1
|
Oliveira AMS, Santos AM, Nascimento Júnior JAC, Júnior CCS, Brito JRLR, Dos Santos JS, Shanmugam S, Dos Passos Menezes P, Frank LA, Serafini MR. Pharmaceutical technological trends containing flavonoids: a patent review. Future Med Chem 2025:1-17. [PMID: 39835701 DOI: 10.1080/17568919.2025.2453408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Flavonoids such as silibinin, hesperetin, and phloretin exhibit well-documented biological activities, including anti-inflammatory, cytoprotective, anticarcinogenic, and antioxidant effects. However, their clinical application remains limited due to challenges such as poor aqueous solubility, low bioavailability, and restricted intestinal absorption, which can significantly reduce their pharmacological efficacy. This review analyzed patents related to innovative pharmaceutical technologies for flavonoids. The analysis used databases from the World Intellectual Property Organization and the European Patent Office. Following a comprehensive screening process, 38 patents were selected for detailed examination. These patents highlighted numerous studies on novel formulations, characterizations, and proprietary conditions. This review highlights technologies, such as nanocapsules, nanoemulsions, solid dispersions, phospholipid carriers, inclusion complexes, microemulsions, and other advanced systems, which enhance bioactive molecules' water solubility and stability. Consequently, these technologies improve permeability and absorption through the intended administration route, demonstrating the potential of flavonoids as promising candidates for various treatments, particularly when integrated into pharmaceutical technologies.
Collapse
Affiliation(s)
- Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | | | - Saravanan Shanmugam
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Núcleo de Terapias Nanotecnológicas (NTnano), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
2
|
Crişan D, Avram L, Morariu-Barb A, Grapa C, Hirişcau I, Crăciun R, Donca V, Nemeş A. Sarcopenia in MASLD-Eat to Beat Steatosis, Move to Prove Strength. Nutrients 2025; 17:178. [PMID: 39796612 PMCID: PMC11722590 DOI: 10.3390/nu17010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The connections between sarcopenia and various chronic conditions, including type 2 diabetes (T2DM), metabolic syndrome (MetS), and liver disease have been highlighted recently. There is also a high occurrence of sarcopenia in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, who are often disregarded. Both experimental and clinical findings suggest a complex, bidirectional relationship between MASLD and sarcopenia. While vitamin D, testosterone, and specific drug therapies show promise in mitigating sarcopenia, consensus on effective treatments is lacking. Recent focus on lifestyle interventions emphasizes dietary therapy and exercise for sarcopenic obesity in MASLD. Challenges arise as weight loss, a primary MASLD treatment, may lead to muscle mass reduction. The therapeutic approach to sarcopenia in morbidly obese MASLD patients also includes bariatric surgery (BS). BS induces weight loss and stabilizes metabolic imbalances, but its impact on sarcopenia is nuanced, underscoring the need for further research. Our aim is to provide a comprehensive review of the interplay between sarcopenia and MASLD and offer insight into the most recent therapeutic challenges and discoveries, as sarcopenia is often overlooked or unrecognized and poses significant challenges for managing these patients.
Collapse
Affiliation(s)
- Dana Crişan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Lucreţia Avram
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Andreea Morariu-Barb
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Cristiana Grapa
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Ioana Hirişcau
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
| | - Rareş Crăciun
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Valer Donca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Andrada Nemeş
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Ma G, Ayalew H, Mahmood T, Mercier Y, Wang J, Lin J, Wu S, Qiu K, Qi G, Zhang H. Methionine and vitamin E supplementation improve production performance, antioxidant potential, and liver health in aged laying hens. Poult Sci 2024; 103:104415. [PMID: 39488017 PMCID: PMC11567017 DOI: 10.1016/j.psj.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Sulfur metabolites of methionine (Met) and vitamin E (VE) have antioxidant potential and can maintain liver health in chickens. This study explored the underlying mechanisms of Met sources, the ratio of total sulfur amino acids to lysine (TSAA: Lys), and VE levels on production performances, antioxidant potential, and hepatic oxidation in aged laying hens. Eight hundred and sixty-four, Hy-Line Brown laying hens (70-week age) were divided into 12 treatment groups, each having 6 repeats and 12 birds/each repeat. The dietary treatments consisted of DL-Met (DL-Met), DL-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met), 3 ratios of TSAA: Lys (0.90, 0.95, and 1.00), and 2 levels of VE (20 and 40 g/ton). Albumen height and Haugh unit significantly increased at a lower level of VE (P < 0.05). Triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in serum and superoxide dismutase (SOD) and catalase activities (CAT) in the liver significantly reduced at 0.95 TSAA: Lys ratio (P < 0.05). Fatty acid synthase (FAS), lipoprotein lipase (LPL), nuclear factor erythroid 2-related factor 2 (Nrf2), and carnitine palmitoyltransferase-1 alpha (CPT-1α) also upregulated at this TSAA: Lys ratio (P < 0.05). Compared with the DL-Met group, the OH-Met group had lower Dipeptidyl Peptidase 4 (DPP4) and higher TC, LDL, and VLDL concentrations (P < 0.05).The expression of FAS,CPT-1α), glutathione (GSH), glutathione disulfide (GSSG), glutathione synthetase (GSS), and Nrf2 were significantly higher in OH-Met compared with the DL-Met group (P < 0.05). OH-Met at 0.95 and DL-Met at 0.90 TSAA: Lys ratio showed higher CAT and lower aspartate aminotransferase (AST) activities. Moreover, OH-Met at 0.90 and DL-Met at 0.95 of the TSAA: Lys ratio had a significant reduction of malondialdehyde (MDA) (P < 0.05). Overall, these results suggest that OH-Met source with a lower level of VE positively influenced production performance and improved liver health in aged laying hens through improved lipid metabolism and hepatic antioxidant function.
Collapse
Affiliation(s)
- Guangtian Ma
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Po. Box 196, Gondar, Ethiopia
| | - Tahir Mahmood
- European Laboratory of Innovation, Science and Expertise, Department of R & I in Monogastric Animal Nutrition, Adisseo France S.A.S., 20 rue Prosper Monnet, Saint Fons, 69190, France
| | - Yves Mercier
- European Laboratory of Innovation, Science and Expertise, Department of R & I in Monogastric Animal Nutrition, Adisseo France S.A.S., 20 rue Prosper Monnet, Saint Fons, 69190, France
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Lin
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Dankert JF, Mehta DD, Rodrick TC, Kanshin E, Parola R, Ueberheide BM, Jones DR, Egol KA, Leucht P. Mass Spectrometry Characterization of the Human Ankle and Hindfoot Fracture Microenvironment in Young and Aged Subjects. Indian J Orthop 2024; 58:1871-1882. [PMID: 39664353 PMCID: PMC11628468 DOI: 10.1007/s43465-024-01284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Background Bone regeneration following a fracture is dependent on multiple factors including skeletal stem cells (SSCs). Recruitment, proliferation, and differentiation of the SSCs is guided by the proteins and metabolites found within the fracture microenvironment. Understanding how intrinsic factors affect the fracture microenvironment has been a topic of ongoing investigation. This study sought to determine whether the levels of select proteins and metabolites within the fracture hematoma would be differentially expressed depending on the age of the patient. We hypothesized that a distinct set of proteins and metabolites found within the fracture hematoma microenvironment would be present at varying levels depending on patient age. Methods The research study was reviewed and approved by an Institutional Review Board. Hematomas were collected from subjects aged 18 years old or older undergoing surgical intervention for a fracture. Hematoma samples were selected from the biorepository and assigned to one of two fracture groups including young ankle/hindfoot and aged ankle/hindfoot. Protein and metabolite levels within each hematoma were analyzed by liquid chromatography-mass spectrometry. Results A total of seven hematomas were included in each the young ankle/hindfoot and aged ankle/hindfoot groups. From the global metabolomic analysis, creatine, 2-methylindoline, and acetyl-L-carnitine were identified as being differentially expressed between both groups. An untargeted metabolomic analysis of the two groups identified significant differences in the levels of an additional 66 metabolites. Proteomic analysis identified 34 proteins that were expressed at significantly different levels. Conclusions The level of metabolites and proteins found within the local fracture environment vary by patient age. Future investigations will focus on identifying a role for these proteins and metabolites in bone homeostasis and fracture healing. Level of Evidence N/A, basic science investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s43465-024-01284-3.
Collapse
Affiliation(s)
- John F. Dankert
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, 550 First Avenue, MSB 251, New York, NY 10016 USA
| | - Devan D. Mehta
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, 550 First Avenue, MSB 251, New York, NY 10016 USA
| | - Tori C. Rodrick
- Metabolomics Core Resources Laboratory, NYU Langone Health, New York, NY USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY USA
| | - Rown Parola
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, 550 First Avenue, MSB 251, New York, NY 10016 USA
| | - Beatrix M. Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY USA
| | - Drew R. Jones
- Metabolomics Core Resources Laboratory, NYU Langone Health, New York, NY USA
| | - Kenneth A. Egol
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, 550 First Avenue, MSB 251, New York, NY 10016 USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, 550 First Avenue, MSB 251, New York, NY 10016 USA
| |
Collapse
|
5
|
Sun Y, Zhou W, Zhu M. Serum Metabolomics Uncovers the Mechanisms of Inulin in Preventing Non-Alcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2024; 17:895. [PMID: 39065745 PMCID: PMC11279973 DOI: 10.3390/ph17070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Inulin may be a promising therapeutic molecule for treating non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms of its therapeutic activity remain unclear. To address this issue, a high-fat-diet-induced NAFLD mouse model was developed and treated with inulin. The NAFLD phenotype was evaluated via histopathological analysis and biochemical parameters, including serum levels of alanine aminotransferase, aspartate aminotransferase, liver triglycerides, etc. A serum metabolomics study was conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The results revealed that inulin mitigated NAFLD symptoms such as histopathological changes and liver cholesterol levels. Through the serum metabolomics study, 347 differential metabolites were identified between the model and control groups, and 139 differential metabolites were identified between the inulin and model groups. Additionally, 48 differential metabolites (such as phosphatidylserine, dihomo-γ-linolenic acid, L-carnitine, and 13-HODE) were identified as candidate targets of inulin and subjected to pathway enrichment analysis. The results revealed that these 48 differential metabolites were enriched in several metabolic pathways such as fatty acid biosynthesis and cardiolipin biosynthesis. Taken together, our results suggest that inulin might attenuate NAFLD partially by modulating 48 differential metabolites and their correlated metabolic pathways, constituting information that might help us find novel therapies for NAFLD.
Collapse
Affiliation(s)
- Yunhong Sun
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Mingzhe Zhu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| |
Collapse
|
6
|
Ofori E, Dziedzorm W, Buabeng A, Dogodzi F, Adusu‐Donkor L, Bernard S, Amponsah S, Asare‐Anane H. Comparative Determination of Mitochondrial Biomarkers and Their Relationship With Insulin Resistance in Type 2 Diabetic Patients: An Observational Cross-Sectional Study. Endocrinol Diabetes Metab 2024; 7:e507. [PMID: 38943337 PMCID: PMC11213964 DOI: 10.1002/edm2.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Abstract
INTRODUCTION Data suggest malfunctioning mitochondria reduce oxidation and adenosine triphosphate (ATP) production, disrupting insulin signalling. Cytochrome c (CC), acylcarnitine (AC) and citrate synthase (CS) are essential components of the mitochondria machinery and can be used as reliable biomarkers of mitochondrial dysfunction. This study aimed to determine whether mitochondrial biomarkers (AC, CS and CC) are altered in individuals with type 2 diabetes mellitus (T2DM) and to examine the association between these biomarkers and insulin resistance. METHODOLOGY A cross-sectional observational study that recruited 170 participants (88 with T2DM and 82 without DM) was conducted. Blood samples were collected from the recruits and analysed for levels of fasting glucose (FBG), AC, CS, CC, insulin, total cholesterol, triglycerides (TG), glycated haemoglobin (HbA1c) and magnesium. Blood pressure (BP) and anthropometric characteristics of participants were also taken. Appropriate formulas were used to determine %body fat, body mass index (BMI), waist-to-hip ratio (WHR), the homeostatic model assessment for insulin resistance (HOMA-IR) and insulin sensitivity (HOMA-β). RESULTS Patients with T2DM had higher levels of CC, %body fat, FBG, TG, HbA1c, BMI and HOMA-IR than controls (p < 0.05, respectively). Results showed a significant relationship between circulating CC levels versus HOMA-β (r = -0.40, p = 0.001), CS (r = -0.70, p = 0.001) and AC (r = -0.72, p = 0.001) levels in patients with T2DM. The adjusted odds increased in the T2DM patients for VLDL (OR = 6.66, p = 0.002), HbA1c (OR = 6.50, p = 0.001), FPG (OR = 3.17, p = 0.001), TG (OR = 2.36, p = 0.010), being female (OR = 2.09, p = 0.020) and CC (OR = 1.14, p = 0.016). CONCLUSION Overall, alterations in mitochondrial biomarkers, measured by AC, CC and CS, were observed in people with T2DM and showed a direct relationship with insulin resistance. These findings are potentially significant in Africa, although additional confirmation from a larger cohort is necessary.
Collapse
Affiliation(s)
| | | | | | - Francis K. Dogodzi
- School of Veterinary Medicine, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | | | - Segla K. Bernard
- West African Centre for Cell Biology of Infectious PathogensAccraGhana
| | - Seth K. Amponsah
- Department of Medical PharmacologyUniversity of Ghana Medical SchoolAccraGhana
| | | |
Collapse
|
7
|
Zhu Z, Zhang Y, Li J, Han Y, Wang L, Zhang Y, Geng H, Zheng Y, Wang X, Sun C, Li B, Chen P. Mass spectrometry imaging-based metabolomics highlights spatial metabolic alterations in three types of liver injuries. J Pharm Biomed Anal 2024; 242:116030. [PMID: 38382318 DOI: 10.1016/j.jpba.2024.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Liver's distinctive function renders it highly susceptible to diverse damage sources. Characterizing the metabolic profiles and spatial signatures in different liver injuries is imperative for early diagnosis and etiology-oriented treatment. In this comparative study, we conducted whole-body spatial metabolomics on zebrafish with liver injury induced by ethanol (EtOH), acetaminophen (APAP), and thioacetamide (TAA). The two specific levels, the whole-body and liver-specific metabolic profiles, as well as their regional distributions, were systematically mapped in situ by mass spectrometry imaging, which is distinct from conventional LC-MS and GC-MS methods. We found that liver injury regions exhibited more pronounced metabolic reprogramming than the entire organism, leading to significant alterations in eight fatty acids, three phospholipids, and four low-molecular-weight metabolites. More importantly, fatty acids as well as small molecule metabolites including glutamine, glutamate, taurine and malic acid displayed contrasting changes between alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). In addition, phospholipids, including Lyso PC (16:0) and Lyso PE (18:0), demonstrated notable down-regulation in all damaged liver, whereas PC (34:1) underwent upregulation. This study not only deepens insights into distinct potential biomarkers for liver injuries, but also underscores spatial metabolomics as a powerful tool to elucidate possible pathogenic mechanisms in other metabolic diseases.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhao Han
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yaqi Zhang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Haoyuan Geng
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yurong Zheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Baoguo Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Panpan Chen
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
8
|
Inoue N, Tsuge K, Yanagita T, Oikawa A, Nagao K. Time-Course Metabolomic Analysis: Production of Betaine Structural Analogs by Fungal Fermentation of Seaweed. Metabolites 2024; 14:201. [PMID: 38668329 PMCID: PMC11051755 DOI: 10.3390/metabo14040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Betaine structural analogs are compounds characterized by the presence of positive and negative charges in a single molecule and have been reported to have physiological properties, such as anti-inflammatory activities. In this study, we performed a metabolomic analysis of metabolite composition changes during the fermentation of Neopyropia yezoensis, an edible red alga, with Aspergillus oryzae for 72 h. The results indicated that three specific betaine structural analogs (betaine, stachydrine, and carnitine) exhibited significant changes in production by the end of the 72 h fermentation period. Time-course analysis suggested that betaine was generated from the precursor choline at 12-24 h during the late stage of fungal growth, while stachydrine was generated from the precursor-related compound glutamic acid at 48-72 h during the sporulation stage. However, the contribution of the precursor lysine to the increased production of carnitine during the 12-72 h period was unclear. This study provides useful information on the efficient production of betaine structural analogs by the fungal fermentation of seaweed as well as various other food materials.
Collapse
Affiliation(s)
- Nao Inoue
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Keisuke Tsuge
- Saga Regional Industry Support Center, Saga 849-0932, Japan;
| | - Teruyoshi Yanagita
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Koji Nagao
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
9
|
Liang G, Fang J, Zhang P, Ding S, Zhao Y, Feng Y. Metformin plus L-carnitine enhances brown/beige adipose tissue activity via Nrf2/HO-1 signaling to reduce lipid accumulation and inflammation in murine obesity. Open Med (Wars) 2024; 19:20240900. [PMID: 38463531 PMCID: PMC10921440 DOI: 10.1515/med-2024-0900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 03/12/2024] Open
Abstract
This study investigated how Metformin (Met) combined with L-carnitine (L-car) modulates brown adipose tissue (BAT) to affect obesity. High-fat-induced obese rats received daily oral gavage with Met and/or L-car, followed by serum biochemical analysis, histopathological observation on adipose tissues, and immunochemistry test for the abdominal expression of BAT-specific uncoupling protein 1 (UCP1). Mouse-embryonic-fibroblast cells were induced into adipocytes, during which Met plus L-car was added with/without saturated fatty acid (SFA). The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in adipocyte browning was investigated by gene silencing. Mitochondria biogenesis in adipocytes was inspected by Mitotracker staining. Nrf2/heme oxygenase-1 (HO-1)/BAT-related genes/proinflammatory marker expressions in adipose tissues and/or adipocytes were analyzed by Western blot, qRT-PCR, and/or immunofluorescence test. Met or L-car improved metabolic disorders, reduced adipocyte vacuolization and swelling, upregulated levels of BAT-related genes including UCP1 and downregulated proinflammatory marker expressions, and activated the Nrf2/HO-1 pathway in adipose tissues of obese rats. Met and L-car functioned more strongly than alone. In adipocytes, Met plus L-car upregulated BAT-related gene levels and protected against SFA-caused inflammation promotion and mitochondria degeneration, which yet was attenuated by Nrf2 silencing. Met plus L-car enhances BAT activity and white adipose tissue browning via the Nrf2/HO-1 pathway to reduce lipid accumulation and inflammation in obese rats.
Collapse
Affiliation(s)
- Guojin Liang
- Anesthesiology Department, Ningbo First Hospital, Ningbo, China
| | - Jie Fang
- Paediatrics Department, Ningbo Women and Children’s Hospital, Zhejiang, 315000, China
| | - Pingping Zhang
- Paediatrics Department, Ningbo Women and Children’s Hospital, Zhejiang, 315000, China
| | - Shuxia Ding
- Paediatrics Department, Ningbo Women and Children’s Hospital, Zhejiang, 315000, China
| | - Yudan Zhao
- Paediatrics Department, Ningbo Women and Children’s Hospital, Zhejiang, 315000, China
| | - Yueying Feng
- Paediatrics Department, Ningbo Women and Children’s Hospital, No. 339 Liuting Street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
10
|
Thilakarathna WPDW, Rupasinghe HPV. Proanthocyanidins-Based Synbiotics as a Novel Strategy for Nonalcoholic Fatty Liver Disease (NAFLD) Risk Reduction. Molecules 2024; 29:709. [PMID: 38338453 PMCID: PMC10856248 DOI: 10.3390/molecules29030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid β-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.
Collapse
Affiliation(s)
- Wasitha P. D. W. Thilakarathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
| |
Collapse
|
11
|
Lundsgaard AM, Bojsen-Møller KN, Kiens B. Dietary Regulation of Hepatic Triacylglycerol Content-the Role of Eucaloric Carbohydrate Restriction with Fat or Protein Replacement. Adv Nutr 2023; 14:1359-1373. [PMID: 37591342 PMCID: PMC10721463 DOI: 10.1016/j.advnut.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Accumulation of hepatic triacylglycerol (TG) is highly associated with impaired whole-body insulin-glucose homeostasis and dyslipidemia. The summarized findings from human intervention studies investigating the effect of reduced dietary carbohydrate and increased fat intake (and in studies also increased protein) while maintaining energy intake at eucaloric requirements reveal a beneficial effect of carbohydrate reduction on hepatic TG content in obese individuals with steatosis and indices of insulin resistance. Evidence suggests that the reduction of hepatic TG content after reduced intake of carbohydrates and increased fat/protein intake in humans, results from regulation of fatty acid (FA) metabolism within the liver, with an increase in hepatic FA oxidation and ketogenesis, together with a concomitant downregulation of FA synthesis from de novo lipogenesis. The adaptations in hepatic metabolism may result from reduced intrahepatic monosaccharide and insulin availability, reduced glycolysis and increased FA availability when carbohydrate intake is reduced.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Rastgoo S, Fateh ST, Nikbaf-Shandiz M, Rasaei N, Aali Y, Zamani M, Shiraseb F, Asbaghi O. The effects of L-carnitine supplementation on inflammatory and anti-inflammatory markers in adults: a systematic review and dose-response meta-analysis. Inflammopharmacology 2023; 31:2173-2199. [PMID: 37656233 DOI: 10.1007/s10787-023-01323-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
L-carnitine supplementation may be beneficial in improving inflammatory conditions and reducing the level of inflammatory cytokines. Therefore, according to the finding of randomized controlled trials (RCTs), the systematic review and meta-analysis aimed to investigate the effect of L-carnitine supplementation on inflammation in adults. To obtain acceptable articles up to October 2022, a thorough search was conducted in databases including PubMed, ISI Web of Science, the Cochrane Library, and Scopus. A random-effects model was used to estimate the weighted mean difference (WMD). We included the 48 RCTs (n = 3255) with 51 effect sizes in this study. L-carnitine supplementation had a significant effect on C-reactive protein (CRP) (p < 0.001), interleukin-6 (IL-6) (p = 0.001), tumor necrosis factor-α (TNF-α) (p = 0.002), malondialdehyde (MDA) (p = 0.001), total antioxidant capacity (TAC) (p = 0.029), alanine transaminase (ALT) (p < 0.001), and aspartate transaminase (AST) (p < 0.001) in intervention, compared to the placebo group. Subgroup analyses showed that L-carnitine supplementation had a lowering effect on CRP and TNF-α in trial duration ≥ 12 weeks in type 2 diabetes and BMI ≥ 25 kg/m2. L-carnitine supplementation reduced ALT levels in overweight and normal BMI subjects at any trial dose and trial duration ≥ 12 weeks and reduced AST levels in overweight subjects and trial dose ≥ 2 g/day. This meta-analysis revealed that L-carnitine supplementation effectively reduces the inflammatory state by increasing the level of TAC and decreasing the levels of CRP, IL-6, TNF-α and MDA in the serum.
Collapse
Affiliation(s)
- Samira Rastgoo
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yasaman Aali
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Omid Asbaghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ramakrishnan S, Mooli RGR, Han Y, Fiorenza E, Kumar S, Bello F, Nallanagulagari A, Karra S, Teng L, Jurczak M. Hepatic ketogenesis regulates lipid homeostasis via ACSL1-mediated fatty acid partitioning. RESEARCH SQUARE 2023:rs.3.rs-3147009. [PMID: 37503004 PMCID: PMC10371136 DOI: 10.21203/rs.3.rs-3147009/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Liver-derived ketone bodies play a crucial role in fasting energy homeostasis by fueling the brain and peripheral tissues. Ketogenesis also acts as a conduit to remove excess acetyl-CoA generated from fatty acid oxidation and protects against diet-induced hepatic steatosis. Surprisingly, no study has examined the role of ketogenesis in fasting-associated hepatocellular lipid metabolism. Ketogenesis is driven by the rate-limiting mitochondrial enzyme 3-hydroxymethylglutaryl CoA synthase (HMGCS2) abundantly expressed in the liver. Here, we show that ketogenic insufficiency via disruption of hepatic HMGCS2 exacerbates liver steatosis in fasted chow and high-fat-fed mice. We found that the hepatic steatosis is driven by increased fatty acid partitioning to the endoplasmic reticulum (ER) for re-esterification via acyl-CoA synthetase long-chain family member 1 (ACSL1). Mechanistically, acetyl-CoA accumulation from impaired hepatic ketogenesis is responsible for the elevated translocation of ACSL1 to the ER. Moreover, we show increased ER-localized ACSL1 and re-esterification of lipids in human NASH displaying impaired hepatic ketogenesis. Finally, we show that L-carnitine, which buffers excess acetyl-CoA, decreases the ER-associated ACSL1 and alleviates hepatic steatosis. Thus, ketogenesis via controlling hepatocellular acetyl-CoA homeostasis regulates lipid partitioning and protects against hepatic steatosis.
Collapse
|
14
|
Lyu Q, Deng H, Wang S, El-Seedi H, Cao H, Chen L, Teng H. Dietary supplementation with casein/cyanidin-3-O-glucoside nanoparticles alters the gut microbiota in high-fat fed C57BL/6 mice. Food Chem 2023; 412:135494. [PMID: 36736183 DOI: 10.1016/j.foodchem.2023.135494] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
This study aims to investigate the dietary intervention effect of casein/cyanidin-3-O-glucoside nanoparticles (Cs-C3G) on high-fat-diet (HFD)induced gut microbiota disorders. In HFD-fed C57BL/6mice, Cs-C3G has ameliorated HFD-caused fat accumulation and liver oxidative stress. Cs-C3G as a dietary supplementation can restore the abundance and diversity of gut microbiota with descending the ratio of Firmicutes to Bacteroidetes, increasing some beneficial microorganisms, and reducing some opportunistic pathogenic bacteria. In general, Cs-C3G has a effect on regulating the disturbance of gut microbiota, and then prevents HFD-induced obesity and liver damage.
Collapse
Affiliation(s)
- Qiyan Lyu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongting Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shunxin Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hesham El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, Uppsala 751 23, Sweden
| | - Hui Cao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Hui Teng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
15
|
Li X, Du Y, Xue C, Kang X, Sun C, Peng H, Fang L, Han Y, Xu X, Zhao C. SIRT2 Deficiency Aggravates Diet-Induced Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites. Int J Mol Sci 2023; 24:8970. [PMID: 37240315 PMCID: PMC10219207 DOI: 10.3390/ijms24108970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
| |
Collapse
|
16
|
Liu A, Cai Y, Yuan Y, Liu M, Zhang Z, Xu Y, Jiao P. Efficacy and safety of carnitine supplementation on NAFLD: a systematic review and meta-analysis. Syst Rev 2023; 12:74. [PMID: 37120548 PMCID: PMC10148537 DOI: 10.1186/s13643-023-02238-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The efficacy and safety of L-carnitine supplementation on non-alcoholic fatty liver disease (NAFLD) are unclear. This systematic review and meta-analysis aimed to assess the efficacy and safety of L-carnitine supplementation on NAFLD. METHODS We searched in four databases (PubMed, Embase, Cochrane Library, and Web of Science) from inception to 1 November 2022 (updated on March 20, 2023) for potentially relevant records without language restrictions. We collected information on the first author, publication year, country, setting, study design, population characteristics, duration of follow-up, outcome variables of interest, and sources of funding. We used a modified Cochrane risk of bias tool to assess the risk of bias, used GRADE to assess the certainty of evidence, and used the Credibility of Effect Modification Analyses (ICEMAN) tool to assess the credibility of any apparent subgroup effect. RESULTS This systematic review and meta-analysis included eight eligible randomized controlled trials (RCTs). Compared to placebo, low certainty evidence show that L-carnitine supplementation significantly changes (reduced) more in AST levels and ALT levels (MD: - 26.38, 95%CI: - 45.46 to - 7.30), and moderate certainty evidence show that L-carnitine supplementation significantly changes (reduced) more in HDL cholesterol levels (MD: 1.14, 95%CI: 0.21 to 2.07) and triglyceride levels (MD: - 6.92, 95%CI: - 13.82 to - 0.03). Moderate credibility of ICEMAN results shows that L-carnitine supplementation has no difference in changes of AST and ALT levels in younger ones (MD: 0.5, 95%CI: - 0.70 to 1.70) but has significant changes (reduced) in adults (MD: - 20.3, 95%CI: - 28.62 to - 12.28) compared to placebo. CONCLUSION L-carnitine supplementation may improve liver function and regulate triglyceride metabolism in patients with NAFLD, and with no significant adverse effects.
Collapse
Affiliation(s)
- Aiping Liu
- School of Traditional Chinese Medicine, Gansu Health Vocational College, No. 1666 Jiulongjiang Street, Vocational Education Park, Lanzhou New District, Lanzhou City, 730314, China.
| | - Yitong Cai
- Xiangya School of Nursing, Central South University, Changsha City, China
| | - Yuan Yuan
- Gansu Provincial Central Hospital, Lanzhou City, China
- Gansu Provincial Maternal and Child Health Hospital, Lanzhou City, China
| | - Ming Liu
- Evidence-Based Medicine Centre, Lanzhou University, Lanzhou City, China
| | - Zhengjing Zhang
- School of Traditional Chinese Medicine, Gansu Health Vocational College, No. 1666 Jiulongjiang Street, Vocational Education Park, Lanzhou New District, Lanzhou City, 730314, China
| | - Yongquan Xu
- School of Traditional Chinese Medicine, Gansu Health Vocational College, No. 1666 Jiulongjiang Street, Vocational Education Park, Lanzhou New District, Lanzhou City, 730314, China
| | - Pingzu Jiao
- School of Traditional Chinese Medicine, Gansu Health Vocational College, No. 1666 Jiulongjiang Street, Vocational Education Park, Lanzhou New District, Lanzhou City, 730314, China
| |
Collapse
|
17
|
Savic D, Mózes FE, Green PG, Burrage MK, Kjær MS, Hodson L, Neubauer S, Pavlides M, Valkovič L. Detection and alterations of acetylcarnitine (AC) in human liver by 1 H MRS at 3T after supplementation with l-carnitine. Magn Reson Med 2023; 89:1314-1322. [PMID: 36573435 PMCID: PMC11497247 DOI: 10.1002/mrm.29544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Acetylcarnitine can be assessed in vivo using proton MRS (1 H-MRS) with long TEs and this has been previously applied successfully in muscle. The aim of this study was to evaluate a 1 H-MRS technique for liver acetylcarnitine quantification in healthy humans before and after l-carnitine supplementation. METHOD Baseline acetylcarnitine levels were quantified using a STEAM sequence with prolonged TE in 15 healthy adults. Using STEAM with four different TEs was evaluated in phantoms. To assess reproducibility of the measurements, five of the participants had repeated 1 H-MRS without receiving l-carnitine supplementation. To determine if liver acetylcarnitine could be changed after l-carnitine supplementation, acetylcarnitine was quantified 2 h after intravenous l-carnitine supplementation (50 mg/kg body weight) in the other 10 participants. Hepatic lipids were also quantified from the 1 H-MRS spectra. RESULTS There was good separation between the acetylcarnitine and fat in the phantoms using TE = 100 ms. Hepatic acetylcarnitine levels were reproducible (coefficient of reproducibility = 0.049%) and there was a significant (p < 0.001) increase in the relative abundance after a single supplementation of l-carnitine. Hepatic allylic, methyl, and methylene peaks were not altered by l-carnitine supplementation in healthy volunteers. CONCLUSION Our results demonstrate that our 1 H-MRS technique could be used to measure acetylcarnitine in the liver and detect changes following intravenous supplementation in healthy adults despite the presence of lipids. Our techniques should be explored further in the study of fatty liver disease, where acetylcarnitine is suggested to be altered due to hepatic inflexibilities.
Collapse
Affiliation(s)
- Dragana Savic
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Ferenc E. Mózes
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
| | - Peregrine G. Green
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
| | - Matthew K. Burrage
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
- Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
- Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Stefan Neubauer
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
| | - Michael Pavlides
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
- Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitUniversity of OxfordOxfordUK
| | - Ladislav Valkovič
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
- Department of Imaging MethodsInstitute of Measurement Science, Slovak Academy of SciencesBratislavaSlovakia
| |
Collapse
|
18
|
Yao M, Zhou P, Qin YY, Wang L, Yao DF. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J Gastroenterol 2023; 29:1765-1778. [PMID: 37032731 PMCID: PMC10080702 DOI: 10.3748/wjg.v29.i12.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD. The sequences of its peptide chain and DNA nucleotides have been identified, and the catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, circulating carnitine level and so on. Recently, the CPT-II dysfunction has been discovered in models of liver lipid accumulation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) and abnormal activation of Wnt3a expression as a key signal molecule of the Wnt/β-catenin pathway run parallel to the alterations of hepatocyte pathology. This review focuses on some of the progress of CPT-II inactivity on IMM with liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Medical Immunology, Medical School of Nantong University & Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yan-Yan Qin
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
19
|
Sun C, Guo Y, Cong P, Tian Y, Gao X. Liver Lipidomics Analysis Revealed the Novel Ameliorative Mechanisms of L-Carnitine on High-Fat Diet-Induced NAFLD Mice. Nutrients 2023; 15:nu15061359. [PMID: 36986087 PMCID: PMC10053018 DOI: 10.3390/nu15061359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The beneficial effects of L-carnitine on non-alcoholic fatty liver disease (NAFLD) were revealed in previous reports. However, the underlying mechanisms remain unclear. In this study, we established a high fat diet (HFD)-induced NAFLD mice model and systematically explored the effects and mechanisms of dietary L-carnitine supplementation (0.2% to 4%) on NAFLD. A lipidomics approach was conducted to identify specific lipid species involved in the ameliorative roles of L-carnitine in NAFLD. Compared with a normal control group, the body weight, liver weight, concentrations of TG in the liver and serum AST and ALT levels were dramatically increased by HFD feeding (p < 0.05), accompanied with obvious liver damage and the activation of the hepatic TLR4/NF-κB/NLRP3 inflammatory pathway. L-carnitine treatment significantly improved these phenomena and exhibited a clear dose–response relationship. The results of a liver lipidomics analysis showed that a total of 12 classes and 145 lipid species were identified in the livers. Serious disorders in lipid profiles were noticed in the livers of the HFD-fed mice, such as an increased relative abundance of TG and a decreased relative abundance of PC, PE, PI, LPC, LPE, Cer and SM (p < 0.05). The relative contents of PC and PI were significantly increased and that of DG were decreased after the 4% L-carnitine intervention (p < 0.05). Moreover, we identified 47 important differential lipid species that notably separated the experimental groups based on VIP ≥ 1 and p < 0.05. The results of a pathway analysis showed that L-carnitine inhibited the glycerolipid metabolism pathway and activated the pathways of alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and Glycosylphosphatidylinositol (GPI)-anchor biosynthesis. This study provides novel insights into the mechanisms of L-carnitine in attenuating NAFLD.
Collapse
Affiliation(s)
- Chengyuan Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yan Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Tian
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
- Correspondence: (Y.T.); (X.G.); Tel.: +86-138-8620-6248 (Y.T.); +86-133-6120-6713 (X.G.)
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
- Correspondence: (Y.T.); (X.G.); Tel.: +86-138-8620-6248 (Y.T.); +86-133-6120-6713 (X.G.)
| |
Collapse
|
20
|
Alhasaniah AH. l-carnitine: Nutrition, pathology, and health benefits. Saudi J Biol Sci 2023; 30:103555. [PMID: 36632072 PMCID: PMC9827390 DOI: 10.1016/j.sjbs.2022.103555] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.
Collapse
Key Words
- AD, Alzheimer's disease
- AIF, Apoptosis-inducing factor
- Anti-wasting effect
- BBB, Blood–brain barrier
- CC, Cancer cachexia
- CHF, Chronic heart failure
- COPD, Chronic obstructive pulmonary disease
- ESRD, End-stage renal disease
- GOT, Glutamic oxaloacetic transaminase
- HCC, Hepatocellular carcinoma
- HFD, High-Fat Diet
- HOI, Highest observed intake
- Health benefits
- LC, l-carnitine
- MI, myocardial infarction
- MTX, Methotrexate
- NF-kB, Nuclear factor-kB
- Nutrition
- OSL, Observed safe level
- PCD, Primary carnitine deficiency
- Pathology
- ROS, Reactive oxygen species
- SCD, Secondary carnitine deficiency
- TLE, Temporal lobe epilepsy
- VD, Vascular dementia
- l-carnitine
Collapse
Affiliation(s)
- Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| |
Collapse
|
21
|
Dehydrovomifoliol Alleviates Nonalcoholic Fatty Liver Disease via the E2F1/AKT/mTOR Axis: Pharmacophore Modeling and Molecular Docking Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9107598. [PMID: 36777627 PMCID: PMC9908351 DOI: 10.1155/2023/9107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Objective Herbal medicine discovery is a complex and time-consuming process, while pharmacophore modeling and molecular docking methods enable simple and economic studies. The pharmacophore model provides an abstract description of essential intermolecular interactions between chemical structures, and the molecular docking technology can identify novel compounds of therapeutic interests and predict the ligand-target interaction at the molecular level. This study was based on the two methods to elucidate the mechanism of dehydrovomifoliol, an active ingredient extracted from Artemisia frigida willd, in nonalcoholic fatty liver disease (NAFLD). Methods Bioinformatics analysis was performed to screen target genes of dehydrovomifoliol in NAFLD treatment, which were thus intersected with NAFLD-related differentially expressed genes (DEGs) and NAFLD-related genes. Venn diagram was used to identify candidate DEGs. A pharmacophore model was then generated, and molecular docking was performed. A protein-protein interaction (PPI) network was constructed to identify core genes, which were evaluated using GO and the KEGG enrichment analyses. Results Seven target genes of dehydrovomifoliol in NAFLD treatment were screened out, namely E2F1, MERTK, SOX17, MMP9, SULT2A1, VEGFA, and BLVRA. The pharmacophore model and molecular docking of candidate DEGs and dehydrovomifoliol were successfully constructed. E2F1 was identified as a core gene of dehydrovomifoliol in NAFLD treatment. Further enrichment analysis indicated the regulatory role of E2F1 in fat metabolism was associated with the regulation of the AKT/mTOR signaling pathway. Conclusion Overall, this study illustrates the anti-NAFLD mechanism of dehydrovomifoliol, which could be a useful compound for developing novel drugs in the treatment of NAFLD.
Collapse
|
22
|
Changes in Lipidomics, Metabolomics, and the Gut Microbiota in CDAA-Induced NAFLD Mice after Polyene Phosphatidylcholine Treatment. Int J Mol Sci 2023; 24:ijms24021502. [PMID: 36675016 PMCID: PMC9862520 DOI: 10.3390/ijms24021502] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in most parts of the world. Although there is no first-line drug approved for the treatment of NAFLD, polyene phosphatidylcholine (PPC) is used by clinicians to treat NAFLD patients. This study aimed to evaluate the efficacy of PPC on a mice model of NAFLD, and to study the PPC's mechanism of action. The mice were fed a choline-deficient, L-amino acid-defined (CDAA) diet to induce NAFLD and were subsequently treated with PPC. The treatment effects were evaluated by the liver index, histopathological examination, and routine blood chemistry analyses. Lipidomics and metabolomics analyses of 54 samples were carried out using ultraperformance liquid chromatography (UPLC) coupled to a mass spectrometer to select for changes in metabolites associated with CDAA diet-induced NAFLD and the effects of PPC treatment. The intestinal flora of mice were extracted for gene sequencing to find differences before and after the induction of NAFLD and PPC treatment. PPC significantly improved the CDAA diet-induced NAFLD condition in mice. A total of 19 metabolites including 5 polar metabolites and 14 lipids showed marked changes. In addition, significant differences in the abundance of Lactobacillus were associated with NAFLD. We inferred that the protective therapeutic effect of PPC on the liver was related to the supplement of phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin (PC, LPC, and SM, resectively) and acylcarnitine metabolism. This study developed a methodology for exploring the pathogenesis of NAFLD and can be extended to other therapeutic agents for treating NAFLD.
Collapse
|
23
|
Lessons on Drug Development: A Literature Review of Challenges Faced in Nonalcoholic Fatty Liver Disease (NAFLD) Clinical Trials. Int J Mol Sci 2022; 24:ijms24010158. [PMID: 36613602 PMCID: PMC9820446 DOI: 10.3390/ijms24010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
NAFLD is the most common chronic liver disease worldwide, occurring in both obese and lean patients. It can lead to life-threatening liver diseases and nonhepatic complications, such as cirrhosis and cardiovascular diseases, that burden public health and the health care system. Current care is weight loss through diet and exercise, which is a challenging goal to achieve. However, there are no FDA-approved pharmacotherapies for NAFLD. This review thoroughly examines the clinical trial findings from 22 drugs (Phase 2 and above) and evaluates the future direction that trials should take for further drug development. These trialed drugs can broadly be categorized into five groups-hypoglycemic, lipid-lowering, bile-pathway, anti-inflammatory, and others, which include nutraceuticals. The multitude of challenges faced in these yet-to-be-approved NAFLD drug trials provided insight into a few areas of improvement worth considering. These include drug repurposing, combinations, noninvasive outcomes, standardization, adverse event alleviation, and the need for precision medicine with more extensive consideration of NAFLD heterogenicity in drug trials. Understandably, every evolution of the drug development landscape lies with its own set of challenges. However, this paper believes in the importance of always learning from lessons of the past, with each potential improvement pushing clinical trials an additional step forward toward discovering appropriate drugs for effective NAFLD management.
Collapse
|
24
|
Abulikemu A, Zhao X, Xu H, Li Y, Ma R, Yao Q, Wang J, Sun Z, Li Y, Guo C. Silica nanoparticles aggravated the metabolic associated fatty liver disease through disturbed amino acid and lipid metabolisms-mediated oxidative stress. Redox Biol 2022; 59:102569. [PMID: 36512914 PMCID: PMC9763688 DOI: 10.1016/j.redox.2022.102569] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolic associated fatty liver disease (MAFLD) is a public health challenge, leading to a global increase in chronic liver disease. The respiratory exposure of silica nanoparticles (SiNPs) has revealed to induce hepatotoxicity. However, its role in the pathogenesis and progression of MAFLD was severely under-studied. In this context, the hepatic impacts of SiNPs were investigated in vivo and in vitro through using ApoE-/- mice and free fatty acid (FFA)-treated L02 hepatocytes. Histopathological examinations and biochemical analysis showed SiNPs exposure via intratracheal instillation aggravated hepatic steatosis, lipid vacuolation, inflammatory infiltration and even collagen deposition in ApoE-/- mice, companied with increased hepatic ALT, AST and LDH levels. The enhanced fatty acid synthesis and inhibited fatty acid β-oxidation and lipid efflux may account for the increased hepatic TC/TG by SiNPs. Consistently, SiNPs induced lipid deposition and elevated TC in FFA-treated L02 cells. Further, the activation of hepatic oxidative stress was detected in vivo and in vitro, as evidenced by ROS accumulation, elevated MDA, declined GSH/GSSG and down-regulated Nrf2 signaling. Endoplasmic reticulum (ER) stress was also triggered in response to SiNPs-induced lipid accumulation, as reflecting by the remarkable ER expansion and increased BIP expression. More importantly, an UPLC-MS-based metabolomics analysis revealed that SiNPs disturbed the hepatic metabolic profile in ApoE-/- mice, prominently on amino acids and lipid metabolisms. In particular, the identified differential metabolites were strongly correlated to the activation of oxidative stress and ensuing hepatic TC/TG accumulation and liver injuries, contributing to the progression of liver diseases. Taken together, our study showed SiNPs promoted hepatic steatosis and liver damage, resulting in the aggravation of MAFLD progression. More importantly, the disturbed amino acids and lipid metabolisms-mediated oxidative stress was a key contributor to this phenomenon from a metabolic perspective.
Collapse
Affiliation(s)
- Alimire Abulikemu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qing Yao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
25
|
Baiges-Gaya G, Rodríguez-Tomàs E, Castañé H, Jiménez-Franco A, Amigó N, Camps J, Joven J. Combining Dietary Intervention with Metformin Treatment Enhances Non-Alcoholic Steatohepatitis Remission in Mice Fed a High-Fat High-Sucrose Diet. Biomolecules 2022; 12:biom12121787. [PMID: 36551216 PMCID: PMC9775246 DOI: 10.3390/biom12121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are serious health concerns for which lifestyle interventions are the only effective first-line treatment. Dietary interventions are effective in body weight reduction, but not in improving insulin sensitivity and hepatic lipid mobilization. Conversely, metformin increases insulin sensitivity and promotes the inhibition of de novo hepatic lipogenesis. In this study, we evaluated the metformin effectiveness in NASH prevention and treatment, when combined with dietary intervention in male mice fed a high-fat high-sucrose diet (HFHSD). Eighty 5-week-old C57BL/6J male mice were fed a chow or HFHSD diet and sacrificed at 20 or 40 weeks. The HFHSD-fed mice developed NASH after 20 weeks. Lipoprotein and lipidomic analyses showed that the changes associated with diet were not prevented by metformin administration. HFHSD-fed mice subject to dietary intervention combined with metformin showed a 19.6% body weight reduction compared to 9.8% in those mice subjected to dietary intervention alone. Lower hepatic steatosis scores were induced. We conclude that metformin should not be considered a preventive option for NAFLD, but it is effective in the treatment of this disorder when combined with dietary intervention.
Collapse
Affiliation(s)
- Gerard Baiges-Gaya
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Helena Castañé
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Andrea Jiménez-Franco
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
| | - Núria Amigó
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Biosfer Teslab, 43201 Reus, Spain
| | - Jordi Camps
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
- Correspondence: (J.C.); (J.J.)
| | - Jorge Joven
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, 43003 Tarragona, Spain
- Correspondence: (J.C.); (J.J.)
| |
Collapse
|
26
|
Mandal A. The Focus on Core Genetic Factors That Regulate Hepatic Injury in Cattle Seems to be Important for the Dairy Sector’s Long-Term Development. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cattle during the perinatal period, as well as malnutrition, generate oxidative stress which leads to high culling rates of calves after calving across the world. Although metabolic diseases have such a negative impact on the welfare and economic value of dairy cattle, that becomes a serious industrial concern across the world. According to research, genetic factors have a role or controlling fat deposition in the liver by influencing the biological processes of hepatic lipid metabolism, insulin resistance, gluconeogenesis, oxidative stress, endoplasmic reticulum stress, and inflammation, all of which contribute to hepatic damage. This review focuses on the critical regulatory mechanisms of VEGF, mTOR/AKT/p53, TNF-alpha, Nf-kb, interleukin, and antioxidants that regulate lipid peroxidation in the liver via direct or indirect pathways, suggesting that they could be a potential critical therapeutic target for hepatic disease.
Collapse
|
27
|
Wu Q, Chen Z, Ding Y, Tang Y, Cheng Y. Protective effect of traditional Chinese medicine on non-alcoholic fatty liver disease and liver cancer by targeting ferroptosis. Front Nutr 2022; 9:1033129. [PMID: 36330148 PMCID: PMC9623008 DOI: 10.3389/fnut.2022.1033129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with high incidence and is closely related to metabolic syndrome. If not controlled, it may eventually become hepatocellular carcinoma (HCC). Ferroptosis, a non-apoptotic form of programmed cell death (PCD), is closely related to NAFLD and HCC, and the mechanisms of action involved are more complex. Some studies have demonstrated that many drugs inhibit ferroptosis and protect liver steatosis or carcinogenesis. The role of Traditional Chinese Medicine (TCM), especially herbs or herbal extracts, has received increasing attention. However, there are relatively few review articles on the regulation of NAFLD by TCM through ferroptosis pathway. Here, we summarize the TCM intervention mechanism and application affecting NAFLD/NAFLD-HCC via regulation of ferroptosis. This article focuses on the relationship between ferroptosis and NAFLD or NAFLD-HCC and the protective effect of TCM on both by targeting ferroptosis. It not only summarizes the mechanism of early prevention and treatment of NAFLD, but also provides reference ideas for the development of TCM for the treatment of metabolic diseases and liver diseases.
Collapse
Affiliation(s)
- Qiongbo Wu
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Zihao Chen
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Ding
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yunting Tang
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yawei Cheng
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng,
| |
Collapse
|
28
|
Wang DD, Li YF, Mao YZ, He SM, Zhu P, Wei QL. A machine-learning approach for predicting the effect of carnitine supplementation on body weight in patients with polycystic ovary syndrome. Front Nutr 2022; 9:851275. [PMID: 36034907 PMCID: PMC9399747 DOI: 10.3389/fnut.2022.851275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to explore the effect of carnitine supplementation on body weight in patients with polycystic ovary syndrome (PCOS) and predict an appropriate dosage schedule using a machine-learning approach. Data were obtained from literature mining and the rates of body weight change from the initial values were selected as the therapeutic index. The maximal effect (Emax) model was built up as the machine-learning model. A total of 242 patients with PCOS were included for analysis. In the machine-learning model, the Emax of carnitine supplementation on body weight was -3.92%, the ET50 was 3.6 weeks, and the treatment times to realize 25%, 50%, 75%, and 80% (plateau) Emax of carnitine supplementation on body weight were 1.2, 3.6, 10.8, and 14.4 weeks, respectively. In addition, no significant relationship of dose-response was found in the dosage range of carnitine supplementation used in the present study, indicating the lower limit of carnitine supplementation dosage, 250 mg/day, could be used as a suitable dosage. The present study first explored the effect of carnitine supplementation on body weight in patients with PCOS, and in order to realize the optimal therapeutic effect, carnitine supplementation needs 250 mg/day for at least 14.4 weeks.
Collapse
Affiliation(s)
- Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ya-Feng Li
- Department of Pharmacy, Feng Xian People's Hospital, Xuzhou, China
| | - Yi-Zhen Mao
- School Infirmary, Jiangsu Normal University, Xuzhou, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ping Zhu
- Department of Endocrinology, Huaian Hospital of Huaian City, Huaian, China
| | - Qun-Li Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
29
|
Oh H, Park CH, Jun DW. Impact of l-Carnitine Supplementation on Liver Enzyme Normalization in Patients with Chronic Liver Disease: A Meta-Analysis of Randomized Trials. J Pers Med 2022; 12:jpm12071053. [PMID: 35887550 PMCID: PMC9322040 DOI: 10.3390/jpm12071053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
The effectiveness of l-carnitine in chronic liver disease remains controversial. We conducted this meta-analysis to assess the efficacy of various forms of l-carnitine in the treatment of chronic liver disease. Methods: We searched the Cochrane Library, EMBASE, KMBASE, and Medline databases for all relevant studies published until April 2022 that examined the ability of l-carnitine or its derivatives to normalize liver enzymes in patients with chronic liver disease. We performed meta-analyses of the proportion of patients with alanine aminotransferase (ALT) normalization and post-treatment serum aspartate aminotransferase (AST) and ALT levels. A random effects model was used for meta-analyses. Results: Fourteen randomized controlled trials (1217 patients) were included in this meta-analysis. The proportion of patients in whom ALT normalized was higher in the carnitine-orotate treatment group than in the control group (pooled odds ratio (OR), 95% confidence interval (CI) = 4.61 (1.48–14.39)). The proportion of patients in whom ALT normalized was also higher among those who received the carnitine-orotate complex, a combination of carnitine-orotate, biphenyl dimethyl dicarboxylate, and other minor supplementary compounds than in those who did not without significant heterogeneity (pooled OR (95% CI) = 18.88 (7.70–46.27); df = 1; p = 0.51; I2 = 0%). l-carnitine supplementation effectively lowered serum ALT levels compared to controls (pooled mean difference (95% CI) = −11.99 (−22.48 to −1.49)). Conclusions: l-carnitine supplementation significantly lowered ALT and AST levels and normalized ALT levels in patients with chronic liver disease.
Collapse
Affiliation(s)
- Hyunwoo Oh
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu 11690, Korea;
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
- Correspondence: (C.H.P.); (D.W.J.); Tel.: +82-31-560-2230 (C.H.P.); +82-2-2290-8338 (D.W.J.)
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Korea
- Correspondence: (C.H.P.); (D.W.J.); Tel.: +82-31-560-2230 (C.H.P.); +82-2-2290-8338 (D.W.J.)
| |
Collapse
|
30
|
Song YP, Lv JW, Zhao Y, Chen X, Zhang ZC, Fan YJ, Zhang C, Gao L, Huang Y, Wang H, Xu DX. DNA hydroxymethylation reprogramming of β-oxidation genes mediates early-life arsenic-evoked hepatic lipid accumulation in adult mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128511. [PMID: 35739688 DOI: 10.1016/j.jhazmat.2022.128511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
The metabolic disorders are becoming an epidemic disease endangering public health in countries. Environmental factors are mainly reason for the growth of metabolic disorders. Previous research suggests that DNA methylation is a potential mechanism. Recently, it has been reported that DNA hydroxymethylation is also a stable marker of epigenetic reprogramming. Hence, the study aims to investigate whether DNA hydroxymehylation mediates early-life environmental stress-evoked metabolic disorder in adulthood. Mice were orally administered with arsenic (As), an environmental stressor, throughout pregnancy. We show that early-life As exposure induces glucose intolerance and hepatic lipid accumulation in adulthood. Early-life As exposure alters epigenetic reprogramming and expression of lipid metabolism-related genes including β-oxidation-specific genes in adulthood. Of interest, early-life As exposure alters epigenetic reprogramming of hepatic lipid metabolism partially through reducing DNA hydroxymethylation modification of β-oxidation-related genes in developing liver. Mechanistically, early-life As exposure suppresses ten-eleven translocation (TET) activity through downregulating isocitrate dehydrogenases (Idh) and reducing alpha-ketoglutarate (α-KG) content in the developing liver. In addition, early-life As exposure inhibits TET1 binding to CpG-rich fragments of β-oxidation-related genes in developing liver. This study provide novel evidence that early-life environmental stress leads to later life metabolic disorders by altering hepatic DNA hydroxymethylation reprogramming.
Collapse
Affiliation(s)
- Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ying Zhao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xu Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
31
|
Nagao K, Inoue N, Tsuge K, Oikawa A, Kayashima T, Yanagita T. Dried and Fermented Powders of Edible Algae ( Neopyropia yezoensis) Attenuate Hepatic Steatosis in Obese Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092640. [PMID: 35565990 PMCID: PMC9099931 DOI: 10.3390/molecules27092640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
Edible algae Neopyropia yezoensis is used as “Nori”, its dried sheet product, in Japanese cuisine. Its lipid components reportedly improve hepatic steatosis in obese db/db mice. In this study, we prepared “Nori powder (NP)” and “fermented Nori powder (FNP)” to utilize the functional lipids contained in “Nori” and examined their nutraceutical effects in vivo. Male db/db mice were fed a basal AIN-76 diet, a 10% NP-supplemented diet, or a 10% FNP-supplemented diet for 4 weeks. We detected eicosapentaenoic acid (EPA) present in both NP and FNP in the serum and liver of db/db mice in a dose-dependent manner. The NP diet reduced hepatic triglyceride accumulation (by 58%) in db/db mice by modulating gene expression, which resulted in the inhibition of lipogenic enzyme activity. Additionally, NP intake significantly suppressed the expression of inflammatory genes in the liver and hepatic injury marker levels in the sera (by 26%) of db/db mice. The FNP diet also led to a marked reduction in hepatic triglyceride accumulation (by 50%) and hepatic injury (by 28%) in db/db mice, and the mechanism of these alleviative actions was similar to that of the NP diet. Although the EPA content of FNP was one-third that of NP, metabolomic analysis revealed that bioactive betaine analogs, such as stachydrine, betaine, and carnitine, were detected only in FNP. In conclusion, we suggest that (1) mechanical processing of “Nori” makes its lipid components readily absorbable by the body to exert their lipid-lowering effects, and (2) fermentation of “Nori” produces anti-inflammatory molecules and lipid-lowering molecules, which together with the lipid components, can exert hepatic steatosis-alleviating effects.
Collapse
Affiliation(s)
- Koji Nagao
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-952-28-8781
| | - Nao Inoue
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
| | - Keisuke Tsuge
- Saga Regional Industry Support Center, Saga 849-0932, Japan;
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan;
| | - Tomoko Kayashima
- Faculty of Education, Saga University, 1 Honjo-machi, Saga 840-8502, Japan;
| | - Teruyoshi Yanagita
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
| |
Collapse
|
32
|
Iturrospe E, da Silva KM, Robeyns R, van de Lavoir M, Boeckmans J, Vanhaecke T, van Nuijs ALN, Covaci A. Metabolic Signature of Ethanol-Induced Hepatotoxicity in HepaRG Cells by Liquid Chromatography-Mass Spectrometry-Based Untargeted Metabolomics. J Proteome Res 2022; 21:1153-1166. [PMID: 35274962 DOI: 10.1021/acs.jproteome.2c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease is highly prevalent but poorly identified and characterized, leading to knowledge gaps, which impairs early diagnosis. Excessive alcohol consumption is known to alter lipid metabolism, followed by progressive intracellular lipid accumulation, resulting in alcoholic fatty liver disease. In this study, HepaRG cells were exposed to ethanol at IC10 and 1/10 IC10 for 24 and 48 h. Metabolic alterations were investigated intra- and extracellularly with liquid chromatography-high-resolution mass spectrometry. Ion mobility was added as an extra separation dimension for untargeted lipidomics to improve annotation confidence. Distinctive patterns between exposed and control cells were consistently observed, with intracellular upregulation of di- and triglycerides, downregulation of phosphatidylcholines and phosphatidylethanolamines, sphingomyelins, and S-adenosylmethionine, among others. Several intracellular metabolic patterns could be related to changes in the extracellular environment, such as increased intracellular hydrolysis of sphingomyelins, leading to increased phosphorylcholine secretion. Carnitines showed alterations depending on the size of their carbon chain, which highlights the interplay between β-oxidation in mitochondria and peroxisomes. Potential new biomarkers of ethanol-induced hepatotoxicity have been observed, such as ceramides with a sphingadienine backbone, octanoylcarnitine, creatine, acetylcholine, and ethoxylated phosphorylcholine. The combination of the metabolic fingerprint and footprint enabled a comprehensive investigation of the pathophysiology behind ethanol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | | | - Rani Robeyns
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Maria van de Lavoir
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
33
|
Virmani MA, Cirulli M. The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int J Mol Sci 2022; 23:ijms23052717. [PMID: 35269860 PMCID: PMC8910660 DOI: 10.3390/ijms23052717] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria control cellular fate by various mechanisms and are key drivers of cellular metabolism. Although the main function of mitochondria is energy production, they are also involved in cellular detoxification, cellular stabilization, as well as control of ketogenesis and glucogenesis. Conditions like neurodegenerative disease, insulin resistance, endocrine imbalances, liver and kidney disease are intimately linked to metabolic disorders or inflexibility and to mitochondrial dysfunction. Mitochondrial dysfunction due to a relative lack of micronutrients and substrates is implicated in the development of many chronic diseases. l-carnitine is one of the key nutrients for proper mitochondrial function and is notable for its role in fatty acid oxidation. l-carnitine also plays a major part in protecting cellular membranes, preventing fatty acid accumulation, modulating ketogenesis and glucogenesis and in the elimination of toxic metabolites. l-carnitine deficiency has been observed in many diseases including organic acidurias, inborn errors of metabolism, endocrine imbalances, liver and kidney disease. The protective effects of micronutrients targeting mitochondria hold considerable promise for the management of age and metabolic related diseases. Preventing nutrient deficiencies like l-carnitine can be beneficial in maintaining metabolic flexibility via the optimization of mitochondrial function. This paper reviews the critical role of l-carnitine in mitochondrial function, metabolic flexibility and in other pathophysiological cellular mechanisms.
Collapse
|
34
|
Lower plasma glutathione, choline, and betaine concentrations are associated with fatty liver in postmenopausal women. Nutr Res 2022; 101:23-30. [PMID: 35364359 DOI: 10.1016/j.nutres.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
|
35
|
Abdel-Emam RA, Ali MF. Effect of l-carnitine supplementation on lead acetate-induced liver cell apoptosis and inflammation: role of caspase-3 and glycogen synthase kinase-3β enzymes. Life Sci 2021; 291:120277. [PMID: 34979196 DOI: 10.1016/j.lfs.2021.120277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023]
Abstract
AIM The study aimed at studying the hepatoprotective effect of l-carnitine against lead (Pb) acetate-induced hepatocellular injury, emphasizing the role of caspase-3 and glycogen synthase kinase-3β in hepatocellular apoptosis and inflammation. MATERIALS AND METHODS Male Wistar rats were used. The experimental approach involved estimation of the liver enzymes' serum levels. Oxidative and inflammatory biomarkers were measured in hepatic tissue homogenates. Paraffin-embedded hepatic sections were prepared for histopathology and immunohistochemistry. Quantitative determination of the phosphorylated glycogen synthase kinase-3 beta was performed. KEY FINDINGS The serum showed a significant elevation in ALT, AST, and LDH; tissue homogenates showed significant elevation in lipid peroxide and inflammatory biomarkers with significant reduction in reduced glutathione in the Pb acetate-treated group. Co-administration of l-carnitine with Pb acetate produced significant reduction in liver enzymes with significant improvement in oxidant, antioxidant and inflammatory markers. Lead acetate treatment significantly reduced the phosphorylated glycogen synthase kinase-3 beta, while l-carnitine enhanced its phosphorylation. Histopathological examination showed inflammatory reaction around blood vessels with fatty degeneration in hepatocytes of the Pb acetate intoxicated group. l-Carnitine caused a decrease in hepatic damage with minimal vascular alterations in central vein. Caspase-3 expression in hepatocytes was decreased in Pb-treated group supplemented with l-carnitine. SIGNIFICANCE Our study reveals that oxidative stress and inflammation participate in Pb acetate-induced hepatocellular injury. Glycogen synthase kinase-3β and caspase-3 play role in Pb acetate-induced hepatic damage. l-Carnitine shows significant protective effects against hepatocellular apoptosis and inflammation induced by Pb acetate through antioxidant, anti-inflammatory and anti-apoptotic pathways in part mediated by GSK-3β inhibition.
Collapse
Affiliation(s)
- Rania A Abdel-Emam
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt.
| | - Marwa F Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
36
|
Analysis of Serum Metabolomics in Rats with Osteoarthritis by Mass Spectrometry. Molecules 2021; 26:molecules26237181. [PMID: 34885759 PMCID: PMC8658788 DOI: 10.3390/molecules26237181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022] Open
Abstract
Osteoarthritis is a common multifactorial chronic disease that occurs in articular cartilage, subchondral bone, and periarticular tissue. The pathogenesis of OA is still unclear. To investigate the differences in serum metabolites between OA and the control group, liquid chromatography/mass spectrometry (LC/MS)-based metabolomics was used. To reveal the pathogenesis of OA, 12 SD male rats were randomly divided into control and OA groups using collagenase to induce OA for modeling, and serum was collected 7 days after modeling for testing. The OA group was distinguished from the control group by principal component analysis and orthogonal partial least squares-discriminant analysis, and six biomarkers were finally identified. These biomarkers were metabolized through tryptophan metabolism, glutamate metabolism, nitrogen metabolism, spermidine metabolism, and fatty acid metabolism pathways. The study identified metabolites that may be altered in OA, suggesting a role in OA through relevant metabolic pathways. Metabolomics, as an important tool for studying disease mechanisms, provides useful information for studying the metabolic mechanisms of OA.
Collapse
|
37
|
Kaneko S, Yanai K, Kitano T, Miyazawa H, Hirai K, Ookawara S, Morishita Y. Change in Anemia by Carnitine Supplementation in Patients Undergoing Peritoneal Dialysis: A Retrospective Observational Study. Front Med (Lausanne) 2021; 8:767945. [PMID: 34805230 PMCID: PMC8602557 DOI: 10.3389/fmed.2021.767945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Carnitine supplementation improves various dialysis-related symptoms including erythropoietin-resistant anemia in patients who are undergoing hemodialysis. However, the utility of carnitine supplementation in patients who are undergoing peritoneal dialysis (PD) is not fully understood. Methods: Thirteen patients undergoing PD [mean age: 54.2 ± 14.8 years, males: 9/13 (69%)] administered oral carnitine supplementation (mean dose: 9.1 ± 3.3 mg/kg/day) for 4–6 months were retrospectively investigated. Changes in serum carnitine levels and other clinical variables including the erythropoietin resistance index (ERI) were analyzed after carnitine supplementation. Results: Carnitine supplementation increased serum total carnitine (48.5 ± 10.2 vs. 130.1 ± 37.2 μmol/L, P < 0.01), free carnitine (31.1 ± 8.3 vs. 83.1 ± 24.6 μmol/L, P < 0.01), and acyl carnitine (17.4 ± 2.8 vs. 46.9 ± 13.8, P < 0.01) levels. The acyl carnitine/free carnitine ratio was not affected (0.6 ± 0.1 vs. 0.6 ± 0.1, P = 0.75). Although the mean ERI was not affected by carnitine supplementation [13.7 ± 4.7 vs. 11.6 ± 3.4 IU/kg/(g/dL)/week, P = 0.28], the ERI change rate was significantly decreased (1.00 ± 0.00 vs. 0.87 ± 0.11, P < 0.01). Conclusion: Carnitine supplementation may improve erythropoietin resistance in patients who are undergoing PD.
Collapse
Affiliation(s)
- Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Taisuke Kitano
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Haruhisa Miyazawa
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
38
|
Quesada-Vázquez S, Colom-Pellicer M, Navarro-Masip È, Aragonès G, Del Bas JM, Caimari A, Escoté X. Supplementation with a Specific Combination of Metabolic Cofactors Ameliorates Non-Alcoholic Fatty Liver Disease, Hepatic Fibrosis, and Insulin Resistance in Mice. Nutrients 2021; 13:3532. [PMID: 34684533 PMCID: PMC8541294 DOI: 10.3390/nu13103532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease in the world. Obesity, insulin resistance, and dyslipidemia are multifactorial risk factors strongly associated with NAFLD/NASH. Here, a specific combination of metabolic cofactors (a multi-ingredient; MI) containing precursors of glutathione (GSH) and nicotinamide adenine dinucleotide (NAD+) (betaine, N-acetyl-cysteine, L-carnitine and nicotinamide riboside) was evaluated as effective treatment for the NAFLD/NASH pathophysiology. Six-week-old male mice were randomly divided into control diet animals and animals exposed to a high fat and high fructose/sucrose diet to induce NAFLD. After 16 weeks, diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (HFHFr group) or with a combination of metabolic cofactors (MI group) for 4 additional weeks, and blood and liver were obtained from all animals for biochemical, histological, and molecular analysis. The MI treatment reduced liver steatosis, decreasing liver weight and hepatic lipid content, and liver injury, as evidenced by a pronounced decrease in serum levels of liver transaminases. Moreover, animals supplemented with the MI cocktail showed a reduction in the gene expression of some proinflammatory cytokines when compared with their HFHFr counterparts. In addition, MI supplementation was effective in decreasing hepatic fibrosis and improving insulin sensitivity, as observed by histological analysis, as well as a reduction in fibrotic gene expression (Col1α1) and improved Akt activation, respectively. Taken together, supplementation with this specific combination of metabolic cofactors ameliorates several features of NAFLD, highlighting this treatment as a potential efficient therapy against this disease in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Josep M. Del Bas
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain;
| | - Xavier Escoté
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| |
Collapse
|
39
|
Zeybel M, Altay O, Arif M, Li X, Yang H, Fredolini C, Akyildiz M, Saglam B, Gonenli MG, Ural D, Kim W, Schwenk JM, Zhang C, Shoaie S, Nielsen J, Uhlén M, Borén J, Mardinoglu A. Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients. Mol Syst Biol 2021; 17:e10459. [PMID: 34694070 PMCID: PMC8724764 DOI: 10.15252/msb.202110459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to excess fat accumulation in the liver. In animal experiments and human kinetic study, we found that administration of combined metabolic activators (CMAs) promotes the oxidation of fat, attenuates the resulting oxidative stress, activates mitochondria, and eventually removes excess fat from the liver. Here, we tested the safety and efficacy of CMA in NAFLD patients in a placebo-controlled 10-week study. We found that CMA significantly decreased hepatic steatosis and levels of aspartate aminotransferase, alanine aminotransferase, uric acid, and creatinine, whereas found no differences on these variables in the placebo group after adjustment for weight loss. By integrating clinical data with plasma metabolomics and inflammatory proteomics as well as oral and gut metagenomic data, we revealed the underlying molecular mechanisms associated with the reduced hepatic fat and inflammation in NAFLD patients and identified the key players involved in the host-microbiome interactions. In conclusion, we showed that CMA can be used to develop a pharmacological treatment strategy in NAFLD patients.
Collapse
Affiliation(s)
- Mujdat Zeybel
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust & University of NottinghamNottinghamUK
- Nottingham Digestive Diseases Centre, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Gastroenterology and Hepatology, School of MedicineKoç UniversityIstanbulTurkey
| | - Ozlem Altay
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
| | - Muhammad Arif
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
| | - Xiangyu Li
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
| | - Hong Yang
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
| | - Claudia Fredolini
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
| | - Murat Akyildiz
- Department of Gastroenterology and Hepatology, School of MedicineKoç UniversityIstanbulTurkey
| | - Burcin Saglam
- Department of Gastroenterology and Hepatology, School of MedicineKoç UniversityIstanbulTurkey
| | - Mehmet Gokhan Gonenli
- Department of Gastroenterology and Hepatology, School of MedicineKoç UniversityIstanbulTurkey
| | - Dilek Ural
- Department of Cardiology, School of MedicineKoç UniversityIstanbulTurkey
| | - Woonghee Kim
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
| | - Jochen M Schwenk
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
| | - Cheng Zhang
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Saeed Shoaie
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
- Centre for Host‐Microbiome Interactions, Faculty of DentistryOral & Craniofacial Sciences, King’s College LondonLondonUK
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Mathias Uhlén
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
| | - Jan Borén
- Department of Molecular and Clinical MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Adil Mardinoglu
- Science for Life LaboratoryKTH ‐ Royal Institute of TechnologyStockholmSweden
- Centre for Host‐Microbiome Interactions, Faculty of DentistryOral & Craniofacial Sciences, King’s College LondonLondonUK
| |
Collapse
|
40
|
Li N, Zhao H. Role of Carnitine in Non-alcoholic Fatty Liver Disease and Other Related Diseases: An Update. Front Med (Lausanne) 2021; 8:689042. [PMID: 34434943 PMCID: PMC8381051 DOI: 10.3389/fmed.2021.689042] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Carnitine is an amino acid-derived substance that coordinates a wide range of biological processes. Such functions include transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix, regulation of acetyl-CoA/CoA, control of inter-organellar acyl traffic, and protection against oxidative stress. Recent studies have found that carnitine plays an important role in several diseases, including non-alcoholic fatty liver disease (NAFLD). However, its effect is still controversial, and its mechanism is not clear. Herein, this review provides current knowledge on the biological functions of carnitine, the “multiple hit” impact of carnitine on the NAFLD progression, and the downstream mechanisms. Based on the “multiple hit” hypothesis, carnitine inhibits β-oxidation, improves mitochondrial dysfunction, and reduces insulin resistance to ameliorate NAFLD. L-carnitine may have therapeutic role in liver diseases including non-alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, alcoholic fatty liver disease, and viral hepatitis. We also discuss the prospects of L-carnitine supplementation as a therapeutic strategy in NAFLD and related diseases, and the factors limiting its widespread use.
Collapse
Affiliation(s)
- Na Li
- Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of General Practice, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Saneian H, Khalilian L, Heidari-Beni M, Khademian M, Famouri F, Nasri P, Hassanzadeh A, Kelishadi R. Effect of l-carnitine supplementation on children and adolescents with nonalcoholic fatty liver disease (NAFLD): a randomized, triple-blind, placebo-controlled clinical trial. J Pediatr Endocrinol Metab 2021; 34:897-904. [PMID: 33939897 DOI: 10.1515/jpem-2020-0642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/03/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the pediatric population at global level. Present study aims to assess the effect of l-carnitine supplementation on the NAFLD in children and adolescents. METHODS This randomized, triple-blind, placebo-controlled clinical trial was conducted in 2018-2019. Study was carried out in NAFLD participants (5-15 years). They were randomly assigned to receive either 50 mg/kg/day l-carnitine twice a day or identical placebo per day for three months. Liver enzymes and liver ultrasonography were assessed before and after the intervention. Both groups received similar consultation for lifestyle changes. RESULTS Overall, 55 participants completed the study, 30 patients in the l-carnitine group and 25 patients in placebo group. Mean changes of anthropometric measurements did not have significant differences between groups (p>0.05). No significant differences in the mean changes of aspartate aminotransferase (AST) (p=0.82) and alanine aminotransferase (ALT) (p=0.76) levels were documented between two groups. Based on within-group analysis, there were significant changes in AST and ALT levels before and after the intervention in both groups. The sonographic grades of fatty liver were not significantly different between two groups before (p=0.94) and after intervention (p=0.93). CONCLUSIONS In the present clinical trial, L-carnitine did not have significant effect on improving biochemical and sonographic markers of NAFLD in children and adolescents. Future studies are necessary to evaluate the applicability and efficacy of long-term l-carnitine supplementation to treatment of NAFLD in pediatric population. TRIAL REGISTRATION IRCT20170628034786N2.
Collapse
Affiliation(s)
- Hossein Saneian
- Department of Pediatrics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Khalilian
- Department of Pediatrics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Khademian
- Department of Pediatrics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Famouri
- Department of Pediatrics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Nasri
- Department of Pediatrics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Hassanzadeh
- Department of Statistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Wen W, Zhang Z, Jiang B, Hao Y. Orbitrap-MS-based untargeted metabolomics study on the therapeutic effect of colchicine on myocardial infarction. Biomed Chromatogr 2021; 35:e5148. [PMID: 33908076 DOI: 10.1002/bmc.5148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Myocardial infarction (MI) is one of the most common causes of death worldwide. A metabolomic approach based on an ultra-high performance liquid chromatography-Orbitrap analytical method was established to analyze the metabolites and to investigate the therapeutic mechanism of colchicine. Forty-six biomarkers were significantly changed between the sham group and the MI group. Thirty-five metabolites were increased and 11 were decreased in MI rats, and colchicine reversed all of them. Pathway analysis showed that the TCA cycle, alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism and arginine biosynthesis were altered in the MI group. Ingenuity pathway function and network analysis showed that colchicine improved MI through regulation of cardiac β-adrenergic signaling and cardiac hypertrophy signaling. The present study provided a useful approach for exploring the mechanism of MI and evaluating the efficacy of colchicine.
Collapse
Affiliation(s)
- Wei Wen
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bing Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Hao
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Zhang D, Zheng W, Li X, Liang G, Ye N, Liu Y, Li A, Liu X, Zhang R, Cheng J, Yang H, Gong M. Investigation of Obesity-Alleviation Effect of Eurycoma longifolia on Mice Fed with a High-Fat Diet through Metabolomics Revealed Enhanced Decomposition and Inhibition of Accumulation of Lipids. J Proteome Res 2021; 20:2714-2724. [PMID: 33856806 DOI: 10.1021/acs.jproteome.1c00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The metabolic and bioactivity effects of Eurycoma longifolia (Eucalyptus longifolia) in obesity treatment were studied in mice fed with a high-fat diet using a metabolomics approach. Aqueous extracts of E. longifolia were obtained via grinding, dissolving, and freeze-drying. The hepatic steatosis effect of E. longifolia was characterized by hematoxylin and eosin histological staining. External performance of the obesity-alleviation effect was monitored by measuring body and food weight. In addition, the metabolomics analysis of the E. longifolia-mice interaction system was performed using the established platform combining liquid chromatography-tandem mass spectrometry with statistical analysis. The presence and spatial distribution patterns of differential molecules were further evaluated through desorption electrospray ionization-mass spectrometry imaging. The results showed that E. longifolia played a vital role in downregulating lipid accumulation (especially triacylglycerols) and fatty acids biosynthesis together with enhanced lipid decomposition and healing in Bagg albino mice. During such a process, E. longifolia mainly induced metabolomic alterations of amino acids, organic acids, phospholipids, and glycerolipids. Moreover, under the experimental concentrations, E. longifolia induced more fluctuations of aqueous-soluble metabolites in the plasma and lipids in the liver than in the kidneys. This study provides an advanced alternative to traditional E. longifolia-based studies for evaluating the metabolic effects and bioactivity of E. longifolia through metabolomics technology, revealing potential technological improvement and clinical application.
Collapse
Affiliation(s)
- Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Ge Liang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Nan Ye
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Ang Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Rui Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Hao Yang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| |
Collapse
|
44
|
Himoto T. Diet and Nutrition for Hepatitis. Nutrients 2021; 13:nu13041210. [PMID: 33916929 PMCID: PMC8067608 DOI: 10.3390/nu13041210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
The impairment of liver function frequently causes various type of malnutrition, as the liver is one of the most important organs involved in maintaining nutritional homeostasis [...].
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan
| |
Collapse
|
45
|
Lin CW, Huang TW, Peng YJ, Lin YY, Mersmann HJ, Ding ST. A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poult Sci 2021; 100:100869. [PMID: 33516481 PMCID: PMC7936157 DOI: 10.1016/j.psj.2020.11.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver diseases, common metabolic diseases in chickens, can lead to a decrease in egg production and sudden death of chickens. To solve problems caused by the diseases, reliable chicken models of fatty liver disease are required. To generate chicken models of fatty liver, 7-week-old ISA female chickens were fed with a control diet (17% protein, 5.3% fat, and 1,300 mg/kg choline), a low protein and high fat diet (LPHF, 13% protein, 9.1% fat, and 1,300 mg/kg choline), a high cholesterol with low choline diet (CLC, 17% protein, 7.6% fat with additional 2% cholesterol, and 800 mg/kg choline), a low protein, high fat, high cholesterol, and low choline diet (LPHFCLC, 13% protein, 12.6% fat with additional 2% cholesterol, and 800 mg/kg choline) for 4 wk. Our data showed that the CLC and LPHFCLC diets induced hyperlipidemia. Histological examination and the content of hepatic lipids indicated that the CLC and LPHFCLC diets induced hepatic steatosis. Plasma dipeptidyl peptidase 4, a biomarker of fatty liver diseases in laying hens, increased in chickens fed with the CLC or LPHFCLC diets. Hepatic ballooning and immune infiltration were observed in these livers accompanied by elevated interleukin 1 beta and lipopolysaccharide induced tumor necrosis factor mRNAs suggesting that the CLC and LPHFCLC diets also caused steatohepatitis in these livers. These diets also induced hepatic steatosis in Plymouth Rock chickens. Thus, the CLC and LPHFCLC diets can be used to generate models for fatty liver diseases in different strains of chickens. In ISA chickens fed with the CLC diet, peroxisome proliferator-activated receptor γ, sterol regulatory element binding transcription factor 1, and fatty acid synthase mRNAs increased in the livers, suggesting that lipogenesis was enhanced by the CLC treatment. Our data show that treatment with CLC or LPHFCLC for 4 wk induces fatty liver disease in chickens. These diets can be utilized to rapidly generate chicken models for fatty liver research.
Collapse
Affiliation(s)
- Chiao-Wei Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 10617; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Ting-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Yu-Ju Peng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Harry John Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Shih-Torng Ding
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 10617; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617.
| |
Collapse
|
46
|
Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021; 10:antiox10020174. [PMID: 33530432 PMCID: PMC7911109 DOI: 10.3390/antiox10020174] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH). The antioxidant response, regulated by the Nrf2/ARE pathway, is a key component in this process and counteracts oxidative stress-induced damage, contributing to the restoration of normal lipid metabolism. Therefore, modulation of the antioxidant response emerges as an interesting target to prevent NAFLD development and progression. This review highlights the link between disturbed lipid metabolism and oxidative stress in the context of NAFLD. In addition, emerging potential therapies based on antioxidant effects and their likely molecular targets are discussed.
Collapse
|