1
|
Chelebieva ES, Lavrichenko DS, Gostyukhina OL, Podolskaya MS, Kladchenko ES. Short communication: The boring sponge (Pione vastifica, Hancock, 1849) induces oxidative stress in the Pacific oyster (Magallana gigas, Thunberg, 1793). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110980. [PMID: 38636724 DOI: 10.1016/j.cbpb.2024.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Boring sponge infection affects growth, development and reduces the soft tissue weight of oysters. In this study, we investigated the effects of boring sponge on the activity of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GP)) in the mantle, and the production of reactive oxygen species (ROS) and potential genotoxicity in hemocytes of the Pacific oyster Magallana gigas. Our results showed a significant increase in ROS production and DNA damage in hemocytes. Notably, the activity of SOD, CAT, and GP in the mantle was not significantly affected by boring sponge infection. Collectively, these results suggest that sponge invasion may cause oxidative stress in Pacific oyster hemocytes through ROS overproduction.
Collapse
Affiliation(s)
- Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Olga L Gostyukhina
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Maria S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia.
| |
Collapse
|
2
|
Catanese G, Vázquez‐Luis M, Giacobbe S, García‐March JR, Zotou M, Patricia P, Papadakis O, Tena‐Medialdea J, Katsanevakis S, Grau A. Internal transcribed spacer as effective molecular marker for the detection of natural hybridization between the bivalves Pinna nobilis and Pinna rudis. Ecol Evol 2024; 14:e70227. [PMID: 39193167 PMCID: PMC11347391 DOI: 10.1002/ece3.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The Pinna nobilis, a Mediterranean mollusc, has suffered population declines due to a massive mortality event associated with various factors including the parasite Haplosporidium pinnae. Some populations show resilience, possibly due to local environmental conditions. In this study, a molecular multiplex PCR method was developed using species-specific primers targeting Internal Transcribed Spacer (ITS) regions of P. nobilis and P. rudis, allowing accurate species identification and hybrid detection. Samples from Mediterranean areas were analysed, including putative hybrids and individuals from five other bivalve species. DNA was isolated, ITS regions were amplified and sequenced, and phylogenetic analyses confirmed species differentiation and primer specificity. The multiplex-PCR successfully identified P. nobilis, P. rudis, and their hybrids based on distinct amplicon patterns. This study highlights the value of molecular tools in species conservation, especially for monitoring and managing hybridization, supporting effective biodiversity conservation strategies.
Collapse
Affiliation(s)
- Gaetano Catanese
- IRFAP LIMIA (Laboratorio de Investigaciones Marinas y Acuicultura) – Govern de les Illes BalearsPort d'AndratxBalearic IslandsSpain
| | - Maite Vázquez‐Luis
- IEO‐CSIC, Centro Oceanográfico de Baleares Instituto Español de OceanografíaPalma de MallorcaSpain
| | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, ChiBioFarAmUniversità Degli Studi di MessinaMessinaItaly
| | - José Rafael García‐March
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR‐UCV)Universidad Católica de ValenciaCalpeSpain
| | - Maria Zotou
- Department of Marine SciencesUniversity of the AegeanMytileneGreece
| | - Prado Patricia
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR‐UCV)Universidad Católica de ValenciaCalpeSpain
- Institut d'Estudis Professionals Aqüícoles i Ambientals de Catalunya (IEPAAC)TarragonaSpain
- IRTA‐La RàpitaTarragonaSpain
| | | | - José Tena‐Medialdea
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR‐UCV)Universidad Católica de ValenciaCalpeSpain
| | | | - Amalia Grau
- IRFAP LIMIA (Laboratorio de Investigaciones Marinas y Acuicultura) – Govern de les Illes BalearsPort d'AndratxBalearic IslandsSpain
| |
Collapse
|
3
|
Mansour C, Ben Taheur F, Safta Skhiri S, Jridi M, Saidane Mosbahi D, Zouari N. Probiotics from kefir: Evaluating their immunostimulant and antioxidant potential in the carpet shell clam (Ruditapesdecussatus). Microb Pathog 2024; 190:106641. [PMID: 38588925 DOI: 10.1016/j.micpath.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.
Collapse
Affiliation(s)
- Chalbia Mansour
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia; Higher Institute of Biotechnology of Beja (ISBB), University of Jandouba, Beja, 9000, Tunisia
| | - Fadia Ben Taheur
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia; Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, 4119, Tunisia
| | - Sihem Safta Skhiri
- ABCDF Laboratory, Faculty of Dental Medicine, University of Monastir, Monastir, 5000, Tunisia
| | - Mourad Jridi
- Higher Institute of Biotechnology of Beja (ISBB), University of Jandouba, Beja, 9000, Tunisia
| | - Dalila Saidane Mosbahi
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, 4119, Tunisia.
| |
Collapse
|
4
|
Azizan A, Venter L, Zhang J, Young T, Ericson JA, Delorme NJ, Ragg NLC, Alfaro AC. Interactive effects of elevated temperature and Photobacterium swingsii infection on the survival and immune response of marine mussels (Perna canaliculus): A summer mortality scenario. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106392. [PMID: 38364448 DOI: 10.1016/j.marenvres.2024.106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
The New Zealand Greenshell™ mussel (Perna canaliculus) is an economically important aquaculture species. Prolonged increases in seawater temperature above mussel thermotolerance ranges pose a significant threat to mussel survival and health, potentially increasing susceptibility to bacterial infections. Using challenge experiments, this study examined the combined effects of increased seawater temperature and bacterial (Photobacterium swingsii) infection on animal survival, haemocyte and biochemical responses of adult mussels. Mussels maintained at three temperatures (16, 20 and 24 °C) for seven days were either not injected (control), injected with sterile marine broth (injection control) or P. swingsii (challenged with medium and high doses) and monitored daily for five days. Haemolymph and tissue samples were collected at 24, 48, 72, 96, 120 h post-challenge and analysed to quantify bacterial colonies, haemocyte responses and biochemical responses. Mussels infected with P. swingsii exhibited mortalities at 20 and 24 °C, likely due to a compromised immune system, but no mortalities were observed when temperature was the only stressor. Bacterial colony counts in haemolymph decreased over time, suggesting bacterial clearance followed by the activation of immune signalling pathways. Total haemocyte counts and viability data supports haemocyte defence functions being stimulated in the presence of high pathogen loads at 24 °C. In the gill tissue, oxidative stress responses, measured as total antioxidant capacity and malondialdehyde (MDA) levels, were higher in infected mussels (compared to the controls) after 24h and 120h post-challenge at the lowest (16 °C) and highest temperatures (24 °C), indicating the presence of oxidative stress due to temperature and pathogen stressors. Overall, this work confirms that Photobacterium swingsii is pathogenic to P. canaliculus and indicates that mussels may be more vulnerable to bacterial pathogens under conditions of elevated temperature, such as those predicted under future climate change scenarios.
Collapse
Affiliation(s)
- Awanis Azizan
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jingjing Zhang
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; Centre for Biomedical & Chemical Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | | | | | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| |
Collapse
|
5
|
Donato G, Lunetta A, Spinelli A, Catanese G, Giacobbe S. Sanctuaries are not inviolable: Haplosporidium pinnae as responsible for the collapse of the Pinna nobilis population in Lake Faro (central Mediterranean). J Invertebr Pathol 2023; 201:108014. [PMID: 37918657 DOI: 10.1016/j.jip.2023.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The rapid spread of the protozoan Haplosporidium pinnae is having a strong negative effect on Pinna nobilis populations. A case study on a residual population in Lake Faro (Sicily, Central Mediterranean), whose long-term monitoring has revealed a dramatic decline following the 2018-2020 mass mortality event, is presented. In the framework of such monitoring, we performed tissue sampling on nine living P. nobilis, detecting the pathogen in seven of them. In contrast, other pathogens associated with P. nobilis disease in other areas, i.e., Mycobacterium spp. and Vibrio mediterranei, were not recorded. The surviving individuals (approximately twenty) showed that brackish areas only weakly mitigate the effects of H. pinnae disease and might not be resolutive. Nevertheless, the results show that Lake Faro may constitute one of the last Mediterranean P. nobilis sanctuaries.
Collapse
Affiliation(s)
- Gemma Donato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia, 57, 95129, Catania, Italy
| | - Alessia Lunetta
- Institute for Biological Resources and Marine Biotechnologies, Section of Messina, National Research Council (CNR-IRBIM), Spianata S. Rineri 86, 98122 Messina, Italy.
| | - Andrea Spinelli
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Oceanogràfic, Ciudad de las Artes y las Ciencias, Carrer d'Eduardo Primo Yúfera, 1, 46013 Valencia, Spain
| | - Gaetano Catanese
- Laboratorio de Investigaciones Marinas y Acuicultura (LIMIA -IRFAP) - Govern de les Illes Balears, Av. Ing. G. Roca, 69. 07157 Port d'Andratx, Balearic Islands, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua - Universidad de las Islas Baleares (INAGEA-UIB), Ctra. De Valldemossa, km 7.5., Palma, Spain
| | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, ChiBioFarAm, Università Degli Studi di Messina, V.le Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
6
|
Carella F, Palić D, Šarić T, Župan I, Gorgoglione B, Prado P, Andree KB, Giantsis IA, Michaelidis B, Lattos A, Theodorou JA, Luis Barja Perez J, Rodriguez S, Scarpa F, Casu M, Antuofermo E, Sanna D, Otranto D, Panarese R, Iaria C, Marino F, Vico GD. Multipathogen infections and multifactorial pathogenesis involved in noble pen shell ( Pinna nobilis) mass mortality events: Background and current pathologic approaches. Vet Pathol 2023; 60:560-577. [PMID: 37458195 DOI: 10.1177/03009858231186737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Disease outbreaks in several ecologically or commercially important invertebrate marine species have been reported in recent years all over the world. Mass mortality events (MMEs) have affected the noble pen shell (Pinna nobilis), causing its near extinction. Our knowledge of the dynamics of diseases affecting this species is still unclear. Early studies investigating the causative etiological agent focused on a novel protozoan parasite, Haplosporidium pinnae, although further investigations suggested that concurrent polymicrobial infections could have been pivotal in some MMEs, even in the absence of H. pinnae. Indeed, moribund specimens collected during MMEs in Italy, Greece, and Spain demonstrated the presence of a bacteria from within the Mycobacterium simiae complex and, in some cases, species similar to Vibrio mediterranei. The diagnostic processes used for investigation of MMEs are still not standardized and require the expertise of veterinary and para-veterinary pathologists, who could simultaneously evaluate a variety of factors, from clinical signs to environmental conditions. Here, we review the available literature on mortality events in P. nobilis and discuss approaches to define MMEs in P. nobilis. The proposed consensus approach should form the basis for establishing a foundation for future studies aimed at preserving populations in the wild.
Collapse
Affiliation(s)
| | - Dušan Palić
- Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | - Sergio Rodriguez
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | - Domenico Otranto
- University of Bari, Bari, Italy
- Bu-Ali Sina University, Hamedan, Iran
| | | | | | | | | |
Collapse
|
7
|
Coupé S, Giantsis IA, Vázquez Luis M, Scarpa F, Foulquié M, Prévot J, Casu M, Lattos A, Michaelidis B, Sanna D, García‐March JR, Tena‐Medialdea J, Vicente N, Bunet R. The characterization of toll-like receptor repertoire in Pinna nobilis after mass mortality events suggests adaptive introgression. Ecol Evol 2023; 13:e10383. [PMID: 37546570 PMCID: PMC10401143 DOI: 10.1002/ece3.10383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The fan mussel Pinna nobilis is currently on the brink of extinction due to a multifactorial disease mainly caused to the highly pathogenic parasite Haplosporidium pinnae, meaning that the selection pressure outweighs the adaptive potential of the species. Hopefully, rare individuals have been observed somehow resistant to the parasite, stretching the need to identify the traits underlying this better fitness. Among the candidate to explore at first intention are fast-evolving immune genes, of which toll-like receptor (TLR). In this study, we examined the genetic diversity at 14 TLR loci across P. nobilis, Pinna rudis and P. nobilis × P. rudis hybrid genomes, collected at four physically distant regions, that were found to be either resistant or sensitive to the parasite H. pinnae. We report a high genetic diversity, mainly observed at cell surface TLRs compared with that of endosomal TLRs. However, the endosomal TLR-7 exhibited unexpected level of diversity and haplotype phylogeny. The lack of population structure, associated with a high genetic diversity and elevated dN/dS ratio, was interpreted as balancing selection, though both directional and purifying selection were detected. Interestingly, roughly 40% of the P. nobilis identified as resistant to H. pinnae were introgressed with P. rudis TLR. Specifically, they all carried a TLR-7 of P. rudis origin, whereas sensitive P. nobilis were not introgressed, at least at TLR loci. Small contributions of TLR-6 and TLR-4 single-nucleotide polymorphisms to the clustering of resistant and susceptible individuals could be detected, but their specific role in resistance remains highly speculative. This study provides new information on the diversity of TLR genes within the P. nobilis species after MME and additional insights into adaptation to H. pinnae that should contribute to the conservation of this Mediterranean endemic species.
Collapse
Affiliation(s)
- Stéphane Coupé
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIOMarseilleFrance
| | | | - Maite Vázquez Luis
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de BalearesPalma de MallorcaSpain
| | - Fabio Scarpa
- Department of Biomedical SciencesFabio Scarpa, Daria Sanna: University of SassariSassariItaly
| | - Mathieu Foulquié
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIOMarseilleFrance
- Institut océanographique Paul RicardIle des Embiez, VarFrance
| | | | - Marco Casu
- Department of Veterinary MedicineUniversity of SassariSassariItaly
| | - Athanasios Lattos
- Faculty of Agricultural SciencesUniversity of Western MacedoniaKozaniGreece
| | - Basile Michaelidis
- Faculty of Agricultural SciencesUniversity of Western MacedoniaKozaniGreece
| | - Daria Sanna
- Department of Biomedical SciencesFabio Scarpa, Daria Sanna: University of SassariSassariItaly
| | - José Rafa García‐March
- IMEDMAR‐UCV, Institute of Environment and Marine Science ResearchUniversidad Católica de Valencia SVMCalpe, AlicanteSpain
| | - José Tena‐Medialdea
- IMEDMAR‐UCV, Institute of Environment and Marine Science ResearchUniversidad Católica de Valencia SVMCalpe, AlicanteSpain
| | - Nardo Vicente
- Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), Aix‐Marseille Université, CNRS, IRD, Avignon UniversitéAvignonFrance
| | - Robert Bunet
- Institut océanographique Paul RicardIle des Embiez, VarFrance
| |
Collapse
|
8
|
Lattos A, Papadopoulos DK, Giantsis IA, Feidantsis K, Georgoulis I, Karagiannis D, Carella F, Michaelidis B. Investigation of the highly endangered Pinna nobilis' mass mortalities: Seasonal and temperature patterns of health status, antioxidant and heat stress responses. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105977. [PMID: 37043840 DOI: 10.1016/j.marenvres.2023.105977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/11/2023]
Abstract
Recently, P. nobilis populations have suffered a tremendous reduction, with pathogens potentially playing a crucial role. Considering its highly endangered status, mechanisms leading to mass mortalities were examined in one or multiple pathogens infected populations. Thus, seasonal antioxidant enzymatic activities, hsp70 and catalase mRNA levels, were investigated in two different Greek populations, during mass mortality events in summer of 2020. Samples were collected from Fthiotis and Lesvos during February (ToC 14 ± 1.2 and 15 ± 1 respectively), April (ToC 18 ± 1.2 and 17 ± 1.3 respectively), and June (ToC 24.5 ± 1.5 and 21.5 ± 1.5 respectively) 2020. In July of the same year (ToC 26.5 ± 1.7 in Fthiotis and 24.5 ± 1.7 in Lesvos), no live specimens were found. All biochemical parameters and phylogenetic analysis suggest that pathogen infection increases P. nobilis sensitivity to water temperature, subsequently leading to mass mortality. The latter was obvious in Fthiotis individuals, in which Haplosporidium pinnae was also observed with Mycobacterium spp., compared to Lesvos individuals.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios K Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100, Florina, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios Karagiannis
- National Reference Laboratory for Mollusc Diseases, Ministry of Rural Development and Food, 7 Frixou Street, GR-54627, Thessaloniki, Greece
| | - Francesca Carella
- University of Naples Federico II, Department of Biology, Complesso di MSA, 80126, Naples, Italy
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
9
|
Moro-Martínez I, Vázquez-Luis M, García-March JR, Prado P, Mičić M, Catanese G. Haplosporidium pinnae Parasite Detection in Seawater Samples. Microorganisms 2023; 11:1146. [PMID: 37317120 PMCID: PMC10220642 DOI: 10.3390/microorganisms11051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
In this study, we investigated the presence of the parasite Haplosporidium pinnae, which is a pathogen for the bivalve Pinna nobilis, in water samples from different environments. Fifteen mantle samples of P. nobilis infected by H. pinnae were used to characterize the ribosomal unit of this parasite. The obtained sequences were employed to develop a method for eDNA detection of H. pinnae. We collected 56 water samples (from aquaria, open sea and sanctuaries) for testing the methodology. In this work, we developed three different PCRs generating amplicons of different lengths to determine the level of degradation of the DNA, since the status of H. pinnae in water and, therefore, its infectious capacity are unknown. The results showed the ability of the method to detect H. pinnae in sea waters from different areas persistent in the environment but with different degrees of DNA fragmentation. This developed method offers a new tool for preventive analysis for monitoring areas and to better understand the life cycle and the spread of this parasite.
Collapse
Affiliation(s)
- Irene Moro-Martínez
- LIMIA-IRFAP Laboratorio de Investigaciones Marinas y Acuicultura—Govern de les Illes Balears, 07157 Port d’Andratx, Spain;
| | - Maite Vázquez-Luis
- IEO-CSIC, Centro Oceanográfico de Baleares Instituto Español de Oceanografía, 07010 Palma de Mallorca, Spain;
| | - José Rafael García-March
- IMEDMAR-UCV Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, 03710 Calpe, Spain;
| | | | - Milena Mičić
- Aquarium Pula d.o.o., Ulica Verudella 33, 52100 Pula, Croatia;
| | - Gaetano Catanese
- LIMIA-IRFAP Laboratorio de Investigaciones Marinas y Acuicultura—Govern de les Illes Balears, 07157 Port d’Andratx, Spain;
- INAGEA (UIB)-Instituto de Investigaciones Agroambientales y de Economía del Agua, Universidad de las Islas Baleares, Carretera de Valldemossa, km 7.5, 07122 Palma, Spain
| |
Collapse
|
10
|
Lattos A, Feidantsis K, Giantsis IA, Theodorou JA, Michaelidis B. Seasonality in Synergism with Multi-Pathogen Presence Leads to Mass Mortalities of the Highly Endangered Pinna nobilis in Greek Coastlines: A Pathophysiological Approach. Microorganisms 2023; 11:1117. [PMID: 37317091 DOI: 10.3390/microorganisms11051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 06/16/2023] Open
Abstract
Mortalities of Pinna nobilis populations set at risk the survival of the species from many Mediterranean coastline habitats. In many cases, both Haplosporidium pinnae and Mycobacterium spp. are implicated in mass mortalities of P. nobilis populations, leading the species into extinction. In the context of the importance of these pathogens' role in P. nobilis mortalities, the present study investigated two Greek populations of the species hosting different microbial loads (one only H. pinnae and the second both pathogens) by the means of pathophysiological markers. More specifically, the populations from Kalloni Gulf (Lesvos Island) and from Maliakos Gulf (Fthiotis), seasonally sampled, were chosen based on the host pathogens in order to investigate physiological and immunological biomarkers to assess those pathogens' roles. In order to determine if the haplosporidian parasite possesses a major role in the mortalities or if both pathogens are involved in these phenomena, a variety of biomarkers, including apoptosis, autophagy, inflammation and heat shock response were applied. The results indicated a decreased physiological performance of individuals hosting both pathogens in comparison with those hosting only H. pinnae. Our findings provide evidence for the synergistic role of those pathogens in the mortality events, which is also enhanced by the influence of seasonality.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100 Florina, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-23200 Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Salis P, Peyran C, Morage T, de Bernard S, Nourikyan J, Coupé S, Bunet R, Planes S. RNA-Seq comparative study reveals molecular effectors linked to the resistance of Pinna nobilis to Haplosporidium pinnae parasite. Sci Rep 2022; 12:21229. [PMID: 36482098 PMCID: PMC9731998 DOI: 10.1038/s41598-022-25555-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
With the intensification of maritime traffic, recently emerged infectious diseases have become major drivers in the decline and extinction of species. Since 2016, mass mortality events have decimated the endemic Mediterranean Sea bivalve Pinna nobilis, affecting ca. 100% of individuals. These events have largely been driven by Haplosporidium pinnae's infection, an invasive species which was likely introduced by shipping. While monitoring wild populations of P. nobilis, we observed individuals that survived such a mass mortality event during the summer of 2018 (France). We considered these individuals resistant, as they did not show any symptoms of the disease, while the rest of the population in the area was devastated. Furthermore, the parasite was not detected when we conducted a PCR amplification of a species-specific fragment of the small subunit ribosomal DNA. In parallel, the transcriptomic analysis showed evidence of some parasite RNA indicating that the resistant individuals had been exposed to the parasite without proliferating. To understand the underlying mechanisms of resistance in these individuals, we compared their gene expression with that of susceptible individuals. We performed de novo transcriptome assembly and annotated the expressed genes. A comparison of the transcriptomes in resistant and susceptible individuals highlighted a gene expression signature of the resistant phenotype. We found significant differential expressions of genes involved in immunity and cell architecture. This data provides the first insights into how individuals escape the pathogenicity associated with infection.
Collapse
Affiliation(s)
- Pauline Salis
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, 66860 Perpignan, France
| | - Claire Peyran
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, 66860 Perpignan, France
| | - Titouan Morage
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, 66860 Perpignan, France
| | | | | | - Stéphane Coupé
- grid.12611.350000000088437055CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, University of Toulon, 83130 La Garde, France
| | - Robert Bunet
- Institut Océanographique Paul Ricard, Ile des Embiez, 83140 Six-Fours-Les-Plages, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, 66860 Perpignan, France ,grid.452595.aLaboratoire d’Excellence “CORAIL”, Perpignan, France
| |
Collapse
|
12
|
Giorgio Tiscar P, Rubino F, Paoletti B, Di Francesco CE, Mosca F, Della Salda L, Hattab J, Smoglica C, Morelli S, Fanelli G. New insights about Haplosporidium pinnae and the pen shell Pinna nobilis mass mortality events. J Invertebr Pathol 2022; 190:107735. [PMID: 35247465 DOI: 10.1016/j.jip.2022.107735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/29/2021] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Since early autumn 2016, Mass Mortality Events (MME) have drastically impacted the population of the fan mussel Pinna nobilis in the Mediterranean Sea. Haplosporidium pinnae, a newly described Haplosporidian species, has been considered the causative agent of the mortality outbreaks in association to opportunistic bacterial pathogens. In the present study, we first reported a cytological description of H. pinnae in moribund specimens of P. nobilis which were collected in the Gulf of Taranto (Ionian Sea, Italy) during summer 2018. Different life-cycle stages of the parasite, including uni- and binucleate cells, small plasmodia, big multinucleate plasmodia and sporocysts with spores, were detected in all the examined animals and most of the parasite cells were present in gills, mantle and digestive gland, while the spores were found only in the latter organ. Histology and molecular biology were also performed, confirming the nature of the infectious agent, as already reported in the area. Additionally, molecular study revealed the presence of the Mycobacterium ulcerans - M. marinum complex but no evident macroscopical or microscopical lesions, just as no bacteria referred to Mycobacterium were observed. In conclusion, the present study aimed to provide further contributions to the understanding of the mortality of P. nobilis, pointing on the role of the cytological method of investigation both for diagnostic and epidemiological purposes, and discussing about the current epidemic situation in the Adriatic sea.
Collapse
Affiliation(s)
| | | | - Barbara Paoletti
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | | | - Francesco Mosca
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Leonardo Della Salda
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Jasmine Hattab
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Camilla Smoglica
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | | |
Collapse
|
13
|
Lattos A, Feidantsis K, Georgoulis I, Giantsis IA, Karagiannis D, Theodorou JA, Staikou A, Michaelidis B. Pathophysiological Responses of Pinna nobilis Individuals Enlightens the Etiology of Mass Mortality Situation in the Mediterranean Populations. Cells 2021; 10:2838. [PMID: 34831063 PMCID: PMC8616554 DOI: 10.3390/cells10112838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Due to the rapid decrease of Pinna nobilis populations during the previous decades, this bivalve species, endemic in the Mediterranean Sea, is characterized as 'critically endangered'. In addition to human pressures, various pathogen infections have resulted in extended reduction, even population extinction. While Haplosporidium pinnae is characterized as one of the major causative agents, mass mortalities have also been attributed to Mycobacterium sp. and Vibrio spp. Due to limited knowledge concerning the physiological response of infected P. nobilis specimens against various pathogens, this study's aim was to investigate to pathophysiological response of P. nobilis individuals, originating from mortality events in the Thermaikos Gulf and Lesvos and Limnos islands (Greece), and their correlation to different potential pathogens detected in the diseased animals. In isolated tissues, several cellular stress indicators of the heat shock and immune response, apoptosis and autophagy, were examined. Despite the complexity and limitations in the study of P. nobilis mortality events, the present investigation demonstrates the cumulative negative effect of co-infection additionally with H. pinnae in comparison to the non-presence of haplosporidian parasite. In addition, impacts of global climate change affecting physiological performance and immune responses result in more vulnerable populations in infectious diseases, a phenomenon which may intensify in the future.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.L.); (K.F.); (I.G.)
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.L.); (K.F.); (I.G.)
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.L.); (K.F.); (I.G.)
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Dimitrios Karagiannis
- National Reference Laboratory for Mollusc Diseases, Ministry of Rural Development and Food, 54627 Thessaloniki, Greece;
| | - John A. Theodorou
- Department of Animal Production Fisheries & Aquaculture, University of Patras, 26504 Mesolonghi, Greece;
| | - Alexandra Staikou
- Laboratory of Zoology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.L.); (K.F.); (I.G.)
| |
Collapse
|
14
|
Noble Pen Shell (Pinna nobilis) Mortalities along the Eastern Adriatic Coast with a Study of the Spreading Velocity. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9070764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Noble pen shells (Pinna nobilis) along the Eastern Adriatic coast were affected by mass mortalities similarly to the populations across the Mediterranean basin. Samples of live animals and organs originating from sites on Mljet Island on the south and the Istrian peninsula on the north of the Croatian Adriatic coast were analyzed using histology and molecular techniques to detect the presence of the previously described Haplosporidium pinnae and Mycobacterium spp. as possible causes of these mortalities. To obtain more information on the pattern of the spread of the mortalities, a study was undertaken in Mljet National Park, an area with a dense population of noble pen shells. The results of the diagnostic analysis and the velocity of the spread of the mortalities showed a significant correlation between increases in water temperature and the onset of mortality. Moderate to heavy lesions of the digestive glands were observed in specimens infected with H. pinnae. A phylogenetic analysis of the detected Haplosporidium pinnae showed an identity of 99.7 to 99.8% with isolates from other Mediterranean areas, while isolated Mycobacterium spp. showed a higher heterogeneity among isolates across the Mediterranean. The presence of Mycobacterium spp. in clinically healthy animals a few months before the onset of mortality imposes the need for further clarification of its role in mortality events.
Collapse
|
15
|
Lattos A, Bitchava K, Giantsis IA, Theodorou JA, Batargias C, Michaelidis B. The Implication of Vibrio Bacteria in the Winter Mortalities of the Critically Endangered Pinna nobilis. Microorganisms 2021; 9:922. [PMID: 33925782 PMCID: PMC8145015 DOI: 10.3390/microorganisms9050922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/25/2023] Open
Abstract
Pinna nobilis populations, constituting the largest bivalve mollusk endemic to the Mediterranean, is characterized as critically endangered, threatened by extinction. Among the various factors proposed as etiological agents are the Haplosporidium pinnae and Mycobacterium sp. parasites. Nevertheless, devastation of the fan mussel populations is still far from clear. The current work is undertaken under a broader study aiming to evaluate the health status of Pinna nobilis population in Aegean Sea, after the mass mortalities that occurred in 2019. A significant objective was also (a) the investigation of the etiological agents of small-scale winter mortalities in the remaining populations after the devastating results of Haplosporidium pinnae and Mycobacterium sp. infections, as well as (b) the examination of the susceptibility of the identified bacterial strains in antibiotics for future laboratory experiments. Microbiological assays were used in order to detect the presence of potential bacterial pathogens in moribund animals in combination with molecular tools for their identification. Our results provide evidence that Vibrio bacterial species are directly implicated in the winter mortalities, particularly in cases where the haplosporidian parasite was absent. Additionally, this is the first report of Vibrio mediterranei and V. splendidus hosted by any bivalve on the Greek coastline.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Konstantina Bitchava
- Laboratory of Fish, Shellfish & Crustacean Diseases, Veterinary Research Institute of Thessaloniki ELGO-DEMETER, 570 01 Thessaloniki, Greece;
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 531 00 Florina, Greece
| | - John A. Theodorou
- Department of Animal Production Fisheries & Aquaculture, University of Patras, 232 00 Mesolonghi, Greece; (J.A.T.); (C.B.)
| | - Costas Batargias
- Department of Animal Production Fisheries & Aquaculture, University of Patras, 232 00 Mesolonghi, Greece; (J.A.T.); (C.B.)
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
16
|
Künili İE, Ertürk Gürkan S, Aksu A, Turgay E, Çakir F, Gürkan M, Altinağaç U. Mass mortality in endangered fan mussels Pinna nobilis (Linnaeus 1758) caused by co-infection of Haplosporidium pinnae and multiple Vibrio infection in Çanakkale Strait, Turkey. Biomarkers 2021; 26:450-461. [PMID: 33899623 DOI: 10.1080/1354750x.2021.1910344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Pinna nobilis (fan mussel) is one of the most important endemic bivalve molluscs in the Mediterranean and mass mortality events were observed in these mussels in recent years. In this study, we report mass mortalities caused by Haplosporidium pinnae, which has been spreading in the Mediterranean for 3 years, and reached the Çanakkale Strait, which is the entrance of the Marmara and the Black Sea. MATERIAL AND METHODS Field observations during sampling and subsequent histopathological, biochemical, genetic, and microbiological analyses were carried out. RESULTS These analyses showed that H. pinnae infection spread among the natural beds of P. nobilis, causing severe tissue damage and oxidative stress. Our phylogenetic analyses suggested that the parasite spread through the Mediterranean much faster than thought. The results showed that vibriosis originating from Vibrio coralliilyticus, Vibrio tubiashii, Vibrio mediterranei, and Vibrio hispanicus, acted together with H. pinnae in infected individuals and caused death. CONCLUSION It is highly probable that the spread of H. pinnae to the Sea of Marmara and the Black Sea may occur earlier than expected, and it was concluded that mass deaths were caused by co-infection with H. pinnae and a geographically specific marine pathogen that can infect P. nobilis populations.
Collapse
Affiliation(s)
- İbrahim Ender Künili
- Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Selin Ertürk Gürkan
- Faculty of Arts and Sciences, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ata Aksu
- Gedik Vocational School, Department of Motor Vehicles and Transportation Technologies, Underwater Technology, İstanbul Gedik University, Istanbul, Turkey
| | - Emre Turgay
- Faculty of Aquatic Sciences, Department of Aquaculture and Fish Diseases, İstanbul University, Istanbul, Turkey
| | - Fikret Çakir
- Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mert Gürkan
- Faculty of Arts and Sciences, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Uğur Altinağaç
- Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|