1
|
Zhang Y, Mei X, Li W, Pan Y, Cheng H, Chen S, Ye X, Chen J. Mechanisms of starchy foods glycemic index reduction under different means and their impacts on food sensory qualities: A review. Food Chem 2025; 467:142351. [PMID: 39647389 DOI: 10.1016/j.foodchem.2024.142351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Diabetes has become a significant global health issue, driving the adoption of low glycemic index (GI) diets and positioning low-GI foods as a key research focus. Although methods for lowering the GI of foods have been reviewed, a comprehensive analysis of the underlying mechanisms is lacking. Moreover, GI-lowering techniques, whether through exogenous additives or specific processing methods, can influence food sensory qualities and impact storage stability. However, systematic reviews on these effects are limited. This review summarizes mechanisms for reducing the GI of starchy foods, focusing on four key strategies: inhibiting digestive enzymes, altering substrate structure, blocking enzyme-substrate interactions, and stimulating insulin secretion. It also addresses the sensory impacts of these GI-reduction methods. Additionally, the review evaluates how certain nutrient additions affect food stability during storage, aiming to offer scientific guidance for the development of low-GI starchy foods.
Collapse
Affiliation(s)
- Yujie Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Mei
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China.
| | - Wenqing Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Yuxing Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; School of Biological and Chemical Engineering, NingboTech University, Ningbo, China.
| |
Collapse
|
2
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
3
|
Zhang Z, Wang J, Yu B, Sun Y, Chen Y, Lu Y, Wang N, Xia F. Accelerated biological aging, mediating amino acids, and risk of incident type 2 diabetes: a prospective cohort study. J Endocrinol Invest 2025; 48:435-443. [PMID: 39361235 DOI: 10.1007/s40618-024-02436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/24/2024] [Indexed: 02/01/2025]
Abstract
PURPOSE Aging plays an important role in type 2 diabetes mellitus (T2DM). But the association between accelerated biological age and T2DM, and the mechanisms underlying this association remains unclear. Thus, this study aimed to examine the associations of biological aging with T2DM, and explore the potential mediation effect of amino acids. METHODS This prospective cohort study included 95,773 participants in the UK Biobank who were free of diabetes at baseline. Biological age was measured from clinical traits using PhenoAgeAccel. Cox proportional hazard models were used to estimate the hazard ritios (HRs) and 95% confidence intervals (CIs), and mediation analysis was used to explore the mediation effect of amino acids. RESULTS During a median follow-up of 14.02 years, 6,347 incident T2DM cases were recorded. After multivariable adjustment for sociodemographic characteristics, lifestyle factors, and other risk factors of T2DM, participants with older biological age were at increased risk of incident T2DM (30% increase per standard deviation of PhenoAgeAccel, 95% CI: 28.0-33.0%). Additionally, higher branched chain amino acids (BCAAs) including isoleucine and leucine, aromatic amino acids (AAAs) including phenylalanine and tyrosine, were associated with increased PhenoAgeAccel and risk of incident T2DM; while glutamine and glycine were inversely associated. Alanine, glutamine, glycine, phenylalanine, tyrosine, isoleucine, leucine, and total concentration of branched-chain amnio acids could partially explain the associations between PhenoAgeAccel and T2DM. CONCLUSION Accelerated biological aging was associated with increased risk of incident T2DM independent of chronological age and may be a risk factor of T2DM, partially mediated by several amino acids.
Collapse
Affiliation(s)
- Ziteng Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junxue Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bowei Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Prada E, Marchetti GB, Pires Marafon D, Mazzocchi A, Scuvera G, Pezzani L, Agostoni C, Milani D. The Epigenetic Machinery and Energy Expenditure: A Network to Be Revealed. Genes (Basel) 2025; 16:104. [PMID: 39858651 PMCID: PMC11764581 DOI: 10.3390/genes16010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Mendelian disorders of the epigenetic machinery (MDEMs) include a large number of conditions caused by defective activity of a member of the epigenetic machinery. MDEMs are characterized by multiple congenital abnormalities, intellectual disability and abnormal growth. that can be variably up- or down-regulated. Background/Objectives: In several MDEMs, a predisposition to metabolic syndrome and obesity since childhood has been reported. Methods: To investigate the metabolic bases of this abnormal growth, we collected physical data from a heterogeneous pool of 38 patients affected by MDEMs. Thirty-five patients performed indirect calorimetry (as a measure of resting energy expenditure, REE) and blood tests to monitor plasmatic nutritional parameters. Conclusions: Although limited by a small-sized and heterogeneous sample, our study demonstrates a linear correlation between REE and physical parameters, OFC, height and weight, and observed a slight imbalance on several plasmatic spies of metabolic syndrome predisposition. Furthermore, we demonstrated a significantly higher REE in Sotos Syndrome type 1 patients compared to the controls, which resulted independent from height, suggesting that impaired metabolism in these patients may go beyond overgrowth.
Collapse
Affiliation(s)
- Elisabetta Prada
- Azienda Socio Sanitaria Territoriale Lariana, 22100 Como, Italy;
| | - Giulia Bruna Marchetti
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
| | - Denise Pires Marafon
- Department of Public Health and Infectious Diseases, Specialization School in Medical Statistics and Biometry, Università Sapienza di Roma, 00185 Roma, Italy
| | - Alessandra Mazzocchi
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
| | - Giulietta Scuvera
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
| | - Lidia Pezzani
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Carlo Agostoni
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
- Department of Clinical and Community Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Donatella Milani
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
| |
Collapse
|
5
|
Al-Jaber H, Al-Muraikhy S, Jabr A, Yousef A, Anwardeen NR, Elrayess MA, Al-Mansoori L. Comparing Methods for Induction of Insulin Resistance in Mouse 3T3-L1 Cells. Curr Diabetes Rev 2025; 21:1-12. [PMID: 38204253 DOI: 10.2174/0115733998263359231211044539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
Cell culture plays a crucial role in addressing fundamental research questions, particularly in studying insulin resistance (IR) mechanisms. Multiple in vitro models are utilized for this purpose, but their technical distinctions and relevance to in vivo conditions remain unclear. This study aims to assess the effectiveness of existing in vitro models in inducing IR and their ability to replicate in vivo IR conditions. BACKGROUND Insulin resistance (IR) is a cellular condition linked to metabolic disorders. Despite the utility of cell culture in IR research, questions persist regarding the suitability of various models. This study seeks to evaluate these models' efficiency in inducing IR and their ability to mimic in vivo conditions. Insights gained from this research could enhance our understanding of model strengths and limitations, potentially advancing strategies to combat IR and related disorders. OBJECTIVE 1- Investigate the technical differences between existing cell culture models used to study molecular mediators of insulin resistance (IR). 2- Compare the effectiveness of present in vitro models in inducing insulin resistance (IR). 3- Assess the relevance of the existing cell culture models in simulating the in vivo conditions and environment that provoke the induction of insulin resistance (IR). METHODS AND MATERIAL In vitro, eight sets of 3T3-L1 cells were cultured until they reached 90% confluence. Subsequently, adipogenic differentiation was induced using a differentiation cocktail (media). These cells were then divided into four groups, with four subjected to normal conditions and the other four to hypoxic conditions. Throughout the differentiation process, each cell group was exposed to specific factors known to induce insulin resistance (IR). These factors included 2.5 nM tumor necrosis factor-alpha (TNFα), 20 ng/ml interleukin-6 (IL-6), 10 micromole 4-hydroxynonenal (4HNE), and high insulin (HI) at a concentration of 100 nM. To assess cell proliferation, DAPI staining was employed, and the expression of genes associated with various metabolic pathways affected by insulin resistance was investigated using Real-Time PCR. Additionally, insulin signaling was examined using the Bio-plex Pro cell signaling Akt panel. RESULTS We induced insulin resistance in 3T3-L1 cells using IL-6, TNFα, 4HNE, and high insulin in both hypoxic and normoxic conditions. Hypoxia increased HIF1a gene expression by approximately 30% (P<0.01). TNFα reduced cell proliferation by 10-20%, and chronic TNFα treatment significantly decreased mature adipocytes due to its cytotoxicity. We assessed the impact of insulin resistance (IR) on metabolic pathways, focusing on genes linked to branched-chain amino acid metabolism, detoxification, and chemotaxis. Notably, ALDH6A1 and MCCC1 genes, related to amino acid metabolism, were significantly affected under hypoxic conditions. TNFα treatment notably influenced MCP-1 and MCP-2 genes linked to chemotaxis, with remarkable increases in MCP-1 levels and MCP-2 expression primarily under hypoxia. Detoxification-related genes showed minimal impact, except for a significant increase in MAOA expression under acute hypoxic conditions with TNFα treatment. Additional genes displayed varying effects, warranting further investigation. To investigate insulin signaling's influence in vitro by IRinducing factors, we assessed phospho-protein levels. Our results reveal a significant p-Akt induction with chronic high insulin (10%) and acute TNFα (12%) treatment under hypoxia (both P<0.05). Other insulin resistance-related phospho-proteins (GSK3B, mTOR, PTEN) increased with IL-6, 4HNE, TNFα, and high insulin under hypoxia, while p-IRS1 levels remained unaffected. CONCLUSION In summary, different in vitro models using inflammatory, oxidative stress, and high insulin conditions under hypoxic conditions can capture various aspects of in vivo adipose tissue insulin resistance (IR). Among these models, acute TNFα treatment may offer the most robust approach for inducing IR in 3T3-L1 cells.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Aldana Jabr
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Aisha Yousef
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
6
|
Jeon S, Lee H, Kim SY, Lee CH, Lim Y. Effects of Metabolites Derived from Guava ( Psidium guajava L.) Leaf Extract Fermented by Limosilactobacillus fermentum on Hepatic Energy Metabolism via SIRT1-PGC1α Signaling in Diabetic Mice. Nutrients 2024; 17:7. [PMID: 39796441 PMCID: PMC11722574 DOI: 10.3390/nu17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear. In this research, we utilized metabolites obtained from the fermentation of guava leaf extract, which is well-known for its antidiabetic activity, to investigate their effects and mechanisms on MAFLD. METHODS Diabetes was induced by a high-fat diet and streptozotocin injection (80 mg/kg body weight) twice in mice. Subsequently, mice whose fasting blood glucose levels were measured higher than 300 mg/dL were administered with metabolites of Limosilactobacillus fermentum (LF) (50 mg/kg/day) or guava leaf extract fermented by L. fermentum (GFL) (50 mg/kg/day) by gavage for 15 weeks. RESULTS GFL supplementation mitigated hyperglycemia and hepatic insulin resistance. Moreover, GFL regulated abnormal hepatic histological changes and lipid profiles in diabetic mice. Furthermore, GFL enhanced energy metabolism by activating the sirtuin1 (SIRT1)/proliferator-activated receptor γ coactivator 1α (PGC1α)/peroxisome proliferator-activated receptor (PPAR)-α pathway in diabetic mice. Meanwhile, GFL supplementation suppressed hepatic inflammation in diabetic mice. CONCLUSIONS Taken together, the current study elucidated that GFL could be a potential therapeutic to ameliorate hyperglycemia and hepatic steatosis by improving SIRT1/PGC-1α/ PPAR-α-related energy metabolism in T2DM.
Collapse
Affiliation(s)
- Sohyun Jeon
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (S.J.); (H.L.)
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (S.J.); (H.L.)
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea;
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea;
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (S.J.); (H.L.)
| |
Collapse
|
7
|
Yao F, Liu C, Luo D, Zhou Y, Li Q, Huang H, Xu H. Metabolites of Microbiota: A Novel Therapy for Heart Disease. FOOD REVIEWS INTERNATIONAL 2024:1-17. [DOI: 10.1080/87559129.2024.2437410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Fei Yao
- School of Mental Health, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chao Liu
- Department of Electrocardiogram, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Duo Luo
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qianqing Li
- Department of Electrocardiogram, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xi M, Ruan Q, Zhong S, Li J, Qi W, Xie C, Wang X, Abuduxiku N, Ni J. Periodontal bacteria influence systemic diseases through the gut microbiota. Front Cell Infect Microbiol 2024; 14:1478362. [PMID: 39619660 PMCID: PMC11604649 DOI: 10.3389/fcimb.2024.1478362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Many systemic diseases, including Alzheimer disease (AD), diabetes mellitus (DM) and cardiovascular disease, are associated with microbiota dysbiosis. The oral and intestinal microbiota are directly connected anatomically, and communicate with each other through the oral-gut microbiome axis to establish and maintain host microbial homeostasis. In addition to directly, periodontal bacteria may also be indirectly involved in the regulation of systemic health and disease through the disturbed gut. This paper provides evidence for the role of periodontal bacteria in systemic diseases via the oral-gut axis and the far-reaching implications of maintaining periodontal health in reducing the risk of many intestinal and parenteral diseases. This may provide insight into the underlying pathogenesis of many systemic diseases and the search for new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qijun Ruan
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Congman Xie
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Nuerbiya Abuduxiku
- Department of Stomatology, The First People’s Hospital of Kashi, Kashi, China
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Nurtazina A, Voitsekhovskiy I, Kanapiyanov B, Toishimanov M, Dautov D, Karibayev K, Smail Y, Kozhakhmetova D, Dyussupov A. Associations of Amino Acids with the Risk of Prediabetes: A Case-Control Study from Kazakhstan. J Pers Med 2024; 14:1067. [PMID: 39452573 PMCID: PMC11509736 DOI: 10.3390/jpm14101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The high global prevalence of prediabetes requires its early identification. Amino acids (AAs) have emerged as potential predictors of prediabetes. This study investigates the association between amino acids and prediabetes in the Kazakh population. MATERIALS AND METHODS In this case-control study, serum AAs levels were measured using the Trace GC 1310 gas chromatography system coupled with the TSQ 8000 triple quadrupole mass spectrometer (Thermo Scientific, Austin, TX, USA) followed by silylation with the BSTFA + 1% TMCS derivatization method. Biochemical parameters, including total cholesterol, HDL-C, LDL-C, triglycerides, fasting glucose, HbA1c, and Creatinine, were assessed for each participant. Trained professionals conducted anthropometric and physical examinations (which included taking blood pressure and heart rate measurements) and family history collection. RESULTS A total of 112 Kazakh individuals with prediabetes and 55 without prediabetes, aged 36-65 years, were included in the study. Only Alanine and valine showed a significant association with prediabetes risk among the 13 AAs analyzed. Our findings revealed an inverse relationship between Alanine and Valine and prediabetes in individuals of Kazakh ethnicity. CONCLUSION A lower serum level of Alanine and Valine may serve as a predictive biomarker for prediabetes in the Kazakh population.
Collapse
Affiliation(s)
- Alma Nurtazina
- Department of Epidemiology and Biostatistics, Semey Medical University, Semey 071400, Kazakhstan;
- Outpatient Clinic #1, Department of Internal Medicine and Cardiology, Semey Medical University, Semey 071400, Kazakhstan
| | - Ivan Voitsekhovskiy
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Bakyt Kanapiyanov
- Department of Propaedeutics of Internal Diseases, Semey Medical University, Semey 071400, Kazakhstan;
| | - Maxat Toishimanov
- Food and Environment Safety Laboratory, Kazakstan-Japan Innovative Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan;
| | - Daulet Dautov
- Department of Propaedeutics of Internal Diseases, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | | | - Yerbol Smail
- Department of Infectious Diseases, Dermatology and Immunology, Semey Medical University, Semey 071400, Kazakhstan;
| | - Dana Kozhakhmetova
- Department of Internal Diseases, Semey Medical University, Semey 071400, Kazakhstan;
| | - Altay Dyussupov
- Rector Office, Semey Medical University, Semey 071400, Kazakhstan;
| |
Collapse
|
10
|
Mann G, Adegoke OAJ. Elevated BCAA catabolism reverses the effect of branched-chain ketoacids on glucose transport in mTORC1-dependent manner in L6 myotubes. J Nutr Sci 2024; 13:e66. [PMID: 39464407 PMCID: PMC11503859 DOI: 10.1017/jns.2024.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024] Open
Abstract
Plasma levels of branched-chain amino acids (BCAA) and their metabolites, branched-chain ketoacids (BCKA), are increased in insulin resistance. We previously showed that ketoisocaproic acid (KIC) suppressed insulin-stimulated glucose transport in L6 myotubes, especially in myotubes depleted of branched-chain ketoacid dehydrogenase (BCKD), the enzyme that decarboxylates BCKA. This suggests that upregulating BCKD activity might improve insulin sensitivity. We hypothesised that increasing BCAA catabolism would upregulate insulin-stimulated glucose transport and attenuate insulin resistance induced by BCKA. L6 myotubes were either depleted of BCKD kinase (BDK), the enzyme that inhibits BCKD activity, or treated with BT2, a BDK inhibitor. Myotubes were then treated with KIC (200 μM), leucine (150 μM), BCKA (200 μM), or BCAA (400 μM) and then treated with or without insulin (100 nM). BDK depletion/inhibition rescued the suppression of insulin-stimulated glucose transport by KIC/BCKA. This was consistent with the attenuation of IRS-1 (Ser612) and S6K1 (Thr389) phosphorylation but there was no effect on Akt (Ser473) phosphorylation. The effect of leucine or BCAA on these measures was not as pronounced and BT2 did not influence the effect. Induction of the mTORC1/IRS-1 (Ser612) axis abolished the attenuating effect of BT2 treatment on glucose transport in cells treated with KIC. Surprisingly, rapamycin co-treatment with BT2 and KIC further reduced glucose transport. Our data suggests that the suppression of insulin-stimulated glucose transport by KIC/BCKA in muscle is mediated by mTORC1/S6K1 signalling. This was attenuated by upregulating BCAA catabolic flux. Thus, interventions targeting BCAA metabolism may provide benefits against insulin resistance and its sequelae.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
11
|
Spears M, Cooper G, Sather B, Bailey M, Boles JA, Bothner B, Miles MP. Comparative Impact of Organic Grass-Fed and Conventional Cattle-Feeding Systems on Beef and Human Postprandial Metabolomics-A Randomized Clinical Trial. Metabolites 2024; 14:533. [PMID: 39452914 PMCID: PMC11509860 DOI: 10.3390/metabo14100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cattle-feeding systems may have health implications for consumers of beef products. Organic grass-fed (GRA) and conventional (CON) cattle-feeding systems may result in beef products with differing metabolite profiles and therefore could impact the postprandial metabolomic response of consumers. This study aims to measure whole beef metabolomics and postprandial metabolomic response of consumers between GRA and CON beef to elucidate potential health implications. METHODS This study followed a randomized double-blind crossover design with healthy male and female subjects (n = 10). Plasma samples were taken at fasting (0) and postprandially for four hours after consumption of a steak from each condition. Untargeted metabolomic analysis of whole beef and human plasma samples used LC/MS. Multivariate and pathway enrichment analysis in MetaboAnalyst was used to investigate metabolite and biochemical pathways that distinguished CON and GRA. RESULTS Cattle-feeding systems impacted both postprandial and whole beef steak metabolomic profiles. Metabolites that contributed to this variation included carnitine species (Proionylcarnitine), fatty acids, amino acids (L-valine), and Calamendiol. These metabolites have been associated with oxidative stress, inflammation, and cardiovascular health. Functional pathway enrichment analysis revealed numerous amino acid degradation pathways, especially branched-chain amino acids, and fatty acid degradation that changed throughout the postprandial time course. CONCLUSIONS These findings suggest that CON and GRA cattle-feeding systems differentially impact whole beef metabolomics, as well as consumer postprandial metabolic responses and the associated health implications.
Collapse
Affiliation(s)
- Meghan Spears
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA;
| | - Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.)
| | - Brett Sather
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.)
| | - Marguerite Bailey
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.)
| | - Jane A. Boles
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.)
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
12
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. eLife 2024; 12:RP91002. [PMID: 39255192 PMCID: PMC11386957 DOI: 10.7554/elife.91002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues of ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - YuNing Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qiwang Xiang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
13
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Mann G, Mora S, Adegoke OAJ. KIC (ketoisocaproic acid) and leucine have divergent effects on tissue insulin signaling but not on whole-body insulin sensitivity in rats. PLoS One 2024; 19:e0309324. [PMID: 39163364 PMCID: PMC11335129 DOI: 10.1371/journal.pone.0309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Plasma levels of branched-chain amino acids and their metabolites, the branched-chain ketoacids are increased in insulin resistance. Our previous studies showed that leucine and its metabolite KIC suppress insulin-stimulated glucose uptake in L6 myotubes along with the activation of the S6K1-IRS-1 pathway. Because other tissue and fiber types can be differentially regulated by KIC, we analyzed the effect of KIC gavage on whole-body insulin sensitivity and insulin signaling in vivo. We hypothesized that KIC gavage would reduce whole-body insulin sensitivity and increase S6K1-IRS-1 phosphorylation in various tissues and muscle fibers. Five-week-old male Sprague-Dawley rats were starved for 24 hours and then gavaged with 0.75ml/100g of water, leucine (22.3g/L) or KIC (30g/L) twice, ten minutes apart. They were then euthanized at different time points post-gavage (0.5-3h), and muscle, liver, and heart tissues were dissected. Other sets of gavaged animals underwent an insulin tolerance test. Phosphorylation (ph) of S6K1 (Thr389), S6 (Ser235/6) and IRS-1 (Ser612) was increased at 30 minutes post leucine gavage in skeletal muscles irrespective of fiber type. Ph-S6 (Ser235/6) was also increased in liver and heart 30 minutes after leucine gavage. KIC gavage increased ph-S6 (Ser235/6) in the liver. Neither Leucine nor KIC influenced whole-body insulin tolerance, nor ph-Akt (Ser473) in skeletal muscle and heart. BCKD-E1 α abundance was highest in the heart and liver, while ph-BCKD-E1 α (Ser293) was higher in the gastrocnemius and EDL compared to the soleus. Our data suggests that only leucine activates the S6K1-IRS-1 signaling axis in skeletal muscle, liver and heart, while KIC only does so in the liver. The effect of leucine and KIC on the S6K1-IRS-1 signaling pathway is uncoupled from whole-body insulin sensitivity. These results suggest that KIC and leucine may not induce insulin resistance, and the contributions of other tissues may regulate whole-body insulin sensitivity in response to leucine/KIC gavage.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Stephen Mora
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Gong Q, Wang J, Luo D, Xu Y, Zhang R, Li X, Yin Z, Fang J, Wang H. Accumulation of branched-chain amino acids deteriorates the neuroinflammatory response of Müller cells in diabetic retinopathy via leucine/Sestrin2-mediated sensing of mTOR signaling. Acta Diabetol 2024:10.1007/s00592-024-02349-3. [PMID: 39150511 DOI: 10.1007/s00592-024-02349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
AIMS This study aimed to investigate branched-chain amino acid (BCAA) catabolism in diabetic retinopathy (DR). METHODS Wild-type and db/db mice were fed BCAAs (5 or 10 mg/kg/day) for 12 weeks, and hyperglycemia-exposed Müller cells were treated with BCAAs (2 or 5 mmol/L) for 24 and 48 h. BCAA levels were measured using MS/MS. Western blotting was performed to detect proteins. Flow cytometry, oxygen consumption rate, and Cell Counting Kit-8 assays were used to evaluate Müller cell viability. Each experiment was conducted at least thrice. RESULTS BCAAs and branched-chain α-keto acids (BCKAs) were increased in the retina and systemic tissues of diabetic mice, and these changes were further enhanced to approximately 2-fold by extra BCAAs compared to wild-type group. In vitro, BCAAs and BCKAs were induced in hyperglycemic Müller cells, and augmented by BCAA supplementation. The aberrant BCAA catabolism was accompanied by mTORC1 activation and subsequently induced TNF-ɑ, VEGFA, GS, and GFAP in retinas and Müller cells under diabetic conditions. The cell apoptosis rate increased by approximately 50%, and mitochondrial respiration was inhibited by hyperglycemia and BCAA in Müller cells. Additionally, mTORC1 signaling was activated by leucine in Müller cells. Knockdown of Sestrin2 or LeuRS significantly abolished the leucine-induced mTORC1 phosphorylation and protected Müller cell viability under diabetic conditions. CONCLUSIONS We found that BCAA catabolism is hindered in DR through mTORC1 activation. Leucine plays a key role in inducing mTORC1 by sensing Sestrin2 in Müller cells. Targeting Sestrin2 may ameliorate the toxic effects of BCAA accumulation on Müller cells in DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Jingyi Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai, China
| | - Xin Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zihan Yin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.
| |
Collapse
|
16
|
Li X, Xia Y, Song X, Xiong Z, Ai L, Wang G. Probiotics intervention for type 2 diabetes mellitus therapy: a review from proposed mechanisms to future prospects. Crit Rev Food Sci Nutr 2024:1-19. [DOI: 10.1080/10408398.2024.2387765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Li N, Leng J, Zhang R, Wang H, Li W, Zhang S, Qiao Y, Li J, Yu Z, Hu G, Fang Z, Yang X. Maternal serum branched-chain amino acids in early pregnancy and offspring growth patterns from 1 year to 8 years of age. Chin Med J (Engl) 2024; 137:1876-1878. [PMID: 38404121 DOI: 10.1097/cm9.0000000000002967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 02/27/2024] Open
Affiliation(s)
- Ninghua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China
| | - Rui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China
| | - Shuang Zhang
- Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China
| | - Yijuan Qiao
- Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, 15000, Halifax, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Zhongze Fang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| |
Collapse
|
18
|
Czajkowska A, Czajkowski M, Szczerbinski L, Jurczuk K, Reska D, Kwedlo W, Kretowski M, Zabielski P, Kretowski A. Exploring protein relative relations in skeletal muscle proteomic analysis for insights into insulin resistance and type 2 diabetes. Sci Rep 2024; 14:17631. [PMID: 39085321 PMCID: PMC11292014 DOI: 10.1038/s41598-024-68568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The escalating prevalence of insulin resistance (IR) and type 2 diabetes mellitus (T2D) underscores the urgent need for improved early detection techniques and effective treatment strategies. In this context, our study presents a proteomic analysis of post-exercise skeletal muscle biopsies from individuals across a spectrum of glucose metabolism states: normal, prediabetes, and T2D. This enabled the identification of significant protein relationships indicative of each specific glycemic condition. Our investigation primarily leveraged the machine learning approach, employing the white-box algorithm relative evolutionary hierarchical analysis (REHA), to explore the impact of regulated, mixed mode exercise on skeletal muscle proteome in subjects with diverse glycemic status. This method aimed to advance the diagnosis of IR and T2D and elucidate the molecular pathways involved in its development and the response to exercise. Additionally, we used proteomics-specific statistical analysis to provide a comparative perspective, highlighting the nuanced differences identified by REHA. Validation of the REHA model with a comparable external dataset further demonstrated its efficacy in distinguishing between diverse proteomic profiles. Key metrics such as accuracy and the area under the ROC curve confirmed REHA's capability to uncover novel molecular pathways and significant protein interactions, offering fresh insights into the effects of exercise on IR and T2D pathophysiology of skeletal muscle. The visualizations not only underscored significant proteins and their interactions but also showcased decision trees that effectively differentiate between various glycemic states, thereby enhancing our understanding of the biomolecular landscape of T2D.
Collapse
Affiliation(s)
- Anna Czajkowska
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland.
- Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland.
| | - Marcin Czajkowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Krzysztof Jurczuk
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Daniel Reska
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Wojciech Kwedlo
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Marek Kretowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
19
|
Anjom-Shoae J, Feinle-Bisset C, Horowitz M. Impacts of dietary animal and plant protein on weight and glycemic control in health, obesity and type 2 diabetes: friend or foe? Front Endocrinol (Lausanne) 2024; 15:1412182. [PMID: 39145315 PMCID: PMC11321983 DOI: 10.3389/fendo.2024.1412182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
It is well established that high-protein diets (i.e. ~25-30% of energy intake from protein) provide benefits for achieving weight loss, and subsequent weight maintenance, in individuals with obesity, and improve glycemic control in type 2 diabetes (T2D). These effects may be attributable to the superior satiating property of protein, at least in part, through stimulation of both gastrointestinal (GI) mechanisms by protein, involving GI hormone release and slowing of gastric emptying, as well as post-absorptive mechanisms facilitated by circulating amino acids. In contrast, there is evidence that the beneficial effects of greater protein intake on body weight and glycemia may only be sustained for 6-12 months. While both suboptimal dietary compliance and metabolic adaptation, as well as substantial limitations in the design of longer-term studies are all likely to contribute to this contradiction, the source of dietary protein (i.e. animal vs. plant) has received inappropriately little attention. This issue has been highlighted by outcomes of recent epidemiological studies indicating that long-term consumption of animal-based protein may have adverse effects in relation to the development of obesity and T2D, while plant-based protein showed either protective or neutral effects. This review examines information relating to the effects of dietary protein on appetite, energy intake and postprandial glycemia, and the relevant GI functions, as reported in acute, intermediate- and long-term studies in humans. We also evaluate knowledge relating to the relevance of the dietary protein source, specifically animal or plant, to the prevention, and management, of obesity and T2D.
Collapse
Affiliation(s)
- Javad Anjom-Shoae
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
20
|
Wang T, Liao H, Lin J, Zhang M, Chen B, Yin R, Sun J, Dai H, Liu H. Antidiabetic action of the Chinese formula Shouhuitongbian and the underlying mechanism associated with alteration of gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155575. [PMID: 38636179 DOI: 10.1016/j.phymed.2024.155575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The prevalence and incidence of type 2 diabetes mellitus (T2DM) have dramatically increased. The intestinal flora and its derived metabolites are demonstrated to play vital roles in the etiology and onset of T2DM. Shouhuitongbian (SHTB) is a traditional Chinese formula to treat constipation. SHTB is composed of seven herbs and components of Colla corii asini (CCA) that are obtained from the hide of Equus asinus L.. Some of herbs in SHTB such as Aloe vera (L.) Burm.f., Cassia obtusifolia L., fruits of Lycium barbarum L., and Citrus aurantium L. have shown to improve insulin resistance (IR) and T2DM in early reports. We hypothesized that SHTB composed of these herbs has antidiabetic effects. The antidiabetic efficacy and mechanism of action of SHTB have not been previously reported. HYPOTHESIS/PURPOSE To demonstrate the antidiabetic effect and elucidate the underlying mechanisms of SHTB from the perspective of gut microbiota. STUDY DESIGN The main compounds were identified and quantified by high-performance liquid chromatography (HPLC)-mass spectrometry analysis. High fat diet (HFD)-fed mice and db/db mice were used to assess the antidiabetic effects and the mechanism of SHTB. The underlying mechanisms were evaluated by enzyme-linked immunosorbent assay (ELISA), western blot analysis, quantitative real time polymerase chain reaction (qPCR) analysis, 16S rRNA high-throughput sequencing, and targeted metabolome analysis. METHODS HFD-fed mice and db/db mice were orally treated with the standard positive drug metformin (100 mg/kg/d) and with SHTB (200 and 100 mg/kg/d), which was chemically characterized according to the European Medicine Agency (EMA) guidelines. The beneficial effects of SHTB were studied by homeostasis model assessment of insulin resistance (HOMA-IR) index, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), total cholesterol (T-CHO), triglyceride (TG), and inflammation. Subsequently, 16S rDNA-based high-throughput pyrosequencing and GC-MS-based targeted metabolomics profiling were performed to analyze the gut microbiota composition and metabolites profile in the gut, respectively. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) / insulin receptor substrate 1 (IRS-1) / phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) pathway was evaluated via qPCR and western blot. RESULTS Chemically characterized SHTB, in which six markers were quantified, effectively alleviated glucose intolerance and IR, ameliorated lipid metabolism dysfunction, and reduced inflammation. In addition, 16S rDNA sequencing found that SHTB reshaped the composition of intestinal flora, as indicated by the enrichment of Akkermansia and Parabacteroides in both HFD-fed and db/db mice. Moreover, SHTB enhanced the intestinal production of short-chain fatty acids (SCFAs) and branched short-chain fatty acids (BSCFAs), and reduced the levels of the fecal and circulating branched-chain amino acids (BCAAs). The IRS-1/PI3K/AKT signaling pathway was upregulated after treatment with SHTB. CONCLUSION Orally administration of SHTB effectively improved IR and reduced hyperglycemia in mice. Treatment with SHTB regulated the gut BCAAs-mTORC1/IRS-1/PI3K/AKT axis by enhancing the BCAAs catabolism in the gut, which attenuated the deleterious effect of BCAAs on the IRS-1 signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huan Liao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinghan Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Mingkai Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
21
|
McGlone ER, Hope DCD, Davies I, Dore M, Goldin R, Jones B, Liu Z, Li JV, Vorkas PA, Khoo B, Carling D, Minnion J, Bloom SR, Tan TMM. Chronic treatment with glucagon-like peptide-1 and glucagon receptor co-agonist causes weight loss-independent improvements in hepatic steatosis in mice with diet-induced obesity. Biomed Pharmacother 2024; 176:116888. [PMID: 38861859 DOI: 10.1016/j.biopha.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVES Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice. METHODS Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice. RESULTS Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance. CONCLUSIONS Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David C D Hope
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marian Dore
- Genomics facility, MRC Laboratory of Medical Sciences (LMS), Imperial College London, London, UK
| | - Rob Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Panagiotis A Vorkas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (INAB|CERTH), Thessaloniki 57001, Greece; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - David Carling
- Cellular Stress group, MRC LMS, Imperial College London, London, UK
| | - James Minnion
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
22
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
23
|
Kang R, Guo D, Wang J, Xie Z. Association of dietary nutrient intake with type 2 diabetes: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38090. [PMID: 38728475 PMCID: PMC11081547 DOI: 10.1097/md.0000000000038090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Observational research suggests that the evidence linking dietary nutrient intake (encompassing minerals, vitamins, amino acids, and unsaturated fatty acids) to type 2 diabetes (T2D) is both inconsistent and limited. This study aims to explore the potential causal relationship between dietary nutrients and T2D. Causal estimation utilized Mendelian randomization techniques. Single nucleotide polymorphisms linked to dietary nutrients were identified from existing genome-wide association studies and used as instrumental variables. Genome-wide association studies data pertinent to T2D were sourced from the DIMANTE consortium and the FinnGen database. Techniques including inverse variance weighting (IVW), weighted mode, weighted median, and Mendelian randomization-Egger were employed for causal inference, complemented by sensitivity analysis. Genetically predicted higher phenylalanine (IVW: odds ratio = 1.10 95% confidence interval 1.04-1.17, P = 1.5 × 10-3, q_pval = 3.4 × 10-2) and dihomo-gamma-linolenic acid (IVW: odds ratio = 1.001 95% confidence interval 1.0006-1.003, P = 3.7 × 10-3, q_pval = 4.1 × 10-2) levels were directly associated with T2D risk. Conversely, no causal relationships between other nutrients and T2D were established. We hypothesize that phenylalanine and dihomo-gamma-linolenic acid contribute to the pathogenesis of T2D. Clinically, the use of foods with high phenylalanine content may pose potential risks for patients with a heightened risk of T2D. Our study provides evidence supporting a causal link between dietary nutrient intake and the development of T2D.
Collapse
Affiliation(s)
- Ruixiang Kang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhencong Xie
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.556394. [PMID: 37745492 PMCID: PMC10515868 DOI: 10.1101/2023.09.12.556394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues from ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
|
25
|
Anand SK, Governale TA, Zhang X, Razani B, Yurdagul A, Pattillo CB, Rom O. Amino Acid Metabolism and Atherosclerotic Cardiovascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:510-524. [PMID: 38171450 PMCID: PMC10988767 DOI: 10.1016/j.ajpath.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Despite significant advances in medical treatments and drug development, atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of death worldwide. Dysregulated lipid metabolism is a well-established driver of ASCVD. Unfortunately, even with potent lipid-lowering therapies, ASCVD-related deaths have continued to increase over the past decade, highlighting an incomplete understanding of the underlying risk factors and mechanisms of ASCVD. Accumulating evidence over the past decades indicates a correlation between amino acids and disease state. This review explores the emerging role of amino acid metabolism in ASCVD, uncovering novel potential biomarkers, causative factors, and therapeutic targets. Specifically, the significance of arginine and its related metabolites, homoarginine and polyamines, branched-chain amino acids, glycine, and aromatic amino acids, in ASCVD are discussed. These amino acids and their metabolites have been implicated in various processes characteristic of ASCVD, including impaired lipid metabolism, endothelial dysfunction, increased inflammatory response, and necrotic core development. Understanding the complex interplay between dysregulated amino acid metabolism and ASCVD provides new insights that may lead to the development of novel diagnostic and therapeutic approaches. Although further research is needed to uncover the precise mechanisms involved, it is evident that amino acid metabolism plays a role in ASCVD.
Collapse
Affiliation(s)
- Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Theresea-Anne Governale
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Xiangyu Zhang
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| |
Collapse
|
26
|
Cai S, Fu Y, Chen J, Tian M, Li X. Causal Relationship Between Branched-Chain Amino Acids and Hypertension: A Mendelian Randomization Study. J Am Heart Assoc 2024; 13:e032084. [PMID: 38420789 PMCID: PMC10944042 DOI: 10.1161/jaha.123.032084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND This study aimed to investigate the causal relationships between branched-chain amino acids (BCAAs) and the risks of hypertension via meta-analysis and Mendelian randomization analysis. METHODS AND RESULTS A meta-analysis of 32 845 subjects was conducted to evaluate the relationships between BCAAs and hypertension. In Mendelian randomization analysis, independent single-nucleotide polymorphisms associated with BCAAs at the genome-wide significance level were selected as the instrumental variables. Meanwhile, the summary-level data for essential hypertension and secondary hypertension end points were obtained from the FinnGen study. As suggested by the meta-analysis results, elevated BCAA levels were associated with a higher risk of hypertension (isoleucine: summary odds ratio, 1.26 [95% CI, 1.08-1.47]; leucine: summary odds ratio, 1.28 [95% CI, 1.07-1.52]; valine: summary odds ratio, 1.32 [95% CI, 1.12-1.57]). Moreover, the inverse variance-weighted method demonstrated that an elevated circulating isoleucine level might be the causal risk factor for essential hypertension but not secondary hypertension (essential hypertension: odds ratio, 1.22 [95% CI, 1.12-1.34]; secondary hypertension: odds ratio, 0.96 [95% CI, 0.54-1.68]). CONCLUSIONS The increased levels of 3 BCAAs positively correlated with an increased risk of hypertension. Particularly, elevated isoleucine level is a causal risk factor for essential hypertension. Increased levels of leucine and valine also tend to increase the risk of essential hypertension, but further verification is still warranted.
Collapse
Affiliation(s)
- Shiyuan Cai
- School of Public Health, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanyuan Fu
- School of Public Health, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Chen
- School of Public Health, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingjie Tian
- Department of Clinical Nutrition, Shanghai Deji HospitalAffiliated to Qingdao UniversityShanghaiChina
| | - Xue Li
- School of Public Health, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
27
|
Yu J, Ren J, Ren Y, Wu Y, Zeng Y, Zhang Q, Xiao X. Using metabolomics and proteomics to identify the potential urine biomarkers for prediction and diagnosis of gestational diabetes. EBioMedicine 2024; 101:105008. [PMID: 38368766 PMCID: PMC10882130 DOI: 10.1016/j.ebiom.2024.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic complications during pregnancy, threatening both maternal and fetal health. Prediction and diagnosis of GDM is not unified. Finding effective biomarkers for GDM is particularly important for achieving early prediction, accurate diagnosis and timely intervention. Urine, due to its accessibility in large quantities, noninvasive collection and easy preparation, has become a good sample for biomarker identification. In recent years, a number of studies using metabolomics and proteomics approaches have identified differential expressed urine metabolites and proteins in GDM patients. In this review, we summarized these potential urine biomarkers for GDM prediction and diagnosis and elucidated their role in development of GDM.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
28
|
Huang TQ, Chen YX, Zeng SL, Lin Y, Li F, Jiang ZM, Liu EH. Bergenin Alleviates Ulcerative Colitis By Decreasing Gut Commensal Bacteroides vulgatus-Mediated Elevated Branched-Chain Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3606-3621. [PMID: 38324392 DOI: 10.1021/acs.jafc.3c09448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ulcerative colitis is closely associated with the dysregulation of gut microbiota. There is growing evidence that natural products may improve ulcerative colitis by regulating the gut microbiota. In this research, we demonstrated that bergenin, a naturally occurring isocoumarin, significantly ameliorates colitis symptoms in dextran sulfate sodium (DSS)-induced mice. Transcriptomic analysis and Caco-2 cell assays revealed that bergenin could ameliorate ulcerative colitis by inhibiting TLR4 and regulating NF-κB and mTOR phosphorylation. 16S rRNA sequencing and metabolomics analyses revealed that bergenin could improve gut microbiota dysbiosis by decreasing branched-chain amino acid (BCAA) levels. BCAA intervention mediated the mTOR/p70S6K signaling pathway to exacerbate the symptoms of ulcerative colitis in mice. Notably, bergenin greatly decreased the symbiotic bacteria Bacteroides vulgatus (B. vulgatus), and the gavage of B. vulgatus increased BCAA concentrations and aggravated the symptoms of ulcerative colitis in mice. Our findings suggest that gut microbiota-mediated BCAA metabolism plays a vital role in the protective effect of bergenin on ulcerative colitis, providing novel insights for ulcerative colitis prevention through manipulation of the gut microbiota.
Collapse
Affiliation(s)
- Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yu-Xin Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Su-Ling Zeng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
- College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
- College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
29
|
dos Santos A, Galiè S. The Microbiota-Gut-Brain Axis in Metabolic Syndrome and Sleep Disorders: A Systematic Review. Nutrients 2024; 16:390. [PMID: 38337675 PMCID: PMC10857497 DOI: 10.3390/nu16030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Over recent decades, a growing body of evidence has emerged linking the composition of the gut microbiota to sleep regulation. Interestingly, the prevalence of sleep disorders is commonly related to cardiometabolic comorbidities such as diabetes, impaired lipid metabolism, and metabolic syndrome (MetS). In this complex scenario, the role of the gut-brain axis as the main communicating pathway between gut microbiota and sleep regulation pathways in the brain reveals some common host-microbial biomarkers in both sleep disturbances and MetS. As the biological mechanisms behind this complex interacting network of neuroendocrine, immune, and metabolic pathways are not fully understood yet, the present systematic review aims to describe common microbial features between these two unrelated chronic conditions. RESULTS This systematic review highlights a total of 36 articles associating the gut microbial signature with MetS or sleep disorders. Specific emphasis is given to studies evaluating the effect of dietary patterns, dietary supplementation, and probiotics on MetS or sleep disturbances. CONCLUSIONS Dietary choices promote microbial composition and metabolites, causing both the amelioration and impairment of MetS and sleep homeostasis.
Collapse
Affiliation(s)
- Adriano dos Santos
- Integrative Medicine Nutrition Department, ADS Vitality B.V., 2517 AS The Hague, The Netherlands
| | - Serena Galiè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milano, Italy;
| |
Collapse
|
30
|
Gallagher K, Bernstein I, Collings C, Main D, Ahmad G, Naughton S, Daddam J, Mavangira V, Vandehaar M, Zhou Z. Abomasal infusion of branched-chain amino acids or branched-chain keto-acids alter lactation performance and liver triglycerides in fresh cows. J Anim Sci Biotechnol 2024; 15:13. [PMID: 38281954 PMCID: PMC10823655 DOI: 10.1186/s40104-023-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Dairy cows are at high risk of fatty liver disease in early lactation, but current preventative measures are not always effective. Cows with fatty liver have lower circulating branched-chain amino acid (BCAA) concentrations whereas cows with high circulating BCAA levels have low liver triglyceride (TG). Our objective was to determine the impact of BCAA and their corresponding ketoacids (branched-chain ketoacids, BCKA) on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum. METHODS Thirty-six multiparous Holstein cows were used in a randomized block design experiment. Cows were abomasally infused for the first 21 d postpartum with solutions of 1) saline (CON, n = 12); 2) BCA (67 g valine, 50 g leucine, and 34 g isoleucine, n = 12); and 3) BCK (77 g 2-ketovaline calcium salt, 57 g 2-ketoleucine calcium salt, and 39 g 2-ketoisoleucine calcium salt, n = 12). All cows received the same diet. Treatment effects were determined using PROC GLIMMIX in SAS. RESULTS No differences were detected for body weight, body condition score, or dry matter intake averaged over the first 21 d postpartum. Cows receiving BCK had significantly lower liver TG concentrations compared to CON (6.60% vs. 4.77%, standard error of the mean (SEM) 0.49) during the first 3 weeks of lactation. Infusion of BCA increased milk yield (39.5 vs. 35.3 kg/d, SEM 1.8), milk fat yield (2.10 vs. 1.69 kg/d, SEM 0.08), and lactose yield (2.11 vs. 1.67 kg/d, SEM 0.07) compared with CON. Compared to CON, cows receiving BCA had lower plasma glucose (55.0 vs. 59.2 mg/dL, SEM 0.86) but higher β-hydroxybutyrate (9.17 vs. 6.00 mg/dL, SEM 0.80). CONCLUSIONS Overall, BCAA supplementation in this study improved milk production, whereas BCKA supplementation reduced TG accumulation in the liver of fresh cows.
Collapse
Affiliation(s)
- Kristen Gallagher
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Isabelle Bernstein
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Cynthia Collings
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - David Main
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Ghayyoor Ahmad
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Sarah Naughton
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Jayasimha Daddam
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Vengai Mavangira
- Department of Veterinary Diagnostic and Production Animal Medicine, Ames, 50011, USA
| | - Mike Vandehaar
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Zheng Zhou
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA.
| |
Collapse
|
31
|
Sharma S, Zhang X, Azhar G, Patyal P, Verma A, KC G, Wei JY. Valine improves mitochondrial function and protects against oxidative stress. Biosci Biotechnol Biochem 2024; 88:168-176. [PMID: 38093456 PMCID: PMC10807754 DOI: 10.1093/bbb/zbad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 01/26/2024]
Abstract
Among the branched-chain amino acids, leucine and isoleucine have been well studied for their roles in improving mitochondrial function and reducing oxidative stress. However, role of valine in mitochondrial function regulation and oxidative stress management remains elusive. This study investigated valine effect on mitochondrial function and oxidative stress in vitro. Valine increased expression of genes involved in mitochondrial biogenesis and dynamics. It upregulates mitochondrial function at complexes I, II, and IV levels of electron transport chain. Flow cytometry studies revealed, valine reduced oxidative stress by significantly lowering mitochondrial reactive oxygen species and protein expression of 4-hydroxynonenal. Functional role of valine against oxidative stress was analyzed by XFe96 Analyzer. Valine sustained oxidative phosphorylation and improved ATP generation rates during oxidative stress. In conclusion, our findings shed more light on the critical function of valine in protecting mitochondrial function thereby preventing mitochondrial/cellular damage induced by oxidative stress.
Collapse
Affiliation(s)
- Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Grishma KC
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
32
|
Tabesh M, Teymoori F, Ahmadirad H, Mirmiran P, Rahideh ST. Dietary Branched Chain Amino Acids Association with Cancer and Mortality: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Cancer 2024; 76:160-174. [PMID: 38130073 DOI: 10.1080/01635581.2023.2292820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The present study aimed to investigate the association of dietary branched-chain amino acids (BCAAs) and its components with cancer, cancer mortality, and all-cause mortality in a meta-analysis of observational studies. A comprehensive search was conducted between electronic databases (PubMed, Scopus, and Web of Science) until September 2022. Odds ratios (OR), hazard ratios (HR), and relative risks (RR) were extracted. Eight articles (six studies on breast cancer (BC) and digestive cancers risk, and three studies on both BC and digestive cancers mortality, and all-cause mortality) were included. The present study showed no statistically significant association between dietary BCAAs and its components with BC and digestive cancers (RRBCAA: 0.87, 95% CI: 0.68-1.10, RRLeucine: 0.74, 95% CI: 0.52-1.04, RRIsoleucine: 0.98, 95% CI: 0.93-1.04, RRValine: 0.76, 95% CI: 0.55-1.05). Also, no statistically significant relationship between dietary BCAAs and its components with both BC and digestive cancers mortality (RRBCAA: 0.95, 95% CI: 0.68-1.33, RRLeucine: 0.95, 95% CI: 0.79-1.15, RRIsoleucine: 0.95, 95% CI: 0.79-1.14, RRValine: 1.01, 95% CI: 0.84-1.21) and all-cause mortality (RRBCAA: 0.98, 95% CI: 0.73-1.32, RRLeucine: 1.02, 95% CI: 0.81-1.29, RRIsoleucine: 0.96, 95% CI: 0.73-1.27, RRValine: 1.02, 95% CI: 0.79-1.32) were observed. Our findings showed no significant association between dietary BCAAs and its components with BC and digestive cancers, BC and digestive cancers mortality, and all-cause mortality.
Collapse
Affiliation(s)
- Mahdieh Tabesh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Tayebeh Rahideh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Cava E, Padua E, Campaci D, Bernardi M, Muthanna FMS, Caprio M, Lombardo M. Investigating the Health Implications of Whey Protein Consumption: A Narrative Review of Risks, Adverse Effects, and Associated Health Issues. Healthcare (Basel) 2024; 12:246. [PMID: 38255133 PMCID: PMC10815430 DOI: 10.3390/healthcare12020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
This narrative review critically examines the current research on the health implications of whey protein (WP) supplementation, with a focus on potential risks and adverse effects. WP, commonly consumed for muscle building and weight loss, has been associated with various health concerns. Our comprehensive analysis involved a thorough search of multiple databases, resulting in the inclusion of 21 preclinical and human studies that collectively offer a detailed overview of WP's health impacts. The review reveals significant findings, such as WP's potential link to liver and kidney damage, alterations in gut microbiota, increased acne incidence, impacts on bone mass, and emotional and behavioural changes. These findings underscore the complexity of WP's effects on human health, indicating both beneficial and detrimental outcomes in relation to different posologies in a variety of settings. Our study suggests caution for the protein intake in situations of hepatic and renal compromised functions, as well as in acne susceptibility, while possible beneficial effects can be achieved for the intestinal microbiota, humoral and behavioural level, and finally bone and muscle mass in elderly. We emphasizes the importance of balanced WP consumption and call for more in-depth research to understand its long-term health effects. Health professionals and individuals considering WP supplementation should be aware of these potential risks and approach its use with informed caution.
Collapse
Affiliation(s)
- Edda Cava
- Clinical Nutrition and Dietetics, San Camillo Forlanini Hospital, Rome, cir.ne Gianicolense 87, 00152 Rome, Italy;
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
| | - Diego Campaci
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
| | - Marco Bernardi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen;
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
| |
Collapse
|
34
|
Amawi A, AlKasasbeh W, Jaradat M, Almasri A, Alobaidi S, Hammad AA, Bishtawi T, Fataftah B, Turk N, Saoud HA, Jarrar A, Ghazzawi H. Athletes' nutritional demands: a narrative review of nutritional requirements. Front Nutr 2024; 10:1331854. [PMID: 38328685 PMCID: PMC10848936 DOI: 10.3389/fnut.2023.1331854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Nutrition serves as the cornerstone of an athlete's life, exerting a profound impact on their performance and overall well-being. To unlock their full potential, athletes must adhere to a well-balanced diet tailored to their specific nutritional needs. This approach not only enables them to achieve optimal performance levels but also facilitates efficient recovery and reduces the risk of injuries. In addition to maintaining a balanced diet, many athletes also embrace the use of nutritional supplements to complement their dietary intake and support their training goals. These supplements cover a wide range of options, addressing nutrient deficiencies, enhancing recovery, promoting muscle synthesis, boosting energy levels, and optimizing performance in their respective sports or activities. The primary objective of this narrative review is to comprehensively explore the diverse nutritional requirements that athletes face to optimize their performance, recovery, and overall well-being. Through a thorough literature search across databases such as PubMed, Google Scholar, and Scopus, we aim to provide evidence-based recommendations and shed light on the optimal daily intakes of carbohydrates, protein, fats, micronutrients, hydration strategies, ergogenic aids, nutritional supplements, and nutrient timing. Furthermore, our aim is to dispel common misconceptions regarding sports nutrition, providing athletes with accurate information and empowering them in their nutritional choices.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Walaa AlKasasbeh
- Department of Physical and Health Education, Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manar Jaradat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Amani Almasri
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Sondos Alobaidi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Aya Abu Hammad
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Taqwa Bishtawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Batoul Fataftah
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nataly Turk
- Department of Family and Community Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Amjad Jarrar
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Oxford Brookes Center for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
35
|
Tauriainen MM, Csader S, Lankinen M, Lo KK, Chen C, Lahtinen O, El-Nezamy H, Laakso M, Schwab U. PNPLA3 Genotype and Dietary Fat Modify Concentrations of Plasma and Fecal Short Chain Fatty Acids and Plasma Branched-Chain Amino Acids. Nutrients 2024; 16:261. [PMID: 38257154 PMCID: PMC10819939 DOI: 10.3390/nu16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The GG genotype of the Patatin-like phosphatase domain-containing 3 (PNPLA3), dietary fat, short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA) are linked with non-alcoholic fatty liver disease. We studied the impact of the quality of dietary fat on plasma (p) and fecal (f) SCFA and p-BCAA in men homozygous for the PNPLA3 rs738409 variant (I148M). Eighty-eight randomly assigned men (age 67.8 ± 4.3 years, body mass index 27.1 ± 2.5 kg/m2) participated in a 12-week diet intervention. The recommended diet (RD) group followed the National and Nordic nutrition recommendations for fat intake. The average diet (AD) group followed the average fat intake in Finland. The intervention resulted in a decrease in total p-SCFAs and iso-butyric acid in the RD group (p = 0.041 and p = 0.002). Valeric acid (p-VA) increased in participants with the GG genotype regardless of the diet (RD, 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.005 and AD, 3.8 ± 0.3 to 9.7 ± 8.5 µmol/g, p = 0.015). Also, genotype relation to p-VA was seen statistically significantly in the RD group (CC: 3.7 ± 0.4 to 4.2 ± 1.7 µmol/g and GG: 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.0026 for time and p = 0.004 for time and genotype). P-VA, unlike any other SCFA, correlated positively with plasma gamma-glutamyl transferase (r = 0.240, p = 0.025). Total p-BCAAs concentration changed in the AD group comparing PNPLA3 CC and GG genotypes (CC: 612 ± 184 to 532 ± 149 µmol/g and GG: 587 ± 182 to 590 ± 130 µmol/g, p = 0.015 for time). Valine decreased in the RD group (p = 0.009), and leucine decreased in the AD group (p = 0.043). RD decreased total fecal SCFA, acetic acid (f-AA), and butyric acid (f-BA) in those with CC genotype (p = 0.006, 0.013 and 0.005, respectively). Our results suggest that the PNPLA3 genotype modifies the effect of dietary fat modification for p-VA, total f-SCFA, f-AA and f-BA, and total p-BCAA.
Collapse
Affiliation(s)
- Milla-Maria Tauriainen
- Department of Medicine, Endoscopy Unit, Kuopio University Hospital, 70029 Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Susanne Csader
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Olli Lahtinen
- Diagnostic Imaging Centre, Department of Clinical Radiology, Kuopio University Hospital, 70029 Kuopio, Finland;
| | - Hani El-Nezamy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Medicine, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio, Finland
| |
Collapse
|
36
|
Kabir MR, Hasan SK, Islam MR, Ahmed M. Development of functional noodles by encapsulating mango peel powder as a source of bioactive compounds. Heliyon 2024; 10:e24061. [PMID: 38230233 PMCID: PMC10789624 DOI: 10.1016/j.heliyon.2024.e24061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Antioxidant compounds such as phenolics and carotenoids scavenge reactive oxygen species and protect against degenerative diseases such as cancer and cardiovascular disease when used as food additives or supplements. Mango peel is a by-product of mango which is a good source of bioactive substances such as phytochemicals, antioxidants, and dietary fibers. Unfortunately, the study on mango peel as a potential food additive is very limited. Accordingly, the present study aimed to develop functional noodles through extrusion technology with the encapsulation of mango peel powder as a natural source of bioactive compounds. First, mango peel powder (MPP) was prepared and incorporated during the mixing of ingredients before noodles formation at three different levels (2.5, 5 and 7.5 %). Afterward, the noodles were studied to determine how the encapsulated MPP affects the proximate composition, physicochemical characteristics, polyphenols, carotenoids, anthocyanin, antioxidant and antidiabetic activity, and sensory characteristics. The noodles exhibited a dose-dependent relationship in the content of bioactive components and functional activities with the encapsulation of MPP levels. A significantly (p 0.05) higher value was noticed in 7.5 % of MPP-encapsulated noodles than in any level of MPP encapsulation in noodles. The fiber and protein contents in the MPP-encapsulated noodles were increased by about 0-1.22 % and 0-3.16 %, respectively. However, noodles' color index and water absorption index were decreased with the level of MPP encapsulation. The cooking loss of noodles increased from 4.64 to 5.17, 6.49, and 7.32 %, whereas the cooked weight decreased from 35.11 to 34.40, 33.65, and 33.23 % with 2.5, 5.0, and 7.5 % of MPP encapsulation, respectively. However, MPP was stable during storage of noodles exhibiting higher phenolic content and antioxidant activity than control samples. The sensory evaluation showed that MPP-encapsulated noodles at levels 2.5 and 5 % had approximately similar overall acceptability values with the control sample. As a result of the findings, it appears that adding MPP up to 5 % to noodles improves their nutritional quality without changing their cooking, structural, or sensory aspects. Therefore, mango peel powder can be a potential cheap source for the development of functional noodles and food ingredients.
Collapse
Affiliation(s)
- Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur-5200, Bangladesh
| | - S.M. Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur-5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur-5200, Bangladesh
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur-5200, Bangladesh
| |
Collapse
|
37
|
Yu Z, Han J, Li L, Zhang Q, Chen A, Chen J, Wang K, Jin J, Li H, Chen G. Chronic triclosan exposure induce impaired glucose tolerance by altering the gut microbiota. Food Chem Toxicol 2024; 183:114305. [PMID: 38052405 DOI: 10.1016/j.fct.2023.114305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Triclosan (TCS) is an antimicrobial compound incorporated into more than 2000 consumer products. This compound is frequently detected in the human body and causes ubiquitous contamination in the environment, thereby raising concerns about its impact on human health and environmental pollution. Here, we demonstrated that 20 weeks' exposure of TCS drove the development of glucose intolerance by inducing compositional and functional alterations in intestinal microbiota in rats. Fecal-transplantation experiments corroborated the involvement of gut microbiota in TCS-induced glucose-tolerance impairment. 16S rRNA gene-sequencing analysis of cecal contents showed that TCS disrupted the gut microbiota composition in rats and increased the ratio of Firmicutes to Bacteroidetes. Cecal metabolomic analyses detected that TCS altered host metabolic pathways that are linked to host glucose and amino acid metabolism, particularly branched-chain amino acid (BCAA) biosynthesis. BCAA measurement confirmed the increase in serum BCAAs in rats exposed to TCS. Western blot and immunostaining results further confirmed that elevated BCAAs stimulated mTOR, a nutrient-sensing complex, and following IRS-1 serine phosphorylation, resulted in insulin resistance and glucose intolerance. These results suggested that TCS may induce glucose metabolism imbalance by regulating BCAA concentration by remodeling the gut microbiota.
Collapse
Affiliation(s)
- Zhen Yu
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Junyong Han
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Lisha Li
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Qiufeng Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Ayun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Jinyan Chen
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Kun Wang
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Jingjun Jin
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
38
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
39
|
Gong J, Zhang Q, Hu R, Yang X, Fang C, Yao L, Lv J, Wang L, Shi M, Zhang W, Ma S, Xiang H, Zhang H, Hou DX, Yin Y, He J, Peng L, Wu S. Effects of Prevotella copri on insulin, gut microbiota and bile acids. Gut Microbes 2024; 16:2340487. [PMID: 38626129 PMCID: PMC11028016 DOI: 10.1080/19490976.2024.2340487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/04/2024] [Indexed: 04/18/2024] Open
Abstract
Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1β (IL-1β) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.
Collapse
Affiliation(s)
- Jiatai Gong
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qianjin Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chengkun Fang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liping Yao
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Lv
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Wang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mingkun Shi
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Wentao Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Siqi Ma
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongkun Xiang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongfu Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - De-Xing Hou
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Yulong Yin
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lijun Peng
- Children’s Healthcare Institute, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
40
|
Campos SB, de Oliveira Filho JG, Salgaço MK, Jesus MHD, Egea MB. Effects of Peanuts and Pistachios on Gut Microbiota and Metabolic Syndrome: A Review. Foods 2023; 12:4440. [PMID: 38137244 PMCID: PMC10743156 DOI: 10.3390/foods12244440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
There is growing evidence that the gut microbiota is associated with various aspects of human health, including immune system regulation, vitamin synthesis, short-chain fatty acid production, etc. Peanuts and pistachios are foods rich in protein, unsaturated fatty acids, vitamins, polyphenols, and other dietary components that have been shown to benefit the gut microbiota. Therefore, this review aims to describe the effects of consuming peanuts and pistachios on the gut microbiota and the potential role of these microbiota in human health. This review suggests that the consumption of peanuts or pistachios can demonstrate the potential to exert a beneficial effect on the gut microbiota by promoting the growth of beneficial gut bacteria that produce, for example, short-chain fatty acids that are beneficial for human health. In the case of peanuts, in particular, the possible modulation of the microbiota is associated with an improvement in the risk factors of metabolic syndrome and the inflammatory process triggered by a high-fat diet.
Collapse
Affiliation(s)
- Stéphani Borges Campos
- Goiano Federal Institute, Campus Rio Verde, Rio Verde 75901-970, Brazil; (S.B.C.); (M.H.D.J.)
| | | | - Mateus Kawata Salgaço
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.G.d.O.F.); (M.K.S.)
| | - Marisa Helena De Jesus
- Goiano Federal Institute, Campus Rio Verde, Rio Verde 75901-970, Brazil; (S.B.C.); (M.H.D.J.)
| | - Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Rio Verde 75901-970, Brazil; (S.B.C.); (M.H.D.J.)
| |
Collapse
|
41
|
Farra SD. Acute consumption of a branched chain amino acid and vitamin B-6 containing sports drink does not improve multiple sprint exercise performance, but increases post-exercise blood glucose. Front Nutr 2023; 10:1266422. [PMID: 38144425 PMCID: PMC10740374 DOI: 10.3389/fnut.2023.1266422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose The aim of this study was to investigate the ergogenicity of BioSteel High Performance Sports Drink (B-HPSD), a commercially available branched chain amino acid (BCAA) and vitamin B-6 (VitB-6) supplement, on multiple sprint exercise (MSE). Methods Eleven experienced cyclists completed two MSE trials in counterbalanced order, after ingesting either B-HPSD (2,256 mg of BCAA, 300 mcg of VitB-6) or placebo (PLA). The MSE protocol consisted of five maximal effort 1 km sprints on a cycle ergometer separated by 2 min of active recovery. Power output (PO) was continuously measured throughout the cycling protocol. Heart rate (HR) and ratings of perceived exertion (RPE) were monitored following each sprint. Capillary blood samples were collected and analyzed for lactate and glucose before and 2 min post-trial. Cognitive function was assessed before and 15 min after the exercise protocol. Results The PO maintained during each 1 km sprint decreased throughout the protocol (p < 0.05), but the change in PO was similar between conditions. Post-exercise blood glucose was elevated after consuming B-HPSD but not PLA (p < 0.05). Blood lactate (p < 0.05), HR (p < 0.05) and RPE (p < 0.05) increased throughout the trials, however no differences were observed between conditions. Cognitive performance improved after exercise (p < 0.05), but the change was similar between conditions. Conclusion These results demonstrate that acute B-HPSD consumption does not have an ergogenic effect on MSE performance. However, ingestion of B-HPSD increased post-exercise blood glucose concentration when compared to PLA.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Applied Health and Community Studies, Sheridan College, Brampton, ON, Canada
| |
Collapse
|
42
|
Torki SA, Bahadori E, Aghakhaninejad Z, Mohseni GK, Tajadod S, Rajabi Harsini A, Azaryan F, Saeedirad Z, Askarpour SA, Mahmoudi Z, Khoshdooz S, Bahar B, Shafaei H, Mosavi Jarrahi SA, Doaei S, Nazemi S, Gholamalizadeh M. Association between type 2 diabetes and branched chain amino acids (BCAA); a case-control study. J Diabetes Metab Disord 2023; 22:1291-1297. [PMID: 37975111 PMCID: PMC10638320 DOI: 10.1007/s40200-023-01247-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/03/2023] [Indexed: 11/19/2023]
Abstract
Background Several amino acids and their derivatives have been implicated in insulin resistance (IR) and Type 2 Diabetes Mellitus (T2DM). This research sought to establish a relationship between the dietary levels of branched-chain amino acids (BCAA) and the risk of T2DM. Methods This case-control study was carried out on 4200 participants consisting of 589 people with T2DM and 3611 non-diabetic aged 35 to 70 years residents in Sabzevar, Iran. Data on the economic-social, employment status, medical history, lifestyle, and sleep habits were collected via interview. The food frequency questionnaire (FFQ) was used to check the nutritional status. Participants' dietary BCAA consumption was estimated using Nutritionist IV software. Results A significant negative association between the incidence of T2DM and the dietary levels of BCAAs after adjustment for age and sex (OR = 0.972, CI 95%:0.648-0.996, P = 0.022). The negative association remained significant after additional adjustments for body mass index (BMI) and physical activity (OR = 0.967, CI 95%: 0.943-0.992, P = 0.010). Interestingly, a positive association was found between T2DM and total BCAAs (OR = 1.067, CI 95%: 1.017-1.119, P = 0.008), Isoleucine (OR = 1.248, CI 95%: 1.043-1.494, P = 0.016), Leucine (OR = 1.165, CI 95%: 1.046-1.299, P = 0.006) and Valine (OR = 1.274, CI 95%: 1.088-1.492, P = 0.003) after further adjustment for calorie intake. Conclusions Our results demonstrate branched-chain amino acids (BCAAs) including isoleucine, leucine, and valine are negatively associated with the incidence of type 2 diabetes (T2DM) after adjusting for age and sex, BMI, and physical activity. However, adjusting for calorie intake reversed the association between T2DM and BCAAs. These findings suggest that the association between BCAAs and T2DM may be influenced by calorie intake. Future longitudinal studies are warranted. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01247-9.
Collapse
Affiliation(s)
- Saheb Abbas Torki
- Department of Nutrition, Faculty of Nutrition Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Effat Bahadori
- Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Aghakhaninejad
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Golsa Khalatbari Mohseni
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Tajadod
- Department of Nutrition, School of Public Health, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Asma Rajabi Harsini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azaryan
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Saeedirad
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Askarpour
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Mahmoudi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport and Health Sciences, University of Central Lancashire, Preston, UK
| | - Hanieh Shafaei
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Mangogna A, Di Girolamo FG, Fiotti N, Vinci P, Landolfo M, Mearelli F, Biolo G. High-protein diet with excess leucine prevents inactivity-induced insulin resistance in women. Clin Nutr 2023; 42:2578-2587. [PMID: 37972527 DOI: 10.1016/j.clnu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Muscle inactivity leads to muscle atrophy and insulin resistance. The branched-chain amino acid (BCAA) leucine interacts with the insulin signaling pathway to modulate glucose metabolism. We have tested the ability of a high-protein BCAA-enriched diet to prevent insulin resistance during long-term bed rest (BR). METHODS Stable isotopes were infused to determine glucose and protein kinetics in the postabsorptive state and during a hyperinsulinemic-euglycemic clamp in combination with amino acid infusion (Clamp + AA) before and at the end of 60 days of BR in two groups of healthy, young women receiving eucaloric diets containing 1 g of protein/kg per day (n = 8) or 1.45 g of protein/kg per day enriched with 0.15 g/kg per day of BCAAs (leucine/valine/isoleucine = 2/1/1) (n = 8). Body composition was determined by Dual X-ray Absorptiometry. RESULTS BR decreased lean body mass by 7.6 ± 0.3 % and 7.2 ± 0.8 % in the groups receiving conventional or high protein-BCAA diets, respectively. Fat mass was unchanged in both groups. At the end of BR, percent changes of insulin-mediated glucose uptake significantly (p = 0.01) decreased in the conventional diet group from 155 ± 23 % to 84 ± 10 % while did not change significantly in the high protein-BCAA diet group from 126 ± 20 % to 141 ± 27 % (BR effect, p = 0.32; BR/diet interaction, p = 0.01; Repeated Measures ANCOVA). In contrast, there were no BR/diet interactions on proteolysis and protein synthesis Clamp + AA changes in the conventional diet and the high protein-BCAA diet groups. CONCLUSION A high protein-BCAA enriched diet prevented inactivity-induced insulin resistance in healthy women.
Collapse
Affiliation(s)
- Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Filippo Giorgio Di Girolamo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy; Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Nicola Fiotti
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Matteo Landolfo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Gianni Biolo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy.
| |
Collapse
|
44
|
Batsis JA, Batchek DJ, Petersen CL, Gross DC, Lynch DH, Spangler HB, Cook SB. Protein Supplementation May Dampen Positive Effects of Exercise on Glucose Homeostasis: A Pilot Weight Loss Intervention. Nutrients 2023; 15:4947. [PMID: 38068805 PMCID: PMC10707998 DOI: 10.3390/nu15234947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The role of protein in glucose homeostasis has demonstrated conflicting results. However, little research exists on its impact following weight loss. This study examined the impact of protein supplementation on glucose homeostasis in older adults >65 years with obesity seeking to lose weight. METHODS A 12-week, nonrandomized, parallel group intervention of protein (PG) and nonprotein (NPG) arms for 28 older rural adults (body mass index (BMI) ≥ 30 kg/m2) was conducted at a community aging center. Both groups received twice weekly physical therapist-led group strength training classes. The PG consumed a whey protein supplement three times per week, post-strength training. Primary outcomes included pre/post-fasting glucose, insulin, inflammatory markers, and homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS Mean age and baseline BMI were 72.9 ± 4.4 years and 37.6 ± 6.9 kg/m2 in the PG and 73.0 ± 6.3 and 36.6 ± 5.5 kg/m2 in the NPG, respectively. Mean weight loss was -3.45 ± 2.86 kg in the PG and -5.79 ± 3.08 kg in the NPG (p < 0.001). There was a smaller decrease in pre- vs. post-fasting glucose levels (PG: -4 mg ± 13.9 vs. NPG: -12.2 ± 25.8 mg/dL; p = 0.10), insulin (-7.92 ± 28.08 vs. -46.7 ± 60.8 pmol/L; p = 0.01), and HOMA-IR (-0.18 ± 0.64 vs. -1.08 ± 1.50; p = 0.02) in the PG compared to the NPG. CONCLUSIONS Protein supplementation during weight loss demonstrated a smaller decrease in insulin resistance compared to the NPG, suggesting protein may potentially mitigate beneficial effects of exercise on glucose homeostasis.
Collapse
Affiliation(s)
- John A. Batsis
- Division of Geriatric Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; (D.H.L.); (H.B.S.)
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.J.B.); (D.C.G.)
- The Dartmouth Institute for Health Policy, Dartmouth College, Hanover, NH 03755, USA;
- Center for Aging and Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dakota J. Batchek
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.J.B.); (D.C.G.)
| | - Curtis L. Petersen
- The Dartmouth Institute for Health Policy, Dartmouth College, Hanover, NH 03755, USA;
- Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Danae C. Gross
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.J.B.); (D.C.G.)
- Center for Aging and Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David H. Lynch
- Division of Geriatric Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; (D.H.L.); (H.B.S.)
- Center for Aging and Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hillary B. Spangler
- Division of Geriatric Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; (D.H.L.); (H.B.S.)
- Center for Aging and Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Summer B. Cook
- Department of Kinesiology, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
45
|
Rehman SU, Ali R, Zhang H, Zafar MH, Wang M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front Physiol 2023; 14:1252089. [PMID: 38046946 PMCID: PMC10691278 DOI: 10.3389/fphys.2023.1252089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Leucine, a branched-chain amino acid, is essential in regulating animal growth and development. Recent research has uncovered the mechanisms underlying Leucine's anabolic effects on muscle and other tissues, including its ability to stimulate protein synthesis by activating the mTORC1 signaling pathway. The co-ingestion of carbohydrates and essential amino acids enhances Leucine's anabolic effects. Moreover, Leucine has been shown to benefit lipid metabolism, and insulin sensitivity, making it a promising strategy for preventing and treating metabolic diseases, including type 2 diabetes and obesity. While emerging evidence indicates that epigenetic mechanisms may mediate Leucine's effects on growth and development, more research is needed to elucidate its mechanisms of action fully. Specific studies have demonstrated that Leucine promotes muscle growth and metabolic health in animals and humans, making it a promising therapeutic agent. However, it is essential to note that Leucine supplementation may cause digestive issues or interact with certain medications, and More study is required to determine definitively optimal dosages. Therefore, it is important to understand how Leucine interacts with other nutrients, dietary factors, and lifestyle habits to maximize its benefits. Overall, Leucine's importance in human nutrition is far-reaching, and its potential to prevent muscle loss and enhance athletic performance warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
46
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
47
|
Yu Y, Hao H, Kong L, Zhang J, Bai F, Guo F, Wei P, Chen R, Hu W. A metabolomics-based analysis of the metabolic pathways associated with the regulation of branched-chain amino acids in rats fed a high-fructose diet. Endocr Connect 2023; 12:e230079. [PMID: 37522853 PMCID: PMC10503218 DOI: 10.1530/ec-23-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Previous studies have shown that the elevated levels of circulating branched-chain amino acids (BCAAs) are associated with the development of insulin resistance and its complications, including obesity, type 2 diabetes, cardiovascular disease and some cancers. However, animal models that can mimic the metabolic state of chronically elevated BCAAs in humans are rare. Therefore, the aim of this study was to establish the above animal model and analyse the metabolic changes associated with high BCAA levels. Sixteen 8-week-old Sprague-Dawley (SD) rats were randomly divided into two groups and given either a high fructose diet or a normal diet. BCAA levels as well as blood glucose and lipid levels were measured at different time points of feeding. The mRNA expression levels of two key enzymes of BCAA catabolism, ACAD (acyl-CoA dehydrogenase) and BCKDH (branched-chain α-keto acid dehydrogenase), were measured by qPCR, and the protein expression levels of these two enzymes were analysed by immunohistochemistry. Finally, the metabolite expression differences between the two groups were analysed by Q300 metabolomics technology. Our study confirms that defects in the catabolic pathways of BCAAs lead to increased levels of circulating BCAAs, resulting in disorders of glucose and lipid metabolism characterized by insulin resistance by affecting metabolic pathways associated with amino acids and bile acids.
Collapse
Affiliation(s)
- Yang Yu
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Hairong Hao
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Linghui Kong
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Feng Bai
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Fei Guo
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Pan Wei
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Rui Chen
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Wen Hu
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| |
Collapse
|
48
|
Wang G, Song J, Wang C, Chen X, Suo H. Metabolomics reveals the role of Lactobacillus plantarum SHY130 in hepatic metabolic regulation in a mouse model of type 2 diabetes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6406-6415. [PMID: 37209399 DOI: 10.1002/jsfa.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Among type 2 diabetes (T2D) patients, the incidence rate of liver metabolic disorders is much higher than that in healthy subjects. It was observed in our previous research that diabetic symptoms were improved by Lactobacillus plantarum SHY130 (LPSHY130) isolated from yak yogurt in a murine model of T2D. This study sought to investigate the LPSHY130-mediated hepatic metabolic regulation in a murine model of T2D. RESULTS Treatment with LPSHY130 improved liver function and pathological damage in diabetic mice. Untargeted metabolome analysis revealed that T2D-induced changes in 11 metabolites were regulated after LPSHY130 treatment, mainly involving purine metabolism, amino acid metabolism, and choline metabolism and pantothenate and coenzyme A biosynthesis pathways. In addition, correlation analysis indicated that hepatic metabolic changes can be adjusted by the intestinal microbiota. CONCLUSION Overall, this study suggests that treatment with LPSHY130 relieves liver injury and regulates liver metabolism in a murine model of T2D, thus providing a theoretical basis for the use of probiotics as dietary supplements to regulate hepatic metabolic disorders associated with T2D. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangqi Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
49
|
Zhou YF, Hou YY, Ban Q, Zhang ML, Huang T, Ma B, Shi L, Zhang Q. Metabolomics profiling of seminal plasma in obesity-induced asthenozoospermia. Andrology 2023; 11:1303-1319. [PMID: 36841993 DOI: 10.1111/andr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Asthenozoospermia is one of the essential causes of male infertility, and its incidence is significantly higher in obese men. Due to its complex etiology and unknown pathomechanism, the diagnosis and treatment of obesity-induced asthenozoospermia is a prevalent problem in reproductive medicine. OBJECTIVE This study aims to explore major differential metabolites and metabolic pathways in seminal plasma and pathological mechanisms for obesity-induced asthenozoospermia. MATERIALS AND METHODS We performed non-target metabolomic studies on the seminal plasma of healthy men with normal semen parameters (HN group, n = 20), obese men with normal semen parameters (ON group, n = 20), and men with obesity-induced asthenozoospermia (OA group, n = 20) based on gas chromatography-mass spectrometry. Metabolic profilings and related pathway analyses were conducted to discriminate differential metabolites and metabolic pathways. RESULTS A total of 20 differential metabolites including fructose, succinic acid, aconitic acid, methylmaleic acid, glucopyranose, serine, valine, leucine, phenylalanine, glycine, glutamic acid, alanine, proline and threonine were identified in HN group and ON group; 24 differential metabolites including glucose, fructose, pyruvic acid, citric acid, succinic acid, aconitic acid, glucopyranose, glutamic acid, valine, leucine, glycine, phenylalanine, lysine, citrulline, proline and alanine were produced in OA group and ON group; and 28 differential metabolites including glucose, fructose, citric acid, succinic acid, glucopyranose, valine, glycine, serine, leucine, phenylalanine, alanine, threonine, proline, glutamic acid, citrulline, lysine and tyrosine were produced in OA group and HN group. In addition, abnormal energy metabolism including carbohydrate metabolism (TCA cycle, glycolysis/gluconeogenesis, and pyruvate metabolism) and amino acid metabolism (phenylalanine, tyrosine, and tryptophan biosynthesis, D-glutamine and D-glutamate metabolism; phenylalanine metabolism, etc.) were found in ON group and OA group. CONCLUSION Obesity could affect the metabolite composition in seminal plasma and abnormal energy metabolism in seminal plasma mainly including carbohydrate metabolism and amino acid metabolism were closely related to obesity-induced asthenozoospermia.
Collapse
Affiliation(s)
- Yan-Fen Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yu-Yang Hou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qian Ban
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Meng-Ling Zhang
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Tao Huang
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Bo Ma
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Liang Shi
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
50
|
Soleimani E, Rashnoo F, Farhangi MA, Hosseini B, Jafarzadeh F, Shakarami A, Sadabadi Y. Dietary branched-chain amino acids intake, glycemic markers, metabolic profile, and anthropometric features in a community-based sample of overweight and obese adults. BMC Endocr Disord 2023; 23:205. [PMID: 37749544 PMCID: PMC10518913 DOI: 10.1186/s12902-023-01459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Existing research provides conflicting evidence regarding the relationship between estimated branched-chain amino acid (BCAA) intake and metabolic, glycemic markers, and anthropometric characteristics. This research seeks to examine the association between estimated dietary BCAA consumption and glycemic, and metabolic markers, as well as anthropometric parameters in adults classified as overweight or obese. METHODS In this cross-sectional analysis, we gathered data from 465 overweight and obese individuals aged between 18 and 37 years. To evaluate dietary data, we employed the food frequency questionnaire, and the BCAA content in foods was determined via the United States Department of Agriculture website. We utilized ELISA kits to measure fasting blood glucose (FBS) and lipid profile markers, and additionally calculated low-density lipoprotein (LDL) and insulin sensitivity markers. We assessed sociodemographic status, physical activity (PA), and anthropometric attributes through a method recognized as both valid and reliable. For statistical analysis, we conducted analyses of covariance (ANCOVA), making adjustments for variables including sex, PA, age, energy, and body mass index (BMI). RESULTS Upon adjusting for confounders, those in the highest tertiles of BCAA intake exhibited an increase in weight, BMI, waist circumference (WC), waist-to-hip ratio (WHR), and fat-free mass (FFM). Conversely, they demonstrated reduced fat mass (FM) (%) and FM (kg) compared to their counterparts in the lowest tertiles (P < 0.05). Additionally, there was a noted association between greater estimated BCAA intake and reduced LDL levels. Nonetheless, our findings did not reveal a significant relationship between dietary BCAA and glycemic indices. CONCLUSIONS From our findings, an increased estimated intake of BCAA seems to correlate with diminished serum LDL concentrations. To gain a more comprehensive understanding of this association, it is imperative that further experimental and longitudinal studies be conducted.
Collapse
Affiliation(s)
- Ensiye Soleimani
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariborz Rashnoo
- Department of General and Minimally Invasive surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Babak Hosseini
- Department of Surgery, School of Medicine, Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faria Jafarzadeh
- Assistant Professor of Endocrinology & Metabolism, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| | - Amir Shakarami
- Department of Cardiovascular Medicine, Assistant Professor of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|