota. The Nutrition for Dementia Prevention Working Group recently found that dietary nutrition can affect cognition in AD-related dementia directly or indirectly through complex interactions of behavioral, genetic, systemic, and brain factors. Thus, considering the multiple etiologies of AD, nutrition represents a multidimensional factor that has a profound effect on AD onset and development. However, mechanistically, the effect of nutrition on AD is uncertain; therefore, optimal strategies or the timing of nutritional intervention to prevent or treat AD has not been established.Thus, this review summarizes the current state of knowledge concerning nutritional disorders, AD patient and caregiver burden, and the roles of nutrition in the pathophysiology of AD. We aim to emphasize knowledge gaps to provide direction for future research and to establish optimal nutrition-based intervention strategies for AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
7
|
Echeverría G, Samith B, von Schultzendorf A, Pinto V, Martínez X, Sara D, Calzada M, Pacheco J, Plaza G, Scott F, Romero J, Mateo C, Julio MV, Utreras-Mendoza Y, Binder MV, Gutiérrez F, Riquelme ME, Cuevas M, Willatt R, Sánchez O, Keilendt A, Butrón P, Jarufe A, Huete I, Tobar J, Martin S, Alfaro V, Olivos M, Pedrals N, Bitran M, Ávalos I, Ruini C, Ryff C, Pérez D, Berkowitz L, Rigotti A. Mediterranean diet and psychological well-being intervention to reverse metabolic syndrome in Chile (CHILEMED trial). Contemp Clin Trials Commun 2023; 35:101167. [PMID: 37538196 PMCID: PMC10393605 DOI: 10.1016/j.conctc.2023.101167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 08/05/2023] Open
Abstract
Psychosocial status and lifestyle are key risk factors of non-communicable diseases (NCDs), which, in turn, are main drivers of healthcare costs and morbimortality worldwide, including Chile. Mediterranean diet (MedDiet) is one of the healthiest dietary patterns under study. However, its impact on high-risk conditions, such as metabolic syndrome (MetS), and NCDs outside the Mediterranean Basin remains mostly unexplored. Even though Central Chile has an environment, food production, and culinary traditions comparable to those present in Mediterranean countries, few studies -some with significant methodological limitations- have evaluated the effect of MedDiet on health and/or disease in Chilean subjects. Importantly, a Mediterranean lifestyle is a modus vivendi that integrates physical health with mental and social well-being. Psychological well-being (PWB) is associated with healthy behaviors, positive health outcomes, and longevity, thereby emerging as a novel healthcare goal. We report here an ongoing randomized controlled clinical trial in Chilean patients with MetS seeking to test whether (1) a PWB theory-based intervention facilitates induction to and increases long-term adherence to a locally adapted MedDiet, and (2) a MedDiet intervention -implemented alone or combined with well-being promotion- is more effective at reversing MetS compared to individuals following a low-fat diet without psychological support. The CHILEan MEDiterranean (CHILEMED) diet intervention study is a 1-year trial including patients with MetS living in Chile. Participants will be assigned randomly by a computer-generated random number sequence to one of the three intervention arms: a) low-fat diet as control group, b) MedDiet alone, and c) MedDiet plus well-being support. Patients will be followed-up by individual and/or group online nutritional sessions or phone cal as well as 6- and 12-month in-person re-assessment of medical history, medication use, food intake, PWB, anthropometrics/physical exam, and blood collection for laboratory analysis. The primary outcome of the trial will be the effect of the MedDiet -with or without PWB intervention- on overall reversal of MetS compared to low-fat diet alone. Based on a statistical superiority trial, expected impact, and patient loss, the estimated study sample is 339 subjects (113 individuals per arm in 3 equal-sized groups). Currently, we have enrolled 179 patients, predominantly women, evenly distributed by age (group means ranging from 45.7 to 48,9 years-old), 3/4 are obese with almost all of them showing abdominal obesity, 70% are hypertensive, whereas <10% exhibit diabetes. If findings turn out as expected (e.g., MedDiet -with or without PWB intervention- is better than the low-fat diet for reversion of MetS at 1-year follow-up), CHILEMED will provide further beneficial evidence of the MedDiet on NCD risk conditions beyond the Mediterranean region.
Collapse
Affiliation(s)
- Guadalupe Echeverría
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Bárbara Samith
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Andrea von Schultzendorf
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Victoria Pinto
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Carrera de Nutrición y Dietética, Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Ximena Martínez
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Daniela Sara
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Mariana Calzada
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Josefina Pacheco
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Gianella Plaza
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Francesca Scott
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Javiera Romero
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Camila Mateo
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - María Verónica Julio
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Yildy Utreras-Mendoza
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - María Victoria Binder
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Florencia Gutiérrez
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - María Emilia Riquelme
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Margarita Cuevas
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Rosario Willatt
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Omayra Sánchez
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Aracelli Keilendt
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Patricia Butrón
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Alessandra Jarufe
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Isidora Huete
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Josefina Tobar
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Sofía Martin
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Valentina Alfaro
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Matilde Olivos
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Nuria Pedrals
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Marcela Bitran
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | - Chiara Ruini
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Carol Ryff
- Institute on Aging and Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706-1611, USA
| | - Druso Pérez
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Loni Berkowitz
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Attilio Rigotti
- Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| |
Collapse
|
8
|
Ragusa MA, Naselli F, Cruciata I, Volpes S, Schimmenti C, Serio G, Mauro M, Librizzi M, Luparello C, Chiarelli R, La Rosa C, Lauria A, Gentile C, Caradonna F. Indicaxanthin Induces Autophagy in Intestinal Epithelial Cancer Cells by Epigenetic Mechanisms Involving DNA Methylation. Nutrients 2023; 15:3495. [PMID: 37571432 PMCID: PMC10420994 DOI: 10.3390/nu15153495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Autophagy is an evolutionarily conserved process critical in maintaining cellular homeostasis. Recently, the anticancer potential of autophagy inducers, including phytochemicals, was suggested. Indicaxanthin is a betalain pigment found in prickly pear fruit with antiproliferative and pro-apoptotic activities in colorectal cancer cells associated with epigenetic changes in selected methylation-silenced oncosuppressor genes. Here, we demonstrate that indicaxanthin induces the up-regulation of the autophagic markers LC3-II and Beclin1, and increases autophagolysosome production in Caco-2 cells. Methylomic studies showed that the indicaxanthin-induced pro-autophagic activity was associated with epigenetic changes. In addition to acting as a hypermethylating agent at the genomic level, indicaxanthin also induced significant differential methylation in 39 out of 47 autophagy-related genes, particularly those involved in the late stages of autophagy. Furthermore, in silico molecular modelling studies suggested a direct interaction of indicaxanthin with Bcl-2, which, in turn, influenced the function of Beclin1, a key autophagy regulator. External effectors, including food components, may modulate the epigenetic signature of cancer cells. This study demonstrates, for the first time, the pro-autophagic potential of indicaxanthin in human colorectal cancer cells associated with epigenetic changes and contributes to outlining its potential healthy effect in the pathophysiology of the gastrointestinal tract.
Collapse
Affiliation(s)
- Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Chiara Schimmenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Maurizio Mauro
- Department of Obstetrics & Gynecology and Women’s Health, Michael F. Price Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Mariangela Librizzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Chiara La Rosa
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Turin, Italy;
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
9
|
Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Lundstrom K, Barh D, Azevedo V, Sabri NA. Associations between Nutrigenomic Effects and Incidences of Microbial Resistance against Novel Antibiotics. Pharmaceuticals (Basel) 2023; 16:1093. [PMID: 37631008 PMCID: PMC10458141 DOI: 10.3390/ph16081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Nutrigenomics is the study of the impact of diets or nutrients on gene expression and phenotypes using high-throughput technologies such as transcriptomics, proteomics, metabolomics, etc. The bioactive components of diets and nutrients, as an environmental factor, transmit information through altered gene expression and hence the overall function and traits of the organism. Dietary components and nutrients not only serve as a source of energy but also, through their interactions with genes, regulate gut microbiome composition, the production of metabolites, various biological processes, and finally, health and disease. Antimicrobial resistance in pathogenic and probiotic microorganisms has emerged as a major public health concern due to the presence of antimicrobial resistance genes in various food products. Recent evidence suggests a correlation between the regulation of genes and two-component and other signaling systems that drive antibiotic resistance in response to diets and nutrients. Therefore, diets and nutrients may be alternatively used to overcome antibiotic resistance against novel antibiotics. However, little progress has been made in this direction. In this review, we discuss the possible implementations of nutrigenomics in antibiotic resistance against novel antibiotics.
Collapse
Affiliation(s)
- Mohamed A. Raslan
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Sara A. Raslan
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Eslam M. Shehata
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Amr S. Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo P.O. Box 11566, Egypt;
| | | | - Debmalya Barh
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.B.); (V.A.)
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.B.); (V.A.)
| | - Nagwa A. Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo P.O. Box 11566, Egypt
| |
Collapse
|
10
|
Sergeeva A, Davydova K, Perenkov A, Vedunova M. Mechanisms of human DNA methylation, alteration of methylation patterns in physiological processes and oncology. Gene 2023:147487. [PMID: 37211289 DOI: 10.1016/j.gene.2023.147487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
DNA methylation is one of the epigenetic modifications of the genome, the essence of which is the attachment of a methyl group to nitrogenous bases. In the eukaryote genome, cytosine is methylated in the vast majority of cases. About 98% of cytosines are methylated as part of CpG dinucleotides. They, in turn, form CpG islands, which are clusters of these dinucleotides. Islands located in the regulatory elements of genes are in particular interest. They are assumed to play an important role in the regulation of gene expression in humans. Besides that, cytosine methylation serves the functions of genomic imprinting, transposon suppression, epigenetic memory maintenance, X- chromosome inactivation, and embryonic development. Of particular interest are the enzymatic processes of methylation and demethylation. The methylation process always depends on the work of enzymatic complexes and is very precisely regulated. The methylation process largely depends on the functioning of three groups of enzymes: writers, readers and erasers. Writers include proteins of the DNMT family, readers are proteins containing the MBD, BTB/POZ or SET- and RING-associated domains and erasers are proteins of the TET family. Whereas demethylation can be performed not only by enzymatic complexes, but also passively during DNA replication. Hence, the maintenance of DNA methylation is important. Changes in methylation patterns are observed during embryonic development, aging, and cancers. In both aging and cancer, massive hypomethylation of the genome with local hypermethylation is observed. In this review, we will review the current understanding of the mechanisms of DNA methylation and demethylation in humans, the structure and distribution of CpG islands, the role of methylation in the regulation of gene expression, embryogenesis, aging, and cancer development.
Collapse
Affiliation(s)
- A Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - K Davydova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - A Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - M Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
11
|
Asediya V, Anjaria P. Quantum leap: is the conflux of artificial intelligence, personalized medicine, nutrigenetics and nutrigenomics the path to optimal health? Epigenomics 2023. [PMID: 37191059 DOI: 10.2217/epi-2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Affiliation(s)
- Varun Asediya
- Animal Nutrition Research Station, Anand Agricultural University, Anand, 388001, India
| | - Pranav Anjaria
- Department of Veterinary Public Health & Epidemiology, College of Veterinary Science & Animal Husbandry, Kamdhenu University, Anand, 388001, India
| |
Collapse
|
12
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
13
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
14
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
15
|
Gualtieri P, Marchetti M, Frank G, Smeriglio A, Trombetta D, Colica C, Cianci R, De Lorenzo A, Di Renzo L. Antioxidant-Enriched Diet on Oxidative Stress and Inflammation Gene Expression: A Randomized Controlled Trial. Genes (Basel) 2023; 14:206. [PMID: 36672947 PMCID: PMC9859217 DOI: 10.3390/genes14010206] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Mediterranean Diet (MedDiet) is associated with beneficial effects against chronic non-communicable diseases (CNCDs). In particular, the content of micronutrients leads to an improvement of the oxidative and inflammatory profiles. A randomized, parallel, controlled study, on 24 subjects, was conducted to evaluate if 2-week supplementation with a mixed apple and bergamot juice (MAB juice), had a positive impact on the body composition, the biochemical profile, and oxidative and inflammatory gene expression (Superoxide dismutase (SOD1), Peroxisome Proliferator-Activated Receptor γ (PPARγ), catalase (CAT), chemokine C-C motif ligand 5 (CCL5), Nuclear Factor Kappa B Subunit 1 (NFKB1), Vitamin D Receptor (VDR), and Macrophage Migration Inhibitory Factor (MIF)), respect to a MedDiet. Body composition evaluation analysis showed a gain in lean mass (p < 0.01). Moreover, a significant reduction in total cholesterol/HDL index (p < 0.01) was pointed out between the two groups. Gene expression analysis highlighted an increase in MIF (p ≤ 0.05), PPARγ (p < 0.001), SOD1 (p ≤ 0.05), and VDR (p ≤ 0.05) expressions when comparing MedDiet and MedDiet + MAB juice groups. These data based on the nutrigenomics approach demonstrated that supplementing 2 weeks of MAB juice to the MedDiet could contribute to a reduction in the risk of CNCDs.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Marchetti
- School of Specialization in Food Science, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
16
|
Del Saz-Lara A, Boughanem H, López de Las Hazas MC, Crespo C, Saz-Lara A, Visioli F, Macias-González M, Dávalos A. Hydroxytyrosol decreases EDNRA expression through epigenetic modification in colorectal cancer cells. Pharmacol Res 2023; 187:106612. [PMID: 36528246 DOI: 10.1016/j.phrs.2022.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The Mediterranean diet (MD) is one of the healthiest ones and is associated with a lower incidence of cardiovascular and cerebrovascular diseases as well as cancer. Extra virgin olive oil (EVOO) is probably the most idiosyncratic component of this diet. EVOO has been attributed with many healthful effects, which may be due to its phenolic components, e.g. including hydroxytyrosol (HT). Recent studies suggest that EVOO and HT have molecular targets in human tissues and modulate epigenetic mechanisms. DNA methylation is one of the most studied epigenetic mechanisms and consists of the addition of a methyl group to the cytosines of the DNA chain. Given the purported health effects of EVOO (poly)phenols, we analyzed the changes induced by HT in DNA methylation, in a colorectal cancer cell line. Caco-2 cells were treated with HT for one week or with the demethylating agent 5'-azacytidine for 48 h. Global DNA methylation was assessed by ELISA. DNA bisulfitation was performed and Infinium Methylation EPIC BeadChips were used to analyze the specific methylation of CpG sites. We show an increase in global DNA methylation in Caco-2 cells after HT treatment, with a total of 32,141 differentially methylated (CpGs DMCpGs). Interestingly, our analyses revealed the endothelin receptor type A gene (EDNRA) as a possible molecular target of HT. In summary, we demonstrate that cellular supplementation with HT results in a specific methylome map and propose a potential gene target for HT.
Collapse
Affiliation(s)
- Andrea Del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain; Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16171 Cuenca, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain; Department of Molecular Medicine, University of Padova, Padova, Italy.
| | - Manuel Macias-González
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Mannino G, Ricciardi M, Gatti N, Serio G, Vigliante I, Contartese V, Gentile C, Bertea CM. Changes in the Phytochemical Profile and Antioxidant Properties of Prunus persica Fruits after the Application of a Commercial Biostimulant Based on Seaweed and Yeast Extract. Int J Mol Sci 2022; 23:ijms232415911. [PMID: 36555550 PMCID: PMC9779733 DOI: 10.3390/ijms232415911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Plant biostimulants are formulations that are experiencing great success from the perspective of sustainable agriculture. In this work, we evaluated the effect derived from the application of a biostimulant based on algae and yeast extracts (Expando®) on the agronomic yield and nutraceutical profile of two different cultivars ("Sugar Time" and "West Rose") of Prunus persica (peach). Although, at the agronomic level, significant effects on production yields were not recorded, the biostimulant was able to reduce the ripening time, increase the fruit size, and make the number of harvestable fruits homogeneous. From a nutraceutical point of view, our determinations via spectrophotometric (UV/Vis) and chromatographic (HPLC-DAD-MS/MS) analysis showed that the biostimulant was able to boost the content of bioactive compounds in both the pulp (5.0 L/ha: +17%; 4.0 L/ha: +12%; 2.5 L/ha: +11%) and skin (4.0 L/ha: +38%; 2.5 L/ha: +15%). These changes seem to follow a dose-dependent effect, also producing attractive effects on the antioxidant properties of the fruits harvested from the treated trees. In conclusion, the biostimulant investigated in this work proved to be able to produce more marketable fruit in a shorter time, both from a pomological and a functional point of view.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Innovation Centre, Plant Physiology Unit, University of Turin, 10135 Turin, Italy
- Correspondence:
| | - Maddalena Ricciardi
- Department of Life Sciences and Systems Biology, Innovation Centre, Plant Physiology Unit, University of Turin, 10135 Turin, Italy
| | - Noemi Gatti
- Department of Life Sciences and Systems Biology, Innovation Centre, Plant Physiology Unit, University of Turin, 10135 Turin, Italy
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | | | | | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Cinzia M. Bertea
- Department of Life Sciences and Systems Biology, Innovation Centre, Plant Physiology Unit, University of Turin, 10135 Turin, Italy
| |
Collapse
|
18
|
KENANOGLU SERCAN, GOKCE NURIYE, AKALIN HILAL, ERGOREN MAHMUTCERKEZ, BECCARI TOMMASO, BERTELLI MATTEO, DUNDAR MUNIS. Implication of the Mediterranean diet on the human epigenome. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E44-E55. [PMID: 36479488 PMCID: PMC9710399 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epigenetics, defined as "hereditary changes in gene expression that occur without any change in the DNA sequence", consists of various epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. The epigenome, which has a dynamic structure in response to intracellular and extracellular stimuli, has a key role in the control of gene activity, since it is located at the intersection of cellular information encoded in the genome and molecular/chemical information of extracellular origin. The focus shift of studies to epigenetic reprogramming has led to the formation and progressive importance of a concept called "nutriepigenetics", whose aim is to prevent diseases by intervening on nutrition style. Among the diet types adopted in the world, the renowned Mediterranean Diet (MD), being rich in unsaturated fatty acids and containing high levels of whole grain foods and large quantities of fruits, vegetables, and legumes, has shown numerous advantages in excluding chronic diseases. Additionally, the fact that this diet is rich in polyphenols with high antioxidant and anti-inflammatory properties has an undeniable effect in turning some cellular pathways against the disease. It is also apparent that the effects of polyphenols on the epigenome cause changes in mechanisms such as DNA methylation and histone acetylation/deacetylation, which have a regulatory effect on gene regulation. This review presents the effects of long-term consumption of nutrients from the MD on the epigenome and discusses the benefits of this diet in the treatment and even prevention of chronic diseases.
Collapse
Affiliation(s)
- SERCAN KENANOGLU
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - NURIYE GOKCE
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - HILAL AKALIN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - MAHMUT CERKEZ ERGOREN
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - TOMMASO BECCARI
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - MATTEO BERTELLI
- MAGISNAT, Peachtree Corners (GA), USA
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
| | - MUNIS DUNDAR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Correspondence: Munis Dundar, Department of Medical Genetics, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey. E-mail:
| |
Collapse
|
19
|
Anelli GM, Parisi F, Sarno L, Fornaciari O, Carlea A, Coco C, Porta MD, Mollo N, Villa PM, Guida M, Cazzola R, Troiano E, Pasotti M, Volpi G, Vetrani L, Maione M, Cetin I. Associations between Maternal Dietary Patterns, Biomarkers and Delivery Outcomes in Healthy Singleton Pregnancies: Multicenter Italian GIFt Study. Nutrients 2022; 14:3631. [PMID: 36079896 PMCID: PMC9460547 DOI: 10.3390/nu14173631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Maternal nutrition represents a critical risk factor for adverse health outcomes in both mother and offspring. We aimed to investigate associations between maternal nutritional habits, biomarker status, and pregnancy outcome among Italian healthy normal-weight pregnancies. Methods: Multicenter prospective cohort study recruiting Italian healthy normal-weight women with singleton spontaneous pregnancies at 20 ± 2 weeks (T1) in Milan and Naples. All patients underwent nutritional evaluations by our collecting a 7-day weighed dietary record at 25 ± 1 weeks (T2) and a Food Frequency Questionnaire at 29 ± 2 weeks (T3). Maternal venous blood samples were collected at T3 to assess nutritional, inflammatory and oxidative biomarker concentrations (RBCs folate, vitamin D, hepcidin, total antioxidant capacity). Pregnancy outcomes were collected at delivery (T4). General linear models adjusted for confounding factors were estimated to investigate associations between maternal dietary pattern adherence, nutrient intakes, biomarker concentrations and delivery outcomes. Results: 219 healthy normal-weight pregnant women were enrolled. Vitamin D and RBCs folate concentrations, as well as micronutrient intakes, were consistently below the recommended range. In a multi-adjusted model, maternal adherence to the most prevalent 'high meat, animal fats, grains' dietary pattern was positively associated with hepcidin concentrations and negatively associated with gestational age at delivery in pregnancies carrying female fetuses. Hepcidin plasma levels were further negatively associated to placental weight, whereas vitamin D concentrations were positively associated to neonatal weight. Conclusions: A high adherence to an unbalanced 'high meat, animal fats, grains' pattern was detected among Italian normal-weight low-risk pregnancies, further associated with maternal pro-inflammatory status and gestational age at delivery. This evidence underlines the need for a dedicated nutritional counseling even among low-risk pregnancies.
Collapse
Affiliation(s)
- Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Francesca Parisi
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospitals, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, 20154 Milan, Italy
| | - Laura Sarno
- Department of Neurosciences, Reproductive Sciences and Dentistry, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Ottavia Fornaciari
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Annunziata Carlea
- Department of Neurosciences, Reproductive Sciences and Dentistry, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Chiara Coco
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Matteo Della Porta
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Paola Maria Villa
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospitals, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, 20154 Milan, Italy
| | - Maurizio Guida
- Department of Neurosciences, Reproductive Sciences and Dentistry, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Ersilia Troiano
- Nutrition and Dietetics Technical Scientific Association (ASAND), 95128 Catania, Italy
| | - Monica Pasotti
- Nutrition and Dietetics Technical Scientific Association (ASAND), 95128 Catania, Italy
| | - Graziella Volpi
- Nutrition and Dietetics Technical Scientific Association (ASAND), 95128 Catania, Italy
| | - Laura Vetrani
- Nutrition and Dietetics Technical Scientific Association (ASAND), 95128 Catania, Italy
| | - Manuela Maione
- Nutrition and Dietetics Technical Scientific Association (ASAND), 95128 Catania, Italy
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospitals, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, 20154 Milan, Italy
| |
Collapse
|
20
|
Plachy M, Bartha A, Budai P, Palotás P, Lehel J. Toxic elements in Sardina pilchardus and food toxicological significance. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:212-220. [PMID: 35640935 DOI: 10.1080/19393210.2022.2081733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Cd, Hg, and Pb concentrations were investigated in Sardina pilchardus fish. Samples originated from the Atlantic Northeast fishing area 27 and were analysed by inductively coupled plasma optical emission spectroscopy. The aim of the study was to estimate the health impact of consumption, based on the concentrations and calculated exposure for each element. Based on the average total arsenic concentration of 3.26 ± 0.39 mg/kg in the samples, the estimated inorganic arsenic content and calculated PTWI suggested that the samples do not pose a health risk for consumers. Cadmium content of the samples was also not considered hazardous, as both the measured concentrations and PTMI values were below the specified limits. Lead concentration exceeded the maximum limit in 73% of the samples, while calculated average weekly intake was below the recommended level. The measured mercury concentrations exceeded the maximum limit in only 5% of the samples.
Collapse
Affiliation(s)
- Melinda Plachy
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | - András Bartha
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Péter Budai
- Institute of Plant Protection, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary
| | | | - József Lehel
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
21
|
Mannino G, Serio G, Gaglio R, Busetta G, La Rosa L, Lauria A, Settanni L, Gentile C. Phytochemical Profile and Antioxidant, Antiproliferative, and Antimicrobial Properties of Rubus idaeus Seed Powder. Foods 2022; 11:foods11172605. [PMID: 36076790 PMCID: PMC9455724 DOI: 10.3390/foods11172605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
In the context of the contemporary research on sustainable development and circular economy, the quest for effective strategies aimed at revaluation of waste and by-products generated in industrial and agricultural production becomes important. In this work, an ethanolic extract from red raspberry (Rubus idaeus) seed waste (WRSP) was evaluated for its phytochemical composition and functional properties in term of antioxidative, antiproliferative, and antimicrobial activities. Chemical composition of the extract was determined by both HPLC-ESI-MS/MS and spectrophotometric methods. Phytochemical analysis revealed that flavan-3-ols and flavonols were the major phenolic compounds contained in WRSP. The extract demonstrated very high radical-scavenging (4.86 ± 0.06 µmol TE/DW) and antioxidant activity in a cell-based model (0.178 ± 0.03 mg DW/mL cell medium). The WRSP extract also exhibited antiproliferative activity against three different epithelial cancer cell lines (MCF-7, HepG2, and HeLa cells) in a dose-dependent manner. Finally, microbiological assays showed the absence of colonies of bacteria and microscopic fungi (yeasts and molds) and revealed that the WRSP extract has a large inhibition spectrum against spoilage and pathogenic bacteria, without inhibitory activity against pro-technological bacteria. In conclusion, the obtained results show that WRSP is a rich source of phytochemical compounds exerting interesting biological activities. For these reasons WRSP could find applications in the nutritional, nutraceutical, and pharmacological fields.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Innovation Centre, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gabriele Busetta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Lorenza La Rosa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (L.S.); (C.G.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (L.S.); (C.G.)
| |
Collapse
|
22
|
Epigenome Modulation Induced by Ketogenic Diets. Nutrients 2022; 14:nu14153245. [PMID: 35956421 PMCID: PMC9370515 DOI: 10.3390/nu14153245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Ketogenic diets (KD) are dietary strategies low in carbohydrates, normal in protein, and high, normal, or reduced in fat with or without (Very Low-Calories Ketogenic Diet, VLCKD) a reduced caloric intake. KDs have been shown to be useful in the treatment of obesity, metabolic diseases and related disorders, neurological diseases, and various pathological conditions such as cancer, nonalcoholic liver disease, and chronic pain. Several studies have investigated the intracellular metabolic pathways that contribute to the beneficial effects of these diets. Although epigenetic changes are among the most important determinants of an organism’s ability to adapt to environmental changes, data on the epigenetic changes associated with these dietary pathways are still limited. This review provides an overview of the major epigenetic changes associated with KDs.
Collapse
|
23
|
Immunomodulatory Effects of (R)-Sulforaphane on LPS-Activated Murine Immune Cells: Molecular Signaling Pathways and Epigenetic Changes in Histone Markers. Pharmaceuticals (Basel) 2022; 15:ph15080966. [PMID: 36015113 PMCID: PMC9414446 DOI: 10.3390/ph15080966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the natural enantiomer (R)-Sulforaphane (SFN) and the possible signaling pathways involved in an ex vivo model of LPS-stimulated murine peritoneal macrophages. Furthermore, we studied the epigenetic changes induced by (R)-SFN as well as the post-translational modifications of histone H3 (H3K9me3 and H3K18ac) in relation to the production of cytokines in murine splenocytes after LPS stimulation. (R)-SFN was able to modulate the inflammatory response and oxidative stress induced by LPS stimulation in murine peritoneal macrophages through the inhibition of reactive oxygen species (ROS), nitric oxide (NO) and cytokine (IL-1β, IL-6, IL-17, IL-18 and TNF-α) production by down-regulating the expression of pro-inflammatory enzymes (iNOS, COX-2 and mPGES-1). We also found that activation of the Nrf-2/HO-1 axis and inhibition of the JAK2/STAT-3, MAPK, canonical and non-canonical inflammasome signaling pathways could have been responsible for the immunomodulatory effects of (R)-SFN. Furthermore, (R)-SFN modulated epigenetic modifications through histone methylation (H3K9me3) and deacetylation (H3K18ac) in LPS-activated spleen cells. Collectively, our results suggest that (R)-SFN could be a promising epinutraceutical compound for the management of immunoinflammatory diseases.
Collapse
|
24
|
Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling Atherosclerosis via Selected Nutrition. Int J Mol Sci 2022; 23:8233. [PMID: 35897799 PMCID: PMC9368664 DOI: 10.3390/ijms23158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The development and pathogenesis of atherosclerosis are significantly influenced by lifestyle, particularly nutrition. The modern level of science and technology development promote personalized nutrition as an efficient preventive measure against atherosclerosis. In this survey, the factors were revealed that contribute to the formation of an individual approach to nutrition: genetic characteristics, the state of the microbiota of the gastrointestinal tract (GIT) and environmental factors (diets, bioactive components, cardioprotectors, etc.). In the course of the work, it was found that in order to analyze the predisposition to atherosclerosis associated with nutrition, genetic features affecting the metabolism of nutrients are significant. The genetic features include the presence of single nucleotide polymorphisms (SNP) of genes and epigenetic factors. The influence of telomere length on the pathogenesis of atherosclerosis and circadian rhythms was also considered. Relatively new is the study of the relationship between chrono-nutrition and the development of metabolic diseases. That is, to obtain the relationship between nutrition and atherosclerosis, a large number of genetic markers should be considered. In this relation, the question arises: "How many genetic features need to be analyzed in order to form a personalized diet for the consumer?" Basically, companies engaged in nutrigenetic research and choosing a diet for the prevention of a number of metabolic diseases use SNP analysis of genes that accounts for lipid metabolism, vitamins, the body's antioxidant defense system, taste characteristics, etc. There is no set number of genetic markers. The main diets effective against the development of atherosclerosis were considered, and the most popular were the ketogenic, Mediterranean, and DASH-diets. The advantage of these diets is the content of foods with a low amount of carbohydrates, a high amount of vegetables, fruits and berries, as well as foods rich in antioxidants. However, due to the restrictions associated with climatic, geographical, material features, these diets are not available for a number of consumers. The way out is the use of functional products, dietary supplements. In this approach, the promising biologically active substances (BAS) that exhibit anti-atherosclerotic potential are: baicalin, resveratrol, curcumin, quercetin and other plant metabolites. Among the substances, those of animal origin are popular: squalene, coenzyme Q10, omega-3. For the prevention of atherosclerosis through personalized nutrition, it is necessary to analyze the genetic characteristics (SNP) associated with the metabolism of nutrients, to assess the state of the microbiota of the GIT. Based on the data obtained and food preferences, as well as the individual capabilities of the consumer, the optimal diet can be selected. It is topical to exclude nutrients of which their excess consumption stimulates the occurrence and pathogenesis of atherosclerosis and to enrich the diet with functional foods (FF), BAS containing the necessary anti-atherosclerotic, and stimulating microbiota of the GIT nutrients. Personalized nutrition is a topical preventive measure and there are a number of problems hindering the active use of this approach among consumers. The key factors include weak evidence of the influence of a number of genetic features, the high cost of the approach, and difficulties in the interpretation of the results. Eliminating these deficiencies will contribute to the maintenance of a healthy state of the population through nutrition.
Collapse
Affiliation(s)
- Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Laboratory of Applied Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia;
| |
Collapse
|
25
|
Framework of Methodology to Assess the Link between A Posteriori Dietary Patterns and Nutritional Adequacy: Application to Pregnancy. Metabolites 2022; 12:metabo12050395. [PMID: 35629899 PMCID: PMC9148035 DOI: 10.3390/metabo12050395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore the nutritional profile of 608 women during the second trimester of pregnancy, in terms of nutrient patterns, dietary quality and nutritional adequacy. Dietary data were collected using a validated Mediterranean-oriented, culture-specific FFQ. Principal component analysis was performed on 18 energy-adjusted nutrients. Two main nutrient patterns, “plant-origin” (PLO) and “animal-origin” (ANO), were extracted. Six homogenous clusters (C) relative to nutrient patterns were obtained and analyzed through a multidimensional methodological approach. C1, C5 and C6 scored positively on PLO, while C1, C2 and C3 scored positively on ANO. When dietary quality was mapped on food choices and dietary indexes, C6 unveiled a group with a distinct image resembling the Mediterranean-type diet (MedDiet Score = 33.8). Although C1–C5 shared common dietary characteristics, their diet quality differed as reflected in the HEI-2010 (C1:79.7; C2:73.3; C3:70.9; C4:63.2; C5:76.6). The appraisal of nutritional adequacy mirrored a “nutritional-quality gradient”. A total of 50% of participants in C6 had almost 100% adequate magnesium intake, while 50% of participants in C4 had a probability of adequacy of ≤10%. Our methodological framework is efficient for assessing the link between a posteriori dietary patterns and nutritional adequacy during pregnancy. Given that macro- and micronutrient distributions may induce metabolic modifications of potential relevance to offspring’s health, public health strategies should be implemented.
Collapse
|
26
|
Vidal-González P, Medrano-Ábalos P, Sáez Álvarez E. A nightmare glocal discussion. What are the ingredients of Paella Valenciana? Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2021.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Chelliah R, Banan-MwineDaliri E, Khan I, Wei S, Elahi F, Yeon SJ, Selvakumar V, Ofosu FK, Rubab M, Ju HH, Rallabandi HR, Madar IH, Sultan G, Oh DH. A review on the application of bioinformatics tools in food microbiome studies. Brief Bioinform 2022; 23:6533500. [PMID: 35189636 DOI: 10.1093/bib/bbac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
There is currently a transformed interest toward understanding the impact of fermentation on functional food development due to growing consumer interest on modified health benefits of sustainable foods. In this review, we attempt to summarize recent findings regarding the impact of Next-generation sequencing and other bioinformatics methods in the food microbiome and use prediction software to understand the critical role of microbes in producing fermented foods. Traditionally, fermentation methods and starter culture development were considered conventional methods needing optimization to eliminate errors in technique and were influenced by technical knowledge of fermentation. Recent advances in high-output omics innovations permit the implementation of additional logical tactics for developing fermentation methods. Further, the review describes the multiple functions of the predictions based on docking studies and the correlation of genomic and metabolomic analysis to develop trends to understand the potential food microbiome interactions and associated products to become a part of a healthy diet.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Imran Khan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.,Department of Biotechnology, University of Malakand, Khyber Pakhtunkhwa Pakistan
| | - Shuai Wei
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Vijayalakshmi Selvakumar
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Hum Hun Ju
- Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Harikrishna Reddy Rallabandi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Inamul Hasan Madar
- Department of Biochemistry, School of Life Science, Bharathidasan, University, Thiruchirappalli, Tamilnadu, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| |
Collapse
|
28
|
Ye CY, Xin JR, Li Z, Yin XY, Guo SL, Li JM, Zhao TY, Wang L, Yang L. ALDH2, ADCY3 and BCMO1 polymorphisms and lifestyle-induced traits are jointly associated with CAD risk in Chinese Han people. Gene 2022; 807:145948. [PMID: 34481002 DOI: 10.1016/j.gene.2021.145948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUNDS To investigate associations of genetic and environmental factors with coronary artery disease (CAD), we collected medical reports, lifestyle details, and blood samples of 2113 individuals, and then used the polymerase chain reaction (PCR)-ligase detection reaction (LDR) to genotype the targeted 102 SNPs. METHODS We adopted elastic net algorithm to build an association model that considered simultaneously genetic and lifestyle/clinical factors associated with CAD in Chinese Han population. RESULTS In this study, we developed an all covariates-based model to explain the risk of CAD, which incorporated 8 lifestyle/clinical factors and a gene-score variable calculated from 3 significant SNPs (rs671, rs6751537 and rs11641677), attaining an area under the curve (AUC) value of 0.71. It was found that, in terms of genetic variants, the AA genotype of rs671 in the additive (adjusted odds ratio (OR) = 2.51, p = 0.008) and recessive (adjusted OR = 2.12, p = 0.021) models, the GG genotype of rs6751537 in the additive (adjusted OR = 3.36, p = 0.001) and recessive (adjusted OR = 3.47, p = 0.001) models were associated with increased risk of CAD, while GG genotype of rs11641677 in additive model (adjusted OR = 0.39, p = 0.044) was associated with decreased risk of CAD. In terms of lifestyle/clinical factors, the history of hypertension (unadjusted OR = 2.37, p < 0.001) and dyslipidemia (unadjusted OR = 1.82, p = 0.007), age (unadjusted OR = 1.07, p < 0.001) and waist circumference (unadjusted OR = 1.02, p = 0.05) would significantly increase the risk of CAD, while height (unadjusted OR = 0.97, p = 0.006) and regular intake of chicken (unadjusted OR = 0.78, p = 0.008) reduced the risk of CAD. A significantinteraction was foundbetween rs671 and dyslipidemia (the relative excess risk due to interaction (RERI) = 3.36, p = 0.05). CONCLUSION In this study, we constructed an association model and identified a set of SNPs and lifestyle/clinical risk factors of CAD in Chinese Han population. By considering both genetic and non-genetic risk factors, the built model may provide implications for CAD pathogenesis and clues for screening tool development in Chinese Han population.
Collapse
Affiliation(s)
- Cheng-Yin Ye
- School of Public Health, Hangzhou Normal University, Hangzhou 310000, China.
| | - Jia-Rui Xin
- School of Public Health, Hangzhou Normal University, Hangzhou 310000, China.
| | - Zheng Li
- Wu Yun Shan Hospital, Hangzhou 31000, China.
| | - Xiao-Yu Yin
- School of Public Health, Hangzhou Normal University, Hangzhou 310000, China.
| | - Shu-Li Guo
- School of Public Health, Hangzhou Normal University, Hangzhou 310000, China.
| | - Jin-Mei Li
- School of Public Health, Hangzhou Normal University, Hangzhou 310000, China.
| | - Tian-Yu Zhao
- School of Public Health, Hangzhou Normal University, Hangzhou 310000, China
| | - Li Wang
- School of Public Health, Hangzhou Normal University, Hangzhou 310000, China.
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou 310000, China.
| |
Collapse
|
29
|
(-)-Methyl-Oleocanthal, a New Oleocanthal Metabolite Reduces LPS-Induced Inflammatory and Oxidative Response: Molecular Signaling Pathways and Histones Epigenetic Modulation. Antioxidants (Basel) 2021; 11:antiox11010056. [PMID: 35052558 PMCID: PMC8772879 DOI: 10.3390/antiox11010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
The antioxidant and anti-inflammatory responses of (−)-methyl-oleocanthal (met-OLE), a new metabolite of the extra virgin olive oil (EVOO) phenolic oleocanthal (OLE), were explored in lipopolysaccharide (LPS)-induced murine peritoneal macrophages. Possible signaling pathways and epigenetic modulation of histones were studied. Met-OLE inhibited LPS-induced intracellular reactive oxygen species (ROS) and nitrite (NO) production and decreased the overexpression of the pro-inflammatory enzymes COX-2, mPGES-1 and iNOS in murine macrophages. In addition, met-OLE was able to significantly decrease the activation of p38, JNK, and ERK mitogen-activated protein kinases (MAPKs) and blocked canonical and non-canonical inflammasome signaling pathways. On the contrary, met-OLE upregulated haem oxigenase 1 (HO-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) expression in treated cells. Finally, met-OLE pretreated spleen cells counteracted LPS induction, preventing H3K18 acetylation or H3K9 and H3K27 demethylation. Overall, these results provide novel mechanistic insights into the beneficial effects of met-OLE regarding the regulation of the immune–inflammatory response through epigenetic changes in histone markers. This revealing evidence suggests that the methylated metabolite of OLE may contribute significantly to the beneficial effects that are associated with the secoiridoid-related compound and the usual consumption of EVOO.
Collapse
|
30
|
Noro F, Marotta A, Bonaccio M, Costanzo S, Santonastaso F, Orlandi S, Tirozzi A, Parisi R, De Curtis A, Persichillo M, Gianfagna F, Di Castelnuovo A, Donati MB, Cerletti C, de Gaetano G, Iacoviello L, Gialluisi A, Izzi B. Fine-grained investigation of the relationship between human nutrition and global DNA methylation patterns. Eur J Nutr 2021; 61:1231-1243. [PMID: 34741648 DOI: 10.1007/s00394-021-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Nutrition is an important, modifiable, environmental factor affecting human health by modulating epigenetic processes, including DNA methylation (5mC). Numerous studies investigated the association of nutrition with global and gene-specific DNA methylation and evidences on animal models highlighted a role in DNA hydroxymethylation (5hmC) regulation. However, a more comprehensive analysis of different layers of nutrition in association with global levels of 5mC and 5hmC is lacking. We investigated the association between global levels of 5mC and 5hmC and human nutrition, through the stratification and analysis of dietary patterns into different nutritional layers: adherence to Mediterranean diet (MD), main food groups, macronutrients and micronutrients intake. METHODS ELISA technique was used to measure global 5mC and 5hmC levels in 1080 subjects from the Moli-sani cohort. Food intake during the 12 months before enrolment was assessed using the semi-quantitative EPIC food frequency questionnaire. Complementary approaches involving both classical statistics and supervised machine learning analyses were used to investigate the associations between global 5mC and 5hmC levels and adherence to Mediterranean diet, main food groups, macronutrients and micronutrients intake. RESULTS We found that global DNA methylation, but not hydroxymethylation, was associated with daily intake of zinc and vitamin B3. Random Forests algorithms predicting 5mC and 5hmC through intakes of food groups, macronutrients and micronutrients revealed a significant contribution of zinc, while vitamin B3 was reported among the most influential features. CONCLUSION We found that nutrition may affect global DNA methylation, suggesting a contribution of micronutrients previously implicated as cofactors in methylation pathways.
Collapse
Affiliation(s)
- Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Annalisa Marotta
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Federica Santonastaso
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Sabatino Orlandi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Roberta Parisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Francesco Gianfagna
- Mediterranea Cardiocentro, Naples, Italy.,Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | | | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy. .,Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy.
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | | |
Collapse
|
31
|
Ayvaz HH, Kuyumcu A. Effect of the Mediterranean diet in patients with chronic spontaneous urticaria. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2021; 67:675-680. [PMID: 34550255 DOI: 10.1590/1806-9282.20201076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Patients with chronic spontaneous urticaria often want to be informed about dietary modifications. There have been many studies evaluating dietary approaches in chronic spontaneous urticaria. In this study, we aimed to investigate the relationship between adherence to the Mediterranean diet and chronic spontaneous urticaria. METHODS In this cross-sectional case-control observational study, 100 patients (70 males and 30 females, mean age: 38.6±13.0 years) with chronic spontaneous urticaria and age- and sex-matched 100 healthy controls 70 males and 30 females, mean age: 38.7±13.8 years) were enrolled. A validated 14-item questionnaire evaluating the Mediterranean diet score was used for the assessment of adherence to the Mediterranean diet. The severity and the control of chronic spontaneous urticaria were assessed by Urticaria Activity Score over 7 days and Urticaria Control Test, respectively. RESULTS The mean Mediterranean diet score in the patient group was 5.40±1.88, whereas in healthy controls it was 6.30±1.39 (p<0.001). The Urticaria Activity Score over 7 days score of the patients was negatively correlated with the Mediterranean diet score, whereas the Urticaria Control Test score was positively correlated. CONCLUSION We reported that adherence to the Mediterranean diet may be an independent factor that decreases the risk of chronic spontaneous urticaria. It may also reduce the severity of chronic spontaneous urticaria symptoms.
Collapse
Affiliation(s)
- Havva Hilal Ayvaz
- Suleyman Demirel University, Faculty of Medicine, Department of Dermatology - Isparta, Turkey
| | - Aliye Kuyumcu
- Suleyman Demirel University, Faculty of Health Sciences, Department of Nutrition and Dietetics - Isparta, Turkey
| |
Collapse
|
32
|
Tutino V, De Nunzio V, Milella RA, Gasparro M, Cisternino AM, Gigante I, Lanzilotta E, Iacovazzi PA, Lippolis A, Lippolis T, Caruso MG, Notarnicola M. Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer-Related Pathways. Mol Nutr Food Res 2021; 65:e2100428. [PMID: 34495579 DOI: 10.1002/mnfr.202100428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Indexed: 12/11/2022]
Abstract
SCOPE The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. METHODS AND RESULTS Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated. CONCLUSION The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, Bari, 70010, Italy
| | - Marica Gasparro
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, Bari, 70010, Italy
| | - Anna Maria Cisternino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Elsa Lanzilotta
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Palma Aurelia Iacovazzi
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Antonio Lippolis
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Tamara Lippolis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| |
Collapse
|
33
|
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy -
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
34
|
Ferro M, Lucarelli G, Buonerba C, Terracciano D, Boccia G, Cerullo G, Cosimato V. Narrative review of Mediterranean diet in Cilento: longevity and potential prevention for prostate cancer. Ther Adv Urol 2021; 13:17562872211026404. [PMID: 35173812 PMCID: PMC8842148 DOI: 10.1177/17562872211026404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation – Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Carlo Buonerba
- Regional Reference Center for Rare Tumors, Department of Oncology and Hematology, AOU Federico II of Naples, Naples, Campania, Italy
- National Reference Center for Environmental Health, Zoo-prophylactic Institute of Southern Italy, Portici, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University Federico II, Naples, Campania, Italy
| | - Giovanni Boccia
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, Naples, Italy
| | - Vincenzo Cosimato
- Division of Laboratory Medicine – Civil Hospital “Maria SS. Addolorata”– Eboli, Salerno, Italy
| |
Collapse
|
35
|
Ruskovska T, Budić-Leto I, Corral-Jara KF, Ajdžanović V, Arola-Arnal A, Bravo FI, Deligiannidou GE, Havlik J, Janeva M, Kistanova E, Kontogiorgis C, Krga I, Massaro M, Miler M, Milosevic V, Morand C, Scoditti E, Suárez M, Vauzour D, Milenkovic D. Systematic Bioinformatic Analyses of Nutrigenomic Modifications by Polyphenols Associated with Cardiometabolic Health in Humans-Evidence from Targeted Nutrigenomic Studies. Nutrients 2021; 13:2326. [PMID: 34371836 PMCID: PMC8308901 DOI: 10.3390/nu13072326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; (T.R.); (M.J.)
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Karla Fabiola Corral-Jara
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
| | - Vladimir Ajdžanović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - Georgia-Eirini Deligiannidou
- Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.-E.D.); (C.K.)
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences, 16521 Prague, Czech Republic;
| | - Milkica Janeva
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; (T.R.); (M.J.)
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Christos Kontogiorgis
- Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.-E.D.); (C.K.)
| | - Irena Krga
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (M.M.); (E.S.)
| | - Marko Miler
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Verica Milosevic
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Christine Morand
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (M.M.); (E.S.)
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK;
| | - Dragan Milenkovic
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
36
|
Bellavia D, Caradonna F, Dimarco E, Costa V, Carina V, De Luca A, Raimondi L, Fini M, Gentile C, Giavaresi G. Non-flavonoid polyphenols in osteoporosis: preclinical evidence. Trends Endocrinol Metab 2021; 32:515-529. [PMID: 33895073 DOI: 10.1016/j.tem.2021.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
The development of progressive osteopenia and osteoporosis (OP) is due to the imbalance between bone resorption and bone formation, determining a lower bone resistance, major risks of fractures, with consequent pain and functional limitations. Flavonoids, a class of polyphenols, have been extensively studied for their therapeutic activities against bone resorption, but less attention has been given to a whole series of molecules belonging to the polyphenolic compounds. However, these classes have begun to be studied for the treatment of OP. In this systematic review, comprehensive information is provided on non-flavonoid polyphenolic compounds, and we highlight pathways implicated in the action of these molecules that act often epigenetically, and their possible use for OP treatment and prevention.
Collapse
Affiliation(s)
- Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy.
| | - Fabio Caradonna
- University of Palermo, Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Eufrosina Dimarco
- University of Palermo, Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Carla Gentile
- University of Palermo, Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| |
Collapse
|
37
|
Nestares T, Martín-Masot R, de Teresa C, Bonillo R, Maldonado J, Flor-Alemany M, Aparicio VA. Influence of Mediterranean Diet Adherence and Physical Activity on Bone Health in Celiac Children on a Gluten-Free Diet. Nutrients 2021; 13:1636. [PMID: 34068001 PMCID: PMC8152289 DOI: 10.3390/nu13051636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
We aimed to assess the influence of the Mediterranean Diet adherence and physical activity (PA) on body composition, with a particular focus on bone health, in young patients with celiac disease (CD). The CD group (n = 59) included children with CD with a long (>18 months, n = 41) or recent (<18 months, n = 18) adherence to a gluten-free diet (GFD). The non-celiac group (n = 40) included non-celiac children. After adjusting for potential confounders, the CD group showed lower body weight (p = 0.034), lean mass (p = 0.003), bone mineral content (p = 0.006), and bone Z-score (p = 0.036) than non-celiac children, even when the model was further adjusted for adherence to a GFD for at least 18 months. Among CD children, spending greater time in vigorous physical activity was associated with higher lean mass (p = 0.020) and bone mineral density with evidence of statistical significance (p = 0.078) regardless of the time they followed a GFD. In addition, a greater Mediterranean Diet adherence was associated with a higher bone Z-score (p = 0.020). Moreover, lean mass was strongly associated with bone mineral density and independently explained 12% of its variability (p < 0.001). These findings suggest the importance of correctly monitoring lifestyle in children with CD regarding dietary habits and PA levels to improve lean mass and, consequently, bone quality in this population.
Collapse
Affiliation(s)
- Teresa Nestares
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (M.F.-A.); (V.A.A.)
- Biomedical Research Centre (CIBM), Institute of Nutrition and Food Technology “José MataixVerdú” (INYTA), University of Granada, 18071 Granada, Spain
| | - Rafael Martín-Masot
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain;
| | | | - Rocío Bonillo
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (M.F.-A.); (V.A.A.)
| | - José Maldonado
- Department of Pediatrics, University of Granada, 18071 Granada, Spain;
- Pediatric Gastroenterology and Nutrition Unit, Hospital Universitario Virgen de las Nieves, 18071 Granada, Spain
- Spain Maternal and Child Health Network, Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Flor-Alemany
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (M.F.-A.); (V.A.A.)
- Biomedical Research Centre (CIBM), Institute of Nutrition and Food Technology “José MataixVerdú” (INYTA), University of Granada, 18071 Granada, Spain
- Sport and Health University Research Institute (IMUDS), 18007 Granada, Spain
| | - Virginia A. Aparicio
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (M.F.-A.); (V.A.A.)
- Sport and Health University Research Institute (IMUDS), 18007 Granada, Spain
| |
Collapse
|
38
|
Mannino G, Iovino P, Lauria A, Genova T, Asteggiano A, Notarbartolo M, Porcu A, Serio G, Chinigò G, Occhipinti A, Capuzzo A, Medana C, Munaron L, Gentile C. Bioactive Triterpenes of Protium heptaphyllum Gum Resin Extract Display Cholesterol-Lowering Potential. Int J Mol Sci 2021; 22:ijms22052664. [PMID: 33800828 PMCID: PMC7961947 DOI: 10.3390/ijms22052664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia is one of the major causes of cardiovascular disease, the risk of which is further increased if other forms of dyslipidemia occur. Current therapeutic strategies include changes in lifestyle coupled with drug administration. Statins represent the most common therapeutic approach, but they may be insufficient due to the onset of resistance mechanisms and side effects. Consequently, patients with mild hypercholesterolemia prefer the use of food supplements since these are perceived to be safer. Here, we investigate the phytochemical profile and cholesterol-lowering potential of Protium heptaphyllum gum resin extract (PHE). Chemical characterization via HPLC-APCI-HRMS2 and GC-FID/MS identified 13 compounds mainly belonging to ursane, oleanane, and tirucallane groups. Studies on human hepatocytes have revealed how PHE is able to reduce cholesterol production and regulate the expression of proteins involved in its metabolism. (HMGCR, PCSK9, LDLR, FXR, IDOL, and PPAR). Moreover, measuring the inhibitory activity of PHE against HMGR, moderate inhibition was recorded. Finally, molecular docking studies identified acidic tetra- and pentacyclic triterpenoids as the main compounds responsible for this action. In conclusion, our study demonstrates how PHE may be a useful alternative to contrast hypercholesterolemia, highlighting its potential as a sustainable multitarget natural extract for the nutraceutical industry that is rapidly gaining acceptance as a source of health-promoting compounds.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
| | - Piera Iovino
- Biosfered S.R.L., 10148 Turin, Italy; (P.I.); (A.A.)
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (T.G.); (G.C.); (L.M.)
| | - Alberto Asteggiano
- Biosfered S.R.L., 10148 Turin, Italy; (P.I.); (A.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10125 Torino, Italy (C.M.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
| | - Alessandra Porcu
- Abel Nutraceuticals S.R.L., 10148 Turin, Italy; (A.P.); (A.O.); (A.C.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (T.G.); (G.C.); (L.M.)
| | - Andrea Occhipinti
- Abel Nutraceuticals S.R.L., 10148 Turin, Italy; (A.P.); (A.O.); (A.C.)
| | - Andrea Capuzzo
- Abel Nutraceuticals S.R.L., 10148 Turin, Italy; (A.P.); (A.O.); (A.C.)
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10125 Torino, Italy (C.M.)
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (T.G.); (G.C.); (L.M.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
- Correspondence: ; Tel.: +39-091-2388-6472
| |
Collapse
|
39
|
Gentile C. Biological Activities of Plant Food Components: Implications in Human Health. Foods 2021; 10:foods10020456. [PMID: 33669658 PMCID: PMC7922861 DOI: 10.3390/foods10020456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Scientific data and epidemiological evidence collected over the last fifty years have shown that nutrition plays a decisive role in human health [...].
Collapse
Affiliation(s)
- Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
40
|
Caprara G. Mediterranean-Type Dietary Pattern and Physical Activity: The Winning Combination to Counteract the Rising Burden of Non-Communicable Diseases (NCDs). Nutrients 2021; 13:429. [PMID: 33525638 PMCID: PMC7910909 DOI: 10.3390/nu13020429] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-communicable diseases (NCDs) (mainly cardiovascular diseases, cancers, chronic respiratory diseases and type 2 diabetes) are the main causes of death worldwide. Their burden is expected to rise in the future, especially in less developed economies and among the poor spread across middle- and high-income countries. Indeed, the treatment and prevention of these pathologies constitute a crucial challenge for public health. The major non-communicable diseases share four modifiable behavioral risk factors: unhealthy diet, physical inactivity, tobacco usage and excess of alcohol consumption. Therefore, the adoption of healthy lifestyles, which include not excessive alcohol intake, no smoking, a healthy diet and regular physical activity, represents a crucial and economical strategy to counteract the global NCDs burden. This review summarizes the latest evidence demonstrating that Mediterranean-type dietary pattern and physical activity are, alone and in combination, key interventions to both prevent and control the rise of NCDs.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, 20139 Milano, Italy
| |
Collapse
|
41
|
Nestares T, Martín-Masot R, Flor-Alemany M, Bonavita A, Maldonado J, Aparicio VA. Influence of Ultra-Processed Foods Consumption on Redox Status and Inflammatory Signaling in Young Celiac Patients. Nutrients 2021; 13:nu13010156. [PMID: 33418957 PMCID: PMC7825019 DOI: 10.3390/nu13010156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
The current study was designed to assess the influence of consumption of ultra-processed (UPF) on oxidative/antioxidant balance and evoked inflammatory signaling in young patients with celiac disease (CD). The study included 85 children. The celiac group (n = 53) included children with CD with a long (>18 months, n = 17) or recent (<18 months, n = 36) adherence to a gluten-free diet (GFD). The control group (n = 32) included healthy children with a significantly lower consumption of UPF compared to the CD group, both expressed as kcal/day (p = 0.043) and as percentage of daily energy intake (p = 0.023). Among children with CD, the group with the lowest consumption of UPF (below the 50% of daily energy intake) had a greater Mediterranean diet (MD) adherence and higher moderate physical activity levels. In addition, CD children with the lowest consumption of UPF had healthier redox (lower soluble superoxide dismutase-1 and 15-F2t-isoprostanes) and inflammatory profiles (lower macrophage inflammatory protein-1α) compared to the group with the highest consumption of UPF (all, p < 0.05) regardless of the time on a GFD. These findings highlight the importance of a correct monitoring of the GFD. An unbalanced GFD with high consumption of UPF and an unhealthy pattern with less physical activity and worse adherence to MD results in a worse inflammatory profile, which could act as a parallel pathway that could have important consequences on the pathophysiology of the disease.
Collapse
Affiliation(s)
- Teresa Nestares
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (T.N.); (M.F.-A.); (A.B.)
- Institute of Nutrition and Food Technology “José Mataix Verdú” (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Armilla, Spain
| | - Rafael Martín-Masot
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 19010 Málaga, Spain;
| | - Marta Flor-Alemany
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (T.N.); (M.F.-A.); (A.B.)
- Institute of Nutrition and Food Technology “José Mataix Verdú” (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Armilla, Spain
- Sport and Health University Research Centre (iMUDS), University of Granada, 18100 Armilla, Spain
| | - Antonela Bonavita
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (T.N.); (M.F.-A.); (A.B.)
| | - José Maldonado
- Department of Pediatrics, University of Granada, 18071 Granada, Spain;
- Biohealth Research Institute, 18071 Granada, Spain
- Maternal and Child Health Network, Carlos III Health Institute, 28029 Madrid, Spain
- Pediatric Clinical Management Unit, “Virgen de las Nieves” University Hospital, 18071 Granada, Spain
| | - Virginia A. Aparicio
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (T.N.); (M.F.-A.); (A.B.)
- Institute of Nutrition and Food Technology “José Mataix Verdú” (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Armilla, Spain
- Sport and Health University Research Centre (iMUDS), University of Granada, 18100 Armilla, Spain
- Correspondence:
| |
Collapse
|
42
|
Interactive associations of the INAFM2 rs67839313 variant and egg consumption with type 2 diabetes mellitus and fasting blood glucose in a Chinese population: A family-based study. Gene 2020; 770:145357. [PMID: 33333222 DOI: 10.1016/j.gene.2020.145357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND INAFM2 rs67839313 was associated with type 2 diabetes (T2DM) in Japanese populations but not in other populations. We aimed to validate the association of rs67839313 with T2DM and explore interactive associations of INAFM2 rs67839313 and egg consumption with T2DM and fasting blood glucose (FBG) in a Chinese population. METHODS In total, 7175 participants (4202 T2DM cases) from 3980 families were included and categorized into two groups (<4 and ≥4 eggs/week) according to the median egg consumption. Multilevel logistic regression and linear regression models were performed to estimate the genetic associations of rs67839313 with T2DM and FBG, respectively. The crossproduct term between the variant and egg was included in the models for interaction analysis. RESULTS We found that rs67839313_T was associated with an increased risk of T2DM (1.22 [95% CI: 1.17-1.27], P < 0.001). Among individuals with the rs67839313_T genotype, those with egg consumption <4/week (1.37 [1.25-1.51]) had a higher T2DM risk than those with egg consumption ≥4/week (1.17 [1.11-1.23]). A significant interactive effect between rs67839313_T and egg consumption on T2DM risk was identified (P = 0.008). Moreover, among participants without T2DM, rs67839313_T was associated with FBG, with a 0.188 mmol/l increase and a 0.152 mmol/l decrease among those consuming <4 eggs/week and ≥4 eggs/week, respectively. The interaction between rs67839313_T and egg consumption was observed to be significantly associated with FBG (P = 0.003). CONCLUSIONS INAFM2 rs67839313_T was associated with increased T2DM risk and FBG levels in Chinese individuals, and consuming more eggs may eliminate the associated genetic risk. This finding has important implications for understanding the genetic pathogenesis of T2DM and for the precision nutrition management of T2DM.
Collapse
|
43
|
Caradonna F, Cruciata I, Luparello C. Nutrigenetics, nutrigenomics and phenotypic outcomes of dietary low-dose alcohol consumption in the suppression and induction of cancer development: evidence from in vitro studies. Crit Rev Food Sci Nutr 2020; 62:2122-2139. [PMID: 33287559 DOI: 10.1080/10408398.2020.1850416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is known that the intake of alcoholic beverages may impair genetic and epigenetic regulatory events with consequent crucial effects on cell phenotypes and that its association with selected genotypes can lead to a different risk of cancer in the population. The aim of this review is to pick up selected studies on this topic and recapitulate some of the biochemical and nutrigenetic/nutrigenomic aspects involved in the impact of dietary low-dose alcohol consumption on the switching-on or -off of tumorigenic pathways. These include i) the existence of predisposing or protective human genotypes and the relationship between dietary compounds and alcohol in the promotion or inhibition of carcinogenesis; ii) the effects of other components of alcoholic drinks in the modulation of the expression of oncogenes and oncosuppressors, the autophagic flux and the onset of apoptosis, with examples of their cytospecificity; and iii) the role of alcoholic beverage consumption within particular dietary regimens, including the Mediterranean diet. Taking all the data into account, several alcohol-associated bioactive dietary compounds appear capable to modulate peculiar intracellular pathways predisposing to or protecting from cancer. Advances in the nutrigenetic, nutrigenomic and nutriepigenetic knowledge complementing the biochemical and molecular approaches will help in unveiling their impact on health outcome.
Collapse
Affiliation(s)
- Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
44
|
Hurtado-Lorenzo A, Honig G, Heller C. Precision Nutrition Initiative: Toward Personalized Diet Recommendations for Patients With Inflammatory Bowel Diseases. CROHN'S & COLITIS 360 2020; 2:otaa087. [PMID: 36777761 PMCID: PMC9802167 DOI: 10.1093/crocol/otaa087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Gerard Honig
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | - Caren Heller
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| |
Collapse
|