1
|
Njoku GC, Forkan CP, Soltysik FM, Nejsum PL, Pociot F, Yarani R. Unleashing the potential of extracellular vesicles for ulcerative colitis and Crohn's disease therapy. Bioact Mater 2025; 45:41-57. [PMID: 39610953 PMCID: PMC11602541 DOI: 10.1016/j.bioactmat.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- George Chigozie Njoku
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, USA
| | - Cathal Patrick Forkan
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Pharmacy, Université Grenoble Alpes, France
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peter Lindberg Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
2
|
Zhou X, Zhang Y, Wei L, Yang Y, Wang B, Liu C, Bai J, Wang C. In vitro fermentation characteristics of fucoidan and its regulatory effects on human gut microbiota and metabolites. Food Chem 2025; 465:141998. [PMID: 39549519 DOI: 10.1016/j.foodchem.2024.141998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Dietary polysaccharides affect the intestinal microorganisms and their metabolites in the host. Clarifying the relationship among polysaccharides, intestinal microflora, and their metabolites is helpful to formulate dietary nutrition intervention strategies. Thus, we explored the regulatory effects of fucoidan on the human gut microbiota and its metabolites. After 48 h of fermentation, fucoidan significantly reduced the pH value in the broth, accompanied by an increase in total short-chain fatty acids, acetic acid, and propanoic acid contents. Fucoidan significantly reduced the relative abundance of Escherichia_shigella and Blebsiella and increased the relative abundance of Bifidobacterium and Lactobacillus. Concurrently, fucoidan altered the composition of intestinal microbial metabolites. These results indicate that fucoidan can regulate the metabolism of the intestinal flora and host, which may contribute to the intestinal health of the host.
Collapse
Affiliation(s)
- Xu Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong 250000, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China.
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Zhang W, Xie J, Wang Z, Zhong Y, Liu L, Liu J, Zhang W, Pi Y, Tang F, Liu Z, Shao Y, Liu T, Zheng C, Luo J. Androgen deficiency-induced loss of Lactobacillus salivarius extracellular vesicles is associated with the pathogenesis of osteoporosis. Microbiol Res 2025; 293:128047. [PMID: 39813752 DOI: 10.1016/j.micres.2025.128047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Male osteoporosis is primarily caused by a decrease in testicular testosterone production. Male osteoporosis remains a disease with insufficient diagnosis and treatment, and its consequences are severe, especially in older patients. The gut microbiota plays a crucial role in its occurrence and development. Our study found that the relative abundance of Lactobacillus salivarius in the fecal microbiota of male patients with osteoporosis was significantly lower than that in healthy volunteers. Animal experiments have shown that orchiectomy (ORX) can induce osteoporosis and disrupt the intestinal mucosal barrier, and intestinal microbiota. In addition, we discovered a potential etiological connection between the decreased abundance of the intestinal bacterium L. salivarius and the occurrence of ORX-induced osteoporosis. Cohousing or direct colonization of the intestinal microbiota from healthy rats or direct oral administration of the bacteria alleviated ORX-induced osteoporosis and repaired the intestinal mucosal barrier. Finally, we demonstrated that the extracellular vesicles (EVs) of L. salivarius could be transported to the bones and mitigate ORX-induced osteoporosis in rats. Our results indicate that the gut microbiota participates in protecting bones by secreting and delivering bacterial EVs, and that the reduction of L. salivarius and its EVs is closely related to the development of androgen deficiency-related osteoporosis.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, PR China
| | - Jian Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Orthopedics, Longyan First Hospital, Longyan, Fujian 364000, PR China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuchun Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Li Liu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Jun Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wenming Zhang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yimin Pi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Furui Tang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zehong Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yinjin Shao
- Department of Rehabilitation Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, PR China
| | - Tian Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Cihua Zheng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
4
|
Lopes SA, Cardoso VMB, Roque-Borda CA, Chorilli M, Meneguin AB. Dual-action microparticles for ulcerative colitis: Cellulose nanofibers-enhanced delivery of 5-ASA and probiotics. Int J Biol Macromol 2024; 291:139060. [PMID: 39710030 DOI: 10.1016/j.ijbiomac.2024.139060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease initially treated with mesalazine (5-ASA). However, its effectiveness is limited by rapid absorption, low colonic concentration, and exacerbation of dysbiosis. Probiotics can mitigate dysbiosis if they survive the acidic conditions of the stomach. In this study, colon-specific microparticles (MPs) based on RS/P and reinforced with cellulose nanofibers (CNF) were used to co-encapsulate 5-ASA and L. rhamnosus. MPs prepared by spray-drying demonstrated a spherical shape, with sizes ranging from 1 to 10 μm, high encapsulation efficiency (up to 81.5 %), and maintenance of L. rhamnosus viability (5.74 log CFU/g of sample) even after 30 days of storage at 4 °C. Differential scanning calorimetry indicated a reduction in the melting peak of 5-ASA after microencapsulation, suggesting a decrease in its crystallinity. The samples also exhibited high mucoadhesivity, with the presence of CNF significantly increasing the speed of establishing interactions with mucin. In vitro release profiles showed lower release rates in acidic media, resulting in the majority of 5-ASA being released in intestinal and colonic media. These MPs represent a promising strategy for promoting specific release in the colon, minimizing side effects associated with conventional treatment, and potentially improving therapeutic efficacy in the context of UC.
Collapse
Affiliation(s)
- Sílvio André Lopes
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | - Vinicius Martinho Borges Cardoso
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| |
Collapse
|
5
|
Yang W, Lin P, Gao R, Fang Z, Wang Z, Ma Z, Shi J, Yu W. Cell-derived biomimetic drug delivery system for inflammatory bowel disease therapy. Mater Today Bio 2024; 29:101332. [PMID: 39606424 PMCID: PMC11600033 DOI: 10.1016/j.mtbio.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent disease with an increasing incidence year by year. At present, no safe and effective treatment for IBD exists. Thus, there is an urgent need to create new therapeutic options that have decreased adverse effects and positive clinical efficacy. A range of nanomaterials have fueled the advancement of nanomedicine in recent years, which is establishing more appealing and prospective treatment approaches for IBD. However, traditional synthetic nanomaterials still have some problems in the IBD drug delivery process, such as weak targeting ability of vectors, difficulty escaping immune surveillance, and poor biosecurity. Natural sources of biological nanomaterials have been identified to solve the above problems. A drug delivery system based on bionic technology is expected to achieve a new breakthrough in the targeted therapy of IBD by nanotechnology due to its organic integration of low immunogenicity and natural targeting of biological materials and the controllability and versatility of synthetic nanocarrier design. We begin this review by outlining the fundamental traits of both inflammatory and healthy intestinal microenvironments. Subsequently, we review the latest application of a cell-derived bionic drug delivery system in IBD therapy. Finally, we discuss the development prospects of this delivery system and challenges to its clinical translation. Biomimetic nanotherapy is believed to offer a new strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhouru Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhen Ma
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| |
Collapse
|
6
|
Liang W, Gao Y, Zhao Y, Gao L, Zhao Z, He Z, Li S. Lactiplantibacillus plantarum ELF051 Alleviates Antibiotic-Associated Diarrhea by Regulating Intestinal Inflammation and Gut Microbiota. Probiotics Antimicrob Proteins 2024; 16:1996-2006. [PMID: 37639209 PMCID: PMC11573863 DOI: 10.1007/s12602-023-10150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Probiotics are widely recognized for their ability to prevent and therapy antibiotic-associated diarrhea (AAD). This study was designed to evaluate Lactiplantibacillus plantarum ELF051 ability to prevent colon inflammation and its effect on gut microbial composition in a mouse model of AAD. The mice were intragastrically administered triple antibiotics for 7 days and then subjected to L. plantarum ELF051 for 14 days. The administration of L. plantarum ELF051 ameliorated the pathological changes in the colon tissue, downregulated interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and upregulated IL-10, and increased the intestinal short-chain fatty acids (SCFAs) level. Lactiplantibacillus plantarum ELF051 also regulated the Toll-like receptor/myeloid differentiation primary response 88/nuclear factor kappa light chain enhancer of activated B cells (TLR4/MyD88/NF-κB) and the phosphatidylinositol 3-kinase/protein kinase B/ NF-κB (PI3K/AKT/ NF-κB) inflammatory signaling pathways. 16S rRNA analyses showed that L. plantarum ELF051 increased the abundance and diversity of gut bacteria, restoring gut microbiota imbalance. A Spearman's rank correlation analysis showed that lactobacilli are closely associated with inflammatory markers and SCFAs. This work demonstrated that L. plantarum ELF051 can attenuate antibiotic-induced intestinal inflammation in a mouse AAD model by suppressing the pro-inflammatory response and modulating the gut microbiota.
Collapse
Affiliation(s)
- Wei Liang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, 130118, China
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Yansong Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Yujuan Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China.
| | - Lei Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Zijian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Zhongmei He
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, 130118, China
| | - Shengyu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China.
| |
Collapse
|
7
|
Liu X, Liu K, Yang J, Qiao H, Kwok LY, Zhang W. Exploring the metabolic dynamics, storage stability, and functional potential of Lacticaseibacillus rhamnosus Probio-M9 fermented milk. J Dairy Sci 2024:S0022-0302(24)01298-0. [PMID: 39551178 DOI: 10.3168/jds.2024-25632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/13/2024] [Indexed: 11/19/2024]
Abstract
Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9), a probiotic strain sourced from healthy breast milk, is recognized for its resilience to gastric and bile acids, along with its potential health benefits for infants. Its unique origin may influence its metabolic properties and effectiveness, garnering increasing interest within the scientific community in recent years. However, research on its efficacy as a starter culture for milk fermentation and the associated metabolic shifts remains limited. This study aimed to track the dynamic metabolomic changes of Probio-M9 during the fermentation process. We utilized Probio-M9 as the sole inoculant for milk fermentation, collecting samples at 1.5 to 3-h intervals to monitor the fermentation progression. Moreover, the metabolomics changes of the fermented milk were investigated after a 28-d storage period to evaluate post-storage stability. Metabolite profiles were generated using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MSE). A total of 34 representative differential metabolites were identified, primarily comprising peptides and saccharides, followed by acids, amino acids, alcohols, aldehydes, ketones, and intermediate metabolites. Notably, substantial alterations in metabolite levels were observed between 10.5 to 12 h into the fermentation process. Functional metabolites like syringaldehyde, leucic acid, and gentianose accumulated toward the end of fermentation, while peptides emerged as the main differential metabolites after the 28-d storage period. The study offers novel insights into the metabolic dynamics of Probio-M9 during fermentation and storage, which may inform the optimization of Probio-M9 fermented milk production processes. However, it is important to note that the focus of this study on a single starter strain may limit the generalizability of these findings.
Collapse
Affiliation(s)
- Xiaoye Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Kaiyang Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jie Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Hui Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
8
|
Zubair M, Abouelnazar FA, Dawood AS, Pan J, Zheng X, Chen T, Liu P, Mao F, Yan Y, Chu Y. Microscopic messengers: microbiota-derived bacterial extracellular vesicles in inflammatory bowel disease. Front Microbiol 2024; 15:1481496. [PMID: 39606115 PMCID: PMC11600980 DOI: 10.3389/fmicb.2024.1481496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a persistent and complex condition accomplished by inflammation of the gastrointestinal system, encompassing Crohn's disease (CD) and ulcerative colitis (UC). This condition is caused by the combination of genetic predispositions, environmental triggers, and dysregulated immunological responses, which complicates diagnosis and treatment. The latest developments in gastroenterology have revealed the critical significance of the gut microbiota in the pathogenesis of IBD. Extracellular vesicles (EVs) are a type of microbial component that potentially regulate intestinal inflammation. The impact of microbiota-derived bacterial EVs (bEVs) on intestinal inflammation is mediated through several methods. They can intensify inflammation or stimulate defensive responses by delivering immunomodulatory cargo. Improved comprehension could enhance inventive diagnostic and treatment strategies for IBD. This study aimed to explore the relationship between microbiota-derived bEVs and the complex nature of IBD. We performed a thorough analysis of the formation, composition, mechanisms of action, diagnostic possibilities, therapeutic implications, and future prospects of these microbiota-derived bEVs.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Ali Sobhy Dawood
- Medicine and Infectious Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Kowalik K, Kulig K, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Rapala-Kozik M, Karkowska-Kuleta J. Extracellular vesicles of Lactiplantibacillus plantarum PCM 2675 and Lacticaseibacillus rhamnosus PCM 489: an introductory characteristic. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:680-696. [PMID: 39811727 PMCID: PMC11725429 DOI: 10.20517/evcna.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025]
Abstract
Aim: Extracellular vesicles (EVs) are involved in intercellular and interkingdom communication in the complex communities that constitute the niche-specific microbiome of the colonized host. Therefore, studying the structure and content of EVs produced by resident bacteria is crucial to understanding their functionality and impact on the host and other microorganisms. Methods: Bacterial EVs were isolated by differential centrifugation, their size and concentration were measured by transmission electron microscopy and nanoparticle tracking analysis, and the cargo proteins were identified by liquid chromatography coupled to tandem mass spectrometry. The cytotoxicity of bacterial EVs was tested using the human epithelial cell line A549 and an in vivo model of Galleria mellonella larvae. Results: The isolation and preliminary characteristics of EVs from two strains of lactic acid bacteria - Lactiplantibacillus plantarum PCM 2675 and Lacticaseibacillus rhamnosus PCM 489 - were presented, confirming the production of vesicular structures with sizes in the range of 50-170 nm for L. plantarum and 80-250 nm for L. rhamnosus. In addition, various proteins were identified within EVs cargo, with distinct locations of origin, including membrane, cytoplasmic and extracellular proteins, and with diverse functions, including enzymes with confirmed proteolytic activity. Furthermore, bacterial EVs did not show statistically significant cytotoxicity to the host under the tested conditions. Conclusions: A better understanding of the composition and functionality of bacterial EVs may contribute to their future effective use in supporting human health.
Collapse
Affiliation(s)
- Katarzyna Kowalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków 30-387, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków 30-387, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
10
|
Zhang Y, Song M, Fan J, Guo X, Tao S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Anim Sci Biotechnol 2024; 15:149. [PMID: 39506860 PMCID: PMC11542448 DOI: 10.1186/s40104-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Mengzhen Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Xuming Guo
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
11
|
Pan X, Guo A, Guan K, Chen C, Xu S, Tang Y, Li X, Huang Z. Lactobacillus rhamnosus GG attenuates depression-like behaviour and cognitive deficits in chronic ethanol exposure mice by down-regulating systemic inflammatory factors. Addict Biol 2024; 29:e13445. [PMID: 39585236 PMCID: PMC11587820 DOI: 10.1111/adb.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024]
Abstract
Ethanol can directly or indirectly lead to cognitive and mental disorders. The long-term intake of alcohol can directly affect the distribution of gut microbiota. Lactobacillus rhamnosus GG (LGG) is a natural bacterium isolated from healthy human intestines that has the function of preventing cytokine-induced cell apoptosis and protecting cell barriers. However, the regulatory effect of LGG on cognitive and mental disorders caused by chronic ethanol exposure (CEE) is still unclear. In this study, we established a CEE mouse model through free alcohol consumption and added LGG or antibiotics in the later stages of the model. Sequencing analysis of the 16S rRNA gene showed that CEE resulted in a decrease in the abundance and diversity of mouse gut microbial communities accompanied by alterations in the relative abundance of multiple enterobacterial genera. The use of LGG and antibiotics alleviated the depression-like behaviour and cognitive impairment of CEE-induced mice, reduced expression of inflammatory factors such as interleukin (IL)-6, IL-1β and tumour necrosis factor (TNF)-α in the ileum, serum and brain and increased the expression of synaptophysin (SYN), postsynaptic density protein-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Together, LGG can alleviate depression-like behaviour caused by CEE in mice while also improving cognitive and memory functions through reducing peripheral and nervous system inflammation factors and balancing gut microbiota.
Collapse
Affiliation(s)
- Xiaoyu Pan
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Anqi Guo
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Kaiyu Guan
- Peking University Sixth Hospital, Peking University Institute of Mental HealthBeijingChina
| | - Congcong Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Shengnan Xu
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yali Tang
- Institute of Brain ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Zhengwei Huang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| |
Collapse
|
12
|
Xiong M, Sun W. Research progress of probiotics and their protective strategy in the field of inflammatory bowel disease treatment: A review. Medicine (Baltimore) 2024; 103:e40401. [PMID: 39495980 PMCID: PMC11537665 DOI: 10.1097/md.0000000000040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease characterized by recurrent episodes and difficult-to-cure symptoms. Although the pathogenesis of IBD is closely related to host genetic susceptibility, intestinal microbiota, environmental factors, and immune responses, leading to mucosal damage and increased intestinal permeability. Intestinal mucosal injury in IBD patients causes pathogenic bacteria and pathogenic factors to invade the intestine, leading to disturb the structure and metabolic products of intestinal flora. Researchers have found that probiotics, as live microbial agents, can effectively inhibit the growth of pathogenic bacteria, regulate intestinal flora, optimize intestinal microecology, restore intestinal homeostasis, and promote intestinal mucosal repairing. During the oral delivery process, probiotics are susceptible to adverse physiological factors, leading to reduced bioavailability. Additionally, the oxidative stress microenvironment induced by intestinal mucosal damage makes it difficult for probiotics to colonize the intestinal tract of IBD patients, thereby affecting their probiotic effect. This research mainly introduces and reviews the advantages and disadvantages of probiotics and their protective strategies in the treatment of IBD, and prospects the future development trends of probiotics and their protective strategies. Probiotics can effectively inhibit the growth of harmful microorganisms, regulate the structure of the intestinal microbiota, and promote mucosal repairing, thereby reducing immune stress and alleviating intestinal inflammation, providing a new perspective for the treatment of IBD. The development of single-cell encapsulation technology not only effectively maintaining the biological activity of probiotics during oral delivery, but also endowing probiotics with additional biological functions naturally achieved through surface programming, which has multiple benefits for intestinal health.
Collapse
Affiliation(s)
- Ming Xiong
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
13
|
Baek J, Lee S, Lee J, Park J, Choi E, Kang SS. Utilization of Probiotic-Derived Extracellular Vesicles as Postbiotics and Their Role in Mental Health Therapeutics. Food Sci Anim Resour 2024; 44:1252-1265. [PMID: 39554832 PMCID: PMC11564138 DOI: 10.5851/kosfa.2024.e92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 11/19/2024] Open
Abstract
As consumers become more interested in healthier lifestyles, the global functional food market is expanding. Probiotics have gained attention because of their numerous health benefits to the host and may even treat various pathological conditions. Probiotics interact with host cells, and particularly, probiotics-derived extracellular vesicles (PEVs) are key factors in the health benefits of probiotics. Additionally, extracellular vesicles are nano-scaled lipid-bilayer particles that carry various biological molecules, indicating potential as new postbiotics that can provide the same health benefits as probiotics while complementing the side effects associated with probiotics. The importance of mental health care is becoming increasingly prominent considering societal conditions, such as the recent aging population and the coronavirus disease 2019 pandemic. However, the response to mental health issues among modern individuals is insufficient, and there is a need for the development of new personalized treatments to overcome the limitations of current mental health therapies. PEVs have various physiological functions, including mediating cellular communication in the central nervous system, which indicates associations among mental disorders. Therefore, we focused on the beneficial effects of PEVs on the brain and mental health. Recent research has shown that PEVs can adjust the expression of brain-derived neurotrophic factors in vitro and in vivo, demonstrating antidepressant and cognitive function improvement effects. This suggests that PEVs have potential as therapeutic agents for improving mental health and treating brain disorders. Based on this, we review these findings and present the beneficial effects of PEVs on mental health and the challenges that need to be addressed.
Collapse
Affiliation(s)
- Jihyeon Baek
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Suyeon Lee
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Jinho Lee
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Jihyun Park
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Esther Choi
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Seok-Seong Kang
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| |
Collapse
|
14
|
Liu L, Zheng C, Xu Z, Wang Z, Zhong Y, He Z, Zhang W, Zhang Y. Intranasal administration of Clostridium butyricum and its derived extracellular vesicles alleviate LPS-induced acute lung injury. Microbiol Spectr 2024; 12:e0210824. [PMID: 39472001 PMCID: PMC11619349 DOI: 10.1128/spectrum.02108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
Acute lung injury (ALI) is associated with high morbidity and mortality rates. However, its clinical treatment is limited. Currently, the treatment of lung diseases by regulating the lung microbiota has become a research hotspot. In this study, we investigated the protective effects of the intranasal administration of Clostridium butyricum and its derived extracellular vesicles (EVs) against lipopolysaccharide (LPS)-induced ALI. The results demonstrated that compared with the LPS group, the pre-treatment group with C. butyricum and its EVs reduced the expression of pro-inflammatory cytokines and alleviated the symptoms in ALI mice by inhibiting the TLR4/MyD88 signaling pathway. Moreover, C. butyricum and its derived EVs inhibited the expression of apoptosis-related proteins and increased the expression of lung barrier proteins. Additionally, the intervention of C. butyricum changed the composition of the pulmonary microbiota. At the species level, LPS significantly increased the relative abundance of Acinetobacter johnsonii, while C. butyricum reversed this effect. In conclusion, these data demonstrate that intranasal administration of C. butyricum and its EVs can prevent LPS-induced ALI by reducing inflammation, inhibiting apoptosis, and improving lung barrier function. Additionally, C. butyricum regulated the pulmonary microbiota of mice to alleviate LPS-induced ALI.IMPORTANCEThe disorder of pulmonary microbiota plays an important role in the progression of acute lung injury (ALI). However, very few studies have been conducted to treat ALI by modulating pulmonary microbiota. In this study, the diversity and composition of pulmonary microbiota were altered in lipopolysaccharide (LPS)-induced ALI mice, but the ecological balance of the pulmonary microbiota was restored by intranasal administration of Clostridium butyricum. Moreover, the study reported the mechanism of C. butyricum and its derived extracellular vesicles for the treatment of LPS-induced ALI. These results reveal the importance of pulmonary microbiota in ALI disease. It provides a new approach for the treatment of ALI with new-generation probiotics.
Collapse
Affiliation(s)
- Li Liu
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Cihua Zheng
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenyang Xu
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhidong He
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanbing Zhang
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Choi H, Kwak MJ, Kang AN, Mun D, Lee S, Park MR, Oh S, Kim Y. Limosilactobacillus fermentum SLAM 216-Derived Extracellular Vesicles Promote Intestinal Maturation in Mouse Organoid Models. J Microbiol Biotechnol 2024; 34:2091-2099. [PMID: 39252638 PMCID: PMC11540603 DOI: 10.4014/jmb.2405.05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
Probiotics, when consumed in adequate amounts, can promote the health of the host and beneficially modulate the host's immunity. Particularly during the host's early life, the gut intestine undergoes a period of epithelial maturation in which epithelial cells organize into specific crypt and villus structures. This process can be mediated by the gut microbiota. Recent studies have reported that the administration of probiotics can further promote intestinal maturation in the neonatal intestine. Therefore, in this study, we investigated the effects of extracellular vesicles derived from the Limosilactobacillus fermentum SLAM 216 strain, which is an established probiotic with known immune and anti-aging effects on intestinal epithelial maturation and homeostasis, using mouse small intestinal organoids. As per our findings, treatment with L. fermentum SLAM 216-derived LF216EV (LF216EV) has significantly increased the bud number and size of organoid buds. Furthermore, extracellular vesicle (EV) treatment upregulated the expression of maturation-related genes, including Ascl2, Ephb2, Lgr5, and Sox9. Tight junctions are known to have an important role in the intestinal immune barrier, and EV treatment has significantly increased the expression of genes associated with tight junctions, such as Claudin, Muc2, Occludin, and Zo-1, indicating that it can promote intestinal development. This was supported by RNA sequencing, which revealed the upregulation of genes associated with cAMP-mediated signaling, which is known to regulate cellular processes including cell differentiation. Additionally, organoids exposed to LF216EV exhibited upregulation of genes associated with maintaining brain memory and neurotransmission, suggesting possible future functional implications.
Collapse
Affiliation(s)
- Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Suengwon Lee
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mi Ri Park
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Zhu FM, Xu J, He QY, Deng YP, Liu MY, Liu Y, Sun J, Zhao H, Fu L, Yang J. Association of serum interleukin-2 with severity and prognosis in hospitalized patients with community-acquired pneumonia: a prospective cohort study. Intern Emerg Med 2024; 19:1929-1939. [PMID: 38967887 PMCID: PMC11467086 DOI: 10.1007/s11739-024-03699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
The prior studies have shown that interleukin-2 (IL-2) exerts important roles in the pathological and physiological processes of lung diseases. However, the role of IL-2 in community-acquired pneumonia (CAP) is still uncertain. Through a prospective cohort study, our research will explore the correlations between serum IL-2 levels and the severity and prognosis in CAP patients. There were 267 CAP patients included. Blood samples were obtained. Serum IL-2 were tested by enzyme-linked immunosorbent assay (ELISA). Demographic traits and clinical characteristics were extracted. Serum IL-2 were gradually elevated with increasing severity scores in CAP patients. Correlation analyses revealed that serum IL-2 were connected with physiological parameters including liver and renal function in CAP patients. According to a logistic regression analysis, serum IL-2 were positively correlated with CAP severity scores. We also tracked the prognostic outcomes of CAP patients. The increased risks of adversely prognostic outcomes, including mechanical ventilation, vasoactive agent usage, ICU admission, death, and longer hospital length, were associated with higher levels of IL-2 at admission. Serum IL-2 at admission were positively associated with severe conditions and poor prognosis among CAP patients, indicated that IL-2 may involve in the initiation and development of CAP. As a result, serum IL-2 may be an available biomarker to guide clinicians in assessing the severity and determining the prognosis of CAP.
Collapse
Affiliation(s)
- Feng-Min Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Juan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - You-Peng Deng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ming-Yan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
17
|
Liang A, Korani L, Yeung CLS, Tey SK, Yam JWP. The emerging role of bacterial extracellular vesicles in human cancers. J Extracell Vesicles 2024; 13:e12521. [PMID: 39377479 PMCID: PMC11460218 DOI: 10.1002/jev2.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as pivotal mediators between bacteria and host. In addition to being crucial players in host homeostasis, they have recently been implicated in disease pathologies such as cancer. Hence, the study of BEVs represents an intriguing and rapidly evolving field with substantial translational potential. In this review, we briefly introduce the fundamentals of BEV characteristics, cargo and biogenesis. We emphatically summarize the current relationship between BEVs across various cancer types, illustrating their role in tumorigenesis, treatment responses and patient survival. We further discuss the inherent advantages of BEVs, such as stability, abundance and specific cargo profiles, that make them attractive candidates for non-invasive diagnostic and prognostic approaches. The review also explores the potential of BEVs as a strategy for cancer therapy, considering their ability to deliver therapeutic agents, modulate the tumour microenvironment (TME) and elicit immunomodulatory responses. Understanding the clinical significance of BEVs may lead to the development of better-targeted and personalized treatment strategies. This comprehensive review evaluates the current progress surrounding BEVs and poses questions to encourage further research in this emerging field to harness the benefits of BEVs for their full potential in clinical applications against cancer.
Collapse
Affiliation(s)
- Aijun Liang
- Department of Hepatobiliary Surgery IIZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lavisha Korani
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sze Keong Tey
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery IIZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| |
Collapse
|
18
|
Sun R, Du S, Wang M, Chen Z, Yan Q, Yuan B, Jin Y. Colonic long-term retention and colonization of probiotics by double-layer chitosan/tannic acid coating and microsphere embedding for treatment of ulcerative colitis and radiation enteritis. Int J Biol Macromol 2024; 280:135757. [PMID: 39299414 DOI: 10.1016/j.ijbiomac.2024.135757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Oral probiotics can alleviate enteric inflammations but their rapid transit through the gut limits their retention and colonization in the colon. Here, a novel strategy integrating the bacterial double-layer coating and hydrogel microsphere embedding techniques was used to highly enhance the colonic retention and colonization efficiency of Lactobacillus rhamnosus GG (LGG). LGG was coated by the double layers of chitosan (CS) and tannic acid (TA), and then embedded in calcium alginate (CA) hydrogel microspheres to form LGG@CT@CA. The microspheres resisted gastric liquids, improving LGG safe transit through the stomach to reach the colon. LGG@CT rapidly released in the colon due to the good swelling of hydrogel microspheres. More importantly, LGG exhibited long-term retention up to 7 days in the colon, and colonized the deep site of the colonic mucosa. LGG@CT@CA had a high therapeutic efficiency of ulcer colitis with the long colon and the low intestinal permeability of colonic tissues. LGG@CT@CA also alleviated the small intestinal damage induced by irradiation and the survival rates were improved. The mechanisms included local ROS decrease, IL-10 increase, and ferroptosis reduction in the small intestine. The oral colon-targeted system holds promise for oral probiotic therapy by the long-term retention and colonization in the colon.
Collapse
Affiliation(s)
- Rui Sun
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Shumin Du
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Minting Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Qiucheng Yan
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
19
|
Sanwlani R, Bramich K, Mathivanan S. Role of probiotic extracellular vesicles in inter-kingdom communication and current technical limitations in advancing their therapeutic utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:509-526. [PMID: 39697628 PMCID: PMC11648425 DOI: 10.20517/evcna.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 12/20/2024]
Abstract
Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding of gut uptake and demonstration of in vivo effect are some important issues. This review aims to summarize the diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the importance of addressing these gaps and limitations with technical advances such as rigorous omics has been discussed.
Collapse
Affiliation(s)
| | | | - Suresh Mathivanan
- Correspondence to: Prof. Suresh Mathivanan, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, Science Drive, Melbourne 3086, Victoria, Australia. E-mail:
| |
Collapse
|
20
|
Lee S, Jung SY, Yoo D, Go D, Park JY, Lee JM, Um W. Alternatives of mesenchymal stem cell-derived exosomes as potential therapeutic platforms. Front Bioeng Biotechnol 2024; 12:1478517. [PMID: 39315312 PMCID: PMC11417005 DOI: 10.3389/fbioe.2024.1478517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
With outstanding therapeutic potential in the tissue regeneration and anti-inflammation, mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a prominent therapeutic in recent. However, poor production yield and reproducibility have remained as significant challenges of their practical applications. To surmount these challenges, various alternative materials with stem cell-like functions, have been recently investigated, however, there has been no comprehensive analysis in these alternatives so far. Here, we discuss the recent progress of alternatives of MSC-EXOs, including exosomes and exosome-like nanovesicles from various biological sources such as plants, milk, microbes, and body fluids. Moreover, we extensively compare each alternative by summarizing their unique functions and mode of actions to suggest the expected therapeutic target and future directions for developing alternatives for MSC-EXOs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jong Min Lee
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
21
|
Artuyants A, Hong J, Dauros-Singorenko P, Phillips A, Simoes-Barbosa A. Lactobacillus gasseri and Gardnerella vaginalis produce extracellular vesicles that contribute to the function of the vaginal microbiome and modulate host-Trichomonas vaginalis interactions. Mol Microbiol 2024; 122:357-371. [PMID: 37485746 DOI: 10.1111/mmi.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Trichomonas vaginalis is an extracellular protozoan parasite of the human urogenital tract, responsible for a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a dysbiotic microbiome that is characterised by the depletion of host-protective commensals such as Lactobacillus gasseri, and the flourishing of a bacterial consortium that is comparable to the one seen for bacterial vaginosis, including the founder species Gardnerella vaginalis. These two vaginal bacteria are known to have opposite effects on T. vaginalis pathogenicity. Studies on extracellular vesicles (EVs) have been focused on the direction of a microbial producer (commensal or pathogen) to a host recipient, and largely in the context of the gut microbiome. Here, taking advantage of the simplicity of the human cervicovaginal microbiome, we determined the molecular cargo of EVs produced by L. gasseri and G. vaginalis and examined how these vesicles modulate the interaction of T. vaginalis and host cells. We show that these EVs carry a specific cargo of proteins, which functions can be attributed to the opposite roles that these bacteria play in the vaginal biome. Furthermore, these bacterial EVs are delivered to host and protozoan cells, modulating host-pathogen interactions in a way that mimics the opposite effects that these bacteria have on T. vaginalis pathogenicity. This is the first study to describe side-by-side the protein composition of EVs produced by two bacteria belonging to the opposite spectrum of a microbiome and to demonstrate that these vesicles modulate the pathogenicity of a protozoan parasite. Such as in trichomoniasis, infections and dysbiosis co-occur frequently resulting in significant co-morbidities. Therefore, studies like this provide the knowledge for the development of antimicrobial therapies that aim to clear the infection while restoring a healthy microbiome.
Collapse
Affiliation(s)
| | - Jiwon Hong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | | | - Anthony Phillips
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
22
|
Zeng M, Liu M, Tao X, Yin X, Shen C, Wang X. Emerging Trends in the Application of Extracellular Vesicles as Novel Oral Delivery Vehicles for Therapeutics in Inflammatory Diseases. Int J Nanomedicine 2024; 19:8573-8601. [PMID: 39185348 PMCID: PMC11345024 DOI: 10.2147/ijn.s475532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation involves complex immune responses where cytokines such as TNF-α, IL-1, and IL-6 promote vasodilation and increased vascular permeability to facilitate immune cell migration to inflammation sites. Persistent inflammation is linked to diseases like cancer, arthritis, and neurodegenerative disorders. Although oral anti-inflammatory drugs are favored for their non-invasiveness and cost-effectiveness, their efficacy is often compromised due to gastrointestinal degradation and limited bioavailability. Recent advancements highlight the potential of extracellular vesicles (EVs) as nanocarriers that enhance drug delivery by encapsulating therapeutic agents, ensuring targeted release and reduced toxicity. These EVs, derived from dietary sources and cell cultures, exhibit excellent biocompatibility and stability, presenting a novel approach in anti-inflammatory therapies. This review discusses the classification and advantages of orally administered EVs (O-EVs), their mechanism of action, and their emerging role in treating inflammatory conditions, positioning them as promising vectors in the development of innovative anti-inflammatory drug delivery systems.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
23
|
Athayde AJAA, Berger LRR, de Albuquerque TMR, Sampaio KB, Fernandes KFD, do Nascimento HMA, de Oliveira SPA, Lopes LAA, de Oliveira CEV, da Conceição ML, de Souza EL, Stamford TCM. Physiological and Technological Properties of Probiotic Lacticaseibacillus rhamnosus GG Encapsulated with Alginate-Chitosan Mixture and Its Incorporation in Whole Milk. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10345-w. [PMID: 39162967 DOI: 10.1007/s12602-024-10345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
This study developed and evaluated chitosan-sodium alginate capsules containing the probiotic Lacticaseibacillus rhamnosus GG using extrusion and emulsification techniques. The encapsulated L. rhamnosus GG cells were also evaluated for technological and probiotic-related physiological functionalities, as well as when incorporated in UHT and powdered milk. Extrusion (86.01 ± 1.26%) and emulsification (74.43 ± 1.41%) encapsulation techniques showed high encapsulation efficiency and high survival rates of L. rhamnosus GG during 28 days of refrigeration and room temperature storage, especially emulsification capsules (> 81%). The encapsulated L. rhamnosus GG cells showed high survival rates during exposure to simulated gastrointestinal conditions (72.65 ± 1.09-114.15 ± 0.44%). L. rhamnosus GG encapsulated by extrusion and emulsification performed satisfactorily in probiotic-related physiological (pH and bile salts tolerance) and technological properties (positive proteolytic activity, diacetyl and exopolysaccharides production, high NaCl tolerance (> 91%), besides having high heat tolerance (> 76%)). L. rhamnosus GG in extrusion and emulsification capsules had high survival rates (> 89%) and did not significantly affect physicochemical parameters in Ultra-High Temperature (UHT) and powdered milk during storage. The results demonstrate that L. rhamnosus GG can be successfully encapsulated with alginate-chitosan as a protective material through extrusion and emulsification techniques. UHT and powdered milk could serve as appropriate delivery systems to increase the intake of this encapsulated probiotic by consumers.
Collapse
Affiliation(s)
- Ana Júlia Alves Aguiar Athayde
- Post-Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Applied Microbiology, Medical Science Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Lúcia Raquel Ramos Berger
- Laboratory of Agricultural and Environmental Microbiology, Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Thatyane Mariano Rodrigues de Albuquerque
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil.
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Campus I - Cidade Universitária, João Pessoa, PB, CEP: 58051-900, Brazil.
| | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Karina Félix Dias Fernandes
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | | | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Thayza Christina Montenegro Stamford
- Post-Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Applied Microbiology, Medical Science Center, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
24
|
Sandanusova M, Turkova K, Pechackova E, Kotoucek J, Roudnicky P, Sindelar M, Kubala L, Ambrozova G. Growth phase matters: Boosting immunity via Lacticasebacillus-derived membrane vesicles and their interactions with TLR2 pathways. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e169. [PMID: 39185335 PMCID: PMC11341917 DOI: 10.1002/jex2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Lipid bi-layered particles known as membrane vesicles (MVs), produced by Gram-positive bacteria are a communication tool throughout the entire bacterial growth. However, the MVs characteristics may vary across all stages of maternal culture growth, leading to inconsistencies in MVs research. This, in turn, hinders their employment as nanocarriers, vaccines and other medical applications. In this study, we aimed to comprehensively characterize MVs derived from Lacticaseibacillus rhamnosus CCM7091 isolated at different growth stages: early exponential (6 h, MV6), late exponential (12 h, MV12) and late stationary phase (48 h, MV48). We observed significant differences in protein content between MV6 and MV48 (data are available via ProteomeXchange with identifier PXD041580), likely contributing to their different immunomodulatory capacities. In vitro analysis demonstrated that MV48 uptake rate by epithelial Caco-2 cells is significantly higher and they stimulate an immune response in murine macrophages RAW 264.7 (elevated production of TNFα, IL-6, IL-10, NO). This correlated with increased expression of lipoteichoic acid (LTA) and enhanced TLR2 signalling in MV48, suggesting that LTA contributes to the immunomodulation. In conclusion, we showed that Lacticaseibacillus rhamnosus CCM7091-derived MVs from the late stationary phase boost the immune response the most effectively, which pre-destines them for therapeutical application as nanocarriers.
Collapse
Affiliation(s)
- Miriam Sandanusova
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Kristyna Turkova
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Eva Pechackova
- Faculty of Science, Department of BiochemistryMasaryk UniversityBrnoCzech Republic
| | - Jan Kotoucek
- Department of Pharmacology and ToxicologyVeterinary Research InstituteBrnoCzech Republic
| | - Pavel Roudnicky
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Martin Sindelar
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Lukas Kubala
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Gabriela Ambrozova
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
25
|
Fakharian F, Sadeghi A, Pouresmaeili F, Soleimani N, Yadegar A. Anti-inflammatory effects of extracellular vesicles and cell-free supernatant derived from Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-induced inflammatory response in gastric epithelial cells in vitro. Folia Microbiol (Praha) 2024; 69:927-939. [PMID: 38308067 DOI: 10.1007/s12223-024-01138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Helicobacter pylori infection is the major risk factor associated with the development of gastric cancer. Currently, administration of standard antibiotic therapy combined with probiotics and postbiotics has gained significant attention in the management of H. pylori infection. In this work, the immunomodulatory effects of Lactobacillus crispatus-derived extracellular vesicles (EVs) and cell-free supernatant (CFS) were investigated on H. pylori-induced inflammatory response in human gastric adenocarcinoma (AGS) cells. L. crispatus-derived EVs were isolated by ultracentrifugation and physically characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Furthermore, the protein content of L. crispatus-derived EVs was also evaluated by SDS-PAGE. Cell viability of AGS cells exposed to varying concentrations of EVs and CFS was assessed by MTT assay. The mRNA expression of IL-1β, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR. ELISA was used for the measurement of IL-8 production in AGS cells. In addition, EVs (50 μg/mL) and CFS modulated the H. pylori-induced inflammation by downregulating the mRNA expression of IL-1β, IL-6, IL-8, and TNF-α, and upregulating the expression of IL-10, and TGF-ß genes in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with L. crispatus-derived EVs and CFS. In conclusion, our observation suggests for the first time that EVs released by L. crispatus strain RIGLD-1 and its CFS could be recommended as potential therapeutic agents against H. pylori-triggered inflammation.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Li Y, Li J, Li S, Zhou S, Yang J, Xu K, Chen Y. Exploring the gut microbiota's crucial role in acute pancreatitis and the novel therapeutic potential of derived extracellular vesicles. Front Pharmacol 2024; 15:1437894. [PMID: 39130638 PMCID: PMC11310017 DOI: 10.3389/fphar.2024.1437894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
During acute pancreatitis, intestinal permeability increases due to intestinal motility dysfunction, microcirculatory disorders, and ischemia-reperfusion injury, and disturbances in the intestinal flora make bacterial translocation easier, which consequently leads to local or systemic complications such as pancreatic and peripancreatic necrotic infections, acute lung injury, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Therefore, adjusting intestinal ecosystem balance may be a promising approach to control local and systemic complications of acute pancreatitis. In this paper, we reviewed the causes and manifestations of intestinal flora disorders during acute pancreatitis and their complications, focused on the reduction of acute pancreatitis and its complications by adjusting the intestinal microbial balance, and innovatively proposed the treatment of acute pancreatitis and its complications by gut microbiota-derived extracellular vesicles.
Collapse
Affiliation(s)
- Yijie Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shumin Zhou
- Wenzhou Institute of Shanghai University, Wenzhou, China
| | - Jiahua Yang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Wenzhou Institute of Shanghai University, Wenzhou, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yafeng Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Chen Q, Fang Z, Yang Z, Xv X, Yang M, Hou H, Li Z, Chen Y, Gong A. Lactobacillus plantarum-Derived Extracellular Vesicles Modulate Macrophage Polarization and Gut Homeostasis for Alleviating Ulcerative Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14713-14726. [PMID: 38885172 DOI: 10.1021/acs.jafc.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Extracellular vesicles released by probiotics have been demonstrated to effectively alleviate intestinal inflammation, yet the precise underlying mechanisms remain unclear. In this research, for the first time, Lactobacillus plantarum UJS001 (LP-UJS) was isolated from fermented sauerkraut in Zhenjiang, China. Thereafter, the therapeutic effect of LP-UJS-derived extracellular vesicles (LP-UJS-EVs) on dextran sulfate sodium-induced ulcerative colitis (UC) in mice was analyzed to elucidate the immune mechanisms. According to our findings, LP-UJS-EVs played a pivotal role in restoring the intestinal barrier and alleviating intestinal inflammation. Notably, LP-UJS-EVs induced M2 polarization of macrophages, promoted the release of IL-10 and TGF-β, inhibited the release of histamine, IL-6, and TNF-α, and exerted regulatory effects on intestinal microflora, as evidenced by the reduced abundances of Coprococcus, Parabacteroides, Staphylococcus, and Allobaculum, alongside the enhanced abundance of Prevotella. Furthermore, both LP-UJS and LP-UJS-EVs affected the lysine degradation pathway and significantly increased the abundance of related metabolites, especially oxoadipic acid. In summary, our results underscore the substantial therapeutic potential of LP-UJS and its secreted EVs in the treatment of UC.
Collapse
Affiliation(s)
- Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Zhengzou Fang
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| | - Zhe Yang
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| | - Xiao Xv
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Mengting Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Hanjin Hou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Zhangzuo Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Yanyan Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| |
Collapse
|
28
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
29
|
Zhang S, Wang Q, Tan DEL, Sikka V, Ng CH, Xian Y, Li D, Muthiah M, Chew NWS, Storm G, Tong L, Wang J. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12466. [PMID: 38887165 PMCID: PMC11183959 DOI: 10.1002/jev2.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qiyue Wang
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Daniel En Liang Tan
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vritika Sikka
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
| | - Yan Xian
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dan Li
- Department of Food Science and Technology, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
- National University Centre for Organ TransplantationNational University Health SystemSingaporeSingapore
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart CentreNational University Health SystemSingaporeSingapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lingjun Tong
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute (CVRI)National University Heart Centre Singapore (NUHCS)SingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
30
|
Beliakoff RE, Gonzalez CF, Lorca GL. Bile promotes Lactobacillus johnsonii N6.2 extracellular vesicle production with conserved immunomodulatory properties. Sci Rep 2024; 14:12272. [PMID: 38806562 PMCID: PMC11133329 DOI: 10.1038/s41598-024-62843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Recently, Lactobacillus johnsonii N6.2-derived extracellular vesicles (EVs) were shown to reduce apoptosis in human beta cell lines and stimulate insulin secretion in human islets. Our goal was to identify a physiologically relevant environmental condition that induces a hypervesiculation phenotype in L. johnsonii N6.2 and to evaluate if transcriptional changes are involved in this process. Culturing this strain in the presence of 0.2% bovine bile, which mimics a stressor encountered by the bacterium in the small intestine, resulted in approximately a 100-fold increase in EVs relative to cells grown in media without bile. Whole transcriptome analysis of cells grown with bile revealed upregulation of several peptidoglycan hydrolases as well as several genes involved in fatty acid utilization. These results suggest that the hypervesiculation phenotype may be the result of increased cell wall turnover combined with increased accumulation of phospholipids, in agreement with our previous proteomic and lipidomics results. Additionally, EVs isolated from L. johnsonii N6.2 grown in presence of bile maintained their immunomodulatory properties in host-derived βlox5 pancreatic and THP-1 macrophage cell lines. Our findings suggest that in L. johnsonii N6.2 vesiculogenesis is significantly impacted by the expression of cell wall modifying enzymes and proteins utilized for exogenous fatty acid uptake that are regulated at the transcriptional level. Furthermore, this data suggests that vesiculogenesis could be stimulated in vivo using small molecules thereby maximizing the beneficial interactions between bacteria and their hosts.
Collapse
Affiliation(s)
- Reagan E Beliakoff
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Luo Y, Fu S, Liu Y, Kong S, Liao Q, Lin L, Li H. Banxia Xiexin decoction modulates gut microbiota and gut microbiota metabolism to alleviate DSS-induced ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117990. [PMID: 38423412 DOI: 10.1016/j.jep.2024.117990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin decoction (BXD) is a classic traditional Chinese medicine prescription for treating ulcerative colitis (UC). However, its potential mechanism of action is still unclear. AIM OF THE STUDY Reveal the correlation between the beneficial impacts of BXD on UC and the composition of the gut microbiota. MATERIALS AND METHODS The major constituents of BXD were identified using the HPLC-DAD technique. An experimental model of UC was induced in male C57BL/6 mice by administering dextran sodium sulfate (DSS). A total of 48 mice were divided into different groups, including control, model, high-dose BXD treatment, medium-dose BXD treatment, low-dose BXD treatment, and a group treated with 5-amino acid salicylic acid (5-ASA). Body weight changes and disease activity index (DAI) scores were documented; colon length, colon index, spleen index, and thymus index scores were determined; myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) activities were assessed; and histological staining with hematoxylin-eosin and alcian blue/phosphate Schiff was performed. The immunofluorescence technique was employed to examine the presence of ZO-1 and occludin in the colon tissue. 16S rRNA sequencing was employed to assess the gut microbiota's diversity and metabolomics was utilized to examine alterations in metabolites within the gut microbiota. The impact of BXD on the gut microbiota was confirmed through fecal microbiota transplantation (FMT). RESULTS BXD exhibited a positive impact on UC mice, particularly in the high-dose BXD treatment group. The BXD group experienced weight recovery, decreased DAI scores, improved colon length, and restored of spleen and thymus index scores compared to the DSS group. Additionally, BXD alleviated colon damage and the inflammatory response while restoring intestinal barrier function. FMT in BXD-treated mice also showed therapeutic effects in UC mice. At the phylum level, the relative abundance of Desulfobacterota, Deferribacterota and Actinobacteriota increased; at the genus level, g__norank__f__Muribaculaceae, Dubosiella, Akkermansia, and Lactobacillus increased, whereas Faecalibaculum, Alloprevotella, Turicibacter, and g_Paraprevotella decreased. g__norank_f__Muribaculaceae was positively correlated with body weight and colon length and negatively with colon index scores, splenic index scores, and MPO levels; Alloprevotella was positively correlated with splenic index scores, histological scores, and TNF-α levels and negatively with thymus index scores and thymus index scores. Faecalibaculum was positively correlated with colon index scores and MPO levels. Metabolic investigations revealed 58 potential indicators, primarily associated with the metabolism of amino acids, purines, and lipids. Alloprevotella, g_Paraprevotella, and Bifidobacterium were strongly associated with metabolic pathways. CONCLUSION BXD showed beneficial therapeutic effects in UC mice. The mechanism may be by promoting the balance and variety of gut microbiota, as well as regulating the metabolism of amino acids, purines, and lipids.
Collapse
Affiliation(s)
- Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330000, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330000, China.
| |
Collapse
|
32
|
Chen Z, Feng L, Wu P, Jiang WD, Jiang J, Zhou XQ, Liu Y. From growth promotion to intestinal inflammation alleviation: Unraveling the potential role of Lactobacillus rhamnosus GCC-3 in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109511. [PMID: 38499215 DOI: 10.1016/j.fsi.2024.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lactobacillus rhamnosus is a probiotic, which not only promotes the growth of animals, but also has anti-inflammatory effects. However, the mechanism by which Lactobacillus rhamnosus regulates intestinal immunity is not well comprehended. Hence, the study aimed to research how Lactobacillus rhamnosus affects the intestinal immunity using juvenile grass carp (Ctenopharyngodon idella) as a model. We selected 1800 juvenile grass carp for testing. They were divided into six treatments and fed with six gradients of Lactobacillus rhamnosus GCC-3 (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 g/kg) for 70 days. Enteritis was subsequently induced with dextroside sodium sulfate. Results indicated that dietary Lactobacillus rhamnosus GCC-3 addition improved growth performance. Meanwhile, appropriate levels of Lactobacillus rhamnosus GCC-3 alleviated excessive inflammatory response by down-regulating the expression of TLR4 and NOD receptors, up-regulating the expression of TOR, and then down-regulating the expression of NF-κB. Additionally, appropriate Lactobacillus rhamnosus GCC-3 improved intestinal immunity by reducing pyroptosis triggered by NLRP3 inflammasome and mediated by GSDME. Furthermore, 16 S rRNA sequencing showing appropriate levels of Lactobacillus rhamnosus GCC-3 increased Lactobacillus and Bifidobacterium abundance and decreased Aeromonas abundance. These results suggest that Lactobacillus rhamnosus GCC-3 can alleviate intestinal inflammation through down-regulating NF-κB and up-regulating TOR signaling pathways, as well as by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Zhen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
33
|
Rahman Z, Padhy HP, Dandekar MP. Cell-Free Supernatant of Lactobacillus rhamnosus and Bifidobacterium breve Ameliorates Ischemic Stroke-Generated Neurological Deficits in Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10256-w. [PMID: 38656733 DOI: 10.1007/s12602-024-10256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
The beneficial effects of probiotics, postbiotics, and paraprobiotics have already been registered in managing ischemic stroke-generated neuroinflammation and gut dysbiosis. Herein, we examined the impact of cell-free supernatant (CFS) obtained from probiotics (Lactobacillus rhamnosus UBLR-58 and Bifidobacterium breve UBBr-01) in a rat transient middle cerebral artery occlusion (MCAO) model of focal cerebral injury. Pre-MCAO supplementation of probiotics (2 × 109 CFU/mL) for 21 days or CFS (1 mL/rat) for 7 days protect the MCAO-induced somatosensory and motor impairments recorded at 24 h and 72 h after reperfusion in foot-fault, rotarod, adhesive removal, and vibrissae-evoked forelimb placing tests. We also noted the reduced infarct area and neuronal degradation in the right hemisphere of probiotics- and CFS-recipient MCAO-operated animals. Moreover, MCAO-induced altered concentrations of glial-fibrillary acidic protein, NeuN, zonula occludens-1 (ZO-1), TLR4, IL-1β, IL-6, and TNF-α, as well as matrix metalloproteinase-9 (MMP9) were reversed in the treatment groups. Probiotics and CFS treatment ameliorated the elevated levels of IL-6, IL-1β, and MMP9 in the blood plasma of rats. The disrupted microbial phyla, Firmicutes-to-Bacteroides ratio, villi/crypt ratio, and decreased mucin-producing goblet cells, ZO-1, and occludin in the colon of MCAO-operated rats were recovered following probiotics and CFS treatment. NMR characterization of CFS and rat blood plasma revealed the presence of several important bacterial metabolites. These findings suggest that the CFS obtained from Lactobacillus rhamnosus UBLR-58 and Bifidobacterium breve UBBr-01 has the propensity to improve MCAO-generated neurological dysfunctions in rats by dampening neuroinflammation and modulating the gut-brain axis modulators.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, PIN 500037, Telangana, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, PIN 500037, Telangana, India.
| |
Collapse
|
34
|
Liu R. A promising area of research in medicine: recent advances in properties and applications of Lactobacillus-derived exosomes. Front Microbiol 2024; 15:1266510. [PMID: 38686107 PMCID: PMC11056577 DOI: 10.3389/fmicb.2024.1266510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Lactobacillus-derived exosomes, small extracellular vesicles released by bacteria, have emerged as a promising area of research in recent years. These exosomes possess a unique structural and functional diversity that allows them to regulate the immune response and promote gut health. The isolation and purification of these exosomes are crucial for their effective use as a therapeutic agent. Several isolation and purification methods have been developed, including differential ultracentrifugation, density gradient centrifugation, and size-exclusion chromatography. Lactobacillus-derived exosomes have been demonstrated to have therapeutic potential in various diseases, such as inflammatory bowel disease, liver disease, and neurological disorders. Moreover, they have been shown to serve as effective carriers for drug delivery. Genetic engineering of these exosomes has also shown promise in enhancing their therapeutic potential. Overall, Lactobacillus-derived exosomes represent a promising area of research for the development of novel therapeutics for immunomodulation, gut health, and drug delivery.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| |
Collapse
|
35
|
Jia W, Yu S, Liu X, Le Q, He X, Yu L, He J, Yang L, Gao H. Ethanol Extract of Limonium bicolor Improves Dextran Sulfate Sodium-Induced Ulcerative Colitis by Alleviating Inflammation and Restoring Gut Microbiota Dysbiosis in Mice. Mar Drugs 2024; 22:175. [PMID: 38667792 PMCID: PMC11050939 DOI: 10.3390/md22040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel condition characterized by inflammation within the mucous membrane, rectal bleeding, diarrhea, and pain experienced in the abdominal region. Existing medications for UC have limited treatment efficacy and primarily focus on symptom relief. Limonium bicolor (LB), an aquatic traditional Chinese medicine (TCM), exerts multi-targeted therapeutic effects with few side effects and is used to treat anemia and hemostasis. Nevertheless, the impact of LB on UC and its mechanism of action remain unclear. Therefore, the objective of this study was to investigate the anti-inflammatory effects and mechanism of action of ethanol extract of LB (LBE) in lipopolysaccharide-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced UC. The results showed that LBE suppressed the secretion of cytokines in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. LBE had protective effects against DSS-induced colitis in mice, decreased the disease activity index (DAI) score, alleviated symptoms, increased colon length, and improved histological characteristics, thus having protective effects against DSS-induced colitis in mice. In addition, it reversed disturbances in the abundance of proteobacteria and probiotics such as Lactobacillus and Blautia in mice with DSS-induced UC. Based on the results of network pharmacology analysis, we identified four main compounds in LBE that are associated with five inflammatory genes (Ptgs2, Plg, Ppar-γ, F2, and Gpr35). These results improve comprehension of the biological activity and functionality of LB and may facilitate the development of LB-based compounds for the treatment of UC.
Collapse
Affiliation(s)
- Wei Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Siyu Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Xi Liu
- Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361000, China;
| | - Qingqing Le
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Xiwen He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Lutao Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, Ministry of Natural Resources), Fuzhou 350400, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, Ministry of Natural Resources), Fuzhou 350400, China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
| |
Collapse
|
36
|
Leser T, Baker A. Molecular Mechanisms of Lacticaseibacillus rhamnosus, LGG ® Probiotic Function. Microorganisms 2024; 12:794. [PMID: 38674738 PMCID: PMC11051730 DOI: 10.3390/microorganisms12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To advance probiotic research, a comprehensive understanding of bacterial interactions with human physiology at the molecular and cellular levels is fundamental. Lacticaseibacillus rhamnosus LGG® is a bacterial strain that has long been recognized for its beneficial effects on human health. Probiotic effector molecules derived from LGG®, including secreted proteins, surface-anchored proteins, polysaccharides, and lipoteichoic acids, which interact with host physiological processes have been identified. In vitro and animal studies have revealed that specific LGG® effector molecules stimulate epithelial cell survival, preserve intestinal barrier integrity, reduce oxidative stress, mitigate excessive mucosal inflammation, enhance IgA secretion, and provide long-term protection through epigenetic imprinting. Pili on the cell surface of LGG® promote adhesion to the intestinal mucosa and ensure close contact to host cells. Extracellular vesicles produced by LGG® recapitulate many of these effects through their cargo of effector molecules. Collectively, the effector molecules of LGG® exert a significant influence on both the gut mucosa and immune system, which promotes intestinal homeostasis and immune tolerance.
Collapse
Affiliation(s)
- Thomas Leser
- Future Labs, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark;
| | | |
Collapse
|
37
|
Ma Y, Yang D, Huang J, Liu K, Liu H, Wu H, Bao C. Probiotics for inflammatory bowel disease: Is there sufficient evidence? Open Life Sci 2024; 19:20220821. [PMID: 38585636 PMCID: PMC10998680 DOI: 10.1515/biol-2022-0821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 04/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) refers to chronic inflammatory disorders of the gut. Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of IBD. Evidence suggests that the intestinal microbiota plays a role in the pathogenesis of IBD, so probiotics have garnered a lot of interest as a potential treatment or prevention for IBD. However, clinical evidence of the efficacy of probiotics is still debatable. We performed a literature review. An advanced search considered clinical studies on probiotic for IBD from inception to 2023 in PubMed, Embase, Cochrane Library, and Web of Science. In the treatment of UC with probiotics, only Escherichia coli Nissle 1917 for maintenance treatment of UC in remission, and Bifidobacterium and VSL#3 for induction of remission in patients with mild to moderately active UC have shown strong evidence. Currently, there are no definitive conclusions regarding the effectiveness of probiotics in CD. The mechanism of probiotic treatment for IBD may be related to reducing oxidative stress, repairing the intestinal barrier, regulating intestinal flora balance, and modulating intestinal immune response. Differences in the benefits of probiotics between CD and UC may be attributable to the different lesion extent and immune-mediated pathophysiology. More robust randomized clinical trials are required to validate the efficacy and safety of diverse probiotic strains in IBD.
Collapse
Affiliation(s)
- Yueying Ma
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Dandan Yang
- Hong Kong Baptist University, Hong Kong999077, China
| | - Jin Huang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Kunli Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huirong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| | - Chunhui Bao
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| |
Collapse
|
38
|
Liu C, Qi X, Liu X, Sun Y, Mao K, Shen G, Ma Y, Li Q. Anti-inflammatory probiotics HF05 and HF06 synergistically alleviate ulcerative colitis and secondary liver injury. Food Funct 2024; 15:3765-3777. [PMID: 38506656 DOI: 10.1039/d3fo04419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Given the limited efficacy and adverse effects associated with conventional drugs, probiotics are emerging as a promising therapeutic strategy for mitigating the chronic nature of ulcerative colitis (UC) and its consequential secondary liver injury (SLI). Limosilactobacillus fermentum HF06 and Lactiplatibacillus plantarum HF05 are strains we screened with excellent anti-inflammatory and probiotic properties in vitro. In this study, the intervention of HF06 and HF05 in combination (MIXL) was found to be more effective in alleviating intestinal inflammation and secondary liver injury in UC mice compared to supplementing with the two strains individually. Results demonstrated that MIXL effectively attenuated colon shortening and weight loss, downregulated the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 mRNA in the intestines, mitigated SLI, and augmented the enzymatic activities of SOD, CAT, and GSH-Px in the liver. MIXL enhances the intestinal barrier in UC mice, regulates the structure and composition of the gut microbiota, promotes the abundance of Lactobacillus, and suppresses the abundance of bacteria associated with inflammation and liver injury, including Clostridium_Sensu_Stricto_1, Escherichia, Shigella, Enterococcus, Corynebacterium, Desulfovibrio, and norank_f__Oscillospiraceae. This study demonstrated the synergistic effect of HF06 and HF05, providing a reliable foundation for the alleviation of UC.
Collapse
Affiliation(s)
| | - Xiaofen Qi
- Harbin Institute of Technology, Harbin, China.
| | - Xiaolin Liu
- Harbin Institute of Technology, Harbin, China.
| | - Yue Sun
- Harbin Institute of Technology, Harbin, China.
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Co., Ltd, Qidong, China
| | - Guiqi Shen
- Jiangsu HOWYOU Biotechnology Co., Ltd, Qidong, China
| | - Ying Ma
- Harbin Institute of Technology, Harbin, China.
| | - Qingming Li
- New Hope Dairy Company Limited, China.
- Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, China
| |
Collapse
|
39
|
Wang Z, Gao M, Kan J, Cheng Q, Chen X, Tang C, Chen D, Zong S, Jin C. Resistant Starch from Purple Sweet Potatoes Alleviates Dextran Sulfate Sodium-Induced Colitis through Modulating the Homeostasis of the Gut Microbiota. Foods 2024; 13:1028. [PMID: 38611336 PMCID: PMC11011479 DOI: 10.3390/foods13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is a complicated inflammatory disease with a continually growing incidence. In this study, resistant starch was obtained from purple sweet potato (PSPRS) by the enzymatic isolation method. Then, the structural properties of PSPRS and its protective function in dextran sulfate sodium (DSS)-induced colitis were investigated. The structural characterization results revealed that the crystallinity of PSPRS changed from CA-type to A-type, and the lamellar structure was totally destroyed during enzymatic hydrolysis. Compared to DSS-induced colitis mice, PSPRS administration significantly improved the pathological phenotype and colon inflammation in a dose-dependent manner. ELISA results indicated that DSS-induced colitis mice administered with PSPRS showed higher IL-10 and IgA levels but lower TNF-α, IL-1β, and IL-6 levels. Meanwhile, high doses (300 mg/kg) of PSPRS significantly increased the production of acetate, propionate, and butyrate. 16S rDNA high-throughput sequencing results showed that the ratio of Firmicutes to Bacteroidetes and the potential probiotic bacteria levels were notably increased in the PSPRS treatment group, such as Lactobacillus, Alloprevotella, Lachnospiraceae_NK4A136_group, and Bifidobacterium. Simultaneously, harmful bacteria like Bacteroides, Staphylococcus, and Akkermansia were significantly inhibited by the administration of a high dose of PSPRS (p < 0.05). Therefore, PSPRS has the potential to be a functional food for promoting intestinal health and alleviating UC.
Collapse
Affiliation(s)
| | | | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.W.); (M.G.); (Q.C.); (X.C.); (C.T.); (D.C.); (S.Z.); (C.J.)
| | | | | | | | | | | | | |
Collapse
|
40
|
Yang Y, Li N, Gao Y, Xu F, Chen H, Zhang C, Ni X. The activation impact of lactobacillus-derived extracellular vesicles on lipopolysaccharide-induced microglial cell. BMC Microbiol 2024; 24:70. [PMID: 38418961 PMCID: PMC10900764 DOI: 10.1186/s12866-024-03217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Perioperative neurocognitive dysfunction (PND) emerges as a common postoperative complication among elderly patients. Currently, the mechanism of PND remains unclear, but there exists a tendency to believe that inflammation plays a significant role in PND. Alterations in the abundance of intestinal microbiota can increase the permeability of the intestinal mucosal barrier and incite extraintestinal inflammatory responses. Metabolites from these microbiota can be absorbed by the intestinal mucosa into the bloodstream, exerting influence upon the central nervous system (CNS). Lactobacillus (Lac), serving as an intestinal probiotic bacterium, possesses the capacity to modulate emotional behavior and cognitive functions. Extracellular vesicles (EVs) are recognized as novel therapeutic carriers for targeted delivery to regulate physiology and pathogenesis. While the mechanism governing the primary function of Lac-EVs in the CNS remains uncertain. Therefore, we established an in vitro neuroinflammation model to induce PND and then treated the mice with Lac-EVs to observe the effect of these EVs on neuroinflammation, particularly on microglial (MG) polarization. Our research unveils that Lac-EVs reduced inflammation induced by LPS in microglia and the activation of related proteins, including the mRNA expression of M1 labeled protein (iNOS). Moreover, the mRNA expression of M2-labeled protein (Arg1) increased. In addition, flow cytometry revealed that the ratio of M1/M2 microglia also changed significantly. Therefore, Lac-EVs promoted the differentiation of M2 microglia by inducing the preferential expression of specific markers related to M2 macrophages and inflammation. In terms of inflammatory cytokine expression, Lac-EVs decreased the secretion of proinflammatory cytokines (IL-1β and IL-6) and increased IL-10 production after lipopolysaccharide (LPS) stimulation. Therefore, Lac-EVs induce the activation of M2 microglial cells without inducing cellular harm in vitro, and they demonstrate anti-inflammatory effects against lipopolysaccharide-induced neuroinflammation. This finding suggested that it is an effective anti-inflammatory strategy for alleviating inflammation-driven PNDs.
Collapse
Affiliation(s)
- Yanfang Yang
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Na Li
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Yubo Gao
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Fanning Xu
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Hui Chen
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinli Ni
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
41
|
Shi Y, Zhang C, Cao W, Li L, Liu K, Zhu H, Balcha F, Fang Y. Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 inhibit HIF-1α-mediated glycolysis of colon cancer. Future Microbiol 2024; 19:227-239. [PMID: 38270125 DOI: 10.2217/fmb-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 01/26/2024] Open
Abstract
Aims: Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 have antiproliferative activity of colon cells, but the effect on glycolytic metabolism of cancer cell remains enigmatic. The authors investigated how Lacticaseibacillus paracasei extracellular vesicles (LpEVs) inhibit the growth of colon cancer cells by affecting tumor metabolism. Materials & methods: HCT116 cells were treated with LpEVs and then differentially expressed genes were analyzed by transcriptome sequencing, the sequencing results were confirmed in vivo and in vitro. Results: LpEVs entered colon cancer cells and inhibited their growth. Transcriptome sequencing revealed differentially expressed genes were related to glycolysis. Lactate production, glucose uptake and lactate dehydrogenase activity were significantly reduced after treatment. LpEVs also reduced HIF-1α, GLUT1 and LDHA expression. Conclusion: LpEVs exert their antiproliferative activity of colon cancer cells by decreasing HIF-1α-mediated glycolysis.
Collapse
Affiliation(s)
- Yangqian Shi
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Microbiology, Beihua University, 132013 Jilin, China
| | - Chunliang Zhang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Blood Centre,150056 Harbin, China
| | - Wanyu Cao
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Luyi Li
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Kaili Liu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Hanyue Zhu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Fikadu Balcha
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Medical Laboratory Science, College of Health Science, Arsi University, POBX 193 Asella, Ethiopia
| | - Yong Fang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Heilongjiang Province Key Laboratory of Immunity & Infection, Pathogenic Biology, 150081 Harbin, China
| |
Collapse
|
42
|
Liu BD, Akbar R, Oliverio A, Thapa K, Wang X, Fan GC. BACTERIAL EXTRACELLULAR VESICLES IN THE REGULATION OF INFLAMMATORY RESPONSE AND HOST-MICROBE INTERACTIONS. Shock 2024; 61:175-188. [PMID: 37878470 PMCID: PMC10921997 DOI: 10.1097/shk.0000000000002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Extracellular vesicles (EVs) are a new revelation in cross-kingdom communication, with increasing evidence showing the diverse roles of bacterial EVs (BEVs) in mammalian cells and host-microbe interactions. Bacterial EVs include outer membrane vesicles released by gram-negative bacteria and membrane vesicles generated from gram-positive bacteria. Recently, BEVs have drawn attention for their potential as biomarkers and therapeutic tools because they are nano-sized and can deliver bacterial cargo into host cells. Importantly, exposure to BEVs significantly affects various physiological and pathological responses in mammalian cells. Herein, we provide a comprehensive overview of the various effects of BEVs on host cells (i.e., immune cells, endothelial cells, and epithelial cells) and inflammatory/infectious diseases. First, the biogenesis and purification methods of BEVs are summarized. Next, the mechanisms and pathways identified by BEVs that stimulate either proinflammatory or anti-inflammatory responses are highlighted. In addition, we discuss the mechanisms by which BEVs regulate host-microbe interactions and their effects on the immune system. Finally, this review focuses on the contribution of BEVs to the pathogenesis of sepsis/septic shock and their therapeutic potential for the treatment of sepsis.
Collapse
Affiliation(s)
- Benjamin D. Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, 43210, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anna Oliverio
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kajol Thapa
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
43
|
Huang Y, Huang Y, Xia D, Liu L, Xiong X, Ouyang Y, Deng Y. Lactobacillus rhamnosus ameliorates acne vulgaris in SD rats via changes in gut microbiota and associated tryptophan metabolism. Front Immunol 2024; 14:1293048. [PMID: 38250060 PMCID: PMC10796797 DOI: 10.3389/fimmu.2023.1293048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Background The depletion of beneficial bacteria in the gut has been found in patients with acne vulgaris, and in previous studies, the supplement of Lactobacillus rhamnosus led to the improvement of adult acne. Nevertheless, the potential mechanism of L. rhamnosus in the amelioration of acne vulgaris has not been elucidated yet. Methods To mimic the human intestinal environment, a pseudo-germ-free rat model was used, and then gut microbiota from healthy individuals and acne patients were transplanted into rats. The effects of L. rhamnosus and tryptophan (Trp) metabolites on a rat acne model were investigated by gavage. Then, 16S rRNA analysis and targeted measurement of metabolites were performed to discover the differences in gut microbiota and metabolites between groups. Finally, HaCaT cells pretreated with Cutibacterium acnes were employed to validate the effect and mechanism of Trp metabolites on acne. Results L. rhamnosus significantly improved acne-like symptoms in rats by suppressing the level of inflammatory cytokines such as IL-1β, IL-6, and TNF-α. L. rhamnosus induced an increase in the production of indole-3-acetic acid (IAA) and indole via targeted Trp metabolic analyses. Furthermore, L. rhamnosus promoted bacterial diversity and also enhanced the Firmicutes/Bacteroidota (F/B) ratio, which was positively related to both IAA and indole. Finally, the roles of IAA and indole in alleviating acne vulgaris were confirmed both in vitro and in vivo, which could be reversed by AhR inhibitors. Conclusion Our study demonstrated that L. rhamnosus could exert its therapeutic effects on acne vulgaris by modulating the gut microbiota and regulating associated Trp metabolites.
Collapse
Affiliation(s)
- Yukun Huang
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yaxin Huang
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Dengmei Xia
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Liu
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongliang Ouyang
- Department of Health Management, Luzhou People’s Hospital, Luzhou, Sichuan, China
| | - Yongqiong Deng
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Dermatology, Chengdu First People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
45
|
Zheng C, Zhong Y, Xie J, Wang Z, Zhang W, Pi Y, Zhang W, Liu L, Luo J, Xu W. Bacteroides acidifaciens and its derived extracellular vesicles improve DSS-induced colitis. Front Microbiol 2023; 14:1304232. [PMID: 38098663 PMCID: PMC10720640 DOI: 10.3389/fmicb.2023.1304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction "Probiotic therapy" to regulate gut microbiota and intervene in intestinal diseases such as inflammatory bowel disease (IBD) has become a research hotspot. Bacteroides acidifaciens, as a new generation of probiotics, has shown beneficial effects on various diseases. Methods In this study, we utilized a mouse colitis model induced by dextran sodium sulfate (DSS) to investigate how B. acidifaciens positively affects IBD. We evaluated the effects ofB. acidifaciens, fecal microbiota transplantation, and bacterial extracellular vesicles (EVs) on DSS-induced colitis in mice. We monitored the phenotype of mouse colitis, detected serum inflammatory factors using ELISA, evaluated intestinal mucosal barrier function using Western blotting and tissue staining, evaluated gut microbiota using 16S rRNA sequencing, and analyzed differences in EVs protein composition derived from B. acidifaciens using proteomics to explore how B. acidifaciens has a positive impact on mouse colitis. Results We confirmed that B. acidifaciens has a protective effect on colitis, including alleviating the colitis phenotype, reducing inflammatory response, and improving intestinal barrier function, accompanied by an increase in the relative abundance of B. acidifaciens and Ruminococcus callidus but a decrease in the relative abundance of B. fragilis. Further fecal bacterial transplantation or fecal filtrate transplantation confirmed the protective effect of eosinophil-regulated gut microbiota and metabolites on DSS-induced colitis. Finally, we validated that EVs derived from B. acidifaciens contain rich functional proteins that can contribute to the relief of colitis. Conclusion Therefore, B. acidifaciens and its derived EVs can alleviate DSS-induced colitis by reducing mucosal damage to colon tissue, reducing inflammatory response, promoting mucosal barrier repair, restoring gut microbiota diversity, and restoring gut microbiota balance in mice. The results of this study provide a theoretical basis for the preclinical application of the new generation of probiotics.
Collapse
Affiliation(s)
- Cihua Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiming Pi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
46
|
Pirolli NH, Reus LSC, Mamczarz Z, Khan S, Bentley WE, Jay SM. High performance anion exchange chromatography purification of probiotic bacterial extracellular vesicles enhances purity and anti-inflammatory efficacy. Biotechnol Bioeng 2023; 120:3368-3380. [PMID: 37555379 PMCID: PMC10592193 DOI: 10.1002/bit.28522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Bacterial extracellular vesicles (BEVs), including outer membrane vesicles, have emerged as a promising new class of vaccines and therapeutics to treat cancer and inflammatory diseases, among other applications. However, clinical translation of BEVs is hindered by a current lack of scalable and efficient purification methods. Here, we address downstream BEV biomanufacturing limitations by developing a method for orthogonal size- and charge-based BEV enrichment using tangential flow filtration (TFF) in tandem with high performance anion exchange chromatography (HPAEC). The data show that size-based separation coisolated protein contaminants, whereas size-based TFF with charged-based HPAEC dramatically improved purity of BEVs produced by probiotic Gram-negative Escherichia coli and Gram-positive lactic acid bacteria (LAB). Escherichia coli BEV purity was quantified using established biochemical markers while improved LAB BEV purity was assessed via observed potentiation of anti-inflammatory bioactivity. Overall, this work establishes orthogonal TFF + HPAEC as a scalable and efficient method for BEV purification that holds promise for future large-scale biomanufacturing of therapeutic BEV products.
Collapse
Affiliation(s)
- Nicholas H. Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Laura Samantha C. Reus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Zuzanna Mamczarz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sulayman Khan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Hou JJ, Li WW, Wang XL, Ma AH, Qin YH. Efficacy of extracellular vesicles as a cell-free therapy in colitis: a systematic review and meta-analysis of animal studies. Front Pharmacol 2023; 14:1260134. [PMID: 37954844 PMCID: PMC10637393 DOI: 10.3389/fphar.2023.1260134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Extracellular vesicles (EVs) mediate inflammation, immune responses, gut barrier integrity, and intestinal homeostasis. Recently, the application of EVs in the treatment of inflammatory bowel disease (IBD) has been under intensive focus. Some studies have been conducted in animal models of colitis, while systematic reviews and meta-analyses are lacking. The current study aimed to conduct a systematic review and meta-analysis of studies investigating the efficacy of EVs on IBD. Methods: A systematic retrieval of all studies in PubMed, EMBASE, MEDLINE, Web of Science, and Cochrane Library reported the effects of EVs in the colitis model up to 22 June 2023. The methodological quality was assessed based on SYRCLE's risk of bias (RoB) tool. Disease activity index (DAI), myeloperoxidase activity (MPO), histopathological score (HS), and inflammatory cytokines (TNF-α, NF-κB, IL-1β, IL-6, and IL-10) were extracted as analysis indicators by Web Plot Digitizer 4.5. A meta-analysis was performed to calculate the standardized mean difference and 95% confidence interval using random-effect models by Review Manager 5.3 and STATA 14.0 software. Results: A total of 21 studies were included in this meta-analysis. Although the heterogeneity between studies and the potential publication bias limits confidence in the extent of the benefit, EV treatment was superior to the control in the colitis evaluation with reduced DAI, HS, MPO activity, and pro-inflammatory cytokines, including TNF-α, NF-κB, IL-1β, and IL-6, while increasing the content of anti-inflammatory cytokine IL-10 (all p < 0.05). Conclusion: Our meta-analysis results supported the protective effect of EVs on colitis rodent models based on their potential role in IBD therapy and propelling the field toward clinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
48
|
Samuel M, Sanwlani R, Pathan M, Anand S, Johnston EL, Ang CS, Kaparakis-Liaskos M, Mathivanan S. Isolation and Characterization of Cow-, Buffalo-, Sheep- and Goat-Milk-Derived Extracellular Vesicles. Cells 2023; 12:2491. [PMID: 37887335 PMCID: PMC10605021 DOI: 10.3390/cells12202491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Milk is a complex biological fluid that has high-quality proteins including growth factors and also contains extracellular vesicles (EVs). EVs are a lipid bilayer containing vesicles that contain proteins, metabolites and nucleic acids. Several studies have proposed that EVs in cow milk can survive the gut and can illicit cross-species communication in the consuming host organism. In this study, we isolated and characterized extracellular vesicles from the raw milk of the four species of the Bovidae family, namely cow, sheep, goat and buffalo, that contribute 99% of the total milk consumed globally. A comparative proteomic analysis of these vesicles was performed to pinpoint their potential functional role in health and disease. Vesicles sourced from buffalo and cow milk were particularly enriched with proteins implicated in modulating the immune system. Furthermore, functional studies were performed to determine the anti-cancer effects of these vesicles. The data obtained revealed that buffalo-milk-derived EVs induced significantly higher cell death in colon cancer cells. Overall, the results from this study highlight the potent immunoregulatory and anti-cancer nature of EVs derived from the milk of Bovidae family members.
Collapse
Affiliation(s)
- Monisha Samuel
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| | - Rahul Sanwlani
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mohashin Pathan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sushma Anand
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ella L. Johnston
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Victoria, VIC 2010, Australia
| | - Maria Kaparakis-Liaskos
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
49
|
Yu C, Liu J, Liu Z, Ding Q, Zhu Q, Chen N, Fu J, Valencak TG, Ren D. Lactobacillus plantarum ZJUIDS04 alleviates DSS-induced colitis via modulating gut microbiota. J Funct Foods 2023; 109:105794. [DOI: 10.1016/j.jff.2023.105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
50
|
Hamid M, Zahid S. Ameliorative effects of probiotics in AlCl 3-induced mouse model of Alzheimer's disease. Appl Microbiol Biotechnol 2023; 107:5803-5812. [PMID: 37462697 DOI: 10.1007/s00253-023-12686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023]
Abstract
In recent years, gut microbiome alterations have been linked with complex underlying mechanisms of neurodegenerative disorders including Alzheimer's disease (AD). The gut microbiota modulates gut brain axis by facilitating development of hypothalamic-pituitary-adrenal axis and synthesis of neuromodulators. The study was designed to unravel the effect of combined consumption of probiotics; Lactobacillus rhamnosus GG (LGG®) and Bifidobacterium BB-12 (BB-12®) (1 × 109 CFU) on AlCl3-induced AD mouse model in comparison with potent acetylcholine esterase inhibitor drug for AD, donepezil. Mice were randomly allocated to six different study groups (n = 8). Behavioral tests were conducted to assess effect of AlCl3 (300 mg/kg) and probiotics treatment on cognition and anxiety through Morris Water Maze (MWM), Novel Object Recognition (NOR), Elevated Plus Maze (EPM), and Y-maze. The results indicated that the combined probiotic treatment significantly (p < 0.0001) reduced anxiety-like behavior post AlCl3 exposure. The AlCl3 + LGG® and BB-12®-treated group showed significantly improved spatial (p < 0.0001) and recognition memory (p < 0.0001) in comparison to AlCl3-treated group. The expression status of inflammatory cytokines (TNF-α and IL-1β) was also normalized upon treatment with LGG® and BB-12® post AlCl3 exposure. Our findings indicated that the probiotics LGG® and BB-12® have strong potential to overcome neuroinflammatory imbalance, cognitive deficits and anxiety-like behavior, therefore can be considered as a combination therapy for AD through modulation of gut brain axis. KEY POINTS: • Bifidobacterium BB-12 and Lactobacillus rhamnosus GG were fed to AlCl3-induced Alzheimer's disease mice. • This combination of probiotics had remarkable ameliorating effects on anxiety, neuroinflammation and cognitive deficits. • These effects may suggest that combined consumption of these probiotics instigate potential mitigation of AD associated consequences through gut brain axis modulation.
Collapse
Affiliation(s)
- Maryam Hamid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|