1
|
Jukanti AK, Karapati D, Bharali V, Gudla M, Thati S, Yadla S, Kumar M, Sundaram RM. From Gene to Plate: Molecular Insights into and Health Implications of Rice ( Oryza sativa L.) Grain Protein. Int J Mol Sci 2025; 26:3163. [PMID: 40243926 PMCID: PMC11989779 DOI: 10.3390/ijms26073163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Rice is a staple food crop widely consumed across the world. It is rich in carbohydrates, quality protein, and micronutrients. The grain protein content (GPC) in rice varies considerably. Although it is generally lower than that of other major cereals, the quality of protein is superior. GPC and its components are complex quantitative traits influenced by both genetics and environmental factors. Glutelin is the major protein fraction (70-80%) in rice. Rice protein is rich in lysine, methionine, and cysteine along with other amino acids. Globally, Protein-Energy Malnutrition (PEM) is a major concern, particularly in Asia and Africa. Additionally, non-communicable diseases (NCDs) including diabetes, cancer, cardiovascular diseases, hypertension, and obesity are on the rise due to various reasons including changes in lifestyle and consumption patterns. Rice plays a very important part in the daily human diet, and therefore, substantial research efforts focus on the genetic characterization of GPC and understanding its role in the prevention of NCDs. The contribution of both rice grain and bran protein in improving human health is an established fact. The present study summarizes the different aspects of rice grain protein including its variability, composition, factors affecting it, and its industrial uses and more importantly its role in human health.
Collapse
Affiliation(s)
| | - Divya Karapati
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - Violina Bharali
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - Mahesh Gudla
- Department of Crop Physiology, School of Agricultural Sciences, Malla Reddy University, Hyderabad 500043, Telangana, India
| | - Srinivas Thati
- Regional Agricultural Research Station, Acharya NG Ranga Agricultural University, Maruteru 534122, Andhra Pradesh, India
| | - Suneetha Yadla
- Regional Agricultural Research Station, Acharya NG Ranga Agricultural University, Maruteru 534122, Andhra Pradesh, India
| | - Manoj Kumar
- Agricultural Research Station, Agriculture University, Kota 324001, Rajasthan, India
| | | |
Collapse
|
2
|
Nazeam JA, Black I, Mulamoottil VA, Selim NM, El Shiekh RA, Abu-Elfotuh K, Hamdan AME, Gowifel AMH, Hafez SM, Mohamed EK, Atwa AM, El Hefnawy HM, Azadi P. Okra seed polysaccharides mitigate neuroinflammation and cognitive impairment via modulation of Nrf2/HO-1, HMGB1/RAGE/TLR4/NF-κB, NLRP3/Caspase-1, JAK-2/STAT-3, AMPK/SIRT1/m-TOR, PI3K/AKT/CREB/BDNF/TrkB and PERK/CHOP/Bcl-2 axes. Int Immunopharmacol 2025; 148:114110. [PMID: 39862637 DOI: 10.1016/j.intimp.2025.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/23/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits. Consequently, this study endeavored to explore effects of purified Okra seed polysaccharides (OP) (Abelmoschus esculentus (L.) Moench) against HFHCD-induced metabolic alterations and cognitive dysfunction, with elucidating underlying contributed mechanistic pathways. OP hydrolysate was analyzed using GC-MS analysis. The biological study encompassed two phases, the first phase I (model establishment phase), for 3 months, involved a control group, fed standard diet, and HFHCD group. The second phase (phase II) where HFHCD fed rats were re-divided into 3 equal subgroups, 1st subgroup received HFHCD, whereas second and third subgroups received OP, 200 or 400 mg/kg/day, respectively, for 28 days. GC-MS characterized OP as an arabinogalactouranan and revealed the monosaccharide composition as galacturonic acid: arabinose: glucose: galactose: rhamnose: xylose in ratio of 28.2: 23.3: 11.5: 4.2: 3.5: 2.0. The findings demonstrated that OP dose-dependently mitigated HFHCD-induced rise in body weights, lipid profiles, levels of blood glucose and disruption in behavioral outcomes, neurotransmitters, together with histopathological alterations in brain. Moreover, OP dose-dependently improved redox, neuroinflammatory, endoplasmic reticulum (ER) stress, autophagic and apoptotic biomarkers. OP can be regarded as promising functional food candidate to hamper HFHCD-induced metabolic alterations and cognitive deficit, via enhancing Nrf2/HO-1, AMPK/SIRT1 and PI3K/AKT/CREB axes, long with dampening of HMGB1/RAGE/TLR4, NLRP3/Caspase-1, JAK-2/STAT-3 and PERK/CHOP axes.
Collapse
Affiliation(s)
- Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| | | | - Nabil M Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt.
| | - Riham A El Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt.
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Al-Ayen Iraqi University, Thi-Qar 64001, Iraq.
| | - Ahmed M E Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; Prince Fahad bin Sultan Chair for Biomedical Research, University of Tabuk, Saudi Arabia.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Shaimaa M Hafez
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | - Ehsan K Mohamed
- Biochemistry Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq.
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Rahmani S, Najdegerami E, Razi M, Nikoo M. Potential therapeutic effects of shrimp protein hydrolysates on NAFLD-induced infertility disorders: Insights into redox balance, heat shock protein expression, and chromatin compaction in male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:158-169. [PMID: 39850116 PMCID: PMC11756727 DOI: 10.22038/ijbms.2024.76649.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/31/2024] [Indexed: 01/25/2025]
Abstract
Objectives Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage. Materials and Methods The study divided rats into four groups: control, a group subjected to a high-fat diet (HFD) to induce NAFLD without supplementation, and two HFD-induced NAFLD groups receiving HP doses (20 and 300 mg/kg). After 70 days, the testicular total anti-oxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), glutathione disulfide (GSSG), HSP70-2a, HSP90 expression, and TP mRNA levels were assessed. Results The results showed that HFD-induced NAFLD significantly increased GSH and MDA levels and disrupted the GSH/GSSG ratio (P<0.05) while also reducing HSP70-2a, HSP90, TP1, and TP2 expression (P<0.05). However, HP administration effectively restored testicular redox balance, reduced oxidative stress, and enhanced these protective proteins' expression compared to HFD (P<0.05). Conclusion NAFLD negatively affects the testicular redox system and HSP and TP expression, disrupting male fertility potential. In contrast, HP-treated rats showed a marked effect on NAFLD-induced damage by improving testicular anti-oxidant status and regulating the expression of HSPs and TP proteins. These findings suggest a potential therapeutic role for HP in safeguarding male fertility against the damaging effects of NAFLD.
Collapse
Affiliation(s)
- Somayyeh Rahmani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | | | - Mazdak Razi
- Division of Comparative Histology and Embryology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Nikoo
- Artemia & Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Ikhsan LN, Chin KY, Ahmad F. The Potential of Dehydrated Geniotrigona thoracica Stingless Bee Honey against Metabolic Syndrome in Rats Induced by a High-Carbohydrate, High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1427. [PMID: 39598339 PMCID: PMC11597213 DOI: 10.3390/ph17111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic syndrome (MS) is diagnosed when at least three out of five key risk factors are present: obesity, high blood pressure, insulin resistance, high triglycerides (TG) and low high-density lipoprotein (HDL). MS is often associated with chronic low-grade inflammation. Recent studies have shown that raw stingless bee honey (SBH) can alleviate MS risk factors. However, the high moisture content in raw SBH predisposes it to fermentation, which can degrade its quality. Therefore, dehydrating SBH is necessary to prevent the fermentation process. This study aimed to compare the effects of dehydrated (DeGT) and raw (RGT) SBH from Geniotrigona thoracica species on high-carbohydrate, high-fat diet (HCHF)-induced MS in rats. METHODS Twenty-four male Wistar rats were divided into four groups: control (C), HCHF-induced MS without treatment (MS), HCHF-induced MS treated with DeGT (MS+DeGT) and HCHF-induced MS treated with RGT (MS+RGT). Group C received standard rat chow, while the other groups were fed with HCHF diet for 16 weeks. In the final eight weeks, two HCHF-induced groups received their respective SBH treatments. RESULTS Both DeGT and RGT treatments reduced energy intake, fat mass, high blood pressure, inflammatory (tumour necrosis factor-alpha (TNF-α)) and obesity (the leptin/adiponectin (L/A) ratio, corticosterone, 11 beta-hydroxysteroid dehydrogenase type-1 (11βHSD1)) markers, as well as prevented histomorphometry changes (prevented adipocyte hypertrophy, increased the Bowman's space area and glomerular atrophy). Additionally, DeGT increased serum HDL levels, while RGT reduced serum TG, leptin and other inflammatory markers (interleukin-6 (IL-6) and interleukin-1 beta (IL-1β)), as well as hepatosteatosis. CONCLUSIONS While DeGT demonstrates potential as a preventive agent for MS, RGT exhibited more pronounced anti-MS effects in this study.
Collapse
Affiliation(s)
- Liyana Nabihah Ikhsan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Cao H, Huang X, Luo B, Shi W, Li H, Shi R. Gender Differences of Visceral Fat Area to Hip Circumference Ratio for Insulin Resistance. Diabetes Metab Syndr Obes 2024; 17:3935-3942. [PMID: 39465126 PMCID: PMC11512554 DOI: 10.2147/dmso.s482820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Not all type 2 diabetes mellitus (T2DM) patients exhibit insulin resistance (IR). Our objective is to identify the most effective sex-specific index for predicting IR in T2DM. This will be achieved through a comparative analysis of the sex-specific attributes of waist to hip circumference ratio (WHR), visceral fat area to hip circumference ratio (VHR), and visceral fat area to subcutaneous fat area ratio (VSR). Methods Receiver operating characteristic curve analysis was conducted to estimate the area under the curve for WHR, VHR, and VSR. Subsequently, logistic regression was employed to analyze the relationship between VHR and IR. Results There were significant differences between males and females in anthropometric measurements, biochemical data, and obesity prevalence. ROC analysis revealed that the area under the curve (AUC) for predicting male IR was 0.67, 0.71, and 0.62 for WHR, VHR, and VSR, respectively. For females, the AUC values were 0.63, 0.69, and 0.60, respectively. In multivariate logistic regression analysis, adjusting for confounding factors, compared to the lowest tertile of VHR, the odds ratio (OR) of the highest tertile was 2.2 (95% CI: 1.47-3.3, P<0.001) for males and 2.1 (95% CI: 1.24-3.57, P=0.005) for females. Conclusion VHR emerges as the most reliable predictor of IR risk in individuals with T2DM.
Collapse
Affiliation(s)
- Huiying Cao
- Clinical Laboratory, The First People’s Hospital of Honghe State, Honghe State, Yunnan Province, People’s Republic of China
| | - Xuan Huang
- Clinical Laboratory, The First People’s Hospital of Honghe State, Honghe State, Yunnan Province, People’s Republic of China
| | - Beibei Luo
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People’s Republic of China
| | - Wei Shi
- Clinical Laboratory, The First People’s Hospital of Honghe State, Honghe State, Yunnan Province, People’s Republic of China
| | - Huan Li
- Clinical Laboratory, The First People’s Hospital of Honghe State, Honghe State, Yunnan Province, People’s Republic of China
| | - Rui Shi
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People’s Republic of China
| |
Collapse
|
6
|
Elhadad N, de Campos Zani SC, Chan CB, Wu J. Ovalbumin Hydrolysates Enhance Skeletal Muscle Insulin-Dependent Signaling Pathway in High-Fat Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15248-15255. [PMID: 38940702 DOI: 10.1021/acs.jafc.4c01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Egg white hydrolysates (EWH) and ovotransferrin-derived peptides have distinct beneficial effects on glucose metabolism. This research aims to investigate whether ovalbumin hydrolysates (OVAHs), without ovotransferrin can improve insulin signaling pathway in high-fat diet (HFD)-fed mice. Two types of ovalbumin hydrolysates were produced, either using thermoase (OVAT), or thermoase + pepsin (OVATP). Both OVAHs-supplemented groups exhibited lower body weight gain (P < 0.001) and enhanced oral glucose tolerance (P < 0.05) compared with HFD. Moreover, diet supplementation with either hydrolysate increased the insulin-stimulated activation of protein kinase B (AKT) and insulin receptor β (IRβ) (P < 0.0001) in skeletal muscle. In conclusion, OVAHs improved glucose tolerance and insulin-dependent signaling pathway in HFD-fed mice.
Collapse
Affiliation(s)
- Nesma Elhadad
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
| | - S C de Campos Zani
- Department of Physiology, University of Alberta, Edmonton, T6G2H7 Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G2E1 Alberta, Canada
| | - C B Chan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, T6G2H7 Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G2E1 Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
| |
Collapse
|
7
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
8
|
Shan S, Zhou J, Yin R, Zhang L, Shi J, Qiao Q, Li Z. Millet Bran Protein Hydrolysate Displays the Anti-non-alcoholic Fatty Liver Disease Effect via Activating Peroxisome Proliferator-Activated Receptor γ to Restrain Fatty Acid Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1628-1642. [PMID: 36638159 DOI: 10.1021/acs.jafc.2c08169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious health problem worldwide. Impeding fatty acid uptake may be an attractive therapeutic strategy for NAFLD. In the current study, we found that millet bran protein hydrolysate (MBPH) prepared by in vitro gastrointestinal bionic digestion exhibits the potential of anti-NAFLD in vitro and in vivo, characterized by the alleviation of hepatic steatosis and the reduction of lipid accumulation. Further, MBPH significantly decreased the expression levels of fatty acid uptake related genes (FABP1, FABP2, FABP4, CD36, and CPT-1α) of liver tissue in a NAFLD mice model through activating peroxisome proliferator-activated receptor γ (PPARγ) and efficiently restrained the fatty acid uptake of liver tissue, thus exerting anti-NAFLD activity. As expected, the anti-NAFLD effect induced by MBPH, characterized by the alleviation of hepatic vacuolar degeneration, hepatic steatosis, and fibrosis, was effectively abrogated with PPARγ inhibitor (GW9662) treatment. These results indicate that the retardant of fatty acid uptake induced by PPARγ activation may be the critical factor for the anti-NAFLD effect of MBPH. Collectively, MBPH has the potential as a next-generation dietary supplementation for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Shuhua Shan
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jiaqi Zhou
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jiangying Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Qinqin Qiao
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
9
|
Kalita P, Ahmad AB, Sen S, Deka B, Hazarika QK, Kapil MJ, Pachuau L. High Value Compounds and Bioactivity of Rice Bran, Rice Bran Protein: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2023; 14:26-40. [PMID: 36578259 DOI: 10.2174/2772574x14666221227151558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022]
Abstract
Rice bran and rice bran protein are important sources of minerals, energy, and vitamins. Other bioactive compounds are abundantly available to exert therapeutical activity. Healthpromoting activities of high-value compounds of rice bran were significant, as observed in recent studies. A variety of bioactive components present in rice bran and rice bran extract are responsible to exhibit therapeutical potential like chemopreventive, cardioprotective, hepatoprotective, immunomodulatory, neuroprotective, and lipid-lowering activity. Several bioactivity representative compounds like γ-oryzanol, ferulic acid, caffeic acid, tricin, protocatechuic acid, vanillic acid, coumaric acid, phytic acid, isoferulic acid, gallic acid, γ-amino butyric acid, sinapic acid, saturated and unsaturated fatty acids, vitamin E complexes, β-sitosterol, stigmasterol, campesterol, cyanidin-3-glucoside, peonidin-3-glucoside, quercetin, rutin, kaemferol, β-carotene, lutein, vitamin B and lycopene are known to display significant health benefits. The bioactive components produced therapeutical effects by regulation of different mechanisms like increasing faecal excretion, reducing oxidative stress, reducing the level of malondialdehyde (MDA), regulation of NF-kb activation, reduction of proinflammatory cytokines production, suppression of SREBP-1, reduction in the expression of anti-apoptotic protein Bcl-2, elevated the expression of proapoptotic protein Bax, up-regulating P53 expression and suppressing COX-2. Several research engines like PubMed, google scholar, science direct, etc. were used to collect the data on the mentioned keywords. Recent scientific works were included in this article. In this review paper, we profiled the high-value compounds and focused on their antioxidant, anti-hyperlipidemic, antidiabetic, and anticancer activity with their possible mechanism of action.
Collapse
Affiliation(s)
- Pratap Kalita
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India
- Assam Science Technology University, Guwahati, Assam, 781013, India
| | - Abdul Baquee Ahmad
- Department of Pharmaceutics, Girijananda Choudhuary Institute of Pharmaceutical Sciences, Tezpur, Assam 784501, India
| | - Saikat Sen
- Department of Pharmacy, Assam Down Town University, Panikhaiti, Guwahati, Assam 781026, India
| | - Bhargab Deka
- Department of Pharmacology, Girijananda Choudhuary Institute of Pharmaceutical Sciences, Tezpur, Assam 784501, India
| | - Quri Kiran Hazarika
- Department of Chemistry, University of Science and Technology Meghalaya, Ri-Bhoi, Meghalaya 793101, India
| | - Manas Jyoti Kapil
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India
| | - Lalduhsanga Pachuau
- Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, 788011, India
| |
Collapse
|
10
|
Ameliorating Effects of Bioactive Peptides Extracted from Litopenaeus vannamei Wastes on Oxidative Stress, Glucose Regulation, and Autophagy Gene Expression in Nonalcoholic Fatty Liver-Induced Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2679634. [PMID: 36062167 PMCID: PMC9436606 DOI: 10.1155/2022/2679634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effect of bioactive peptides from Litopenaeus vannamei on oxidative stress, glucose regulation, and autophagy gene expression in the induced nonalcoholic fatty liver rats. Bioactive peptides used in the current study were extracted in a progressive rise in temperature (40–60°C) (GP). For this purpose, twenty-four healthy male rats (initial weight, 230.1 ± 22 g) were divided in four experimental groups including control (standard diet), HFD (high-fat diet), HFD + GP20, and 300 (high-fat diet + 20, 300 mg peptides/kg body weight). After 70 days, the results indicated that experimental treatments did not affect the body and liver weight (P > 0.05), although the higher liver weight was seen in HFD treatment. Based on these results, the use of GP peptides improved antioxidant enzymes and decreased MDA concentration, and a significant difference was observed between peptide treatments and HFD (P < 0.05). In comparison to the HFD group, significantly lower liver enzymes (ALT and AST) were seen in peptide treatments (P < 0.05). Also, the results indicated that the lowest amylase, alkaline phosphatase, glucose, insulin, HOMA-IR, and inflammation cytokines (TNF-ɑ and IL-6) were seen in peptide groups. The autophagy gene expression was measured in the liver cells, and the results showed that, unlike HFD treatment, the use of GP peptides decreased Beclin 1, Atg7, and P62 expression in male rat's livers. Overall, the results of the current study demonstrated that the use of GP peptides at low concentration shows significant hypoglycemia and antioxidant properties in nonalcoholic fatty liver-induced rats.
Collapse
|
11
|
Hadavi M, Najdegerami EH, Nikoo M, Nejati V. Protective effect of protein hydrolysates from Litopenaeus vannamei waste on oxidative status, glucose regulation, and autophagy genes in non-alcoholic fatty liver disease in Wistar rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:954-963. [PMID: 36159326 PMCID: PMC9464338 DOI: 10.22038/ijbms.2022.62167.13761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/06/2022] [Indexed: 11/15/2022]
Abstract
Objective(s): The effects of protein hydrolysates (FP) from Litopenaeus vannamei on oxidative stress, and autophagy gene expression was investigated in the NAFLD-induced rats. Materials and Methods: For this purpose, twenty-four male rats were divided into four groups: Control, High-fat diet (HFD), FP20+HFD, and FP300+HFD (20 and 300 mg FP /kg rat body weight) and fed for 70 days. Results: The results indicated that the rat body and relative weight of the liver were not affected by experimental treatments (P>0.05) although the highest relative weight of the liver was observed in HFD treatment. The highest and lowest values for antioxidant enzymes and MDA concentration were observed in FP treatments (P<0.05). Also, the results showed that FP significantly decreased liver enzymes (ALT, AST) in the liver in comparison with HFD treatment (P<0.05). Plasma biochemical indices were investigated and the lowest amylase, ALP, fasting glucose, insulin, HOMA-IR, triglycerides, cholesterol, and inflammation cytokines (TNF-α, IL-6) were seen in the FP treatments which had a significant difference with HFD (P<0.05). Autophagy gene expression in the liver cells was affected by experimental diets and the lowest expression of Beclin-1 and Atg7 was observed in HFD and FP300 treatments. Interestingly, the highest expression of LC3-ɪ and P62 was seen in HFD and FP treatments, not in the control. Conclusion: Overall, the results of this experiment indicated that FPs extracted from Whiteleg shrimp at 50 °C improve the oxidative status, glucose metabolism, and autophagy gene expression and could be used as a useful nutritional strategy in fatty liver prevention.
Collapse
Affiliation(s)
- Mirhossein Hadavi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Ebrahim H. Najdegerami
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran,Corresponding author: Ebrahim H. Najdegerami. Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia & Aquaculture Research institute, Urmia University, Urmia, Iran
| | - Vahid Nejati
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| |
Collapse
|
12
|
Wu Q, Guo Z, Zhou Z, Jin M, Li Q, Zhou X. Recent advances in bioactive peptides from cereal-derived Foodstuffs. Int J Food Sci Nutr 2022; 73:875-888. [PMID: 35896503 DOI: 10.1080/09637486.2022.2104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cereal-derived proteins account for a major part of human dietary protein consumption. Natural bioactive peptides (NBPs) from these proteins involve a variety of physiological activities and play an important role in the promotion of human health. This review focuses on the characteristics of NBPs obtained from cereals, and the commonly used methods for preparation, separation, purification, and identification. We also discussed the biological functions of cereal-derived NBPs (CNBPs), including the activities of antioxidant, immunomodulatory, antimicrobial, and regulation of hyperglycaemia and hypertension. The paper summarised the latest progress in the research and application of CNBPs and analysed the prospects for the development and application of several protein by-products, providing an important way to improve the added value of protein by-products in cereal processing.
Collapse
Affiliation(s)
- Qin Wu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijian Guo
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zerong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Mengyuan Jin
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qizhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Xuanwei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Cheng Z, Qiao D, Zhao S, Zhang B, Lin Q, Xie F. Whole grain rice: Updated understanding of starch digestibility and the regulation of glucose and lipid metabolism. Compr Rev Food Sci Food Saf 2022; 21:3244-3273. [PMID: 35686475 DOI: 10.1111/1541-4337.12985] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Nowadays, resulting from disordered glucose and lipid metabolism, metabolic diseases (e.g., hyperglycemia, type 2 diabetes, and obesity) are among the most serious health issues facing humans worldwide. Increasing evidence has confirmed that dietary intervention (with healthy foods) is effective at regulating the metabolic syndrome. Whole grain rice (WGR) rich in dietary fiber and many bioactive compounds (e.g., γ-amino butyric acid, γ-oryzanol, and polyphenols) can not only inhibit starch digestion and prevent rapid increase in the blood glucose level, but also reduce oxidative stress and damage to the liver, thereby regulating glucose and lipid metabolism. The rate of starch digestion is directly related to the blood glucose level in the organism after WGR intake. Therefore, the effects of different factors (e.g., additives, cooking, germination, and physical treatments) on WGR starch digestibility are examined in this review. In addition, the mechanisms from human and animal experiments regarding the correlation between the intake of WGR or its products and the lowered blood glucose and lipid levels and the reduced incidence of diabetes and obesity are discussed. Moreover, information on developing WGR products with the health benefits is provided.
Collapse
Affiliation(s)
- Zihang Cheng
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Zhao L, Liang J, Liu H, Gong C, Huang X, Hu Y, Liu Q, He Z, Zhang X, Yang S, Rahimnejad S. Yinchenhao Decoction ameliorates the high-carbohydrate diet induced suppression of immune response in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 125:141-151. [PMID: 35569775 DOI: 10.1016/j.fsi.2022.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Yinchenhao Decoction (YD), a Chinese herbal medicine, has been traditionally used for treatment of metabolic liver diseases. A 10-week feeding trail was carried out to examine the effects of YD supplementation in a high carbohydrate diet (HCD) on liver histopathology, immune response, disease resistance, and expression of genes associated with endoplasmic reticulum stress, autophagy, apoptosis, necroptosis and inflammation in juvenile largemouth. A diet containing 9% carbohydrate was used as a low carbohydrate diet (LCD), and a HCD was formulated to contain 18% carbohydrate and supplemented with 0, 0.5, 1, 2 or 4% YD (HCD, HCD+0.5YD, HCD+1YD, HCD+2YD and HCD+4YD). Triplicate groups of fish (5.6 ± 0.2 g) were feed the test diets to visual satiety for 10 weeks. The highest survival rate after Nocardia seriolae challenge was recorded for the HCD+4YD group. YD application led to reduced ACP, AKP, AST and ALT activities. HCD-induced cells swelling, ruptured cell membrane, migrated nuclei and increasing inflammatory cells in hepatocytes were mitigated by YD addition. Moreover, YD decreased the expressions of pro-inflammation genes (TNF-α, IL-1β, IL-8, hepcidin1, NF-κB, COX2, CD80 and CD83) and increased the mRNA levels of anti-inflammation genes (IL-10 and IKBα). The mode of liver cell death was preferably changed to programed apoptosis rather than uncontrolled necroptosis by application of YD in HCD. Furthermore, the expression of UPR genes (IRE1, Eif2α, ATF6, XBP1 and GRP78/Bip) and autophagy genes (LC3-2, BNIP3 and P62) was increased by YD supplementation. In summary, our results demonstrated that YD addition in HCD enhances UPR, autophagy and programed apoptosis maintaining the homeostasis, and decreases uncontrolled necroptosis and inflammation, ultimately leading to improved immune response in largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Chenxin Gong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
15
|
Pannangpetch P, Tangsucharit P, Thanaruksa R, Proongkhong T, Srisuwan S, Aekthammarat D. Antihypertensive effect of Mali-Nil surin rice bran hydrolysate and its mechanisms related to the EDHF-mediated vasorelaxation and L-type Ca 2+ channel-mediated vasoconstriction in L-NAME hypertensive rats. Biomed Pharmacother 2022; 150:113003. [PMID: 35462340 DOI: 10.1016/j.biopha.2022.113003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Mali-Nil Surin rice bran hydrolysate (MRH) contains highly nutritional proteins and beneficial phenolic compounds. This study investigated an antihypertensive effect of MRH and evaluated the mechanisms mediating this action in Nω-nitro-L-arginine-methyl ester (L-NAME)-induced hypertensive rats. Antihypertensive activity was determined in male rats orally administered with MRH (100 or 300 mg/kg) or enalapril (15 mg/kg) daily together with L-NAME (50 mg/kg/day) in drinking water, for 21 days. Concurrent oral treatment with MRH lowered the high blood pressure in the L-NAME-induced hypertensive rats. MRH treatment improved endothelial function and increased the endothelium-derived hyperpolarizing factor-mediated vasorelaxation in L-NAME hypertensive rats. L-NAME rats treated with MRH had reduced adrenergic hypercontractility, which was associated with a decrease in L-type calcium channel-mediated vasoconstriction. In addition, MRH exhibited antioxidant activity in hypertensive rats, as indicated by suppression of vascular superoxide anion production and reduction of malondialdehyde levels, as well as magnification of superoxide dismutase and catalase activities in serum. This study demonstrated the nutraceutical potential of MRH to prevent oxidative stress-related vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Patchareewan Pannangpetch
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panot Tangsucharit
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | - Supawadee Srisuwan
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Direk Aekthammarat
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand.
| |
Collapse
|
16
|
Boonloh K, Thanaruksa R, Proongkhong T, Thawornchinsombut S, Pannangpetch P. Nil-Surin Rice Bran Hydrolysates Improve Lipid Metabolism and Hepatic Steatosis by Regulating Secretion of Adipokines and Expression of Lipid-Metabolism Genes. J Med Food 2022; 25:597-606. [PMID: 35708630 DOI: 10.1089/jmf.2021.k.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Overconsumption of a high caloric diet is associated with metabolic disorders and a heightened risk of diabetes mellitus (DM), hepatic steatosis, and cardiovascular complications. The use of functional food has received much attention as a strategy in the prevention and treatment of metabolic disorders. This present study investigated whether Nil-Surin rice bran hydrolysates (NRH) could prevent or ameliorate the progression of metabolic disorders in rats in which insulin resistance (IR) was induced by a high fat-high fructose diet (HFFD). After 10 weeks of the HFFD, the rats showed elevated fasting blood glucose (FBG), impaired glucose tolerance, dysregulation of adipokine secretion, distorted lipid metabolism such as dyslipidemia, and increased intrahepatic fat accumulation. The IR was significantly attenuated by a daily dose of NRH (100 or 300 mg/kg/day). Doses of NRH rectified adipokine dysregulation by increasing serum adiponectin and improving hyperleptinemia. Interestingly, NRH decreased intrahepatic fat accumulation and improved dyslipidemia as shown by decreased levels of hepatic triglyceride (TG) and serum TG, total cholesterol and low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol. In addition, a modulation of expression of lipid metabolism genes was observed: NRH prevented upregulation of the lipogenesis genes Srebf1 and Fasn. In addition, NRH enhanced the expression of fatty-acid oxidation genes, as evidenced by an increase of Ppara and Cpt1a when compared with the HFFD control group. The activities of NRH in the modulation of lipid metabolism and rectifying the dysregulation of adipokines may result in a decreased risk of DM and hepatic steatosis. Therefore, NRH may be beneficial in ameliorating metabolic disorders in the HFFD model.
Collapse
Affiliation(s)
- Kampeebhorn Boonloh
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Muang District, Thailand.,Cardiovascular Research Group, Khon Kaen University, Muang District, Thailand
| | - Ratthipha Thanaruksa
- Rice Department, Surin Rice Research Center, Agricultural and Cooperatives Ministry, Surin, Thailand
| | - Tunvaraporn Proongkhong
- Rice Department, Chum Phae Rice Research Center, Agricultural and Cooperatives Ministry, Khon Kaen, Thailand
| | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Muang District, Thailand
| | - Patchareewan Pannangpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Muang District, Thailand.,Cardiovascular Research Group, Khon Kaen University, Muang District, Thailand
| |
Collapse
|
17
|
A Treatment to Cure Diabetes Using Plant-Based Drug Discovery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8621665. [PMID: 35586686 PMCID: PMC9110154 DOI: 10.1155/2022/8621665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023]
Abstract
The field of peptides and proteins has opened up new doors for plant-based medication development because of analytical breakthroughs. Enzymatic breakdown of plant-specific proteins yields bioactive peptides. These plant-based proteins and peptides, in addition to their in vitro and vivo outcomes for diabetes treatment, are discussed in this study. The secondary metabolites of vegetation can interfere with the extraction, separation, characterization, and commercialization of plant proteins through the pharmaceutical industry. Glucose-lowering diabetic peptides are a hot commodity. For a wide range of illnesses, bioactive peptides from flora can offer up new avenues for the development of cost-effective therapy options.
Collapse
|
18
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
19
|
Tochitani S, Maehara Y, Kawase T, Tsukahara T, Shimizu R, Watanabe T, Maehara K, Asaoka K, Matsuzaki H. Fermented rice bran supplementation ameliorates obesity via gut microbiota and metabolism modification in female mice. J Clin Biochem Nutr 2022; 70:160-174. [PMID: 35400825 PMCID: PMC8921717 DOI: 10.3164/jcbn.21-96] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated the effects of fermented rice bran (FRB) administration in two groups of C57BL/6J mice. The first group was fed with a high-fat diet, and the second group was fed with a high-fat diet supplemented with the FRB for 8 weeks. FRB supplementation suppressed the high-fat-induced weight gain and considerable alterations in the intestinal microbiota profile in the second group. Among 27 bacterial genera detected in the FRB, only Enterococcus, Lactobacillus, Bacteroides, Prevotella, and the unclassified family Peptostreptococcaceae were detected in mice feces. Their abundances were not particularly increased by FRB supplementation. The abundances of Enterococcus and the unclassified family Peptostreptococcaceae were even suppressed in the second group, suggesting that FRB supplementation didn’t cause an addition of beneficial microbiome but inhibit the proliferation of specific bacteria. Fecal succinic acid concentration was significantly decreased in the second group and highly correlated with the relative abundances of Turicibacter, Enterococcus, and the unclassified family Peptostreptococcaceae. A significant increase in fumaric acid and a decrease in xylitol, sorbitol, uracil, glutamic acid, and malic acid levels were observed in the peripheral blood of the second group. FRB supplementation counteracted the high-fat-induced obesity in mice by modulating the gut microbiota and the host metabolism.
Collapse
Affiliation(s)
- Shiro Tochitani
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science
| | | | | | | | | | | | | | | | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui
| |
Collapse
|
20
|
Comprehensive assessment of the effectiveness of l-carnitine and transresveratrol in rats with diet-induced obesity. Nutrition 2021; 95:111561. [PMID: 34999386 DOI: 10.1016/j.nut.2021.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Transresveratrol (Res) and l-carnitine (l-Car) are proposed to alleviate metabolic and immune disorders and increase physical activity in obese individuals. This study aims to estimate the effect of Res and l-Car in rats with diet-induced obesity. METHODS Male Wistar rats were fed a diet with excess fat and fructose (high-fat high-carbohydrate diet [HFCD]) supplemented with Res and l-Car at doses of 25 and 300 mg/kg of body weight, respectively, for 63 d. An assessment of grip strength, behavioral reactions, as well as biochemical, morphological, and immunological parameters, was performed. RESULTS Res supplementation did not affect energy consumption, but l-Car increased when animals had free access to feed. Body weight gains were the highest in animals fed the HFCD, lowest in rats receiving the control balanced diet, and intermediate in animals receiving Res and l-Car. Feeding with Res and l-Car canceled the decrease in long-term memory in rats fed the HFCD, as well as reduced anxiety and increased mobility. With both supplements, bilirubin, triglycerides, and low-density lipoprotein levels in the blood plasma returned to normal values, but only l-Car increased the ratio of aspartic and alanine transaminases. In addition, l-Car lowered the levels of leptin and ghrelin and increased transforming growth factor beta 1 in the blood plasma, and consumption of Res was accompanied by a decrease in interleukin-17A and increase in interferon gamma in spleen lysates. Moreover, l-Car reduced the number of cells with lipid inclusions in the liver. CONCLUSIONS The consumption of Res and l-Car leads to a significant reduction in dyslipidemia and inflammation with potentially favorable changes in behavioral responses.
Collapse
|
21
|
Elam E, Feng J, Lv YM, Ni ZJ, Sun P, Thakur K, Zhang JG, Ma YL, Wei ZJ. Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
Garcia JL, Vileigas DF, Gregolin CS, Costa MR, Francisqueti-Ferron FV, Ferron AJT, De Campos DHS, Moreto F, Minatel IO, Bazan SGZ, Corrêa CR. Rice (Oryza sativa L.) bran preserves cardiac function by modulating pro-inflammatory cytokines and redox state in the myocardium from obese rats. Eur J Nutr 2021; 61:901-913. [PMID: 34636986 PMCID: PMC8854237 DOI: 10.1007/s00394-021-02691-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022]
Abstract
Purpose This study aimed to evaluate the effect of rice bran (RB) supplementation to a high-sugar fat (HSF) diet on cardiac dysfunction in an experimental obesity model.
Methods Male Wistar rats were distributed into three groups: control, high-sugar fat, and high-sugar fat supplemented with 11% RB for 20 weeks. Results HSF diet promoted obesity and metabolic complications. Obese rats showed cardiac structural and functional impairment associated with high levels of interleukin-6, tumoral necrosis factor alpha, and malondialdehyde, and decreased activity of superoxide dismutase and catalase in the myocardium. RB supplementation was able to mitigate obesity and its metabolic alterations in HSF diet-fed animals. Moreover, the RB also prevented structural and functional damage, inflammation, and redox imbalance in the heart of these animals. Conclusion This study suggests that RB supplementation prevents cardiac dysfunction in rats fed on HSF by modulating systemic metabolic complications and inflammation and oxidative stress in the myocardium, representing potential alternative therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Moreto
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
| | - Igor Otávio Minatel
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | | | | |
Collapse
|
23
|
Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC. Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health. Protein Pept Lett 2021; 28:623-642. [PMID: 33319654 DOI: 10.2174/0929866527999201211195936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.
Collapse
Affiliation(s)
- Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Kah-Yaw Ee
- Center for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - D Thirumal Kumar
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
24
|
Huang X, Zhang M, Wu H, Wang X, Xu F. The Study on the Active Ingredients and Potential Targets of Rice Bran Petroleum Ether Extracts for Treating Diabetes Based on Network Pharmacology. Comb Chem High Throughput Screen 2021; 24:790-802. [PMID: 32955000 DOI: 10.2174/1386207323999200821162307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE In ancient China, rice bran was used to treat diabetes and hyperlipidemia. The aim of this paper is to explore the active compounds and underlying mechanism of Rice Bran Petroleum Ether extracts (RBPE) against diabetes using network pharmacology. MATERIALS AND METHODS Gas chromatography-mass spectrometer analysis was performed to identify the chemical composition in RBPE. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Swiss Target Prediction database, BATMAN-TCM, comprehensive database of human genes and gene phenotypes, therapeutic target database, DurgBank and GeneCards database were used to screen targets. The "component-target-disease" interactive network was constructed by Cytoscape software. Gene ontology and pathways related to the targets were analyzed by ClueGO, and core targets were screened by the MCODE, and Autodock vina was used for molecular docking. RESULTS The compounds with a percentage greater than 1.0% were selected for subsequent analysis. The RBPE contains oleic acid, (E)-9-Octadecenoic acid ethyl ester, and other chemical components that can regulate insulin, mitogen-activated protein kinase 3, epidermal growth factor receptor, mitogen-activated protein kinase 1, and other genes, which were mainly related to Pathways in cancer, Human cytomegalovirus infection and AGE-RAGE signaling pathway in diabetic complications, etc. The affinity of the core compounds and the corresponding protein of the gene targets was good. CONCLUSION The results of network pharmacology analysis indicate that the RBPE has multiple anti- diabetic ingredients, and RBPE exert anti-diabetic activity through multiple targets and signaling pathways. The present study can provide a scientific basis for further elucidating the mechanism of RBPE against diabetes.
Collapse
Affiliation(s)
- Xulong Huang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Mei Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongmei Wu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiangpei Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Feng Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
25
|
Yu Y, Gaine GK, Zhou L, Zhang J, Wang J, Sun B. The classical and potential novel healthy functions of rice bran protein and its hydrolysates. Crit Rev Food Sci Nutr 2021; 62:8454-8466. [PMID: 34028308 DOI: 10.1080/10408398.2021.1929057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rice bran protein (RBP) is a plant protein obtained from rice bran, a byproduct produced during rice milling process. It has been proved to be a high quality protein due to containing all of the essential amino acids and the content closing to the FAO/WHO recommended ideal pattern. Recent studies indicated that RBP and rice bran protein hydrolysates (RBPH) served variety biological functions. In this review, we summarized the classical functions of RBP and RBPH mediating antioxidant activity, chronic diseases prevention (such as antihypertensive effect, anti-diabetic effect, cholesterol-lowering activity), and anti-cancer effect. We also proposed their potential novel functions on anti-obesity effect, attenuating sarcopenia, promoting wound healing. Furthermore, the potential benefit to coronavirus disease 2019 (COVID-19) patients was put forward, which might provide new strategy for development and utilization of RBP and RBPH.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Goutom Kumar Gaine
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
26
|
Gong X, Sui L, Morton J, Brennan MA, Brennan CS. Investigation of nutritional and functional effects of rice bran protein hydrolysates by using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Effects of Tyrosine and Tryptophan in Rats with Diet-Induced Obesity. Int J Mol Sci 2021; 22:ijms22052429. [PMID: 33670919 PMCID: PMC7957688 DOI: 10.3390/ijms22052429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Amino acids tyrosine (Tyr) and tryptophan (Trp) play a significant role in the regulation of energy metabolism, locomotor activity, and eating behavior. We studied the possibility of modulating these processes in obesity by increasing the pool of Tyr and Trp in the experimental diet. As a model of obesity, we used Wistar rats fed a diet with an excess specific energy value (HFCD) for 64 days. Trp led to a normalization of the rats’ body weight almost to the control level, but increased anxiety-like behavior and decreased long-term memory. The consumption of amino acids resulted in increased grip strength and impairment of short-term memory. The locomotor activity of animals decreased with age as a result of Tyr consumption, while Trp, on the contrary, prevented this. The Tyr supplementation led to the normalization of triglycerides and LDL. In the spleen cell lysates, amino acids suppressed the production of proinflammatory cytokines. The liver tissue morphology showed that the consumption of Tyr noticeably weakened the signs of fatty degeneration. The addition of Trp, on the contrary, led to an unfavorable effect, consisting of the appearance of a high number of large rounded fatty vacuoles. The data obtained indicate a more pronounced anti-inflammatory effect of Tyr as compared to Trp.
Collapse
|
28
|
Zhang Y, Wei Z, Yang M, Liu D, Pan M, Wu C, Zhang W, Mai K. Dietary taurine modulates hepatic oxidative status, ER stress and inflammation in juvenile turbot (Scophthalmus maximus L.) fed high carbohydrate diets. FISH & SHELLFISH IMMUNOLOGY 2021; 109:1-11. [PMID: 33285166 DOI: 10.1016/j.fsi.2020.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
This study was conducted to explore the beneficial role of taurine against chronic high carbohydrate diet-induced oxidative stress, endoplasmic reticulum (ER) stress and inflammation, and to understand the underlying molecular mechanisms in turbot. Two 10-week feeding trials were simultaneously conducted. For the one, six experimental diets with graded levels of taurine supplementation (0, 0.4%, 0.8%, 1.2%, 1.6% and, 2.0%, respectively) and 15% of carbohydrate were used. For the other one, three graded levels of dietary taurine supplementation (0.4%, 1.2% and 2.0%, respectively) with 21% of carbohydrate were used. The results showed that higher expression level of inflammation cytokines and ER stress related genes were detected in higher dietary carbohydrate group. In both feeding trials, 1.2% of dietary taurine supplementation improved anti-oxidative status by decreasing the content of malondialdehyde, increasing the catalase activity and total anti-oxidative capacities. In feeding trial 1, appropriate taurine supplementation lowered contents of tumour necrosis factor-a, interleukin-6, aspartate aminotransferase and alkaline phosphatase in plasma, and decreased the expressions of pro-inflammatory cytokines, such as interleukin-8 (il-8) and interferon-γ (ifn-γ). Furthermore, dietary taurine reduced ER stress by decreasing the mRNA levels of activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and G protein-coupled receptor 78. The optimal dietary taurine content was estimated as 1.40% based on the analysis of specific growth rate. In feeding trial 2, dietary taurine supplementation attenuated liver inflammation partly referring to significantly down-regulated mRNA levels of nuclear transcription factor-κB p65, ifn-γ, interleukin1β and up-regulate the transcript of ribosomal protein S6 kinase 1. Dietary taurine supplementation in feeding trial 2 significantly increased the Nrf2-related factor 2 protein level and decreased the NFκB p65 protein level only at 21% of dietary carbohydrate level. Taurine can alleviate the oxidative damage and inflammation caused by 21% of dietary carbohydrate to a certain degree. Overall, the present study confirmed that dietary taurine supplementation improved growth performance and anti-oxidative response, and reduced liver inflammatory and ER stress processes induced by high dietary carbohydrate in turbot.
Collapse
Affiliation(s)
- Yue Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zehong Wei
- State Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Danni Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Chenglong Wu
- School of Life Science, Huzhou University, Huzhou, 313000, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
29
|
Inflammatory Response, a Key Pathophysiological Mechanism of Obesity-Induced Depression. Mediators Inflamm 2020; 2020:8893892. [PMID: 33299381 PMCID: PMC7707993 DOI: 10.1155/2020/8893892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, with the acceleration of life rhythm and the increase of social competition, the incidence of obesity and depression has been increasing, which has seriously affected the quality of life and health of people. Obesity and depression, two seemingly unrelated physical and psychological diseases, in fact, are closely related: obese people are more likely to have depression than nonobese ones. We have reviewed and analyzed the relevant research literature and found that the inflammatory response plays a key role in obesity-induced depression. This article will discuss in detail the inflammatory mechanisms by which obesity induces depression.
Collapse
|
30
|
Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. J Nutr Biochem 2020; 89:108561. [PMID: 33249183 DOI: 10.1016/j.jnutbio.2020.108561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/11/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
In obesity, an elevated accumulation and dysregulation of adipose tissue, due to an imbalance between energy intake and energy expenditure, usually coexists with the loss of responsiveness to leptin in central nervous system, and subsequently with hyperleptinemia. Leptin, a peptide hormone mainly produced by white adipose tissue, regulates energy homeostasis by stimulating energy expenditure and inhibiting food intake. Human obesity is characterized by increased plasma leptin levels, which have been related with different obesity-associated complications, such as chronic inflammatory state (risk factor for diabetes, cardiovascular and autoimmune diseases), as well as infertility and different types of cancer. Besides, leptin is also produced by placenta, and high leptin levels during pregnancy may be related with some pathological conditions such as gestational diabetes. This review focuses on the current insights and emerging concepts on potentially valuable nutrients and food components that may modulate leptin metabolism. Notably, several dietary food components, such as phenols, peptides, and vitamins, are able to decrease inflammation and improve leptin sensitivity by up- or down-regulation of leptin signaling molecules. On the other hand, some food components, such as saturated fatty acids may worsen chronic inflammation increasing the risk for pathological complications. Future research into nutritional mechanisms that restore leptin metabolism and signals of energy homeostasis may inspire new treatment options for obesity-related disorders.
Collapse
|
31
|
Status of Bioactive Compounds from Bran of Pigmented Traditional Rice Varieties and Their Scope in Production of Medicinal Food with Nutraceutical Importance. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111817] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Consumption of pigmented rice as a staple food is rapidly increasing due to their healthy prospective and considered as functional food ingredients. Greater interest has been shown in many color rice varieties due to their multiple biological activities. The phenolic compounds have been found to consist of anthocyanidins, ferulic acid, diferulates, anthocyanins and polymeric proanthocyanidins. Anthocyanin is located in the bran layers of the rice kernel, while phenolic acids are mainly present in the bran layers of rice, existing as free, conjugated and bound forms. Keeping in view the several health benefits associated with the functional ingredients, such as anti-inflammatory, antioxidative and anticancer effects, pigmented rice is considered as a functional food and food ingredient in many Asian countries. The application and incorporation of bran into food products for the preparation of functional foods is increasing. Within the scope of this review, we highlighted the significant bioactive compounds from pigmented rice varieties and their potentials for medicinal and nutraceutical ingredients. The information provided from this could be of high benefit to the functional food industry and further research advance medicinal products.
Collapse
|
32
|
Potential anti-inflammatory effect of dapagliflozin in HCHF diet- induced fatty liver degeneration through inhibition of TNF-α, IL-1β, and IL-18 in rat liver. Int Immunopharmacol 2020; 86:106730. [DOI: 10.1016/j.intimp.2020.106730] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
33
|
Jan-On G, Sangartit W, Pakdeechote P, Kukongviriyapan V, Senaphan K, Boonla O, Thongraung C, Kukongviriyapan U. Antihypertensive Effect and Safety Evaluation of Rice Bran Hydrolysates from Sang-Yod Rice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:89-95. [PMID: 31853902 DOI: 10.1007/s11130-019-00789-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice bran hydrolysates contain highly nutritional proteins and beneficial phytochemicals. Sang-Yod rice bran hydrolysates (SRH) extracted from red pigmented rice is a rich source of nutrients and phenolic compounds. The present study evaluated the antihypertensive effect of SRH and its safety in Sprague-Dawley rats. Hypertension was induced in male rats by administration of L-NAME (50 mg/kg/day) in drinking water for three weeks, and the antihypertensive effect of SRH was evaluated. Treatment of SRH (250 or 500 mg/kg) significantly reduced arterial blood pressure and improved hemodynamic parameters. The antihypertensive effect was associated with decreased oxidative stress, suppressed p47phox NADPH oxidase expression, increased nitric oxide bioavailability and decreased angiotensin II level and ACE activity. The SRH was shown to be safe after feeding male and female rats with a rodent diet containing 1.5% SRH for 90 days. Overall, these findings suggest that SRH is safe and may help to prevent hypertension.
Collapse
Affiliation(s)
- Gulladawan Jan-On
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ketmanee Senaphan
- Division of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Orachorn Boonla
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Chakree Thongraung
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Songkla, 90112, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
34
|
CHANPUT W, LAWYER R. The Potential of Fractionated Rice Bran Protein Hydrolysates as Antioxidative and Anti-Inflammatory Agents. J Nutr Sci Vitaminol (Tokyo) 2020; 66:S349-S355. [DOI: 10.3177/jnsv.66.s349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wasaporn CHANPUT
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University
| | - Richard LAWYER
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University
| |
Collapse
|
35
|
Rice Bran Derived Bioactive Compounds Modulate Risk Factors of Cardiovascular Disease and Type 2 Diabetes Mellitus: An Updated Review. Nutrients 2019; 11:nu11112736. [PMID: 31718066 PMCID: PMC6893409 DOI: 10.3390/nu11112736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) are two chronic diseases that have claimed more lives globally than any other disease. Dietary supplementation of functional foods containing bioactive compounds is recognised to result in improvements in free-radical-mediated oxidative stress. Emerging evidence indicates that bioactive compounds derived from rice bran (RB) have therapeutic potential against cellular oxidative stress. This review aims to describe the mechanistic pathways behind CVD and T2DM development and the therapeutic potential of polyphenols derived from RB against these chronic diseases.
Collapse
|
36
|
Patil SP, Goswami A, Kalia K, Kate AS. Plant-Derived Bioactive Peptides: A Treatment to Cure Diabetes. Int J Pept Res Ther 2019; 26:955-968. [PMID: 32435169 PMCID: PMC7223764 DOI: 10.1007/s10989-019-09899-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
ABSTRACT Recent advances in analytical techniques have opened new opportunities for plant-based drug discovery in the field of peptide and proteins. Enzymatic hydrolysis of plant parent proteins forms bioactive peptides which are explored in the treatment of various diseases. In this review, we will discuss the identified plant-based bioactive proteins and peptides and the in vitro, in vivo results for the treatment of diabetes. Extraction, isolation, characterization and commercial utilization of plant proteins is a challenge for the pharmaceutical industry as plants contain several interfering secondary metabolites. The market of peptide drugs for the treatment of diabetes is growing at a fast rate. Plant-based bioactive peptides might open up new opportunities to discover economic lead for the management of various diseases. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Shital P. Patil
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat India
| | - Ashutosh Goswami
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat India
| | - Abhijeet S. Kate
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat India
| |
Collapse
|
37
|
Quan NV, Xuan TD, Tran HD, Ahmad A, Khanh TD, Dat TD. Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm J 2019; 27:643-649. [PMID: 31297018 PMCID: PMC6598221 DOI: 10.1016/j.jsps.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
This study was the first to detect the presence of the two compounds momilactone A (MA) and momilactone B (MB) in rice bran using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). By in vitro assays, both MA and MB exhibited potent inhibitory activities on pancreatic α-amylase and α-glucosidase which were significantly higher than γ-oryzanol, a well-known diabetes inhibitor. Remarkably, MA and MB indicated an effective inhibition on trypsin with the IC50 values of 921.55 and 884.03 µg/mL, respectively. By high-performance liquid chromatography (HPLC), quantities of MA (6.65 µg/g dry weight) and MB (6.24 µg/g dry weight) in rice bran were determined. Findings of this study revealed the α-amylase, α-glucosidase and trypsin inhibitors MA and MB contributed an active role to the diabetes inhibitory potential of rice bran.
Collapse
Affiliation(s)
- Nguyen Van Quan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan
| | - Hoang-Dung Tran
- Department of Biotechnology, NTT Institute of Hi-Technology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street,Ward 13, District 4, Ho Chi Minh 72820, Viet Nam
| | - Ateeque Ahmad
- Process Chemistry and Technology Department, Central Institute of Medicinal and Aromatic Plants, Lucknow 226016, India
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Viet Nam
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Viet Nam
| | - Tran Dang Dat
- Khai Xuan International Co. Ltd., Ha Dong District, Duong Noi Ward, LK20A-20B, Khai Xuan Building, Hanoi 152611, Viet Nam
| |
Collapse
|
38
|
Egg white hydrolysate enhances insulin sensitivity in high-fat diet-induced insulin-resistant rats via Akt activation. Br J Nutr 2019; 122:14-24. [PMID: 30982477 DOI: 10.1017/s0007114519000837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Agents that block the renin-angiotensin system (RAS) improve glucoregulation in the metabolic syndrome disorder. We evaluated the effects of egg white hydrolysate (EWH), previously shown to modulate the protein abundance of RAS component in vivo, on glucose homeostasis in diet-induced insulin-resistant rats. Sprague-Dawley rats were fed a high-fat diet (HFD) for 6 weeks to induce insulin resistance. They were then randomly divided into four groups receiving HFD or HFD supplemented with different concentrations of EWH (1, 2 and 4 %) for another 6 weeks in the first trial. In the second trial, insulin-resistant rats were divided into two groups receiving only HFD or HFD+4 % EWH for 6 weeks. Glucose homeostasis was assessed by oral glucose tolerance and insulin tolerance tests. Insulin signalling and protein abundance of RAS components, gluconeogenesis enzymes and PPARγ were evaluated in muscle, fat and liver. Adipocyte morphology and inflammatory markers were evaluated. In vivo administration of EWH increased insulin sensitivity, improved oral glucose tolerance (P < 0·0001) and reduced systemic inflammation (P < 0·05). EWH potentiated insulin-induced Akt phosphorylation in muscle (P = 0·0341) and adipose tissue (P = 0·0276), but minimal differences in the protein abundance of tissue RAS components between the EWH and control groups were observed. EWH treatment also reduced adipocyte size (P = 0·0383) and increased PPARγ2 protein abundance (P = 0·0237). EWH treatment yielded positive effects on the inflammatory profile, glucose tolerance, insulin sensitivity and adipocyte differentiation in HFD-induced insulin resistance rats. The involvement of local RAS activity requires further investigation.
Collapse
|
39
|
Yu Y, Zhang J, Wang J, Sun B. The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products. RSC Adv 2019; 9:18060-18069. [PMID: 35520585 PMCID: PMC9064785 DOI: 10.1039/c9ra02439e] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/25/2019] [Indexed: 01/06/2023] Open
Abstract
Rice bran is the main by-product of rice processing and contains approximately 64% of the nutrients in rice. Its various nutrient elements include rice bran proteins, oil, oryzanol, vitamins, polysaccharides, etc. The use of fermented technology can increase the content of bioactive peptides, promote the absorption efficiency, and further improve the functionality and added value of rice bran. In recent years, the nutritional value and function of the extracts and fermented products of rice bran have been emphatically studied. Rice bran extracts and fermentation products serve a critical role in the anti-inflammatory reaction, reducing the plasma lipid effect and increasing anti-cancer activity. Moreover, few review studies have been reported on the anti-cancer activity and potential mechanism of action of rice bran extract and its fermentation products. In this review, we focused on the anti-cancer function, mechanisms, and potential clinical usage of rice bran extracts and fermentation products in the adjuvant therapy of cancer patients.
Collapse
Affiliation(s)
- Yonghui Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University Beijing 100048 China
| | - Jingjie Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture Beijing 100081 China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University Beijing 100048 China
| | - Baogao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University Beijing 100048 China
| |
Collapse
|
40
|
Sivasinprasasn S, Wikan N, Tocharus J, Pantan R, Chaichompoo W, Suksamrarn A, Tocharus C. Synergistic effects of the capsaicinoid nonivamide and rosuvastatin on obesity‐related endothelial dysfunction in rat fed a high‐fat diet. Phytother Res 2019; 33:1815-1826. [DOI: 10.1002/ptr.6369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | - Naruemon Wikan
- Department of Anatomy, Faculty of MedicineChiang Mai University Chiang Mai Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of MedicineChiang Mai University Chiang Mai Thailand
| | - Rungusa Pantan
- Department of Anatomy, Faculty of MedicineChiang Mai University Chiang Mai Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceRamkhamhaeng University Bangkok Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceRamkhamhaeng University Bangkok Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of MedicineChiang Mai University Chiang Mai Thailand
| |
Collapse
|
41
|
Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit Rev Food Sci Nutr 2019; 60:1447-1474. [DOI: 10.1080/10408398.2019.1574708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weijing Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ju Qiu
- Ministry of Agriculture, Institute of Food and Nutrition Development, Haidian, Beijing, China
| | - Aili Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
42
|
El-Ashmawy NE, Al-Ashmawy GM, Kamel AA. Docosahexaenoic acid-flurbiprofen combination ameliorates metaflammation in rats fed on high-carbohydrate high-fat diet. Biomed Pharmacother 2018; 109:233-241. [PMID: 30396081 DOI: 10.1016/j.biopha.2018.10.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Potential benefits of combining docosahexaenoic acid (DHA), an omega-3 fatty acid with flurbiprofen (Flu), a non-steroidal anti-inflammatory drug in ameliorating obesity remain to be elucidated. This study aimed to investigate the possible protective effects of DHA and Flu, either alone or in combination, against obesity-induced metaflammation and to clarify the underlying molecular mechanisms. METHODS Seventy-five male Wistar rats were divided into five groups: normal diet (ND) group, high-carbohydrate high-fat diet (HCHFD) control group, DHA group (HCHFD + 200 mg/kg DHA), Flu group (HCHFD + 10 mg/kg Flu), and DHA + Flu group (HCHFD + DHA + Flu). Treatments were administered orally daily for 8 consecutive weeks, parallel with the start of diets. RESULTS Plasma levels of glucose, insulin, and TGs were significantly reduced in DHA, Flu, and DHA + Flu treated groups, while HDL-C concentrations were significantly elevated in the same groups, compared to HCHFD control group. Only Flu and DHA + Flu groups showed a significant decrease in plasma levels of leptin, TC, and LDL-C, relative to HCHFD control group. Concentrations of phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) and resolvin D1 (RvD1) in epididymal adipose tissue (EAT) were significantly increased in the three treated groups, compared with HCHFD control group. Expression of AMPK-α1 subunit in EAT was significantly increased, whereas expression of nuclear factor kappa B (NF-κB) was significantly decreased in EAT of the three treated groups, relative to HCHFD control group. CONCLUSIONS Docosahexaenoic acid-flurbiprofen combination showed an ameliorative effect on obesity-associated metaflammation and its consequences in rats.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| |
Collapse
|
43
|
Purification and identification of adipogenic-differentiating peptides from egg white hydrolysate. Food Chem 2018; 259:25-30. [DOI: 10.1016/j.foodchem.2018.03.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
|
44
|
Casein glycomacropeptide hydrolysates ameliorate hepatic insulin resistance of C57BL/6J mice challenged with high-fat diet. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
45
|
Boonloh K, Lee ES, Kim HM, Kwon MH, Kim YM, Pannangpetch P, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Lee EY, Kukongviriyapan V, Chung CH. Rice bran protein hydrolysates attenuate diabetic nephropathy in diabetic animal model. Eur J Nutr 2018; 57:761-772. [PMID: 28004272 DOI: 10.1007/s00394-016-1366-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic nephropathy (DN) is an important microvascular complication of uncontrolled diabetes. The features of DN include albuminuria, extracellular matrix alterations, and progressive renal insufficiency. Rice bran protein hydrolysates (RBPs) have been reported to have antihyperglycemic, lipid-lowering, and anti-inflammatory effects in diabetic rats. Our study was to investigate the renoprotective effects of RBP in diabetic animals and mesangial cultured cells. METHODS Eight-week-old male db/m and db/db mice were orally treated with tap water or RBP (100 or 500 mg/kg/day) for 8 weeks. At the end of the experiment, diabetic nephropathy in kidney tissues was investigated for histological, ultrastructural, and clinical chemistry changes, and biomarkers of angiogenesis, fibrosis, inflammation, and antioxidant in kidney were analyzed by Western blotting. Protection against proangiogenic proteins and induction of cytoprotection by RBP in cultured mesangial cells was evaluated. RESULTS RBP treatment improved insulin sensitivity, decreased elevated fasting serum glucose levels, and improved serum lipid levels and urinary albumin/creatinine ratios in diabetic mice. RBP ameliorated the decreases in podocyte slit pore numbers, thickening of glomerular basement membranes, and mesangial matrix expansion and suppressed elevation of MCP-1, ICAM-1, HIF-1α, VEGF, TGF-β, p-Smad2/3, and type IV collagen expression. Moreover, RBP restored suppressed antioxidant Nrf2 and HO-1 expression. In cultured mesangial cells, RBP inhibited high glucose-induced angiogenic protein expression and induced the expression of Nrf2 and HO-1. CONCLUSION RBP attenuates the progression of diabetic nephropathy and restored renal function by suppressing the expression of proangiogenic and profibrotic proteins, inhibiting proinflammatory mediators, and restoring the antioxidant and cytoprotective system.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Cell Line
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diet therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/immunology
- Diabetic Nephropathies/prevention & control
- Food-Processing Industry/economics
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/economics
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/therapeutic use
- Industrial Waste/analysis
- Industrial Waste/economics
- Insulin Resistance
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Kidney/ultrastructure
- Male
- Mesangial Cells/immunology
- Mesangial Cells/metabolism
- Mesangial Cells/pathology
- Mesangial Cells/ultrastructure
- Mice, Mutant Strains
- Microscopy, Electron, Transmission
- Oryza/chemistry
- Plant Epidermis/chemistry
- Plant Proteins, Dietary/economics
- Plant Proteins, Dietary/metabolism
- Plant Proteins, Dietary/therapeutic use
- Protein Hydrolysates/economics
- Protein Hydrolysates/metabolism
- Protein Hydrolysates/therapeutic use
- Renal Insufficiency/complications
- Renal Insufficiency/immunology
- Renal Insufficiency/prevention & control
- Seeds/chemistry
- Thailand
Collapse
Affiliation(s)
- Kampeebhorn Boonloh
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eun Soo Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| | - Hong Min Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| | - Mi Hye Kwon
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| | - You Mi Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| | | | - Bunkerd Kongyingyoes
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Choon Hee Chung
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| |
Collapse
|
46
|
Senaphan K, Sangartit W, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Thawornchinsombut S, Greenwald SE, Kukongviriyapan U. Rice bran protein hydrolysates reduce arterial stiffening, vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet. Eur J Nutr 2018; 57:219-230. [PMID: 27660232 DOI: 10.1007/s00394-016-1311-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/02/2016] [Indexed: 02/01/2023]
Abstract
PURPOSE Rice bran protein hydrolysates (RBPH) contain highly nutritional proteins and antioxidant compounds which show benefits against metabolic syndrome (MetS). Increased arterial stiffness and the components of MetS have been shown to be associated with an increased risk of cardiovascular disease. This study aimed to investigate whether RBPH could alleviate the metabolic disorders, arterial stiffening, vascular remodeling, and oxidative stress in rats fed a high-carbohydrate and high-fat (HCHF) diet. METHODS Male Sprague-Dawley rats were fed either a standard chow and tap water or a HCHF diet and 15 % fructose solution for 16 weeks. HCHF rats were treated orally with RBPH (250 or 500 mg/kg/day) for the final 6 weeks of the experimental period. RESULTS Rats fed with HCHF diet had hyperglycemia, insulin resistance, dyslipidemia, hypertension, increased aortic pulse wave velocity, aortic wall hypertrophy and vascular remodeling with increased MMP-2 and MMP-9 expression. RBPH supplementation significantly alleviated these alterations (P < 0.05). Moreover, RBPH reduced the levels of angiotensin-converting enzyme (ACE) and tumor necrosis factor-alpha in plasma. Oxidative stress was also alleviated after RBPH treatment by decreasing plasma malondialdehyde, reducing superoxide production and suppressing p47phox NADPH oxidase expression in the vascular tissues of HCHF rats. RBPH increased plasma nitrate/nitrite level and up-regulated eNOS expression in the aortas of HCHF-diet-fed rats, indicating that RBPH increased NO production. CONCLUSION RBPH mitigate the deleterious effects of HCHF through potential mechanisms involving enhanced NO bioavailability, anti-ACE, anti-inflammatory and antioxidant properties. RBPH could be used as dietary supplements to minimize oxidative stress and vascular alterations triggered by MetS.
Collapse
Affiliation(s)
- Ketmanee Senaphan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Stephen E Greenwald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2ES, UK
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
47
|
Niu L, Wu L, Xiao J. Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates. Carbohydr Polym 2017; 175:311-319. [DOI: 10.1016/j.carbpol.2017.07.070] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/27/2022]
|
48
|
Chen FC, Shen KP, Chen JB, Lin HL, Hao CL, Yen HW, Shaw SY. PGBR extract ameliorates TNF-α induced insulin resistance in hepatocytes. Kaohsiung J Med Sci 2017; 34:14-21. [PMID: 29310812 DOI: 10.1016/j.kjms.2017.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/12/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Pre-germinated brown rice (PGBR) could ameliorate metabolic syndrome, however, not much research estimates the effect of PGBR extract on insulin resistance. The aim of this study is to examine the effects of PGBR extract in TNF-α induced insulin resistance. HepG2 cells, hepatocytes, were cultured in DMEM medium and added with 5 μM insulin or with insulin and 30 ng/ml TNF-α or with insulin, TNF-α and PGBR extract (50, 100, 300 μg/ml). The glucose levels of the medium were decreased by insulin, demonstrating insulin promoted glucose uptake into cell. However, TNF-α inhibited glucose uptake into cells treated with insulin. Moreover, insulin increased the protein expressions of AMP-activated protein kinase (AMPK), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase-α (PI3K-α), serine/threonine kinase PI3K-linked protein kinase B (Akt/PKB), glucose transporter-2 (GLUT-2), glucokinase (GCK), peroxisome proliferator activated receptor-α (PPAR-α) and PPAR-γ. TNF-α activated p65 and MAPKs (JNK1/2 and ERK1/2) which worsened the expressions of AMPK, IRS-1, PI3K-α, Akt/PKB, GLUT-2, GCK, glycogen synthase kinase-3 (GSK-3), PPAR-α and PPAR-γ. Once this relationship was established, we added PGBR extract to cell with insulin and TNF-α. We found glucose levels of medium were lowered and that the protein expressions of AMPK, IRS-1, PI3K-α, Akt/PKB, GLUT-2, GCK, GSK-3, PPAR-α, PPAR-γ and p65, JNK1/2 were also recovered. In conclusion, this study found that TNF-α inhibited insulin stimulated glucose uptake and aggravated related proteins expressions, suggesting that it might cause insulin resistance. PGBR extract was found to ameliorate this TNF-α induced insulin resistance, suggesting that it might be used in the future to help control insulin resistance.
Collapse
Affiliation(s)
- Fu-Chih Chen
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Ping Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Jin-Bor Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Li Lin
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Chi-Long Hao
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyh-Yu Shaw
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
49
|
Oliveira PS, Chaves VC, Bona NP, Soares MSP, Cardoso JDS, Vasconcellos FA, Tavares RG, Vizzotto M, Silva LMCD, Grecco FB, Gamaro GD, Spanevello RM, Lencina CL, Reginatto FH, Stefanello FM. Eugenia uniflora fruit (red type) standardized extract: a potential pharmacological tool to diet-induced metabolic syndrome damage management. Biomed Pharmacother 2017; 92:935-941. [DOI: 10.1016/j.biopha.2017.05.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 11/25/2022] Open
|
50
|
Taniguchi M, Kameda M, Namae T, Ochiai A, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|