1
|
Zhang M, Zhu C. Dynamic Hydrogels against Infections: From Design to Applications. Gels 2024; 10:331. [PMID: 38786248 PMCID: PMC11120666 DOI: 10.3390/gels10050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Human defense against infection remains a global topic. In addition to developing novel anti-infection drugs, therapeutic drug delivery strategies are also crucial to achieving a higher efficacy and lower toxicity of these drugs for treatment. The application of hydrogels has been proven to be an effective localized drug delivery approach to treating infections without generating significant systemic adverse effects. The recent emerging dynamic hydrogels further show power as injectable formulations, giving new tools for clinical treatments. In this review, we delve into the potential applications of dynamic hydrogels in antibacterial and antiviral treatments and elaborate on their molecular designs and practical implementations. By outlining the chemical designs underlying these hydrogels, we discuss how the choice of dynamic chemical bonds affects their stimulus responsiveness, self-healing capabilities, and mechanical properties. Afterwards, we focus on how to endow dynamic hydrogels with anti-infection properties. By comparing different drug-loading methods, we highlight the advantages of dynamic chemical bonds in achieving sustained and controlled drug release. Moreover, we also include the design principles and uses of hydrogels that possess inherent anti-infective properties. Furthermore, we explore the design principles and applications of hydrogels with inherent anti-infective properties. Finally, we briefly summarize the current challenges faced by dynamic hydrogels and present a forward-looking vision for their future development. Through this review, we expect to draw more attention to these therapeutic strategies among scientists working with chemistry, materials, as well as pharmaceutics.
Collapse
Affiliation(s)
| | - Chongyu Zhu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| |
Collapse
|
2
|
Tiple RH, Jamane SR, Khobragade DS. Antifungal Activity of Neem Leaf Extract With Eucalyptus citriodora Oil and Cymbopogon martini Oil Against Tinea Capitis: An In-Vitro Evaluation. Cureus 2024; 16:e59671. [PMID: 38836134 PMCID: PMC11148711 DOI: 10.7759/cureus.59671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Tinea capitis, often known as ringworm of the scalp, is a fungal infection that affects the scalp, eyelashes, and eyebrows. It is generally caused by dermatophytes from the genera Trichophyton and Microsporum. Trichophyton tonsurans and Microsporum canis are the main etiological agents responsible for most of the cases of tinea capitis globally. Tinea capitis commonly manifests as itchy, scaly patches of hair loss. Tinea capitis is the prevailing dermatophyte illness among children globally. Methods An in-vitroevaluation study was conducted to assess the antifungal properties of ethanolic extracts of neem leaves and the oils of Eucalyptus citriodora and Cymbopogon martini, both individually and in combination. The agar-well diffusion method and the M38-A2 microbroth dilution method were employed to evaluate the antifungal efficacy against pathogenic dermatophyte strains, namely Microsporum canis and Trichophyton tonsurans. The fully mature green leaves were treated with ethanol to make the neem leaf extract. Additionally, high-performance liquid chromatographic analysis was carried out to determine the contents of the terpenoids. Fluconazole, an antifungal drug, is used as a standard. Results The findings demonstrated an overall inhibition of the growth of dermatophytes at a minimal inhibitory concentration of 187.5 and 375 μg/ml for neem leaf extract and 0.625 to 2.5 μl/ml for selected herbal oils, whereas it was 0.25 μg/ml and 0.50 μg/ml for positive control against Microsporum canis and Trichophyton tonsurans, respectively. Conclusion The phytochemical investigation of the ethanolic extracts in neem leaves revealed the presence of terpenoids, which are known for their significant biological activity. The study's findings demonstrated the therapeutic capabilities of neem leaf extract in combination with the oils of Eucalyptus citriodora and Cymbopogon martini for managing the tinea capitis infection. A broader and improved antifungal spectrum was seen when neem leaf extract and oils were combined. Therefore, it can be developed into a suitable formulation for the management of tinea capitis.
Collapse
Affiliation(s)
- Rupali H Tiple
- Pharmacy, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shamli R Jamane
- Bio-processing and Herbal Division, Mahatma Gandhi Institute for Rural Industrialization, Wardha, IND
| | - Deepak S Khobragade
- Pharmacy, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Sharma M, Bains A, Goksen G, Sridhar K, Sharma M, Mousavi Khaneghah A, Chawla P. Bioactive polysaccharides from Aegle marmelos fruit: Recent trends on extraction, bio-techno functionality, and food applications. Food Sci Nutr 2024; 12:3150-3163. [PMID: 38726405 PMCID: PMC11077228 DOI: 10.1002/fsn3.4026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/12/2024] Open
Abstract
Polysaccharides from non-conventional sources, such as fruits, have gained significant attention recently. Aegle marmelos (Bael), a non-conventional fruit, is an excellent source of biologically active components with potential indigenous therapeutic and food applications. Apart from polyphenolic components, this is an excellent source of mucilaginous polysaccharides. Polysaccharides are one the major components of bael fruit, having a high amount of galactose and glucuronic acid, which contributes to its potential therapeutic properties. Therefore, this review emphasizes the conventional and emerging techniques of polysaccharide extraction from bael fruit. Insight into the attributes of polysaccharide components, their techno-functional properties, characterization of bael fruit polysaccharide, emulsifying properties, binding properties, reduction of hazardous dyes, application of polysaccharides in film formation, application of polysaccharide as a nanocomposite, and biological activities of bael fruit polysaccharides are discussed. This review also systematically overviews the relationship between extraction techniques, structural characteristics, and biological activities. Additionally, recommendations, future perspectives, and new valuable insight towards better utilization of bael fruit polysaccharide have been given importance, which can be promoted in the long term.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraPunjabIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| | - Kandi Sridhar
- Department of Food TechnologyKarpagam Academy of Higher Education (Deemed to be University)CoimbatoreIndia
| | - Minaxi Sharma
- Department of Applied BiologyUniversity of Science and Technology MeghalayaBariduaIndia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research InstituteWarsawPoland
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
4
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
5
|
Pandey R, Pandey B, Bhargava A. The Emergence of N. sativa L. as a Green Antifungal Agent. Mini Rev Med Chem 2024; 24:1521-1534. [PMID: 38409693 DOI: 10.2174/0113895575282914240217060251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Nigella sativa L. has been widely used in the Unani, Ayurveda, Chinese, and Arabic medicine systems and has a long history of medicinal and folk uses. Several phytoconstituents of the plant are reported to have excellent therapeutic properties. In-vitro and in-vivo studies have revealed that seed oil and thymoquinone have excellent inhibitory efficacy on a wide range of both pathogenic and non-pathogenic fungi. OBJECTIVE The present review aims to undertake a comprehensive and systematic evaluation of the antifungal effects of different phytochemical constituents of black cumin. METHOD An exhaustive database retrieval was conducted on PubMed, Scopus, ISI Web of Science, SciFinder, Google Scholar, and CABI to collect scientific information about the antifungal activity of N. sativa L. with 1990 to 2023 as a reference range using 'Nigella sativa,' 'Nigella oil,' 'antifungal uses,' 'dermatophytic fungi,' 'candidiasis,' 'anti-aflatoxin,' 'anti-biofilm' and 'biological activity' as the keywords. RESULTS Black cumin seeds, as well as the extract of aerial parts, were found to exhibit strong antifungal activity against a wide range of fungi. Among the active compounds, thymoquinone exhibited the most potent antifungal effect. Several recent studies proved that black cumin inhibits biofilm formation and growth. CONCLUSION The review provides an in-depth analysis of the antifungal activity of black cumin. This work emphasizes the need to expand studies on this plant to exploit its antifungal properties for biomedical applications.
Collapse
Affiliation(s)
- Raghvendra Pandey
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| |
Collapse
|
6
|
Boakye-Yiadom E, Odoom A, Osman AH, Ntim OK, Kotey FCN, Ocansey BK, Donkor ES. Fungal Infections, Treatment and Antifungal Resistance: The Sub-Saharan African Context. Ther Adv Infect Dis 2024; 11:20499361241297525. [PMID: 39544852 PMCID: PMC11562003 DOI: 10.1177/20499361241297525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal pathogens cause a wide range of infections in humans, from superficial to disfiguring, allergic syndromes, and life-threatening invasive infections, affecting over a billion individuals globally. With an estimated 1.5 million deaths annually attributable to them, fungal pathogens are a major cause of mortality in humans, especially people with underlying immunosuppression. The continuous increase in the population of individuals at risk of fungal infections in sub-Saharan Africa, such as HIV patients, tuberculosis patients, intensive care patients, patients with haematological malignancies, transplant (haematopoietic stem cell and organ) recipients and the growing global threat of multidrug-resistant fungal strains, raise the need for an appreciation of the region's perspective on antifungal usage and resistance. In addition, the unavailability of recently introduced novel antifungal drugs in sub-Saharan Africa further calls for regular evaluation of resistance to antifungal agents in these settings. This is critical for ensuring appropriate and optimal use of the limited available arsenal to minimise antifungal resistance. This review, therefore, elaborates on the multifaceted nature of fungal resistance to the available antifungal drugs on the market and further provides insights into the prevalence of fungal infections and the use of antifungal agents in sub-Saharan Africa.
Collapse
Affiliation(s)
- Emily Boakye-Yiadom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
- Department of Microbiology and Immunology, University of Health and Allied Sciences, Ho, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Abdul-Halim Osman
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Onyansaniba K. Ntim
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Bright K. Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, P.O. Box KB 4236, Ghana
| |
Collapse
|
7
|
Lakes YB, Moye SL, Mo J, Tegtmeyer M, Nehme R, Charlton M, Salinas G, McKay RM, Eggan K, Le LQ. Econazole selectively induces cell death in NF1-homozygous mutant tumor cells. Cell Rep Med 2023; 4:101309. [PMID: 38086379 PMCID: PMC10772348 DOI: 10.1016/j.xcrm.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/22/2023]
Abstract
Cutaneous neurofibromas (cNFs) are tumors that develop in more than 99% of individuals with neurofibromatosis type 1 (NF1). They develop in the dermis and can number in the thousands. cNFs can be itchy and painful and negatively impact self-esteem. There is no US Food and Drug Administration (FDA)-approved drug for their treatment. Here, we screen a library of FDA-approved drugs using a cNF cell model derived from human induced pluripotent stem cells (hiPSCs) generated from an NF1 patient. We engineer an NF1 mutation in the second allele to mimic loss of heterozygosity, differentiate the NF1+/- and NF1-/- hiPSCs into Schwann cell precursors (SCPs), and use them to screen a drug library to assess for inhibition of NF1-/- but not NF1+/- cell proliferation. We identify econazole nitrate as being effective against NF1-/- hiPSC-SCPs. Econazole cream selectively induces apoptosis in Nf1-/- murine nerve root neurosphere cells and human cNF xenografts. This study supports further testing of econazole for cNF treatment.
Collapse
Affiliation(s)
- Yenal B Lakes
- Department of Stem Cell and Regenerative Medicine, Harvard University, Boston, MA, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Maura Charlton
- Department of Stem Cell and Regenerative Medicine, Harvard University, Boston, MA, USA
| | - Gabrielle Salinas
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Medicine, Harvard University, Boston, MA, USA.
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Lestari U, Muhaimin M, Chaerunisaa AY, Sujarwo W. Improved Solubility and Activity of Natural Product in Nanohydrogel. Pharmaceuticals (Basel) 2023; 16:1701. [PMID: 38139827 PMCID: PMC10747279 DOI: 10.3390/ph16121701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 12/24/2023] Open
Abstract
With the development of technology, natural material components are widely used in various fields of science. Natural product components in phytochemical compounds are secondary metabolites produced by plants; they have been shown to have many pharmacological activities. Phytochemical compounds obtained from plants have an important role in herbal medicine. Herbal medicine is safer and cheaper than synthetic medicine. However, herbal medicines have weaknesses, such as low solubility, less stability, low bioavailability, and experiencing physical and chemical degradation, reducing their pharmacological activity. Recent herbal nano-delivery developments are mostly plant-based. A nanotechnology-based system was developed to deliver herbal therapies with better bioavailability, namely the nanohydrogel system. Nanohydrogel is a delivery system that can overcome the disadvantages of using herbal compounds because it can increase solubility, increase pharmacological activity and bioavailability, reduce toxicity, slow delivery, increase stability, improve biodistribution, and prevent physical or chemical degradation. This review article aimed to provide an overview of recent advances in developing nanohydrogel formulations derived from natural ingredients to increase solubility and pharmacological activity, as well as a summary of the challenges faced by delivery systems based on nanohydrogel derived from natural materials. A total of 25 phytochemicals derived from natural products that have been developed into nanohydrogel were proven to increase the activity and solubility of these chemical compounds.
Collapse
Affiliation(s)
- Uce Lestari
- Doctoral Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Jambi, Jambi 36361, Indonesia
| | - Muhaimin Muhaimin
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Herbal Study, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Wawan Sujarwo
- Ethnobotany Research Group, Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia
| |
Collapse
|
9
|
Bhagyashree Devidas T, Patil S, Sharma M, Ali N, Parvez MK, Al-Dosari MS, Liu S, Inbaraj BS, Bains A, Wen F. Green extraction of Milletia pinnata oil for the development, and characterization of pectin crosslinked carboxymethyl cellulose/guar gum herbal nano hydrogel. Front Chem 2023; 11:1260165. [PMID: 37780989 PMCID: PMC10538964 DOI: 10.3389/fchem.2023.1260165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Milletia pinnata oil and Nardostachys jatamansi are rich sources of bioactive compounds and have been utilized to formulate various herbal formulations, however, due to certain environmental conditions, pure extract form is prone to degradation. Therefore, in this, study, a green hydrodistillation technology was used to extract M. pinnata oil and N. jatamansi root for the further application in development of pectin crosslinked carboxymethyl cellulose/guar-gum nano hydrogel. Both oil and extract revealed the presence of spirojatamol and hexadecanoic acid methyl ester. Varied concentrations (w/w) of cross-linker and gelling agent were used to formulate oil emulsion extract gel (OEEG1, OEG1, OEEG2, OEG2, OEEG3, OEG3, OEEG4, OEG4, OEEG5, OEG5), in which OEEG2 and OEG2 were found to be stable. The hydrogel displayed an average droplet size of 186.7 nm and a zeta potential of -20.5 mV. Endo and exothermic peaks and the key functional groups including hydroxyl, amide II, and amide III groups confirmed thermal stability and molecular structure. The smooth surface confirmed structural uniformity. Bactericidal activity against both Gram-positive (25.41 ± 0.09 mm) and Gram-negative (27.25 ± 0.01 mm) bacteria and anti-inflammatory activity (49.25%-83.47%) makes nanohydrogel a potential option for treating various infections caused by pathogenic microorganisms. In conclusion, the use of green hydrodistillation technology can be used to extract the bioactive compounds that can be used in formulation of biocompatible and hydrophobic nanohydrogels. Their ability to absorb target-specific drugs makes them a potential option for treating various infections caused by pathogenic microorganisms.
Collapse
Affiliation(s)
| | - Sandip Patil
- Deparment of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Shenzhen Institute of Paediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut–Condorcet, Ath, Belgium
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sixi Liu
- Shenzhen Institute of Paediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| | | | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagawara, Punjab, India
| | - Feiqiu Wen
- Deparment of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Shenzhen Institute of Paediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
10
|
Veloso SRS, Azevedo AG, Teixeira PF, Fernandes CBP. Cellulose Nanocrystal (CNC) Gels: A Review. Gels 2023; 9:574. [PMID: 37504453 PMCID: PMC10379674 DOI: 10.3390/gels9070574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The aim of this article is to review the research conducted in the field of aqueous and polymer composites cellulose nanocrystal (CNC) gels. The experimental techniques employed to characterize the rheological behavior of these materials will be summarized, and the main advantages of using CNC gels will also be addressed in this review. In addition, research devoted to the use of numerical simulation methodologies to describe the production of CNC-based materials, e.g., in 3D printing, is also discussed. Finally, this paper also discusses the application of CNC gels along with additives such as cross-linking agents, which can represent an enormous opportunity to develop improved materials for manufacturing processes.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana G Azevedo
- International Iberian Nanotechnology Laboratory (INL), Av. Mte. José Veiga s/n, 4715-330 Braga, Portugal
| | - Paulo F Teixeira
- Centre for Nanotechnology and Smart Materials (CeNTI), Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Célio B P Fernandes
- Transport Phenomena Research Centre (CEFT), Faculty of Engineering at University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Quintero-Rincón P, Mesa-Arango AC, Flórez-Acosta OA, Zapata-Zapata C, Stashenko EE, Pino-Benítez N. Exploring the Potential of Extracts from Sloanea medusula and S. calva: Formulating Two Skincare Gels with Antioxidant, Sun Protective Factor, and Anti- Candida albicans Activities. Pharmaceuticals (Basel) 2023; 16:990. [PMID: 37513902 PMCID: PMC10384365 DOI: 10.3390/ph16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Sloanea is a plant genus, native to tropical regions, used in medicinal practices for its anti-inflammatory properties. This study aimed to determine the antioxidant activity, sun protective factor (SPF), and antifungal of extracts obtained from two species of Sloanea and to develop extract-based gels with antioxidants, photoprotective, and anti-Candida albicans effects. Ethanolic extracts from S. medusula and S. calva collected in Chocó, Colombia, were used for antioxidant activity and SPF determination using the DPPH assay and the Mansur equation, respectively. Extracts were characterized using HPLC-MS and used to prepare the gels. The viscosity of the extract-based gels was evaluated using an MCR92 rheometer. In addition, the anti-Candida activity of extracts against five yeasts and anti-C. albicans of gels were evaluated following the Clinical and Laboratory Standards Institute M27, 4th Edition. High DPPH radical scavenging activity (42.4% and 44.7%) and a high SPF value (32.5 and 35.4) were obtained for the extracts of S. medusula and S. calva, respectively. Similarly, extract-based gels showed significant DPPH radical scavenging activity of 54.5% and 53.0% and maximum SPF values of 60 and 57. Extract from S. medusula showed an important antifungal activity against C. albicans (minimal inhibitory concentration (MIC) of 2 µg/mL). In contrast, S. calva extract was active against C. krusei, C. albicans (MIC of 2 µg/mL) and C. tropicalis (MIC of 4 µg/mL). Sloanea medusula gel (0.15%) exhibited an important C. albicans growth inhibition (98%), while with S. calva gel (0.3%) growth inhibition was slightly lower (76%). Polyphenolic and triterpenoid compounds were tentatively identified for S. medusula and S. calva, respectively. Both extracts can be considered promising sources for developing photoprotective gels to treat skin infections caused by C. albicans.
Collapse
Affiliation(s)
- Patricia Quintero-Rincón
- Natural Products Group, Technological University of Chocó, Quibdó 270002, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Ana C Mesa-Arango
- Academic Group of Clinical Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Oscar A Flórez-Acosta
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Carolina Zapata-Zapata
- Academic Group of Clinical Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Elena E Stashenko
- Center for Chromatography and Mass Spectrometry, CROM-MASS, CIBIMOL-CENIVAM, Industrial University of Santander, Bucaramanga 680002, Colombia
| | - Nayive Pino-Benítez
- Natural Products Group, Technological University of Chocó, Quibdó 270002, Colombia
| |
Collapse
|
12
|
Bains A, Sharma P, Kaur S, Yadav R, Kumar A, Sridhar K, Chawla P, Sharma M. Gum arabic/guar gum stabilized Hydnocarpus wightiana oil nanohydrogel: Characterization, antimicrobial, anti-inflammatory, and anti-biofilm activities. Int J Biol Macromol 2023; 239:124341. [PMID: 37030463 DOI: 10.1016/j.ijbiomac.2023.124341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Hydnocarpus wightiana oil has proven to inhibit the growth of pathogenic microorganisms; however, the raw form is highly susceptible to oxidation, and thus it becomes toxic when uptake is in high amounts. Therefore, to minimize the deterioration, we formulated Hydnocarpus wightiana oil-based nanohydrogel and studied its characteristics as well biological activity. The low energy-assisted hydrogel was formulated by including gelling agent, connective linker, and cross-linker and it resulted in internal micellar polymerization of the milky white emulsion. The oil showed the presence of octanoic acid, n-tetradecane, methyl 11-(2-cyclopenten-1-yl) undecanoate (methyl hydnocarpate), 13-(2-cyclopenten-1-yl) tridecanoic acid (methyl chaulmoograte), and 10,13-eicosadienoic acid. The amount of caffeic acid was 0.0636 mg/g, which was higher than the amount of gallic acid (0.0076 mg/g) in the samples. The formulated nanohydrogel showed an average droplet size of 103.6 nm with a surface charge of -17.6 mV. The minimal inhibitory bactericidal, and fungicidal concentrations of nanohydrogel against pathogenic bacteria and fungi were ranging from 0.78 to 1.56 μl/mL with 70.29-83.62 % antibiofilm activity. Also, nanohydrogel showed a significantly (p < 0.05) higher killing rate for Escherichia coli (7.89 log CFU/mL) than Staphylococcus aureus (7.81 log CFU/mL) with comparable anti-inflammatory activity than commercial standard (49.28-84.56 %). Therefore, it can be concluded that being hydrophobic, and having the capability of target-specific drug absorption as well as biocompatibility nanohydrogels can be utilized to cure various pathogenic microbial infections.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Priyanka Sharma
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India
| | - Sukhdeep Kaur
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Anil Kumar
- Department of Food Science Technology and Processing, Amity University, Mohali, Punjab 140306, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
13
|
Anti-Sporotrichotic Activity, Lambert-W Inhibition Kinetics and 3D Structural Characterization of Sporothrix schenckii Catalase as Target of Glucosinolates from Moringa oleifera. Sci Pharm 2022. [DOI: 10.3390/scipharm90040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most human fungal infections exhibit significant defensive oxidative stress responses, which contribute to their pathogenicity. An important component of these reactions is the activation of catalase for detoxification. To discover new antifungal chemicals, the antifungal activity of methanol extracts of Moringa oleifera from two commercial products (Akuanandi and Mas Lait) was investigated. The methanolic extracts’ activity against Sporothrix schenckii was determined using an assay for minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC). The MIC concentrations varied between 0.5 μg/mL and 8 μg/mL. Akuanandi extract had the lowest MIC (0.5 μg/mL) and MLC (1 μg/mL) values. M. oleifera methanolic extracts were tested for catalase inhibition. The Ki values of the M. oleifera extract against S. schenckii catalase (SsCAT) was found to be 0.7 μg/mL for MOE-AK and 0.08 μg/mL for MOE-ML. Catalase’s 3D structure in SsCAT is unknown. The homology of SsCAT was modeled with an in silico study using a 3D structure from SWISS MODEL and validation the predicted 3D structure was carried out using PROCHECK and MolProbity. Docking simulations were used to analyze protein interactions using Pymol, PoseView, and PLIP. The results revealed that M. oleifera glucosinolates interacts with SsCAT. A molecular interaction analysis revealed two inhibitor compounds (glucosinalbin and glucomoringin) with high binding affinity to key allosteric-site residues. The binding energies revealed that glucosinalbin and glucomoringin bind with high affinity to SsCAT (docking energy values: −9.8 and −9.0 kcal/mol, respectively). The findings of this study suggest that glucosinolates derived from M. oleifera could be used instead of synthetic fungicides to control S. schenckii infections. We hope that the findings of this work will be valuable for developing and testing novel natural anti-sporothrix therapeutic agents in the future.
Collapse
|
14
|
Mijaljica D, Spada F, Harrison IP. Emerging Trends in the Use of Topical Antifungal-Corticosteroid Combinations. J Fungi (Basel) 2022; 8:812. [PMID: 36012800 PMCID: PMC9409645 DOI: 10.3390/jof8080812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
A broad range of topical antifungal formulations containing miconazole or terbinafine as actives are commonly used as efficacious choices for combating fungal skin infections. Their many benefits, owing to their specific mechanism of action, include their ability to target the site of infection, enhance treatment efficacy and reduce the risk of systemic side effects. Their proven efficacy, and positioning in the treatment of fungal skin infections, is enhanced by high patient compliance, especially when appropriate vehicles such as creams, ointments and gels are used. However, inflammation as a result of fungal infection can often impede treatment, especially when combined with pruritus (itch), an unpleasant sensation that elicits an urge to scratch. The scratching that occurs in response to pruritus frequently accelerates skin damage, ultimately aggravating and spreading the fungal infection. To help overcome this issue, a topical antifungal-corticosteroid combination consisting of miconazole or terbinafine and corticosteroids of varying potencies should be used. Due to their inherent benefits, these topical antifungal-corticosteroid combinations can concomitantly and competently attenuate inflammation, relieve pruritus and treat fungal infection.
Collapse
Affiliation(s)
| | | | - Ian P. Harrison
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd., 21–31 Malcolm Road, Braeside, VIC 3195, Australia; (D.M.); (F.S.)
| |
Collapse
|
15
|
Alqarni MH, Foudah AI, Alam A, Salkini MA, Muharram MM, Labrou NE, Kumar P. Development of Gum-Acacia-Stabilized Silver Nanoparticles Gel of Rutin against Candida albicans. Gels 2022; 8:gels8080472. [PMID: 36005073 PMCID: PMC9407585 DOI: 10.3390/gels8080472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/28/2022] Open
Abstract
Candida spp. is one of the most causative pathogens responsible for fungal infections. It is often a hospital-acquired form of sepsis with a very high number of deaths. Currently, the most effective anti-fungal agents are based on polyenes or echinocandins. However, long-term treatments or repeated use of these anti-fungals lead to therapy limitations. Current research is urgently needed to overcome existing challenges for antimicrobials from natural sources. This study aims to determine the anti-fungal activity of rutin, which has the advantage of increasing the therapeutic value. Because of its low solubility in water and oils, rutin is limited in use. To address these constraints, we encapsulated rutin in a nanocarrier system. Silver nanoparticles (SNPs) and gum acacia (GAs) are emerging as attractive components and are widely studied as biologically safe nanomaterials/carrier systems for various drugs. Still, they are barely investigated as nano-sized vectors for the targeted delivery of rutin. In the present work, GA stabilised SNPs of rutin were successfully formulated and evaluated. It was later incorporated into carbapol 940 gels and formed SNP gels. Rutin-SNPs were developed with a consistent size in the nano range of 59.67 ± 44.24 nm in size, 0.295 ± 0.014 polydispersity index (PDI), and −11.2 ± 6.66 mV zeta potential. The drug released was found to be 81. 26 ± 4.06% in 600 min by following zero-order kinetics. The rutin-SNP gel showed considerable activity against C. albicans skin candidiasis at MIC 1.56 g/mL. The developed formulation was biocompatible. This first-ever interdisciplinary study suggests that the rutin-SNPs gel could play a vital role in drug resistance in this fungal pathogen.
Collapse
Affiliation(s)
- Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.I.F.); (A.A.); (M.A.S.)
- Correspondence:
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.I.F.); (A.A.); (M.A.S.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.I.F.); (A.A.); (M.A.S.)
| | - Mohammad A. Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.I.F.); (A.A.); (M.A.S.)
| | - Magdy M. Muharram
- Department of Microbiology, College of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece;
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, NH-44, PO Nagrota, Jagti, Jammu 181221, India;
| |
Collapse
|
16
|
Antimicrobial and Anti-Inflammatory Activity of Low-Energy Assisted Nanohydrogel of Azadirachta indica Oil. Gels 2022; 8:gels8070434. [PMID: 35877519 PMCID: PMC9318572 DOI: 10.3390/gels8070434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-based bioactive compounds have been utilized to cure diseases caused by pathogenic microorganisms and as a substitute to reduce the side effects of chemically synthesized drugs. Therefore, in the present study, Azadirachta indica oil nanohydrogel was prepared to be utilized as an alternate source of the antimicrobial compound. The total phenolic compound in Azadirachta indica oil was quantified by chromatography analysis and revealed gallic acid (0.0076 ppm), caffeic acid (0.077 ppm), and syringic acid (0.0129 ppm). Gas chromatography−mass spectrometry analysis of Azadirachta indica oil revealed the presence of bioactive components, namely hexadecenoic acid, heptadecanoic acid, ç-linolenic acid, 9-octadecanoic acid (Z)-methyl ester, methyl-8-methyl-nonanoate, eicosanoic acid, methyl ester, and 8-octadecane3-ethyl-5-(2 ethylbutyl). The nanohydrogel showed droplet size of 104.1 nm and −19.3 mV zeta potential. The nanohydrogel showed potential antimicrobial activity against S. aureus, E. coli, and C. albicans with minimum inhibitory, bactericidal, and fungicidal concentrations ranging from 6.25 to 3.125 (µg/mL). The nanohydrogel showed a significantly (p < 0.05) higher (8.40 log CFU/mL) value for Gram-negative bacteria E. coli compared to Gram-positive S. aureus (8.34 log CFU/mL), and in the case of pathogenic fungal strain C. albicans, there was a significant (p < 0.05) reduction in log CFU/mL value (7.79−6.94). The nanohydrogel showed 50.23−82.57% inhibition in comparison to standard diclofenac sodium (59.47−92.32%). In conclusion, Azadirachta indica oil nanohydrogel possesses great potential for antimicrobial and anti-inflammatory activities and therefore can be used as an effective agent.
Collapse
|
17
|
Zhang Q, Qin W, Hu X, Yan J, Liu Y, Wang Z, Liu L, Ding J, Huang P, Wu J. Efficacy and Mechanism of Thymol/KGM/LG Edible Coating Solution on Inhibition of Mucor circinelloides Isolated From Okra. Front Microbiol 2022; 13:880376. [PMID: 35651497 PMCID: PMC9149372 DOI: 10.3389/fmicb.2022.880376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
With the increasing demand and quality requirement for the natural nutritious food in modern society, okra has attracted much attention because of its high nutritional value and remarkable functionality. However, the occurrence of postharvest diseases of fresh okra severely limited the application and the value of okra. Therefore, in this study, the dominant pathogens causing postharvest diseases such as soft rot were isolated from naturally decaying okra. It was identified as Mucor circinelloides by its morphological characteristics and standard internal transcribed spacer ribosomal DNA sequence. Furthermore, the biological characteristics of M. circinelloides were studied, and the inhibitory effect of thymol/KGM/LG (TKL) edible coating solution on M. circinelloides and its possible mechanism was discussed. In addition, TKL edible coating solution had a dose-dependent inhibitory effect on M. circinelloides, with a 50% inhibitory concentration (EC50) of 113.55 mg/L. The TKL edible coating solution at 960 mg/L of thymol completely inhibited mycelial growth and spore germination of M. circinelloides. The results showed that the best carbon source of M. circinelloides was maltose, the best nitrogen source was beef extract and potassium nitrate, the best pH was 6, the best temperature was 28°C, the best NaCl concentration was 0.5%, and the light was conducive to the growth of M. circinelloides. It was also observed by scanning electron microscope (SEM) that TKL was more likely to destroy the cell wall integrity of M. circinelloides, inhibit spore morphology and change mycelium structure. Meanwhile, the activity of chitinase (CHI), an enzyme related to cell wall synthesis of M. circinelloides, was significantly decreased after being treated by TKL with thymol at 100 mg/L (TKL100). The content of Malondialdehyde (MDA) in M. circinelloides decreased significantly from 12 h to 48 h, which may cause oxidative damage to the cell membrane. The activity polygalacturonase (PG), pectin methylgalacturonase (PMG), and cellulase (Cx) of M. circinelloides decreased significantly. Therefore, the results showed that TKL had a good bacteriostatic effect on okra soft rot pathogen, and the main bacteriostatic mechanism might be the damage of cell membrane, degradation of the cell wall, inhibition of metabolic activities, and reduction of metabolites, which is helpful to further understand the inhibitory effect of TKL on okra soft rot pathogen and its mechanism.
Collapse
Affiliation(s)
- Qinqiu Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xinjie Hu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jing Yan
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhuwei Wang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Lang Liu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Peng Huang
- Department of Quality Management and Inspection and Detection, Yibin University, Yibin, China
| | - Jiya Wu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
18
|
Encephalartos villosus Lem. Displays a Strong In Vivo and In Vitro Antifungal Potential against Candida glabrata Clinical Isolates. J Fungi (Basel) 2022; 8:jof8050521. [PMID: 35628776 PMCID: PMC9146621 DOI: 10.3390/jof8050521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, Candida glabrata has been recognized as one of the most common fungal species that is highly associated with invasive candidiasis. Its spread could be attributed to its increasing resistance to antifungal drugs. Thus, there is a high need for safer and more efficient therapeutic alternatives such as plant extracts. Here, we investigated the antifungal potential of Encephalartos villosus leaves methanol extract (EVME) against C. glabrata clinical isolates. Tentative phytochemical identification of 51 metabolites was conducted in EVME using LC–MS/MS. EVME demonstrated antifungal activity with minimum inhibitory concentrations that ranged from 32 to 256 µg/mL. The mechanism of the antifungal action was studied by investigating the impact of EVME on nucleotide leakage. Additionally, a sorbitol bioassay was performed, and we found that EVME affected the fungal cell wall. In addition, the effect of EVME was elucidated on the efflux activity of C. glabrata isolates using acridine orange assay and quantitative real-time PCR. EVME resulted in downregulation of the expression of the efflux pump genes CDR1, CDR2, and ERG11 in the tested isolates with percentages of 33.33%, 41.67%, and 33.33%, respectively. Moreover, we investigated the in vivo antifungal activity of EVME using a murine model with systemic infection. The fungal burden was determined in the kidney tissues. Histological and immunohistochemical studies were carried out to investigate the effect of EVME. We noticed that EVME reduced the congestion of the glomeruli and tubules of the kidney tissues of the rats infected with C. glabrata. Furthermore, it decreased both the proinflammatory cytokine tumor necrosis factor-alpha and the abnormal collagen fibers. Our results reveal, for the first time, the potential in vitro (by inhibition of the efflux activity) and in vivo (by decreasing the congestion and inflammation of the kidney tissues) antifungal activity of EVME against C. glabrata isolates.
Collapse
|
19
|
Chamcheu JC, Walker AL, Noubissi FK. Natural and Synthetic Bioactives for Skin Health, Disease and Management. Nutrients 2021; 13:nu13124383. [PMID: 34959935 PMCID: PMC8705709 DOI: 10.3390/nu13124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana, Monroe, LA 71209-0497, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| | - Anthony Lynn. Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana, Monroe, LA 71209-0497, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| | - Felicite Kamdem Noubissi
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| |
Collapse
|
20
|
Savarirajan D, Ramesh VM, Muthaiyan A. In vitro antidermatophytic activity of bioactive compounds from selected medicinal plants. J Anal Sci Technol 2021; 12:53. [PMID: 34745684 PMCID: PMC8563824 DOI: 10.1186/s40543-021-00304-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections are among the most difficult diseases to manage in humans. Eukaryotic fungal pathogens share many similarities with their host cells, which impairs the development of antifungal compounds. Therefore, it is desirable to harness the pharmaceutical potential of medicinal plants for antifungal drug discovery. In this study, the antifungal activity of sixteen plant extracts was investigated against selected dermatophytic fungi. Of the sixteen plants, the cladode (leaf) of Asparagus racemosus, and seed extract of Cassia occidentalis showed antifungal activity against Microsporum gypseum, Microsporum nanum, Trichophyton mentagrophytes and Trichophyton terrestre. The plant antifungal compounds were located by direct bioassay against Cladosporium herbarum. IR and NMR spectrometry analyses of these compounds identified the presence of saponin (in A. racemosus) and hydroxy anthraquinone (in C. occidentalis) in these antifungal compounds. The antidermatophytic activity of plant anthraquinone and saponins with reports of little or no hemolytic activity, makes these compounds ideal for alternative antifungal therapy and warrants further in-depth investigation in vivo.
Collapse
Affiliation(s)
- Daisy Savarirajan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, 600025 India.,College of Science, Engineering and Technology, Grand Canyon University, 3300 W. Camelback Rd, Phoenix, AZ 85017 USA
| | - V M Ramesh
- Centre for Advanced Studies in Botany, University of Madras, Chennai, 600025 India.,College of Science, Engineering and Technology, Grand Canyon University, 3300 W. Camelback Rd, Phoenix, AZ 85017 USA
| | | |
Collapse
|
21
|
Synthesis of gold nanoparticles using Sambucus wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
22
|
A Review of the Health Protective Effects of Phenolic Acids against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections). Molecules 2021; 26:molecules26175405. [PMID: 34500838 PMCID: PMC8433690 DOI: 10.3390/molecules26175405] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme, oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective effects of phenolic acids against the most severe human diseases. In this review paper, the authors first report on the main structural features of phenolic acids, their most important natural sources and their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of the most recent clinical studies on phenolic acids that investigate their health effects against a range of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity, and viral infections—including coronaviruses-based ones).
Collapse
|