1
|
Pereira BP, Silva AO, Awata WMC, Pimenta GF, Ribeiro JM, de Faria Almeida CA, Antonietto CRK, Dos Reis LFC, Esteves A, Torres LHL, de Araújo Paula FB, Ruginsk SG, Tirapelli CR, Rizzi E, Ceron CS. Curcumin Prevents Renal Damage of l-NAME Induced Hypertension in by Reducing MMP-2 and MMP-9. Cell Biochem Funct 2024; 42:e4119. [PMID: 39244707 DOI: 10.1002/cbf.4119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
In the present study, we investigated whether curcumin administration would interfere with the main renal features of l-NAME-induced hypertension model. For this purpose, we conducted both in vitro and in vivo experiments to evaluate renal indicators of inflammation, oxidative stress, and metalloproteinases (MMPs) expression/activity. Hypertension was induced by l-NAME (70 mg/kg/day), and Wistar rats from both control and hypertensive groups were treated with curcumin (50 or 100 mg/kg/day; gavage) or vehicle for 14 days. Blood and kidneys were collected to determine serum creatinine levels, histological alterations, oxidative stress, MMPs expression and activity, and ED1 expression. l-NAME increased blood pressure, but both doses of curcumin treatment reduced these values. l-NAME treatment increased creatinine levels, glomeruli area, Bowman's space, kidney MMP-2 activity, as well as MMP-9 and ED1 expression, and reduced the number of glomeruli. Curcumin treatment prevented the increase in creatinine levels, MMP-2 activity, and reduced MMP-2, MMP-9, ED1, and superoxide levels, as well as increased superoxide dismutase activity and partially prevented glomeruli alterations. Moreover, curcumin directly inhibited MMP-2 activity in vitro. Thus, our main findings demonstrate that curcumin reduced l-NAME-induced hypertension and renal glomerular alterations, inhibited MMP-2 and MMP-9 expression/activity, and reduced oxidative stress and inflammatory processes, which may indirectly impact hypertension-induced renal outcomes.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Alessandra Oliveira Silva
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Gustavo Félix Pimenta
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, São Paulo, Brazil
| | - Jéssyca Milene Ribeiro
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | | | - Luis Felipe Cunha Dos Reis
- Department of Structural Biology, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Alessandra Esteves
- Department of Anatomy, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Sílvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carlos Renato Tirapelli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, São Paulo, Brazil
| | - Ellen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirão Preto, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
2
|
Rossi KA, Almenara CCP, Simões RP, Mulher LCCS, Krause M, Carneiro MTWD, Padilha AS. Short-term Effects of Cadmium Exposure on Blood Pressure and Vascular Function in Wistar Rats. Biol Trace Elem Res 2024; 202:2645-2656. [PMID: 37697136 DOI: 10.1007/s12011-023-03851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Chronic cadmium exposure is known to be associated with vascular changes and increased blood pressure, but its short-term effects on the cardiovascular system remain poorly understood. This study aimed to investigate the pressoric and vascular effects of a 7-day exposure to CdCl2 in Wistar rats. The rats were divided in control group (Ct), which received tap water, and the Cd group, which received a 100 mg/L CdCl2 solution via drinking water for 7 days. We analyzed body weight, plasma Cadmium concentration, systolic blood pressure (SBP), and vascular responses. Despite relatively low plasma Cadmium concentration, the Cd group exhibited elevated SBP and increased contractile response to phenylephrine. Endothelium removal and NOS inhibition increased contractions in both groups. In the Cd group's aorta, we observed enhanced levels of phospho-eNOS (Ser1177) and basal NO release. Cd group showed reduced Catalase expression and increased basal release of H2O2, with catalase reducing the contractile response. In arteries pre-contracted with phenylephrine, Cd group showed impaired endothelium-dependent (Acetylcholine) and independent (sodium nitroprussiate-SNP) relaxation responses. However, responses to SNP were similar after pre-contraction with KCl in both groups. These data suggest early effects of Cadmium on blood pressure and aortic function, indicating impaired H2O2-scavenging by catalase. Increased H2O2 due to Cadmium exposure might explain heightened responses to phenylephrine and weakened relaxation responses mediated by the NO-K+-channels pathway. Our findings shed light on Cadmium's short-term impact on the cardiovascular system, providing insights into potential mechanisms underlying its effects on blood pressure regulation and vascular function.
Collapse
Affiliation(s)
- Karoline Alves Rossi
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Rakel Passos Simões
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Maiara Krause
- Department of Chemistry, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Alessandra Simão Padilha
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil.
- Programa de Pós-Graduação Em Ciências Fisiológicas, CCS/UFES, Av. Marechal Campos, MaruípeVitoria, ES, 146829043-900, Brazil.
| |
Collapse
|
3
|
Li Y, Yang L, Su P, Chen N. Curcumin protects against cadmium-induced germ cell death in the testis of rats. Toxicol Res (Camb) 2024; 13:tfae082. [PMID: 38841432 PMCID: PMC11149375 DOI: 10.1093/toxres/tfae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Cadmium (Cd) has been shown to disrupt the reproductive system. In this study, we evaluated the protective effects of Curcumin (Cur) against Cd-induced reproductive toxicity. Methods Exploring the role of Cur in Cd-treated rat models. Results The study demonstrated that Cd treatment impaired the seminiferous epithelium, leading to increased apoptosis of germ cells. Interestingly, pretreatment with Cur ameliorated the histological damage and decreased the germ cell apoptosis induced by Cd. Furthermore, after Cd exposure, B-cell lymphoma-2 expression was significantly decreased while Bax expression was increased. Pretreatment of rats with Cur protected against germ cell apoptosis by improving the expression of B-cell lymphoma-2 and reducing Bax. Additionally, Cd treatment increased reactive oxygen species, resulting in a decrease in antioxidant enzymes. However, pretreatment of rats with Cur followed by Cd administration led to a substantial decrease in reactive oxygen species levels and increased activities of antioxidant enzymes. Ultrastructural investigations revealed that damage to the mitochondrial structure was significantly ameliorated by Cur pretreatment in Cd-treated rats. Notably, Cur significantly activated the peroxisome proliferator-activated receptor gamma coactivator 1a/Sirtuins-3 signaling pathway. Conclusions Overall, our data suggest that Cd induces germ cell apoptosis through mitochondrial-induced oxidative stress, but Cur pretreatment offers strong protection against Cd-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yamin Li
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, 745 Luoyu Avenue, Wuhan, Hubei 430071, P. R. China
| | - Lu Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, P. R. China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 HangkongAvenue, Wuhan 430030, P. R. China
| | - Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, P. R. China
| |
Collapse
|
4
|
Cirovic A, Satarug S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J Mol Sci 2024; 25:1851. [PMID: 38339129 PMCID: PMC10855822 DOI: 10.3390/ijms25031851] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
5
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Guo J, Fang M, Xiong Z, Zhou K, Zeng P. Mechanistic insights into the anti-depressant effect of curcumin based on network pharmacology and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:583-598. [PMID: 37490124 DOI: 10.1007/s00210-023-02628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Curcumin (CUR) exhibits a definite curative effect in the treatment of depression. To identify potential antidepressant targets and mechanisms of action of CUR. This study used network pharmacology to explore the signaling pathways and CUR-related targets in depression. C57BL/6 J mice (male,12-14 weeks old) were randomly divided into four groups (n = 8): saline-treated (control mice), lipopolysaccharide (LPS, 2 mg/kg/day, intraperitoneally), LPS + CUR (50 mg/kg/day, intragastrically), and LPS + CUR + LY294002 (7.5 mg/kg/day, intraperitoneally). After 1 week, behavioral tests were performed. Then, neuronal damage in the prefrontal cortex of mice was evaluated by hematoxylin-eosin (HE) staining. We uncovered the main active mechanism of CUR against depression using Western blotting and enzyme-linked immunosorbent assay (ELISA). Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that the most significantly enriched pathway in CUR against depression was the PI3K-Akt pathway. Moreover, 52 targets were significantly correlated with the PI3K-Akt signaling pathway and CUR-related targets. In addition, among the top 50 targets ranked by degree in the protein-protein interaction (PPI) network, there were 23 targets involved in the 52 intersection targets. Administration of LPS alone extended immobility time in the open field test (OFT) and tail suspension test (TST) and decreased sucrose consumption in the sucrose preference test (SPT). Pretreatment with CUR relieved LPS-induced changes in the behavioral tests, activity of the PI3K-Akt signaling pathway, neuronal damage in the prefrontal cortex (PFC), and inflammatory response. Moreover, inhibition of the PI3K-Akt signaling pathway by LY294002 blocked the therapeutic effects of CUR. Our study indicates that CUR may be an effective antidepressant agent in an LPS-induced mouse model, partly because of its anti-inflammatory action through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jing Guo
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Meng Fang
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhe Xiong
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ke Zhou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Ghaeini Hesarooeyeh Z, Basham A, Sheybani-Arani M, Abbaszadeh M, Salimi Asl A, Moghbeli M, Saburi E. Effect of resveratrol and curcumin and the potential synergism on hypertension: A mini-review of human and animal model studies. Phytother Res 2024; 38:42-58. [PMID: 37784212 DOI: 10.1002/ptr.8023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Resveratrol (RES) and curcumin (CUR) are two of the most extensively studied bioactive compounds in cardiovascular research from the past until today. These compounds have effectively lowered blood pressure by downregulating the renin-angiotensin system, exerting antioxidant effects, and exhibiting antiproliferative activities on blood vessels. This study aims to summarize the results of human and animal studies investigating the effects of CUR, RES, and their combination on hypertension and the molecular mechanisms involved. The published trials' results are controversial regarding blood pressure reduction with different doses of RES and CUR, highlighting the need to address this issue.
Collapse
Affiliation(s)
- Zahra Ghaeini Hesarooeyeh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ayoub Basham
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mahshid Abbaszadeh
- Student Research Committee, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Sepulchro Mulher LCC, Simões RP, Rossi KA, Schereider IRG, Silva Nascimento CLD, Ávila RA, Padilha AS. In vitro cadmium exposure induces structural damage and endothelial dysfunction in female rat aorta. Biometals 2023; 36:1405-1420. [PMID: 37651061 DOI: 10.1007/s10534-023-00526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Cadmium is a heavy metal that is widespread in the environment and has been described as a metalloestrogen and a cardiovascular risk factor. Experimental studies conducted in male animals have shown that cadmium exposure induces vascular dysfunction, which could lead to vasculopathies caused by this metal. However, it is necessary to investigate the vascular effects of cadmium in female rats to understand its potential sex-dependent impact on the cardiovascular system. While its effects on male rats have been studied, cadmium may act differently in females due to its potential as a metalloestrogen. In vitro studies conducted in a controlled environment allow for a direct assessment of cadmium's impact on vascular function, and the use of female rats ensures that sex-dependent effects are evaluated. Therefore, the aim of this study was to investigate the in vitro effects of Cadmium Chloride (CdCl2, 5 µM) exposure on vascular reactivity in the isolated aorta of female Wistar rats. Exposure to CdCl2 damaged the architecture of the vascular endothelium. CdCl2 incubation increased the production and release of O2•-, reduced the participation of potassium (K+) channels, and increased the participation of the angiotensin II pathway in response to phenylephrine. Moreover, estrogen receptors alpha (Erα) modulated vascular reactivity to phenylephrine in the presence of cadmium, supporting the hypothesis that cadmium could act as a metalloestrogen. Our results demonstrated that in vitro cadmium exposure induces damage to endothelial architecture and an increase in oxidative stress in the isolated aorta of female rats, which could precipitate vasculopathies. Graphical Abstract. Own source from Canva and Servier Medical Art servers.
Collapse
Affiliation(s)
- Lorraine Christiny Costa Sepulchro Mulher
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Rakel Passos Simões
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Karoline Alves Rossi
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Ingridy Reinholz Grafites Schereider
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Camilla Lóren da Silva Nascimento
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Renata Andrade Ávila
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Alessandra Simão Padilha
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil.
| |
Collapse
|
9
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Zhang T, Yan W, Liu C, Duan W, Duan Y, Li Y, Yu Q, Sun Y, Tian J, Zhou J, Xia Z, Wang G, Xu S. Cadmium exposure promotes ferroptosis by upregulating Heat Shock Protein 70 in vascular endothelial damage of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115241. [PMID: 37441943 DOI: 10.1016/j.ecoenv.2023.115241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Cadmium (Cd) exposure is a risk factor for endothelial dysfunction and cardiovascular disease. Ferroptosis is a type of cell death that relies on lipid peroxidation. Whether ferroptosis acts in Cd-induced vascular endothelial damage and the underlying mechanisms remain unclear. Herein, we found that Cd resulted in ferroptosis of vascular endothelial cells (ECs) in vivo and in vitro. In the visualized zebrafish embryos, Cd accumulated in vascular ECs, ROS and lipid peroxidation levels were increased, and the oxidoreductase system was disturbed after exposure. Moreover, Cd decreased Gpx4 in ECs and caused smaller mitochondria with increased membrane density. Accompanied by ferroptosis, the number of ECs and the area of the caudal venous plexus in zebrafish embryos were reduced, and the survival rate of HUVECs decreased. These effects were partially reversed by ferrostatin-1 and aggravated by erastin. Mechanistically, an excessive increase in Heat Shock Protein 70 (Hsp70) was identified by transcriptomics after Cd exposure. Inhibition of Hsp70 by VER-155008 or siRNA ameliorated Cd-induced ferroptosis, thereby alleviating endothelial injury. Furthermore, Hsp70 regulated Cd-induced ferroptosis by targeting multiple targets, including Gpx4, Fth1, Nrf2 and Acsl4. Our findings provide a new approach to investigating the endothelial damage of Cd and indicate that regulation of Hsp70 is an important target for alleviating this process.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China; Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Wenhua Yan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, People's Republic of China
| | - Cong Liu
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Weixia Duan
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yu Duan
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yuanyuan Li
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Qin Yu
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yapei Sun
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Jiacheng Tian
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Jie Zhou
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Zhiqin Xia
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Guixue Wang
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China.
| | - Shangcheng Xu
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China; Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China.
| |
Collapse
|
11
|
Martins AC, Ferrer B, Tinkov AA, Caito S, Deza-Ponzio R, Skalny AV, Bowman AB, Aschner M. Association between Heavy Metals, Metalloids and Metabolic Syndrome: New Insights and Approaches. TOXICS 2023; 11:670. [PMID: 37624175 PMCID: PMC10459190 DOI: 10.3390/toxics11080670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Metabolic syndrome (MetS) is an important public health issue that affects millions of people around the world and is growing to pandemic-like proportions. This syndrome is defined by the World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is multifactorial, involving many environmental factors, including toxicant exposures. Several studies have associated MetS with heavy metals exposure, which is the focus of this review. Environmental and/or occupational exposure to heavy metals are a major risk, contributing to the development of chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways that are associated with MetS. Furthermore, we describe how new approaches involving proteomic and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of the involvement of heavy metals and metalloids in MetS.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Samuel Caito
- School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Romina Deza-Ponzio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| |
Collapse
|
12
|
Hajleh MNA, Al-Dujaili EAS. Effects of Turmeric Concentrate on Cardiovascular Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers; an Exploratory Study. Adv Pharm Bull 2023; 13:601-610. [PMID: 37646063 PMCID: PMC10460800 DOI: 10.34172/apb.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Evidence suggests that turmeric intake can improve antioxidant defense, blood pressure (BP), ageing and gut microbiota. The effects of turmeric concentrate (curcumin) intake on cardiovascular risk factors and exercise induced oxidative stress were investigated. Methods A randomized placebo-controlled study was performed to assess the effects of turmeric extract in healthy volunteers before and after a 30 min exercise bout. Participants (n=22) were given either turmeric concentrate or placebo supplements. Anthropometry, BP, pulse wave velocity (PWV), biomarkers of oxidative stress, perceived exertion and lipid peroxidation were assessed. Results In the turmeric group, the expected BP response to exercise following turmeric was blunted and the increase was not significant compared to basal values followed by a decrease in final BP and PWV values. There were no significant differences in all baseline parameters between the placebo and the curcumin groups (P>0.05). A significant increase was observed in urinary antioxidant power (P=0.031) and total polyphenol levels (P=0.022) post turmeric intervention. The distance ran by the participants taking turmeric was significantly longer (P=0.005) compared to basal value. Those who took the placebo did not show significant changes. Conclusion Our study suggests that turmeric concentrate intake can reduce BP and improve antioxidant, anti-inflammatory status and arterial compliance. Turmeric may improve exercise performance and ameliorates oxidative stress. Larger studies are warranted to validate these findings and test more cardiovascular risk factors.
Collapse
Affiliation(s)
- Maha Noordin Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, AlAhliyya Amman University, Zip code (19328), Amman, Jordan
| | - Emad Abdol Sahib Al-Dujaili
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
13
|
Smirnova E, Moniruzzaman M, Chin S, Sureshbabu A, Karthikeyan A, Do K, Min T. A Review of the Role of Curcumin in Metal Induced Toxicity. Antioxidants (Basel) 2023; 12:antiox12020243. [PMID: 36829803 PMCID: PMC9952547 DOI: 10.3390/antiox12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Metal toxicity poses a potential global threat to the environment and living beings. Their numerous agricultural, medical, industrial, domestic, and technological applications result in widespread distribution in the environment which raises concern on the potential effects of metals in terms of health hazards and environmental pollution. Chelation therapy has been the preferred medical treatment for metal poisoning. The chelating agent bounds metal ions to form complex cyclic structures known as 'chelates' to intensify their excretion from the body. The main disadvantage of synthetic chelators is that the chelation process removes vital nutrients along with toxic metals. Natural compounds are widely available, economical, and have minimal adverse effects compared to classical chelators. Herbal preparations can bind to the metal, reduce its absorption in the intestines, and facilitate excretion from the body. Curcumin, a bioactive substance in turmeric, is widely used as a dietary supplement. Most studies have shown that curcumin protects against metal-induced lipid peroxidation and mitigates adverse effects on the antioxidant system. This review article provides an analysis to show that curcumin imparts promising metal toxicity-ameliorative effects that are related to its intrinsic antioxidant activity.
Collapse
Affiliation(s)
- Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| |
Collapse
|
14
|
Winiarska-Mieczan A, Kwiecień M, Bąkowski M, Krusiński R, Jachimowicz-Rogowska K, Demkowska-Kutrzepa M, Kiczorowska B, Krupa W. Tannic Acid and Tea Prevents the Accumulation of Lead and Cadmium in the Lungs, Heart and Brain of Adolescent Male Wistar Rats—Possible Therapeutic Option. Animals (Basel) 2022; 12:ani12202838. [PMID: 36290224 PMCID: PMC9597774 DOI: 10.3390/ani12202838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The protective effect of tannic acid and tea solutions on the lungs, hearts and brains of adolescent Wistar rats exposed to Pb and Cd was studied. Metals were administered with feed (7 mg Cd and 50 mg Pb/kg). Two experiments were carried. Experiment 1 aimed to determine the level of tannic acid (TA), most effectively reducing the adverse impact of Pb and Cd on the organs of adolescent rats (aged 5 weeks, weighing 169.3 ± 14.7 g) during combined exposure. TA was administered with drink (0, 0.5, 1, 1.5, 2 or 2.5% solutions). In Experiment 2, adolescent rats (aged 6 weeks, weighing 210.6 ± 12.1 g) received an aqueous solutions of black, green, red or white teas. TA and teas had a positive effect on reducing the accumulation of Cd in the organs. The results obtained suggest that long-term continuing administration of TA increases its effectiveness as a chelator for Pb. A 2% TA and white tea solution proved to be the most effective. In the analyzed tissues, increased activity of SOD and CAT was recorded as a result of the use of the TA and teas; thus, they can efficiently prevent the prooxidant effect of toxic metals.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Correspondence:
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Maciej Bąkowski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Robert Krusiński
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Marta Demkowska-Kutrzepa
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Bożena Kiczorowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Wanda Krupa
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
| |
Collapse
|
15
|
Wang Z, Xue K, Wang Z, Zhu X, Guo C, Qian Y, Li X, Li Z, Wei Y. Effects of e-waste exposure on biomarkers of coronary heart disease (CHD) and their associations with level of heavy metals in blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49850-49857. [PMID: 35218494 DOI: 10.1007/s11356-021-15656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/22/2021] [Indexed: 06/14/2023]
Abstract
Excess heavy metals increase the risk of various diseases. Electronic waste (e-waste) is a potential route to heavy metal exposure, and Taizhou is a large e-waste dismantling area in China. In this study, we acquire blood samples from residents living near an e-waste recycling area (exposed group) and other residents in a selected reference area (reference group) for a comparative study in Taizhou in December 2017. Seven heavy metals, including cobalt (Co), nickel (Ni), cadmium (Cd), tin (Sn), copper (Cu), zinc (Zn), and lead (Pb), are quantitatively determined in all blood samples. It is discovered that the levels of Co, Ni, Sn, and Pb in the exposed group are higher than those in the reference group. Additionally, two crucial biomarkers of coronary heart disease (CHD), i.e., troponin (Tn) and myeloperoxidase (MPO), and two biomarkers of oxidative stress, i.e., malondialdehyde (MDA) and 8-isoprostane (8-I), are measured. We discovered that the levels of these indicators in the exposed group are significantly higher than those in the reference group. Meanwhile, both the Spearman correlation and multiple linear regression analysis show that Ni is positively correlated with Tn, MPO, 8-I, and MDA. Hence, we hypothesize that exposure to e-waste increases the risk of CHD and that Ni is an important contributor to the initiation of the disease.
Collapse
Affiliation(s)
- Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kaibing Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Santamaria-Juarez C, Atonal-Flores F, Diaz A, Sarmiento-Ortega VE, Garcia-Gonzalez M, Aguilar-Alonso P, Lopez-Lopez G, Brambila E, Treviño S. Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 2022; 128:748-756. [PMID: 32067514 DOI: 10.1080/13813455.2020.1726403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT The chronic exposure to Cadmium (Cd) constitute an risk to develop hypertension and cardiovascular diseases associated with the increase of oxidative stress. OBJECTIVE In this study, we investigate the role of metabolic changes produced by exposure to Cd on the endothelial dysfunction via oxidative stress. METHODS Male Wistar rats were exposed to Cd (32.5-ppm) for 2-months. The zoometry and blood pressure were evaluated, also glucose and lipids profiles in serum and vascular reactivity evaluated in isolated aorta rings. RESULTS Rats exposed to Cd showed an increase of blood pressure and biochemical parameters similar to metabolic syndrome. Additionally, rats exposed to Cd showed a reduced relaxation in aortic rings, which was reversed after the addition of SOD and apocynin an inhibitor of NADPH. CONCLUSION The Cd-exposition induced hypertension and endothelial injury by that modifying the vascular relaxation and develop oxidative stress via NADPH oxidase, superoxide and loss nitric oxide bioavailability.
Collapse
Affiliation(s)
- Celeste Santamaria-Juarez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Fausto Atonal-Flores
- Department of Physiology, Faculty of Medicine, University Autonomous of Puebla, The Volcano, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Victor E Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Miguel Garcia-Gonzalez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| |
Collapse
|
17
|
Role of curcumin in ameliorating hypertension and associated conditions: a mechanistic insight. Mol Cell Biochem 2022; 477:2359-2385. [DOI: 10.1007/s11010-022-04447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
|
18
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Chaturvedi S, Khan S, Bhunia RK, Kaur K, Tiwari S. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:871-884. [PMID: 35464783 PMCID: PMC9016690 DOI: 10.1007/s12298-022-01172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Ascorbic acid (AsA) also known as vitamin C is considered as an essential micronutrient in the diet of humans. The human body is unable to synthesize AsA, thus solely dependent on exogenous sources to accomplish the nutritional requirement. AsA plays a crucial role in different physiological aspects of human health like bone formation, iron absorption, maintenance and development of connective tissues, conversion of cholesterol to bile acid and production of serotonin. It carries antioxidant properties and is involved in curing various clinical disorders such as scurvy, viral infection, neurodegenerative diseases, cardiovascular diseases, anemia, and diabetes. It also plays a significant role in COVID-19 prevention and recovery by improving the oxygen index and enhancing the production of natural killer cells and T-lymphocytes. In plants, AsA plays important role in floral induction, seed germination, senescence, ROS regulation and photosynthesis. AsA is an essential counterpart of the antioxidant system and helps to defend the plants against abiotic and biotic stresses. Surprisingly, the deficiencies of AsA are spreading in both developed and developing countries. The amount of AsA in the major food crops such as wheat, rice, maize, and other raw natural plant foods is inadequate to fulfill its dietary requirements. Hence, the biofortification of AsA in staple crops would be feasible and cost-effective means of delivering AsA to populations that may have limited access to diverse diets and other interventions. In this review, we endeavor to provide information on the role of AsA in plants and human health, and also perused various biotechnological and agronomical approaches for elevating AsA content in food crops.
Collapse
Affiliation(s)
- Siddhant Chaturvedi
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Shahirina Khan
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
- Department of Botany, Central University of Punjab, Bathinda, Punjab, 151001 India
| | - Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| | - Karambir Kaur
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| |
Collapse
|
20
|
Abstract
:
Hypertension is a global public health concern since it can lead to complications like
stroke, heart disease, and kidney failure. These complications can add to a disability, increase
healthcare costs, and can even result in mortality. In spite of the availability of a large number of
anti-hypertensive drugs, the control of blood pressure is suboptimal in many patients. Spices have
been used as flavouring agents and in treating diseases in folk medicine since they are considered
to be rich sources of phytochemicals, especially polyphenols. Hence, during recent years, there has
been renewed interest among researchers in exploring natural sources, especially spices, in an attempt
to find cheaper alternatives with fewer side effects. Our aim is to review the relevant preclinical
and clinical studies focused on the potential use of spices in the management of hypertension.
Studies conducted on the most common spices, such as celery, cinnamon, cardamom, garlic, ginger,
saffron, and turmeric, have been elaborated in this review. These spices may lower blood pressure
via several possible mechanisms, including antioxidant effect, increase in nitric oxide production,
reduction in calcium ion concentration, modulation of the renin-angiotensin pathway, etc.
Collapse
Affiliation(s)
- Kavyanjana R. Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS-Kochi - 682041,
Kerala, India
| | - Arya V.S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS-Kochi - 682041,
Kerala, India
| | - Kanthlal S.K.
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS-Kochi - 682041,
Kerala, India
| | - Uma Devi P.
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS-Kochi - 682041,
Kerala, India
| |
Collapse
|
21
|
Effects of Cadmium Exposure on Leydig Cells and Blood Vessels in Mouse Testis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042416. [PMID: 35206604 PMCID: PMC8878469 DOI: 10.3390/ijerph19042416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Environmental exposure to cadmium (Cd) contributes to a decline in the quality of human semen. Although the testis is sensitive to Cd exposure, the mechanism underlying how cadmium affects the testis remains to be defined. In this study, male mice were treated with intraperitoneal injections of 0, 0.5, 1.5 and 2.5 mg CdCl2/kg/day for 10 days, respectively. Both the testicular weight and the 3β-HSD activity of Leydig cells were significantly reduced with the administration of 2.5 mg CdCl2/kg/day. The height of endothelial cells in the interstitial blood vessels significantly increased with the use of 2.5 mg CdCl2/kg/day compared with the control. Western blot data showed that the protein levels of CD31, αSMA, caveolin and Ng2 increased with cadmium exposure, and this increase was particularly significant with the administration of 2.5 mg CdCl2/kg/day. CD31, αSMA, caveolin and Ng2 are related to angiogenesis. Based on our data, cadmium exposure may stimulate the proliferation of the mural cells and endothelial cells of blood vessels, which may lead to abnormal function of the testis.
Collapse
|
22
|
Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunol Lett 2021; 240:106-122. [PMID: 34688722 DOI: 10.1016/j.imlet.2021.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) represents a unique hazard because of the long biological half-life in humans (20-30 years). This metal accumulates in organs causing a continuum of responses, with organ disease/failure as extreme outcome. Some of the cellular and molecular alterations in target tissues can be related to immune-modulating potential of Cd. This metal may cause adverse responses in which components of the immune system function as both mediators and effectors of Cd tissue toxicity, which, in combination with Cd-induced alterations in homeostatic reparative activities may contribute to tissue dysfunction. In this work, current knowledge concerning inflammatory/autoimmune disease manifestations found to be related with cadmium exposure are summarized. Along with epidemiological evidence, animal and in vitro data are presented, with focus on cellular and molecular immune mechanisms potentially relevant for the disease susceptibility, disease promotion, or facilitating development of pre-existing pathologies.
Collapse
|
23
|
Curcumin Improved Glucose Intolerance, Renal Injury, and Nonalcoholic Fatty Liver Disease and Decreased Chromium Loss through Urine in Obese Mice. Processes (Basel) 2021. [DOI: 10.3390/pr9071132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity-associated hyperglycemia underlies insulin resistance, glucose intolerance, and related metabolic disorders including type 2 diabetes, renal damage, and nonalcoholic fatty liver disease. Turmeric root is commonly used in Asia, and curcumin, one of its pharmacological components, can play a role in preventing and treating certain chronic physiological disorders. Accordingly, this study examined how high-fat diet (HFD)-induced hyperglycemia and hyperlipidemia are reduced by curcumin through changes in fatty liver scores, chromium distribution, and renal injury in mice. Relative to the control group, also fed an HFD, the curcumin group weighed less and had smaller adipocytes; it also had lower daily food efficiency, blood urea nitrogen and creatinine levels, serum alanine aminotransferase and aspartate aminotransferase levels, serum and hepatic triglyceride levels, and hepatic lipid regulation marker expression. The curcumin-treated obese group exhibited significantly lower fasting blood glucose, was less glucose intolerant, had higher Akt phosphorylation and glucose transporter 4 (GLUT4) expression, and had greater serum insulin levels. Moreover, the group showed renal damage with lower TNF-α expression along with more numerous renal antioxidative enzymes that included superoxide dismutase, glutathione peroxidase, and catalase. The liver histology of the curcumin-treated obese mice showed superior lipid infiltration and fewer FASN and PNPLA3 proteins in comparison with the control mice. Curcumin contributed to creating a positive chromium balance by decreasing the amount of chromium lost through urine, leading to the chromium mobilization needed to mitigate hyperglycemia. Thus, the results suggest that curcumin prevents HFD-induced glucose intolerance, kidney injury, and nonalcoholic fatty liver disease.
Collapse
|
24
|
Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors 2021; 47:311-350. [PMID: 33606322 DOI: 10.1002/biof.1716] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Curcuma longa (C. longa) or turmeric is a plant with a long history of use in traditional medicine, especially for treating inflammatory conditions C. longa and its main constituent, curcumin (CUR), showed various pharmacological effects such as antioxidant and anti-microbial properties. The updated knowledge of anti-inflammatory, antioxidant, and immunomodulatory effects of C. longa and CUR is provided in this review article. Pharmacological effects of C. longa, and CUR, including anti-inflammatory, antioxidant, and immunomodulatory properties, were searched using various databases and appropriate keywords until September 2020. Various studies showed anti-inflammatory effects of C. longa and CUR, including decreased white blood cell, neutrophil, and eosinophil numbers, and its protective effects on serum levels of inflammatory mediators such as phospholipase A2 and total protein in different inflammatory disorders. The antioxidant effects of C. longa and CUR were also reported in several studies. The plant extracts and CUR decreased malondialdehyde and nitric oxide levels but increased thiol, superoxide dismutase, and catalase levels in oxidative stress conditions. Treatment with C. longa and CUR also improved immunoglobulin E (Ig)E, pro-inflammatory cytokine interleukin 4 (IL)-4, transforming growth factor-beta, IL-17, interferon-gamma levels, and type 1/type 2 helper cells (Th1)/(Th2) ratio in conditions with disturbance in the immune system. Therefore C. longa and CUR showed anti-inflammatory, antioxidant, and immunomodulatory effects, indicating a potential therapeutic effect of the plant and its constituent, CUR, for treating of inflammatory, oxidative, and immune dysregulation disorders.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad R Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Jafarnezhad
- Department of Anesthesia, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad H Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Park JH, Lee BM, Kim HS. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:95-118. [PMID: 33357071 DOI: 10.1080/10937404.2020.1860842] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Curcumin, used as a spice and traditional medicine in India, exerts beneficial effects against several diseases, owing to its antioxidant, analgesic, and anti-inflammatory properties. Evidence indicates that curcumin might protect against heavy metal-induced organ toxicity by targeting biological pathways involved in anti-oxidation, anti-inflammation, and anti-tumorigenesis. Curcumin has received considerable attention owing to its therapeutic properties, and the mechanisms underlying some of its actions have been recently investigated. Cadmium (Cd) is a heavy metal found in the environment and used extensively in industries. Chronic Cd exposure induces damage to bones, liver, kidneys, lungs, testes, and the immune and cardiovascular systems. Because of its long half-life, exposure to even low Cd levels might be harmful. Cd-induced toxicity involves the overproduction of reactive oxygen species (ROS), resulting in oxidative stress and damage to essential biomolecules. Dietary antioxidants, such as chelating agents, display the potential to reduce Cd accumulation and metal-induced toxicity. Curcumin scavenges ROS and inhibits oxidative damage, thus resulting in many therapeutic properties. This review aims to address the effectiveness of curcumin against Cd-induced organ toxicity and presents evidence supporting the use of curcumin as a protective antioxidant.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| |
Collapse
|
26
|
Martins AC, Santos AAD, Lopes ACBA, Skalny AV, Aschner M, Tinkov AA, Paoliello MMB. Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Curr Hypertens Rev 2021; 17:14-26. [PMID: 33475076 DOI: 10.2174/1573402117666210121102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Hypertension is an important public health concern that affects millions globally, leading to a large number of morbidities and fatalities. The etiology of hypertension is complex and multifactorial, and it involves environmental factors, including heavy metals. Cadmium and mercury are toxic elements commonly found in the environment, contributing to hypertension. We aimed to assess the role of cadmium and mercury-induced endothelial dysfunction in the development of hypertension. A narrative review was carried out through database searches. In this review, we discussed the critical roles of cadmium and mercury in the etiology of hypertension and provided new insights into potential mechanisms of their effect, focusing primarily on endothelial dysfunction. Although the mechanisms by which cadmium and mercury induce hypertension have yet to be completely elucidated, evidence for both implicates impaired nitric oxide signaling in their hypertensive etiology.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alessanda A D Santos
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Ana C B A Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Anatoly V Skalny
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alexey A Tinkov
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
27
|
Protective Effects of Curcumin on Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:213-221. [DOI: 10.1007/978-3-030-73234-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Jan-On G, Tubsakul A, Sangartit W, Pakdeechote P, Kukongviriyapan V, Senaphan K, Thongraung C, Kukongviriyapan U. Sang-Yod rice bran hydrolysates alleviate hypertension, endothelial dysfunction, vascular remodeling, and oxidative stress in nitric oxide deficient hypertensive rats. Asian Pac J Trop Biomed 2021; 11:10-19. [DOI: 10.4103/2221-1691.300727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective:
To evaluate the potential therapeutic effect of Sang-Yod rice bran hydrolysates (SRH) and in combination with lisinopril against hypertension, endothelial dysfunction, vascular remodeling, and oxidative stress in rats with nitric oxide deficiency-induced hypertension.
Methods:
Hypertension was induced in male Sprague-Dawley rats by administration of a nitric oxide synthase inhibitor, Nω- nitro-L-arginine methyl ester (L-NAME) in drinking water for 6 weeks. Hypertensive rats were administered daily with SRH (500 mg/kg/day), lisinopril (1 mg/kg/day), or the combination of SRH and lisinopril by gastric lavage for the last 3 weeks of L-NAME treatment. Hemodynamic status, vascular reactivity to vasoactive agents, and vascular remodeling were assessed. Blood and aortic tissues were collected for measurements of oxidative stress markers, plasma angiotensin-converting enzyme (ACE) activity, plasma angiotensin II, and protein expression.
Results:
L-NAME induced remarkable hypertension and severe oxidative stress, and altered contents of smooth muscle cells, elastin, and collagen of the aortic wall. SRH or lisinopril alone reduced blood pressure, restored endothelial function, decreased plasma ACEs and angiotensin II levels, alleviated oxidant markers and glutathione redox status, and restored the vascular structure. The effects were associated with increased expression of endothelial nitric oxide synthase and decreased expression of gp91phox and AT1R expression. The combination of SRH and lisinopril was more effective than monotherapy.
Conclusions:
SRH alone or in combination with lisinopril exert an antihypertensive effect and improve endothelial function and vascular remodeling through reducing oxidative stress and suppressing elevated renin-angiotensin system.
Collapse
|
29
|
Tubsakul A, Sangartit W, Pakdeechote P, Kukongviriyapan V, Apaijit K, Kukongviriyapan U. Curcumin Mitigates Hypertension, Endothelial Dysfunction and Oxidative Stress in Rats with Chronic Exposure to Lead and Cadmium. TOHOKU J EXP MED 2021; 253:69-76. [PMID: 33473064 DOI: 10.1620/tjem.253.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lead (Pb) and cadmium (Cd) are environmental pollutants and nonessential elements in the body. Both metals induce the development of hypertension which is associated with oxidative stress. Curcumin (CUR) is a polyphenolic compound with strong antioxidant activity. The present study evaluated the effect of CUR on oxidative stress, alteration of vascular responsiveness and hypertension induced by exposure to either Pb, Cd or the combination of Pb and Cd. Male Sprague-Dawley rats were exposed to low level of lead acetate (100 mg/L) and/or cadmium chloride (10 mg/L) in the drinking water for 16 weeks. The control animals received deionized water as drinking water. CUR (100 mg/kg) or propylene glycol as vehicle was intragastrically administered once daily for the last 4 weeks. Exposure to Pb, Cd or the combination induced increases in blood pressure and peripheral vascular resistance, and decreased the blood pressure response to intravenous infusion to acetylcholine. Supplementation with CUR significantly reduced blood pressure, alleviated oxidative stress, and increased plasma nitrate/nitrite and glutathione in the blood. The effects of CUR were associated with the improvement of vascular responsiveness, upregulation of the endothelial nitric oxide synthase and downregulation of the NADPH oxidase expression. Furthermore, CUR reduced the metal levels in blood, aorta, liver and kidney. Altogether, exposure to the combination of Pb and Cd aggravated hypertension and oxidative stress, and CUR effectively ameliorated these adverse events in metal exposed animals. Data indicate that CUR may be useful as a dietary supplement for protection against the noxious effects of the heavy metals.
Collapse
|
30
|
Liang H, Yue R, Zhou C, Liu M, Yu X, Lu S, Zeng J, Yu Z, Zhou Z, Hu H. Cadmium exposure induces endothelial dysfunction via disturbing lipid metabolism in human microvascular endothelial cells. J Appl Toxicol 2020; 41:775-788. [PMID: 33205412 DOI: 10.1002/jat.4115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Liang
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Rongchuan Yue
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Chao Zhou
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Mengyu Liu
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Xi Yu
- Department of Occupational and Environmental Medicine, School of Medicine Zhejiang University Hangzhou China
| | - Shengzhong Lu
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Jing Zeng
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Zhengping Yu
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Zhou Zhou
- Department of Occupational and Environmental Medicine, School of Medicine Zhejiang University Hangzhou China
| | - Houxiang Hu
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| |
Collapse
|
31
|
Abu-Taweel GM, Attia MF, Hussein J, Mekawi EM, Galal HM, Ahmed EI, Allam AA, El-Naggar ME. Curcumin nanoparticles have potential antioxidant effect and restore tetrahydrobiopterin levels in experimental diabetes. Biomed Pharmacother 2020; 131:110688. [PMID: 33152905 DOI: 10.1016/j.biopha.2020.110688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
Diabetes is associated with an increase in the production of free radicals, reduction of tetrahydrobiopterin (BH4, THB) levels and reduced bioavailability of nitric oxide (NO) in the vascular walls. In this contribution, we probed the effective role of curcumin nanoparticles (CUR-NPs) that prepared via solvent evaporation nanoprecipitation technique as potential system to attenuate endothelial dysfunction. In this technique, Tween 60 (polysorbate) was used as stabilizing agent for the prepared CUR-NPs and protect such nanoparticles from further agglomeration. BH4 levels and other parameters were estimated in diabetic rats. To this end, we dedicated 48 male albino rats, categorized into six groups; control (healthy rats), diabetic rats, along with four treated groups via oral administration of 0.2 mL/kg body weight/day of solutions of Tween 60 (60 mg/mL), free CUR (60 mg/mL), CUR-NPs1 (30 mg/mL), and CUR-NPs2 (60 mg/mL) for 30 days. Results showed that the mean level of malondialdehyde (MDA) has been significantly increased in diabetic group associated with a reduction of total antioxidant capacity, NO, and BH4 compared to control. These parameters were restored by the delivery of CUR-NPs - both doses in rats, compared with the two control groups that treated with Tween 60 and free CUR.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Science, Jazan University, P.O. Box 2079, Jazan, 45142, Saudi Arabia
| | - Mohamed F Attia
- Department of Chemistry, Clemson University, Clemson, SC, United States.
| | - Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Doki, Giza, Egypt
| | - Enas Mahmoud Mekawi
- Agricultural Biochemistry Department, Faculty of Agriculture, Benha University, Egypt
| | - Heba M Galal
- Department of Medical Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Ibrahim Ahmed
- Pharmacology and Therapeutics Department, College of Medicine, Jouf University, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Fayoum University, Egypt
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth st., Dokki, Giza, Cairo, Egypt.
| |
Collapse
|
32
|
Almenara CCP, Oliveira TF, Padilha AS. The Role of Antioxidants in the Prevention of Cadmium-Induced Endothelial Dysfunction. Curr Pharm Des 2020; 26:3667-3675. [DOI: 10.2174/1381612826666200415172338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
Background:
Cadmium is a worldwide spread toxicant that accumulates in tissues and affects many
organs, mainly through oxidative damage. Oxidative stress is often associated with cardiovascular diseases and,
when it affects vessels, it induces endothelial dysfunction, which, in turn, could precipitate atherosclerosis and
hypertension. Therefore, it is reasonable to suggest antioxidant supplementation as a therapy against cadmiuminduced
endothelial dysfunction.
Objective:
This literature review aims to present the mechanisms involving oxidative stress in which cadmium
induces endothelial dysfunction and the benefits of antioxidant supplementation as a therapeutic strategy against
its harmful effects.
Methods:
On PubMed Central, articles that contemplated studies on cadmium intoxication and associated oxidative
stress with endothelial dysfunction as well as articles that reported the use of antioxidant supplementation in
an attempt to prevent or avoid endothelial dysfunction induced by cadmium exposure were selected.
Results:
Most of the studies that associated cadmium intoxication with endothelial dysfunction suggested oxidative
stress as the major mechanism for this damage. Furthermore, experimental studies also revealed that the
administration of substances with antioxidant properties, such as ascorbic acid and curcumin, has beneficial effects
on the prevention of such dysfunction, reducing reactive oxygen species within the vessels, preventing a
reduction in the amount of glutathione and the increase in blood pressure observed in animals exposed to cadmium.
Conclusion:
Antioxidant therapy demonstrated to be a potential treatment to reduce cardiovascular injuries provoked
by cadmium, but more studies are needed to determine the best antioxidant substance and dose to treat or
avoid this complication.
Collapse
Affiliation(s)
- Camila Cruz Pereira Almenara
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Thiago F. Oliveira
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Alessandra S. Padilha
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| |
Collapse
|
33
|
Che L, Wu ZL, Huang LY, Wu JS, Du ZB, Lin JX, Su YH, Chen XX, Lin ZN, Lin YC. MicroRNA-101 inhibits cadmium-induced angiogenesis by targeting cyclooxygenase-2 in primary human umbilical vein endothelial cells. Biochem Pharmacol 2020; 189:114192. [PMID: 32783891 DOI: 10.1016/j.bcp.2020.114192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Exposure to toxic metal contaminants, such as cadmium compounds (Cd2+), has been shown to induce adverse effects on various organs and tissues. In particular, blood vessels are severely impacted by Cd2+ exposure, which may lead to cardiovascular diseases (CVDs). According to previous studies, CVDs are associated with increased cyclooxygenase 2 (COX-2) levels. However, the mechanisms by which CdCl2-induced COX-2 overexpression leads to cardiovascular dysfunction remain unclear. Herein, we show that the relative gene expressions of VEGF and PTGS2 (COX-2 encoding gene) are positively correlated in CVDs patients. Moreover, we demonstrate that the in vitro administration of CdCl2 induces cytotoxicity and endoplasmic reticulum (ER) stress in primary human umbilical vein endothelial cells (HUVECs). The induction of ER stress and the overexpression of COX-2 in CdCl2-treated cells alters the protein level of vascular endothelial growth factor (VEGF), resulting in abnormal angiogenesis and increased cytotoxicity. At the pre-transcription level, the inhibition of ER stress by siGRP78 (a key mediator of ER stress) can restore normal angiogenesis in the CdCl2-exposed cells. Meanwhile, at the transcription level, the adverse effects of CdCl2 exposure may be reversed via genetic modification with siRNA (siPTGS2) or by using phytochemical inhibitors (parthenolide, PN) of COX-2. Finally, at the post-transcription level, COX-2 expression may be restricted by the binding of microRNA-101 (miR-101) to the 3'-UTR of PTGS2 mRNA. The use of mimic miR-101 (mi101) to induce the expression of miR-101 eventually leads to reduced COX-2 protein levels, relieved ER stress, and less abnormal angiogenesis and cytotoxicity of CdCl2-exposed primary HUVECs. Overall, our results suggest that CdCl2-induced abnormal angiogenesis is mediated by miR-101/COX-2/VEGF-axis-dependent ER stress, and that cardiovascular dysfunction may be controlled by manipulating COX-2 at the pre-transcription, transcription, and post-transcription levels.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zi-Li Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lian-Yun Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jin-Xian Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yan-Hua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
34
|
Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv Transl Res 2020; 11:1009-1036. [PMID: 32607938 DOI: 10.1007/s13346-020-00814-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this investigation was to encapsulate carvedilol, a model beta-blocker antihypertensive into nano-spanlastics, followed by incorporation into 1% CMC wafer to afford a mucoadhesive buccal drug delivery system, targeting to sidestep the first-pass metabolism, improving the drug absorption and pharmacological effect, achieving non-invasive buccal delivery for treating hypertension. Carvedilol-loaded nano-spanlastics were rendered by ethanol injection technique, using 23 factorial design. The effect of formulation variables was investigated on nano-spanlastic characteristics. The optimal nano-spanlastic formulation (S2; containing 20% Brij 97) exhibited particle size (239.8 ± 5 nm), entrapment efficiency (98. 16 ± 1.44%), deformability index (8.74 ± 0.42 g), and the flux after 24 h (Jmax) (22.5 ± 0.25 (μg/cm2/h) with enhancement ratio 2.87 as well as excellent stability after storage. Permeation study verified the preeminence of the S2 formula. A confocal laser scanning microscope showed deep penetration of S2 through sheep buccal mucosa formula compared to rhodamine B solution. S2-based wafer showed acceptable characters (pH, swelling, drug content, residence time, and release rate). In vivo studies (pharmacodynamic study and biochemical evaluation) showed considerable improvement in blood pressure, the profile of the lipid, oxidant stress biomarkers, and cardiac markers. Histopathological studies revealed the superiority of S2 wafer in the protection of heart tissues over Carvid®. The results achieved indicate that nano-spanlastic-based wafer offers a promising improving trans-buccal carvedilol delivery system. Graphical abstract.
Collapse
|
35
|
Hijriani N, Yusetyani L, Hasmono D. The effect of curcuma (Curcuma xanthorrizha roxb.) extract as an adjuvant of captopril therapy on cardiac histopathology of male mice (Mus musculus) with hypertension. J Basic Clin Physiol Pharmacol 2020; 30:/j/jbcpp.ahead-of-print/jbcpp-2019-0280/jbcpp-2019-0280.xml. [PMID: 31926086 DOI: 10.1515/jbcpp-2019-0280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/29/2019] [Indexed: 11/15/2022]
Abstract
Background Hypertension is a cardiovascular disease which has become a major health problem in Indonesia. Left ventricle hypertrophy is one of the cardiac complications of hypertension that is characterized by thickening of the left ventricle and increasing the mass of cardiac muscle. Methods This study was an experimental study with a posttest group design. Twenty-four mice were divided into four groups. The normal group was given distilled water, the negative control group was given L-NAME 1.75 mg/25 g BW/day, the positive control group was given L-NAME 1.75 mg/25 g BW/day + captopril 0.04875 mg/30 g BW/day, and the adjuvant captopril group was given L-NAME 1.75 mg/25 g BW/day + captopril 0.04875 mg/30 g BW/day + curcuma extract 31.25 mg/30 g BW for 30 days. Results The results of one-way analysis of variance (ANOVA) test analysis on the adjuvant treatment of the captopril group revealed no significant effect on cardiac muscle mass (p > 0.05), while the thickness of the left ventricle was significant (p < 0.05). Conclusions Captopril-Curcuma group resulted in a decrease of cardiac muscle and the thickness of the left ventricle in male mice with hypertension.
Collapse
Affiliation(s)
- Nursela Hijriani
- Magister Program of Clinical Pharmacy, Universitas Airlangga, Kampus C, UNAIR. Jl. Mulyerejo, Surabaya, Indonesia.,Pharmacy Department, Health Science Faculty, University of Muhammadiyah Malang, Magister Program of Clinical Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Lilik Yusetyani
- Pharmacy Departement, Health Science Faculty, University of Muhammadiyah Malang, Malang, Indonesia
| | - Didik Hasmono
- Clinical Pharmacy Department, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
36
|
Novel structured diacylglycerol (DAG) rich oleo formulations activate the Nrf2 pathway and impedes NF-κB translocation to mitigate pre-clinical conditions of hypertension. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
37
|
Chen D, Weng L, Chen C, Zheng J, Wu T, Zeng S, Zhang S, Xiao J. Inflammation and dysfunction in human aortic endothelial cells associated with poly-l-lactic acid degradation in vitro are alleviated by curcumin. J Biomed Mater Res A 2019; 107:2756-2763. [PMID: 31408261 DOI: 10.1002/jbm.a.36778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/14/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023]
Abstract
Poly-l-lactic acid (PLLA) is widely used in clinic, for example, as biodegradable coronary artery stents. However, inflammatory responses in endothelial cells associated with PLLA degradation are relatively undefined. We previously reported inflammation in human aortic endothelial cells (HAEC) in vitro and in vivo. Here, we further assessed inflammatory injury, including cell migration, cell function, and inflammatory cytokines expressed in HAEC treated with PLLA and curcumin by CCK-8, wound healing assay, ELISA, and Western blot. Significant inhibition of cell migration, remarkable dysfunction, and inflammatory responses were found in HAEC treated with PLLA degradation extract, and these effects were alleviated by Cur treatment. These findings indicated that cautious evaluation of biodegradable polymers should be performed, and Cur represents a promising anti-inflammatory agent for alleviating endothelial dysfunction and inflammation caused by PLLA degradation. In addition, Cur should be further studied experimentally in in vivo experiments on animal models as a potential therapeutic to reduce thrombosis of biodegradable polymer stents.
Collapse
Affiliation(s)
- Dongping Chen
- Central Laboratory, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, Dongguan, China
| | - Linsheng Weng
- Department of Cardiology, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, Dongguan, China
| | - Can Chen
- Department of Pathology, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, Dongguan, China
| | - Jian Zheng
- Dongguan TT Medical, Inc., Dongguan, China
| | - Tim Wu
- Dongguan TT Medical, Inc., Dongguan, China.,Vaso Tech, Inc., Lowell, Massachusetts
| | - Sufen Zeng
- Central Laboratory, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, Dongguan, China
| | - Suzhen Zhang
- Central Laboratory, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, Dongguan, China
| | - Jianmin Xiao
- Central Laboratory, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, Dongguan, China.,Department of Cardiology, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, Dongguan, China
| |
Collapse
|
38
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
39
|
Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA. Cadmium in Human Diseases: It's More than Just a Mere Metal. Indian J Clin Biochem 2019; 34:371-378. [PMID: 31686724 DOI: 10.1007/s12291-019-00839-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022]
Abstract
Cadmium (Cd), poisoning has been reported from all around the World, causing many deaths annually. Cd is a toxic heavy metal, and is widely present in environment. It has been reported that chronic Cd exposure is associated with kidney disease, osteoporosis, cardiovascular diseases and cancer. Smoking causes exposure to significantly higher Cd levels in humans. Tobacco smoke transports Cd into the lungs. Blood then transport it to the rest of the body where it increases effects by potentiating Cd that is already present from Cd-rich food. Other high exposures of Cd can occur with people, who live near hazardous waste sites, or factories that release Cd into the air and people who work in the metal refinery industry. Breathing of Cd can severely damage the lungs and may even cause death. Multiple studies have shown an association between environmental exposure to hazardous chemicals including toxic metals and obesity, diabetes, and metabolic syndrome. At the same time, the existing data on the impact of Cd exposure on obesity and diabetes are contradictory. On the converse, results of epidemiologic studies linking Cd exposure and Osteoporosis, overweight or obesity are far less consistent and even conflicting, also depending on differences in exposure levels. In turn, laboratory studies demonstrated that Cd adversely affects adipose tissue physiopathology through several mechanisms, thus contributing to increased insulin resistance and enhancing diabetes. However, intimate biological mechanisms linking Cd exposure with human diseases are still to be adequately investigated. Therefore, the aim of the present review was to explore the impact of Cd exposure and status on the risk of Cd in human diseases.
Collapse
Affiliation(s)
- Ghizal Fatima
- Department of Biotechnology, Era's Medical College and Hospital, Lucknow, India
| | | | - Najah Hadi
- 3Department of Pharmacology, College of Medicine, Kufa University, Kufa, Iraq
| | - Nitu Nigam
- 4Department of Cytogenetics, King George Medical University, Lucknow, India
| | - Abbas Ali Mahdi
- 5Department of Biochemistry, King George Medical University, Lucknow, India
| |
Collapse
|
40
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
41
|
Wang H, Zhang R, Song Y, Li T, Ge M. Protective Effect of Ganoderma Triterpenoids on Cadmium-Induced Testicular Toxicity in Chickens. Biol Trace Elem Res 2019; 187:281-290. [PMID: 29717433 DOI: 10.1007/s12011-018-1364-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
Abstract
Studies have shown that cadmium can cause chicken testicular damage, but a protective effect of Ganoderma triterpenoids on cadmium-induced testicular damage in chickens has not yet been reported. The present study was designed to research the protective effect of Ganoderma triterpenoids on cadmium-induced testicular damage in chicken. Eighty healthy 7-day-old Hyline egg laying chickens were randomly divided into four groups with 20 in each group. The control group was fed with normal full-fodder, the model group was fed with normal full-fodder with 140 mg/kg of CdCl2, the Ganoderma triterpenoid treatment group was fed with a full-fodder diet containing 140 mg/kg of CdCl2 and 0.5 mL of Ganoderma triterpenoid solution (20 mg/mL), and the Ganoderma triterpenoid group was fed normal full-fodder and 0.5 mL of Ganoderma triterpenoid solution (20 mg/mL) gavage. The chickens were euthanized at 20, 40, and 60 days, respectively, and the testes were harvested. The changes of cadmium contents, the antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)), peroxide (malondialdehyde (MDA)), inflammatory factors (interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α)), and apoptosis-related proteins (Bax, Bcl-2, and Caspase-3) were detected. The pathological sections of the testes were made at the same time. The results suggested that Ganoderma triterpenoids could reduce the accumulation of cadmium in testis tissue; reduce the content of IL-1β, IL-6, and TNF-α in cadmium poisoning testis; significantly increase the activity of SOD and GSH-Px; decrease the content of MDA; regulate the expression of Bax, Caspase-3, and Bcl-2; and reduce the damage of testicular tissue. The results showed that Ganoderma triterpenoids have a protective effect on cadmium-induced testicular injury in chicken.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yangyang Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tianqi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
42
|
Takano K, Tatebe J, Washizawa N, Morita T. Curcumin Inhibits Age-Related Vascular Changes in Aged Mice Fed a High-Fat Diet. Nutrients 2018; 10:nu10101476. [PMID: 30309028 PMCID: PMC6213737 DOI: 10.3390/nu10101476] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
Inhibiting the onset of arteriosclerotic disease, which has been increasing due to the westernized diet and aging, is a significant social challenge. Curcumin, a type of polyphenol, has anti-oxidative effects and anti-inflammatory action and is expected to treat and to have prophylactic effects on different diseases. In this study, we examined the effects of long-term administration of curcumin on vascular aging and chronic inflammation—the causes of arteriosclerotic disease. Eight-week-old C57BL/6J mice were fed with high fat diet (HFD) or 0.1% curcumin-mixed HFD (HFD + Cu) until 80 weeks old (n = 20 for each group). After the breeding, we examined the expression of antioxidant enzymes, heme oxygenase-1 (HO-1), oxidative stress, vascular aging, and inflammatory changes in the aorta. In the HFD group, oxidative stress increased with decreased sirt1 expression in the aorta followed by increased senescent cells and enhanced inflammation. Whereas in the HFD + Cu group, HO-1 was induced in the aorta with the suppression of oxidative stress. Additionally, it was shown that sirt1 expression in the aorta in the HFD + Cu group remained at a level comparable to that of the 8-week-old mice with suppression of increased senescent cells and enhanced inflammation. Consequently, disorders associated with HFD were resolved. These results suggest that curcumin might be a food with a prophylactic function against arteriosclerotic disease.
Collapse
Affiliation(s)
- Kenichiro Takano
- Department of Laboratory Medicine, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan.
- Takano Hospital, Tokyo 144-0033, Japan.
| | - Junko Tatebe
- Department of Laboratory Medicine, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan.
| | - Naohiro Washizawa
- Nutrition Therapy Center, Toho University Omori Medical Center, Tokyo 143-8541, Japan.
| | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan.
| |
Collapse
|
43
|
Shrivastava P, Choudhary R, Nirmalkar U, Singh A, Shree J, Vishwakarma PK, Bodakhe SH. Magnesium taurate attenuates progression of hypertension and cardiotoxicity against cadmium chloride-induced hypertensive albino rats. J Tradit Complement Med 2018; 9:119-123. [PMID: 30963046 PMCID: PMC6435948 DOI: 10.1016/j.jtcme.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022] Open
Abstract
The present study was designed to evaluate the antihypertensive activity and cardioprotective effects of magnesium taurate against cadmium chloride (CdCl2)-intoxicated albino rats. Sprague Dawley male albino rats (120-150 g) were divided into five groups having six animals in each group. Hypertension and cardiotoxicity were induced in animals by administration of CdCl2 (0.5 mg/kg/day, i.p.) for four weeks. Magnesium taurate (2 and 4 mg/kg/day) was administered orally after induction of hypertension (after two weeks) in their respective groups concurrently with CdCl2 for next two weeks. Amlodipine (3 mg/kg/day, p.o.) was used as a standard and administered after induction of hypertension. Blood pressure was monitored biweekly by using non-invasive blood pressure system and biochemical parameters and histopathology of the heart were evaluated after four weeks of the experimental protocol. During the four weeks of the experimental protocol, the toxic control group showed significant elevation of systolic and diastolic blood pressure concomitant with augmentation of cardiotoxicity as indicated by reduction in myocardial antioxidants including glutathione peroxidase, catalase, superoxide dismutase, reduced glutathione and increased malondialdehyde level in heart as compared to the normal group. The oral administrations of magnesium taurate significantly restored the blood pressure, myocardial antioxidants and malondialdehyde level as compared to toxic control group. In addition, histopathological examination showed that magnesium taurate treatments substantially reduced the myocardial damages against CdCl2 treatment. The results suggest that magnesium taurate has prominent antihypertensive and cardioprotective activity via its potent antioxidant activity and can be used as a nutrition supplement to improve the cardiovascular health.
Collapse
Affiliation(s)
- Parikshit Shrivastava
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Umashankar Nirmalkar
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Amrita Singh
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Jaya Shree
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Prabhat Kumar Vishwakarma
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| |
Collapse
|
44
|
Kim KS, Lim HJ, Lim JS, Son JY, Lee J, Lee BM, Chang SC, Kim HS. Curcumin ameliorates cadmium-induced nephrotoxicity in Sprague-Dawley rats. Food Chem Toxicol 2018; 114:34-40. [PMID: 29421648 DOI: 10.1016/j.fct.2018.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 02/07/2023]
Abstract
Chronic exposure to cadmium (Cd) causes remarkable damage to the kidneys, a target organ of accumulated Cd after oral administration. The aim of the present study was to investigate the protective effect of curcumin against Cd-induced nephrotoxicity. Sprague-Dawley male rats were divided into the following four treatment groups: control, curcumin (50 mg/kg, oral), CdCl2, (25 mg/kg, oral), and pre-treatment with curcumin (50 mg/kg) 1 h prior to the administration of CdCl2 (25 mg/kg, oral) for 7 days. At 24 h after the final treatment, the animals were killed, and the biomarkers associated with nephrotoxicity were measured. Our data indicated that blood urea nitrogen (BUN) and serum creatinine (sCr) levels were significantly reduced by curcumin pre-treatment in CdCl2-treated animals. Histopathological studies showed hydropic swelling and hypertrophy of the proximal tubular cells in the renal cortex after Cd treatment. Pretreatment with curcumin ameliorated the histological alterations induced by Cd. The urinary excretion of kidney injury molecule-1 (Kim-1), osteopontin (OPN), tissue inhibitor of metalloproteinases 1 (TIMP-1), neutrophil gelatinase-associated lipocalin (NGAL), and netrin-1 significantly reduced by curcumin treatment compared to that in the CdCl2-treated group. The administration of curcumin provided a significant protective effect against Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Kyeong Seok Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun-Jung Lim
- Department of Food Science and Technology, Kongju National University, Yesan, Choongnam, Republic of Korea
| | - Jong Seung Lim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Yeon Son
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Byung Mu Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung-Cheol Chang
- Graduate Department of Chemical Materials, Pusan National University, Busan, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
45
|
Refaie MMM, El-Hussieny M, Zenhom NM. Protective role of nebivolol in cadmium-induced hepatotoxicity via downregulation of oxidative stress, apoptosis and inflammatory pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:212-219. [PMID: 29408764 DOI: 10.1016/j.etap.2018.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) intoxication in human occurs through inhalation of cigarette smoke and ingestion of contaminated water and food. We investigated the role of nebivolol (NEB) in Cd induced hepatotoxicity. In our study; NEB was given as (10 mg/kg/d) orally to rats for 6 weeks, in the presence or absence of hepatotoxicity induced by oral administration of Cd (7 mg/kg/d) for 6 weeks. Levels of serum liver enzyme biomarkers; alanine transaminase (ALT), aspartate transaminase (AST) and serum total antioxidant capacity (TAC) were measured. In addition; mean arterial pressure and total cholesterol levels were measured. Hepatic superoxide dismutase (SOD) and malondialdehyde (MDA) were detected. Hepatic histopathological features, inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) immunoexpressions were evaluated. Tumor necrosis factor alpha (TNF-α) and B-cell lymphoma-2 (Bcl-2) mRNA gene expressions were detected using real time-PCR (rt-PCR). Our results showed marked increase in all measured parameters except SOD, TAC, eNOS immunoexpression and Bcl2 mRNA gene expression which decreased in Cd induced hepatotoxicity group. NEB showed marvelous protective effect against Cd induced changes. NEB decreased liver enzymes (ALT and AST), mean arterial pressure, total cholesterol levels, MDA, iNOS immunoexpression and TNF-α gene expression but significantly increased SOD, TAC, eNOS immunoexpression and Bcl-2 gene expression. Moreover; NEB markedly improved the histopathological changes induced by Cd. These findings prove the antioxidant, anti-apoptotic and anti-inflammatory properties of NEB and its protective role in Cd induced hepatotoxicity.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt.
| |
Collapse
|
46
|
Hosseini A, Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother 2018; 99:411-421. [DOI: 10.1016/j.biopha.2018.01.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
|
47
|
Liu H, Xia W, Xu S, Zhang B, lu B, Huang Z, Zhang H, Jiang Y, Liu W, Peng Y, Sun X, Li Y. Cadmium body burden and pregnancy-induced hypertension. Int J Hyg Environ Health 2018; 221:246-251. [DOI: 10.1016/j.ijheh.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
|
48
|
Mohajeri M, Rezaee M, Sahebkar A. Cadmium-induced toxicity is rescued by curcumin: A review. Biofactors 2017; 43:645-661. [PMID: 28719149 DOI: 10.1002/biof.1376] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is one of the most common environmental and occupational heavy metals with extended distribution. Exposure to Cd may be associated with several deleterious consequences on the liver, bones, kidneys, lungs, testes, brain, immunological, and cardiovascular systems. Overproduction of reactive oxygen species (ROS) as the main mechanism behind its toxicity causes oxidative stress and subsequent damages to lipids, proteins, and DNA. Therefore, antioxidants along with chelating agents have shown promising outcomes against Cd-induced toxicity. Curcumin with various beneficial effects and medical efficacy has been evaluated for its inhibitory activities against biological impairments caused by Cd. Thus, this article is intended to address the effectiveness of curcumin against toxicity following Cd entry. Curcumin can afford to attenuate lipid peroxidation, glutathione depletion, alterations in antioxidant enzyme, and so forth through scavenging and chelating activities or Nrf2/Keap1/ARE pathway induction. © 2017 BioFactors, 43(5):645-661, 2017.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Grau-Perez M, Pichler G, Galan-Chilet I, Briongos-Figuero LS, Rentero-Garrido P, Lopez-Izquierdo R, Navas-Acien A, Weaver V, García-Barrera T, Gomez-Ariza JL, Martín-Escudero JC, Chaves FJ, Redon J, Tellez-Plaza M. Urine cadmium levels and albuminuria in a general population from Spain: A gene-environment interaction analysis. ENVIRONMENT INTERNATIONAL 2017; 106:27-36. [PMID: 28558300 DOI: 10.1016/j.envint.2017.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND The interaction of cadmium with genes involved in oxidative stress, cadmium metabolism and transport pathways on albuminuria can provide biological insight on the relationship between cadmium and albuminuria at low exposure levels. OBJECTIVES We tested the hypothesis that specific genotypes in candidate genes may confer increased susceptibility to cadmium exposure. METHODS Cadmium exposure was estimated by inductively coupled plasma mass spectrometry (ICPMS) in urine from 1397 men and women aged 18-85years participating in the Hortega Study, a representative sample of a general population from Spain. Urine albumin was measured by automated nephelometric immunochemistry. Abnormal albuminuria was defined as urine albumin greater than or equal to 30mg/g. RESULTS The weighted prevalence of abnormal albuminuria was 6.3%. The median level of urine cadmium was 0.39 (IQR, 0.23-0.65) μg/g creatinine. Multivariable-adjusted geometric mean ratios of albuminuria comparing the two highest to the lowest tertile of urine cadmium were 1.62 (95% CI, 1.43-1.84) and 2.94 (95% CI, 2.58-3.35), respectively. The corresponding odds ratios of abnormal albuminuria were 1.58 (0.83, 3.02) and 4.54 (2.58, 8.00). The association between urine cadmium and albuminuria was observed across all participant subgroups evaluated including participants without hypertension, diabetes or chronic kidney disease. We observed Bonferroni-corrected statistically significant interactions between urine cadmium levels and polymorphisms in gene SLC30A7 and RAC1. CONCLUSIONS Increasing urine cadmium concentrations were cross-sectionally associated with increased albuminuria in a representative sample of a general population from Spain. Genetic variation in oxidative stress and cadmium metabolism and transport genes may confer differential susceptibility to potential cadmium effects.
Collapse
Affiliation(s)
- Maria Grau-Perez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA; Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain
| | - Gernot Pichler
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain; Department of Internal Medicine, Hospital Clínico de Valencia, University of Valencia, Spain
| | - Inma Galan-Chilet
- Genotyping and Genetic Diagnosis Unit, Institute for Biomedical Research INCLIVA, Valencia, Spain
| | | | - Pilar Rentero-Garrido
- Genotyping and Genetic Diagnosis Unit, Institute for Biomedical Research INCLIVA, Valencia, Spain
| | - Raul Lopez-Izquierdo
- Department of Internal Medicine, University Hospital Rio Hortega, Valladolid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Virginia Weaver
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Science, University of Huelva, Huelva, Spain; Research Center of Health and Environment (CYSMA), University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Department of Chemistry, Faculty of Experimental Science, University of Huelva, Huelva, Spain; Research Center of Health and Environment (CYSMA), University of Huelva, Huelva, Spain
| | | | - F Javier Chaves
- Genotyping and Genetic Diagnosis Unit, Institute for Biomedical Research INCLIVA, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Josep Redon
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain; Department of Internal Medicine, Hospital Clínico de Valencia, University of Valencia, Spain
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.
| |
Collapse
|
50
|
El-Ebiary AA, El-Ghaiesh S, Hantash E, Alomar S. Mitigation of cadmium-induced lung injury by Nigella sativa oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25356-25363. [PMID: 27696167 DOI: 10.1007/s11356-016-7603-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Induction of oxidative stress and inflammation are considered the primary mechanism of cadmium (Cd) toxicity. Nigella sativa (NS) seeds and their oil (NSO) have been reported to possess antioxidant and anti-inflammatory potential. This study was conducted to assess the protective effect of NSO on Cd-induced lung damage in rat. Forty adult male Wistar rats were divided equally into 4 groups. Animals in groups I, II, and III received 1 ml of isotonic saline intraperitoneally (IP), 2 mg/kg of cadmium chloride (CdCl2) dissolved in isotonic saline IP, and 1 ml/kg of NSO by gastric gavage, respectively. Group IV rats received NSO an hour prior to CdCl2 administration via the same routes and doses as previously described. All animals were treated for 28 days. At the end of the study, animals were sacrificed; lungs were harvested for histopathological studies using light and electron microscopy. Saline-treated and NSO-treated rats showed normal lung parenchyma. However, CdCl2-treated rats showed massive degenerative changes in alveolar epithelial lining, disrupted interalveolar septa, and hemolytic debris in alveoli. Rats treated with both NSO and CdCl2 (group IV) showed amelioration of most Cd-induced lung damage with minimal histopathological changes in lung architecture. This study elucidates the protective effects of NSO on Cd-induced lung injury in rats and highlights the possibility of using NSO as a protective agent in individuals at high risk of Cd-induced lung toxicity.
Collapse
Affiliation(s)
- Ahmad A El-Ebiary
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Sabah El-Ghaiesh
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ehab Hantash
- Anatomy Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Suliman Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|