1
|
Wei JCJ, van den Broek TJ, van Baardewijk JU, van Stokkum R, Kamstra RJM, Rikken L, Gijsbertse K, Uzunbajakava NE, van den Brink WJ. Validation and user experience of a dry electrode based Health Patch for heart rate and respiration rate monitoring. Sci Rep 2024; 14:23098. [PMID: 39367187 PMCID: PMC11452725 DOI: 10.1038/s41598-024-73557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Successful implementation of remote monitoring of vital signs outside of the hospital setting hinges on addressing three crucial unmet needs: longer-term wear, skin comfort and signal quality. Earlier, we developed a Health Patch research platform that uses self-adhesive dry electrodes to measure vital digital biomarkers. Here, we report on the analytical validation for heart rate, heart rate variability and respiration rate. Study design included n = 25 adult participants with data acquisition during a 30-minute exercise protocol involving rest, squats, slow, and fast cycling. The Shimmer3 ECG Unit and Cosmed K5, were reference devices. Data analysis showed good agreement in heart rate and marginal agreement in respiratory rate, with lower agreement towards higher respiratory rates. The Lin's concordance coefficient was 0.98 for heart rate and 0.56 for respiratory rate. Heart rate variability (RMSSD) had a coefficient of 0.85. Participants generally expressed a positive experience with the technology, with some minor irritation from the medical adhesive. The results highlighted potential of this technology for short-to-medium term clinical use for cardiorespiratory health, due to its reliability, accuracy, and compact design. Such technology could become instrumental for remote monitoring providing healthcare professionals with continuous data, remote assessment and enhancing patient outcomes in cardiorespiratory health management.
Collapse
Affiliation(s)
- Jonathan C J Wei
- Microbiology & Systems Biology, TNO (Netherlands Organisation for Applied Scientific Research), Leiden, The Netherlands
| | - Tim J van den Broek
- Microbiology & Systems Biology, TNO (Netherlands Organisation for Applied Scientific Research), Leiden, The Netherlands
| | - Jan Ubbo van Baardewijk
- Human Performance, TNO (Netherlands Organisation for Applied Scientific Research), Soesterberg, The Netherlands
| | - Robin van Stokkum
- Risk Analysis for Products in Development, TNO (Netherlands Organisation for Applied Scientific Research), Utrecht, The Netherlands
| | - Regina J M Kamstra
- Microbiology & Systems Biology, TNO (Netherlands Organisation for Applied Scientific Research), Leiden, The Netherlands
| | - Lars Rikken
- Holst Centre, TNO (Netherlands Organisation for Applied Scientific Research), Eindhoven, The Netherlands
| | - Kaj Gijsbertse
- Human Performance, TNO (Netherlands Organisation for Applied Scientific Research), Soesterberg, The Netherlands
| | | | - Willem J van den Brink
- Microbiology & Systems Biology, TNO (Netherlands Organisation for Applied Scientific Research), Leiden, The Netherlands.
| |
Collapse
|
2
|
Lu B, Cui Y, Belsare P, Stanger C, Zhou X, Prioleau T. Mealtime prediction using wearable insulin pump data to support diabetes management. Sci Rep 2024; 14:21013. [PMID: 39251670 PMCID: PMC11385183 DOI: 10.1038/s41598-024-71630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Many patients with diabetes struggle with post-meal high blood glucose due to missed or untimely meal-related insulin doses. To address this challenge, our research aims to: (1) study mealtime patterns in patients with type 1 diabetes using wearable insulin pump data, and (2) develop personalized models for predicting future mealtimes to support timely insulin dose administration. Using two independent datasets with over 45,000 meal logs from 82 patients with diabetes, we find that the majority of people ( ∼ 60%) have irregular and inconsistent mealtime patterns that change notably through the course of each day and across months in their own historical data. We also show the feasibility of predicting future mealtimes with personalized LSTM-based models that achieve an average F1 score of > 95% with less than 0.25 false positives per day. Our research lays the groundwork for developing a meal prediction system that can nudge patients with diabetes to administer bolus insulin doses before meal consumption to reduce the occurrence of post-meal high blood glucose.
Collapse
Affiliation(s)
- Baiying Lu
- Department of Computer Science, Dartmouth College, Hanover, 03755, USA
| | - Yanjun Cui
- Department of Computer Science, Dartmouth College, Hanover, 03755, USA
| | - Prajakta Belsare
- Integrated Science and Technology, James Madison University, Harrisonburg, 22807, USA
| | - Catherine Stanger
- Center for Technology and Behavioral Health, Dartmouth College, Lebanon, 03766, USA
| | - Xia Zhou
- Department of Computer Science, Columbia University, New York, 10027, USA
| | | |
Collapse
|
3
|
Sheng B, Pushpanathan K, Guan Z, Lim QH, Lim ZW, Yew SME, Goh JHL, Bee YM, Sabanayagam C, Sevdalis N, Lim CC, Lim CT, Shaw J, Jia W, Ekinci EI, Simó R, Lim LL, Li H, Tham YC. Artificial intelligence for diabetes care: current and future prospects. Lancet Diabetes Endocrinol 2024; 12:569-595. [PMID: 39054035 DOI: 10.1016/s2213-8587(24)00154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Artificial intelligence (AI) use in diabetes care is increasingly being explored to personalise care for people with diabetes and adapt treatments for complex presentations. However, the rapid advancement of AI also introduces challenges such as potential biases, ethical considerations, and implementation challenges in ensuring that its deployment is equitable. Ensuring inclusive and ethical developments of AI technology can empower both health-care providers and people with diabetes in managing the condition. In this Review, we explore and summarise the current and future prospects of AI across the diabetes care continuum, from enhancing screening and diagnosis to optimising treatment and predicting and managing complications.
Collapse
Affiliation(s)
- Bin Sheng
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China; Key Laboratory of Artificial Intelligence, Ministry of Education, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Krithi Pushpanathan
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhouyu Guan
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Quan Hziung Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhi Wei Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Samantha Min Er Yew
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore; SingHealth Duke-National University of Singapore Diabetes Centre, Singapore Health Services, Singapore
| | - Charumathi Sabanayagam
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Nick Sevdalis
- Centre for Behavioural and Implementation Science Interventions, National University of Singapore, Singapore
| | | | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Institute for Health Innovation and Technology, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | - Jonathan Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Weiping Jia
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Elif Ilhan Ekinci
- Australian Centre for Accelerating Diabetes Innovations, Melbourne Medical School and Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Endocrinology, Austin Health, Melbourne, VIC, Australia
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron University Hospital and Vall d'Hebron Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lee-Ling Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Asia Diabetes Foundation, Hong Kong Special Administrative Region, China
| | - Huating Li
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China.
| | - Yih-Chung Tham
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| |
Collapse
|
4
|
Macias Alonso AK, Hirt J, Woelfle T, Janiaud P, Hemkens LG. Definitions of digital biomarkers: a systematic mapping of the biomedical literature. BMJ Health Care Inform 2024; 31:e100914. [PMID: 38589213 PMCID: PMC11015196 DOI: 10.1136/bmjhci-2023-100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Technological devices such as smartphones, wearables and virtual assistants enable health data collection, serving as digital alternatives to conventional biomarkers. We aimed to provide a systematic overview of emerging literature on 'digital biomarkers,' covering definitions, features and citations in biomedical research. METHODS We analysed all articles in PubMed that used 'digital biomarker(s)' in title or abstract, considering any study involving humans and any review, editorial, perspective or opinion-based articles up to 8 March 2023. We systematically extracted characteristics of publications and research studies, and any definitions and features of 'digital biomarkers' mentioned. We described the most influential literature on digital biomarkers and their definitions using thematic categorisations of definitions considering the Food and Drug Administration Biomarkers, EndpointS and other Tools framework (ie, data type, data collection method, purpose of biomarker), analysing structural similarity of definitions by performing text and citation analyses. RESULTS We identified 415 articles using 'digital biomarker' between 2014 and 2023 (median 2021). The majority (283 articles; 68%) were primary research. Notably, 287 articles (69%) did not provide a definition of digital biomarkers. Among the 128 articles with definitions, there were 127 different ones. Of these, 78 considered data collection, 56 data type, 50 purpose and 23 included all three components. Those 128 articles with a definition had a median of 6 citations, with the top 10 each presenting distinct definitions. CONCLUSIONS The definitions of digital biomarkers vary significantly, indicating a lack of consensus in this emerging field. Our overview highlights key defining characteristics, which could guide the development of a more harmonised accepted definition.
Collapse
Affiliation(s)
- Ana Karen Macias Alonso
- Department of Applied Natural Sciences, Technische Hochschule Lübeck, Lübeck, Germany
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julian Hirt
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Health, Eastern Switzerland University of Applied Sciences, St.Gallen, Switzerland
| | - Tim Woelfle
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Perrine Janiaud
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lars G Hemkens
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Meta-Research Innovation Center Berlin (METRIC-B), Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Erdős B, O'Donovan SD, Adriaens ME, Gijbels A, Trouwborst I, Jardon KM, Goossens GH, Afman LA, Blaak EE, van Riel NAW, Arts ICW. Leveraging continuous glucose monitoring for personalized modeling of insulin-regulated glucose metabolism. Sci Rep 2024; 14:8037. [PMID: 38580749 PMCID: PMC11371931 DOI: 10.1038/s41598-024-58703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
Continuous glucose monitoring (CGM) is a promising, minimally invasive alternative to plasma glucose measurements for calibrating physiology-based mathematical models of insulin-regulated glucose metabolism, reducing the reliance on in-clinic measurements. However, the use of CGM glucose, particularly in combination with insulin measurements, to develop personalized models of glucose regulation remains unexplored. Here, we simultaneously measured interstitial glucose concentrations using CGM as well as plasma glucose and insulin concentrations during an oral glucose tolerance test (OGTT) in individuals with overweight or obesity to calibrate personalized models of glucose-insulin dynamics. We compared the use of interstitial glucose with plasma glucose in model calibration, and evaluated the effects on model fit, identifiability, and model parameters' association with clinically relevant metabolic indicators. Models calibrated on both plasma and interstitial glucose resulted in good model fit, and the parameter estimates associated with metabolic indicators such as insulin sensitivity measures in both cases. Moreover, practical identifiability of model parameters was improved in models estimated on CGM glucose compared to plasma glucose. Together these results suggest that CGM glucose may be considered as a minimally invasive alternative to plasma glucose measurements in model calibration to quantify the dynamics of glucose regulation.
Collapse
Affiliation(s)
- Balázs Erdős
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands.
- Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Oslo, Norway.
| | - Shauna D O'Donovan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michiel E Adriaens
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Anouk Gijbels
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Inez Trouwborst
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kelly M Jardon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Ziolkovska A, Sina C. Personalized nutrition as the catalyst for building food-resilient cities. NATURE FOOD 2024; 5:267-269. [PMID: 38561460 DOI: 10.1038/s43016-024-00959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Anna Ziolkovska
- Topian, NEOM, Gayal, Tabuk province, Kingdom of Saudi Arabia
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany.
| |
Collapse
|
7
|
Popp CJ, Wang C, Hoover A, Gomez LA, Curran M, St-Jules DE, Barua S, Sevick MA, Kleinberg S. Objective Determination of Eating Occasion Timing: Combining Self-Report, Wrist Motion, and Continuous Glucose Monitoring to Detect Eating Occasions in Adults With Prediabetes and Obesity. J Diabetes Sci Technol 2024; 18:266-272. [PMID: 37747075 PMCID: PMC10973869 DOI: 10.1177/19322968231197205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Accurately identifying eating patterns, specifically the timing, frequency, and distribution of eating occasions (EOs), is important for assessing eating behaviors, especially for preventing and managing obesity and type 2 diabetes (T2D). However, existing methods to study EOs rely on self-report, which may be prone to misreporting and bias and has a high user burden. Therefore, objective methods are needed. METHODS We aim to compare EO timing using objective and subjective methods. Participants self-reported EO with a smartphone app (self-report [SR]), wore the ActiGraph GT9X on their dominant wrist, and wore a continuous glucose monitor (CGM, Abbott Libre Pro) for 10 days. EOs were detected from wrist motion (WM) using a motion-based classifier and from CGM using a simulation-based system. We described EO timing and explored how timing identified with WM and CGM compares with SR. RESULTS Participants (n = 39) were 59 ± 11 years old, mostly female (62%) and White (51%) with a body mass index (BMI) of 34.2 ± 4.7 kg/m2. All had prediabetes or moderately controlled T2D. The median time-of-day first EO (and interquartile range) for SR, WM, and CGM were 08:24 (07:00-09:59), 9:42 (07:46-12:26), and 06:55 (04:23-10:03), respectively. The median last EO for SR, WM, and CGM were 20:20 (16:50-21:42), 20:12 (18:30-21:41), and 21:43 (20:35-22:16), respectively. The overlap between SR and CGM was 55% to 80% of EO detected with tolerance periods of ±30, 60, and 120 minutes. The overlap between SR and WM was 52% to 65% EO detected with tolerance periods of ±30, 60, and 120 minutes. CONCLUSION The continuous glucose monitor and WM detected overlapping but not identical meals and may provide complementary information to self-reported EO.
Collapse
Affiliation(s)
- Collin J. Popp
- Department of Population Health,
Institute for Excellence in Health Equity, NYU Langone Health, New York, NY,
USA
| | - Chan Wang
- Division of Biostatistics, Department
of Population Health, NYU Langone Health, New York, NY, USA
| | - Adam Hoover
- Holcombe Department of Electrical and
Computer Engineering, Clemson University, Clemson, SC, USA
| | - Louis A. Gomez
- Department of Computer Science, Stevens
Institute of Technology, Hoboken, NJ, USA
| | - Margaret Curran
- Department of Population Health,
Institute for Excellence in Health Equity, NYU Langone Health, New York, NY,
USA
| | | | - Souptik Barua
- Department of Medicine, NYU Langone
Health, New York, NY, USA
| | - Mary Ann Sevick
- Division of Precision Medicine,
Department of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Langone
Health, New York, NY, USA
| | - Samantha Kleinberg
- Department of Computer Science, Stevens
Institute of Technology, Hoboken, NJ, USA
| |
Collapse
|
8
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
9
|
Romero-Tapiador S, Lacruz-Pleguezuelos B, Tolosana R, Freixer G, Daza R, Fernández-Díaz CM, Aguilar-Aguilar E, Fernández-Cabezas J, Cruz-Gil S, Molina S, Crespo MC, Laguna T, Marcos-Zambrano LJ, Vera-Rodriguez R, Fierrez J, Ramírez de Molina A, Ortega-Garcia J, Espinosa-Salinas I, Morales A, Carrillo de Santa Pau E. AI4FoodDB: a database for personalized e-Health nutrition and lifestyle through wearable devices and artificial intelligence. Database (Oxford) 2023; 2023:baad049. [PMID: 37465917 PMCID: PMC10354505 DOI: 10.1093/database/baad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
The increasing prevalence of diet-related diseases calls for an improvement in nutritional advice. Personalized nutrition aims to solve this problem by adapting dietary and lifestyle guidelines to the unique circumstances of each individual. With the latest advances in technology and data science, researchers can now automatically collect and analyze large amounts of data from a variety of sources, including wearable and smart devices. By combining these diverse data, more comprehensive insights of the human body and its diseases can be achieved. However, there are still major challenges to overcome, including the need for more robust data and standardization of methodologies for better subject monitoring and assessment. Here, we present the AI4Food database (AI4FoodDB), which gathers data from a nutritional weight loss intervention monitoring 100 overweight and obese participants during 1 month. Data acquisition involved manual traditional approaches, novel digital methods and the collection of biological samples, obtaining: (i) biological samples at the beginning and the end of the intervention, (ii) anthropometric measurements every 2 weeks, (iii) lifestyle and nutritional questionnaires at two different time points and (iv) continuous digital measurements for 2 weeks. To the best of our knowledge, AI4FoodDB is the first public database that centralizes food images, wearable sensors, validated questionnaires and biological samples from the same intervention. AI4FoodDB thus has immense potential for fostering the advancement of automatic and novel artificial intelligence techniques in the field of personalized care. Moreover, the collected information will yield valuable insights into the relationships between different variables and health outcomes, allowing researchers to generate and test new hypotheses, identify novel biomarkers and digital endpoints, and explore how different lifestyle, biological and digital factors impact health. The aim of this article is to describe the datasets included in AI4FoodDB and to outline the potential that they hold for precision health research. Database URL https://github.com/AI4Food/AI4FoodDB.
Collapse
Affiliation(s)
- Sergio Romero-Tapiador
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Blanca Lacruz-Pleguezuelos
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Ruben Tolosana
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Gala Freixer
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Roberto Daza
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Cristina M Fernández-Díaz
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Elena Aguilar-Aguilar
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Calle Tajo s/n, Villaviciosa de Odon, Madrid 28670, Spain
| | - Jorge Fernández-Cabezas
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Silvia Cruz-Gil
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Susana Molina
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Maria Carmen Crespo
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Teresa Laguna
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Laura Judith Marcos-Zambrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Ruben Vera-Rodriguez
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Julian Fierrez
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Ana Ramírez de Molina
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Javier Ortega-Garcia
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Isabel Espinosa-Salinas
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Aythami Morales
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Enrique Carrillo de Santa Pau
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| |
Collapse
|
10
|
Bruggisser F, Knaier R, Roth R, Wang W, Qian J, Scheer FAJL. Best Time of Day for Strength and Endurance Training to Improve Health and Performance? A Systematic Review with Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:34. [PMID: 37208462 PMCID: PMC10198889 DOI: 10.1186/s40798-023-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/30/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Current recommendations for physical exercise include information about the frequency, intensity, type, and duration of exercise. However, to date, there are no recommendations on what time of day one should exercise. The aim was to perform a systematic review with meta-analysis to investigate if the time of day of exercise training in intervention studies influences the degree of improvements in physical performance or health-related outcomes. METHODS The databases EMBASE, PubMed, Cochrane Library, and SPORTDiscus were searched from inception to January 2023. Eligibility criteria were that the studies conducted structured endurance and/or strength training with a minimum of two exercise sessions per week for at least 2 weeks and compared exercise training between at least two different times of the day using a randomized crossover or parallel group design. RESULTS From 14,125 screened articles, 26 articles were included in the systematic review of which seven were also included in the meta-analyses. Both the qualitative synthesis and the quantitative synthesis (i.e., meta-analysis) provide little evidence for or against the hypothesis that training at a specific time of day leads to more improvements in performance-related or health-related outcomes compared to other times. There was some evidence that there is a benefit when training and testing occur at the same time of day, mainly for performance-related outcomes. Overall, the risk of bias in most studies was high. CONCLUSIONS The current state of research provides evidence neither for nor against a specific time of the day being more beneficial, but provides evidence for larger effects when there is congruency between training and testing times. This review provides recommendations to improve the design and execution of future studies on this topic. REGISTRATION PROSPERO (CRD42021246468).
Collapse
Affiliation(s)
- Fabienne Bruggisser
- Department of Sport, Exercise and Health, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Raphael Knaier
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Ralf Roth
- Department of Sport, Exercise and Health, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Wei Wang
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingyi Qian
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Brunetto MR, Salvati A, Petralli G, Bonino F. Nutritional intervention in the management of non-alcoholic fatty liver disease. Best Pract Res Clin Gastroenterol 2023; 62-63:101830. [PMID: 37094914 DOI: 10.1016/j.bpg.2023.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Lifestyle modification is the primary intervention to control NAFLD progression, but despite evidence-based effectiveness it is difficult to distinguish the benefits of nutrition from physical activity and the optimal diet composition is not established. Macronutrients as saturated fatty acids, sugars and animal proteins are harmful in NAFLD and the Mediterranean Diet reducing sugar, red meat and refined carbohydrates and increasing unsaturated-fatty-acids was reported to be beneficial. However one size cannot fit all since NAFLD is a multifaceted syndrome encompassing many diseases of unknown etiologies, different clinical severity and outcomes. Studies of the intestinal metagenome, provided new insights into the physio-pathological interplay between intestinal microbiota and NAFLD. How much the microbiota heterogeneity can influence response to diet remains unknown. New knowledge indicates that AI guided personalized nutrition based on clinic-pathologic and genetic data combined with pre/post nutritional intervention gut metagenomics/metabolomics will be part of the future management of NAFLD.
Collapse
Affiliation(s)
- Maurizia R Brunetto
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145, Naples, Italy.
| | - Antonio Salvati
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Giovanni Petralli
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy.
| | - Ferruccio Bonino
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|