1
|
Ignacio-Mejía I, Contreras-García IJ, Pichardo-Macías LA, García-Cruz ME, Ramírez Mendiola BA, Bandala C, Medina-Campos ON, Pedraza-Chaverri J, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG. Effect of Levetiracetam on Oxidant-Antioxidant Activity during Long-Term Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2024; 25:9313. [PMID: 39273262 PMCID: PMC11395009 DOI: 10.3390/ijms25179313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Collapse
Affiliation(s)
- Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
| | - Itzel Jatziri Contreras-García
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico
| | - Mercedes Edna García-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | | - Cindy Bandala
- Laboratorio de Neurociencia Traslacional Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11410, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | |
Collapse
|
2
|
Ishii T, Kaya M, Muroi Y. Oral Administration of Probiotic Bifidobacterium breve Ameliorates Tonic-Clonic Seizure in a Pentylenetetrazole-Induced Kindling Mouse Model via Integrin-Linked Kinase Signaling. Int J Mol Sci 2024; 25:9259. [PMID: 39273208 PMCID: PMC11395544 DOI: 10.3390/ijms25179259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures that affects over 70 million people worldwide. Although many antiepileptic drugs that block seizures are available, they have little effect on preventing and curing epilepsy, and their side effects sometimes lead to serious morbidity. Therefore, prophylactic agents with anticonvulsant properties and no adverse effects need to be identified. Recent studies on probiotic administration have reported a variety of beneficial effects on the central nervous system via the microbiota-gut-brain axis. In this study, we investigated the effects of the oral administration of Bifidobacterium breve strain A1 [MCC1274] (B. breve A1) on tonic-clonic seizure in a pentylenetetrazole (PTZ)-induced kindling mouse (KD mouse) model. We found that the oral administration of B. breve A1 every other day for 15 days significantly reduced the seizure score, which gradually increased with repetitive injections of PTZ in KD mice. The administration of B. breve A1, but not saline, to KD mice significantly increased the level of Akt Ser473 phosphorylation (p-Akt) in the hippocampus; this increase was maintained for a minimum of 24 h after PTZ administration. Treatment of B. breve A1-administered KD mice with the selective inhibitor of integrin-linked kinase (ILK) Cpd22 significantly increased the seizure score and blocked the antiepileptic effect of B. breve A1. Moreover, Cpd22 blocked the B. breve A1-induced increase in hippocampal p-Akt levels. These results suggest that the ILK-induced phosphorylation of Akt Ser473 in the hippocampus might be involved in the antiepileptic effect of B. breve A1.
Collapse
Affiliation(s)
- Toshiaki Ishii
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Motohiro Kaya
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Yoshikage Muroi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
3
|
Huang W, Zhang H, Li X, Zhang J, Chen J, Chen Z, Ni G. Prognostic factors underlying the development of drug-resistant epilepsy in patients with autoimmune encephalitis: a retrospective cohort study. J Neurol 2024; 271:5046-5054. [PMID: 38801431 DOI: 10.1007/s00415-024-12432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE The aim of our study was to analyze the characteristics of patients with autoimmune encephalitis (AE) to identify prognostic factors associated with the development of drug-resistant epilepsy (DRE). METHODS In this retrospective observational cohort study, we enrolled adult patients with AE between January 2016 and December 2022. The patients were categorized into two groups based on the presence or absence of DRE at the last follow-up. The predictors of the development of DRE were investigated using logistic regression analysis. RESULTS Among 121 AE patients, 75.2% (n = 91) experienced acute symptomatic seizures, and 29.8% (n = 36) developed DRE at the last follow-up. On multivariate regression analysis, the factors associated with DRE were antibody negativity (OR 3.628, 95% CI 1.092-12.050, p = 0.035), focal seizure (OR 6.431, 95% CI 1.838-22.508, p = 0.004), refractory status epilepticus (OR 8.802, 95% CI 2.445-31.689, p = 0.001), interictal epileptiform discharges on EEG (OR 6.773, 95% CI 2.206-20.790, p = 0.001), and T2/FLAIR hyperintensity in the limbic system (OR 3.286, 95% CI 1.060-10.183, p = 0.039). CONCLUSIONS In this study, the risk of developing DRE was mainly observed among AE patients who were negative for antibodies or had focal seizures, refractory status epilepticus, interictal epileptiform discharges on EEG, and T2/FLAIR hyperintensity in the limbic system.
Collapse
Affiliation(s)
- Wenyao Huang
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Heyu Zhang
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Xi Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Jinming Zhang
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Jingjing Chen
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Ziyi Chen
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China.
| | - Guanzhong Ni
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Carrese AM, Vitale R, Turco M, Masola V, Aniello F, Vitale E, Donizetti A. Sustained Depolarization Induces Gene Expression Pattern Changes Related to Synaptic Plasticity in a Human Cholinergic Cellular Model. Mol Neurobiol 2024:10.1007/s12035-024-04262-w. [PMID: 38941065 DOI: 10.1007/s12035-024-04262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/25/2024] [Indexed: 06/29/2024]
Abstract
Neuronal gene expression in the brain dynamically responds to synaptic activity. The interplay among synaptic activity, gene expression, and synaptic plasticity has crucial implications for understanding the pathophysiology of diseases such as Alzheimer's disease and epilepsy. These diseases are marked by synaptic dysfunction that affects the expression patterns of neuroprotective genes that are incompletely understood. In our study, we developed a cellular model of synaptic activity using human cholinergic neurons derived from SH-SY5Y cell differentiation. Depolarization induction modulates the expression of neurotrophic genes and synaptic markers, indicating a potential role in synaptic plasticity regulation. This hypothesis is further supported by the induction kinetics of various long non-coding RNAs, including primate-specific ones. Our experimental model showcases the utility of SH-SY5Y cells in elucidating the molecular mechanisms underlying synaptic plasticity in human cellular systems.
Collapse
Affiliation(s)
- Anna Maria Carrese
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Rossella Vitale
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Manuela Turco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, 80131, Italy
| | - Valeria Masola
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Emilia Vitale
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, 80131, Italy.
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy.
| |
Collapse
|
5
|
Yazarlou F, Lipovich L, Loeb JA. Emerging roles of long non-coding RNAs in human epilepsy. Epilepsia 2024; 65:1491-1511. [PMID: 38687769 PMCID: PMC11166529 DOI: 10.1111/epi.17937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, U.S.A
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People’s Republic of China
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai District, 325060, Wenzhou, Zhejiang, People’s Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, Michigan 48201, U.S.A
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- University of Illinois NeuroRepository, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| |
Collapse
|
6
|
Ferro A, Arshad A, Boyd L, Stanley T, Berisha A, Vrudhula U, Gomez AM, Borniger JC, Cheadle L. The cytokine receptor Fn14 is a molecular brake on neuronal activity that mediates circadian function in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587786. [PMID: 38617238 PMCID: PMC11014623 DOI: 10.1101/2024.04.02.587786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
To survive, organisms must adapt to a staggering diversity of environmental signals, ranging from sensory information to pathogenic infection, across the lifespan. At the same time, organisms intrinsically generate biological oscillations, such as circadian rhythms, without input from the environment. While the nervous system is well-suited to integrate extrinsic and intrinsic cues, how the brain balances these influences to shape biological function system-wide is not well understood at the molecular level. Here, we demonstrate that the cytokine receptor Fn14, previously identified as a mediator of sensory experience-dependent synaptic refinement during brain development, regulates neuronal activity and function in adult mice in a time-of-day-dependent manner. We show that a subset of excitatory pyramidal (PYR) neurons in the CA1 subregion of the hippocampus increase Fn14 expression when neuronal activity is heightened. Once expressed, Fn14 constrains the activity of these same PYR neurons, suggesting that Fn14 operates as a molecular brake on neuronal activity. Strikingly, differences in PYR neuron activity between mice lacking or expressing Fn14 were most robust at daily transitions between light and dark, and genetic ablation of Fn14 caused aberrations in circadian rhythms, sleep-wake states, and sensory-cued and spatial memory. At the cellular level, microglia contacted fewer, but larger, excitatory synapses in CA1 in the absence of Fn14, suggesting that these brain-resident immune cells may dampen neuronal activity by modifying synaptic inputs onto PYR neurons. Finally, mice lacking Fn14 exhibited heightened susceptibility to chemically induced seizures, implicating Fn14 in disorders characterized by hyperexcitation, such as epilepsy. Altogether, these findings reveal that cytokine receptors that mediates inflammation in the periphery, such as Fn14, can also play major roles in healthy neurological function in the adult brain downstream of both extrinsic and intrinsic cues.
Collapse
Affiliation(s)
- Austin Ferro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Anosha Arshad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
- Department of Neurobiology and Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Leah Boyd
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Tess Stanley
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Uma Vrudhula
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Adrian M. Gomez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | | | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11740, USA
| |
Collapse
|
7
|
Anderson DN, Charlebois CM, Smith EH, Davis TS, Peters AY, Newman BJ, Arain AM, Wilcox KS, Butson CR, Rolston JD. Closed-loop stimulation in periods with less epileptiform activity drives improved epilepsy outcomes. Brain 2024; 147:521-531. [PMID: 37796038 PMCID: PMC10834245 DOI: 10.1093/brain/awad343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
In patients with drug-resistant epilepsy, electrical stimulation of the brain in response to epileptiform activity can make seizures less frequent and debilitating. This therapy, known as closed-loop responsive neurostimulation (RNS), aims to directly halt seizure activity via targeted stimulation of a burgeoning seizure. Rather than immediately stopping seizures as they start, many RNS implants produce slower, long-lasting changes in brain dynamics that better predict clinical outcomes. Here we hypothesize that stimulation during brain states with less epileptiform activity drives long-term changes that restore healthy brain networks. To test this, we quantified stimulation episodes during low- and high-risk brain states-that is, stimulation during periods with a lower or higher risk of generating epileptiform activity-in a cohort of 40 patients treated with RNS. More frequent stimulation in tonic low-risk states and out of rhythmic high-risk states predicted seizure reduction. Additionally, stimulation events were more likely to be phase-locked to prolonged episodes of abnormal activity for intermediate and poor responders when compared to super-responders, consistent with the hypothesis that improved outcomes are driven by stimulation during low-risk states. These results support the hypothesis that stimulation during low-risk periods might underlie the mechanisms of RNS, suggesting a relationship between temporal patterns of neuromodulation and plasticity that facilitates long-term seizure reduction.
Collapse
Affiliation(s)
- Daria Nesterovich Anderson
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Chantel M Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Tyler S Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Angela Y Peters
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Blake J Newman
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir M Arain
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32608, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - John D Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Bosetti C, Ferrini L, Ferrari AR, Bartolini E, Calderoni S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. J Clin Med 2024; 13:279. [PMID: 38202286 PMCID: PMC10779511 DOI: 10.3390/jcm13010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last decade, the comorbidity between Autism Spectrum Disorder (ASD) and epilepsy has been widely demonstrated, and many hypotheses regarding the common neurobiological bases of these disorders have been put forward. A variable, but significant, prevalence of abnormalities on electroencephalogram (EEG) has been documented in non-epileptic children with ASD; therefore, several scientific studies have recently tried to demonstrate the role of these abnormalities as a possible biomarker of altered neural connectivity in ASD individuals. This narrative review intends to summarize the main findings of the recent scientific literature regarding abnormalities detected with standard EEG in children/adolescents with idiopathic ASD. Research using three different databases (PubMed, Scopus and Google Scholar) was conducted, resulting in the selection of 10 original articles. Despite an important lack of studies on preschoolers and a deep heterogeneity in results, some authors speculated on a possible association between EEG abnormalities and ASD characteristics, in particular, the severity of symptoms. Although this correlation needs to be more strongly elucidated, these findings may encourage future studies aimed at demonstrating the role of electrical brain abnormalities as an early biomarker of neural circuit alterations in ASD, highlighting the potential diagnostic, prognostic and therapeutic value of EEG in this field.
Collapse
Affiliation(s)
- Chiara Bosetti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Luca Ferrini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Tuscany PhD Programme in Neurosciences, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
Sun D, Schaft EV, van Stempvoort BM, Gebbink TA, van ‘t Klooster M, van Eijsden P, van der Salm SMA, Willem Dankbaar J, Zijlmans M, Robe PA. Intraoperative mapping of epileptogenic foci and tumor infiltration in neuro-oncology patients with epilepsy. Neurooncol Adv 2024; 6:vdae125. [PMID: 39156617 PMCID: PMC11327616 DOI: 10.1093/noajnl/vdae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Background Epileptogenesis and glioma growth have a bidirectional relationship. We hypothesized people with gliomas can benefit from the removal of epileptic tissue and that tumor-related epileptic activity may signify tumor infiltration in peritumoral regions. We investigated whether intraoperative electrocorticography (ioECoG) could improve seizure outcomes in oncological glioma surgery, and vice versa, what epileptic activity (EA) tells about tumor infiltration. Methods We prospectively included patients who underwent (awake) ioECoG-assisted diffuse-glioma resection through the oncological trajectory. The IoECoG-tailoring strategy relied on ictal and interictal EA (spikes and sharp waves). Brain tissue, where EA was recorded, was assigned for histopathological examination separate from the rest of the tumor. Weibull regression was performed to assess how residual EA and extent of resection (EOR) related to the time-to-seizure recurrence, and we investigated which type of EA predicted tumor infiltration. Results Fifty-two patients were included. Residual spikes after resection were associated with seizure recurrence in patients with isocitrate dehydrogenase (IDH) mutant astrocytoma or oligodendroglioma (HR = 7.6[1.4-40.0], P-value = .01), independent from the EOR. This was not observed in IDH-wildtype tumors. All tissue samples resected based on interictal spikes were infiltrated by tumor, even if the MRI did not show abnormalities. Conclusions Complete resection of epileptogenic foci in ioECoG may promote seizure control in IDH-mutant gliomas. The cohort size of IDH-wildtype tumors was too limited to draw definitive conclusions. Interictal spikes may indicate tumor infiltration even when this area appears normal on MRI. Integrating electrophysiology guidance into oncological tumor surgery could contribute to improved seizure outcomes and precise guidance for radical tumor resection.
Collapse
Affiliation(s)
- Dongqing Sun
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eline V Schaft
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bibi M van Stempvoort
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tineke A Gebbink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maryse van ‘t Klooster
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra M A van der Salm
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Willem Dankbaar
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland, The Netherlands
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Chang AJ, Roth RW, Gong R, Gross RE, Harmsen I, Parashos A, Revell A, Davis KA, Bonilha L, Gleichgerrcht E. Network coupling and surgical treatment response in temporal lobe epilepsy: A proof-of-concept study. Epilepsy Behav 2023; 149:109503. [PMID: 37931391 PMCID: PMC10842155 DOI: 10.1016/j.yebeh.2023.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE This proof-of-concept study aimed to examine the overlap between structural and functional activity (coupling) related to surgical response. METHODS We studied intracranial rest and ictal stereoelectroencephalography (sEEG) recordings from 77 seizures in thirteen participants with temporal lobe epilepsy (TLE) who subsequently underwent resective/laser ablation surgery. We used the stereotactic coordinates of electrodes to construct functional (sEEG electrodes) and structural connectomes (diffusion tensor imaging). A Jaccard index was used to assess the similarity (coupling) between structural and functional connectivity at rest and at various intraictal timepoints. RESULTS We observed that patients who did not become seizure free after surgery had higher connectome coupling recruitment than responders at rest and during early and mid seizure (and visa versa). SIGNIFICANCE Structural networks provide a backbone for functional activity in TLE. The association between lack of seizure control after surgery and the strength of synchrony between these networks suggests that surgical intervention aimed to disrupt these networks may be ineffective in those that display strong synchrony. Our results, combined with findings of other groups, suggest a potential mechanism that explains why certain patients benefit from epilepsy surgery and why others do not. This insight has the potential to guide surgical planning (e.g., removal of high coupling nodes) following future research.
Collapse
Affiliation(s)
- Allen J Chang
- College of Graduate Studies, Neuroscience Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca W Roth
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Ruxue Gong
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Irene Harmsen
- College of Graduate Studies, Neuroscience Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Alexandra Parashos
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew Revell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
11
|
Foutsop AF, Ateufack G, Adassi BM, Yassi FB, Kom TD, Noungoua CM, Petsou A, Ngoupaye GT. The Aqueous Lyophilisate of Alchemilla Kiwuensis Engl. (Rosaceae) Displays Antiepileptogenic and Antiepileptic Effects on PTZ-induced Kindling in rats: Evidence of Modulation of Glutamatergic and GABAergic Pathways Coupled to Antioxidant Properties. Neurochem Res 2023; 48:3228-3248. [PMID: 37436614 DOI: 10.1007/s11064-023-03982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Alchemilla kiwuensis Engl. (Rosaceae) (A. kiwuensis) is an herbaceous plant traditionally used by Cameroonians to treat epilepsy and other central nervous system disorders. The present study evaluated the antiepileptogenic and antiepileptic effects of A. kiwuensis (40 mg/kg, 80 mg/kg) following Pentylenetetrazole (PTZ)-induced kindling as well as its sub-chronic toxicity. Following an initial i.p administration of a challenge dose (70 mg/kg), Wistar rats of both sexes received sub convulsive doses (35 mg/kg) of PTZ every other day, one hour after the oral gavage of animals with treatments, until two consecutive stage 4, in all animals of negative control. Seizure progression, latency, duration, and repetition were noted. Twenty-four hours later, animals were dissected to extract their hippocampi. The resulting homogenates were used to evaluate Malondialdehyde, reduced glutathione, catalase activity, GABA, GABA-Transaminase, glutamate, glutamate transporter 2, IL-1β and TGF-1 β. Sub-chronic toxicity was conducted according to OECD 407 guidelines. The lyophilisate of A. kiwuensis significantly increased the latency of seizure appearance, delayed seizure progression and decreased seizure repetition and duration. Biochemical analysis revealed that the lyophilisate significantly increased the catalase activity, reduced glutathione, GABA, glutamate transporter 2 and TGF-1B levels. The lyophilisate equally caused a significant decreased in the GABA-Transaminase activity, malondialdehyde, and IL-1 β levels. There was no noticeable sign of toxicity. A. kiwuensis possesses antiepileptic and antiepiletogenic effects by enhancing GABAergic neurotransmission and antioxidant properties, coupled to modulation of glutamatergic and neuroinflammatory pathways and is innocuous in a sub-chronic model. These justifies its local use for the treatment of epilepsy.
Collapse
Affiliation(s)
- Aurelien Fossueh Foutsop
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Gilbert Ateufack
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Blesdel Maxwell Adassi
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Francis Bray Yassi
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O BOX: 454, Ngaoundéré, Cameroon
| | - Tatiana Diebo Kom
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Chretien Mbeugangkeng Noungoua
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Adolph Petsou
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Gwladys Temkou Ngoupaye
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon.
| |
Collapse
|
12
|
Sui S, Sun J, Chen X, Fan F. Risk of Epilepsy Following Traumatic Brain Injury: A Systematic Review and Meta-analysis. J Head Trauma Rehabil 2023; 38:E289-E298. [PMID: 36730820 DOI: 10.1097/htr.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Limited evidence has explored the impact of traumatic brain injury (TBI) on posttraumatic epilepsy with control cohort for comparison. In addition, we could not find any review to identify the effect of TBI on the outcomes. Thus, we conducted this study to compare the risk of epilepsy between individuals with TBI and without TBI. METHODS Systematic and comprehensive search was carried out in the following databases and search engines: EMBASE, Cochrane, MEDLINE, ScienceDirect, and Google Scholar from 1954 until January 2022. The Newcastle Ottawa (NO) Scale was utilized to assess the risk of bias. Meta-analysis was carried out using the random-effects model, and pooled odds ratio (OR) along with 95% CI was reported. RESULTS In total, we included 10 studies satisfying inclusion criteria. Most studies had good to satisfactory quality. The pooled OR was 4.25 (95% CI, 1.77-10.25; I2 = 100%), indicating that the individuals with TBI had 4.25 times higher risk of having epilepsy than individuals without TBI, and this association was statistically significant ( P = .001). Subgroup analysis based on the years of follow-up revealed that the patients within 5 years post-TBI had the highest risk of epilepsy (pooled OR = 7.27; 95% CI, 3.61-14.64). CONCLUSION Individuals with TBI had a significantly higher risk of epilepsy than the individuals without TBI, irrespective of the duration of the injury. Hence, long-term follow-up of the individuals with TBI is necessary to prevent any adverse consequences.
Collapse
Affiliation(s)
- Songtao Sui
- Departments of Neurosurgery (Messrs Sui and Chen) and Pharmacy (Ms Fan), Qingdao West Coast New Area Central Hospital, Qingdao, Shandong Province, China; and Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China (Mr Sun)
| | | | | | | |
Collapse
|
13
|
Yang Y, Zhang F, Gao X, Feng L, Xu K. Progressive alterations in electrophysiological and epileptic network properties during the development of temporal lobe epilepsy in rats. Epilepsy Behav 2023; 141:109120. [PMID: 36868167 DOI: 10.1016/j.yebeh.2023.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE Refractory temporal lobe epilepsy (TLE) with recurring seizures causing continuing pathological changes in neural reorganization. There is an incomplete understanding of how spatiotemporal electrophysiological characteristics changes during the development of TLE. Long-term multi-site epilepsy patients' data is hard to obtain. Thus, our study relied on animal models to reveal the changes in electrophysiological and epileptic network characteristics systematically. METHODS Long-term local field potentials (LFPs) were recorded over a period of 1 to 4 months from 6 pilocarpine-treated TLE rats. We compared variations of seizure onset zone (SOZ), seizure onset pattern (SOP), the latency of seizure onsets, and functional connectivity network from 10-channel LFPs between the early and late stages. Moreover, three machine learning classifiers trained by early-stage data were used to test seizure detection performance in the late stage. RESULTS Compared to the early stage, the earliest seizure onset was more frequently detected in hippocampus areas in the late stage. The latency of seizure onsets between electrodes became shorter. Low-voltage fast activity (LVFA) was the most common SOP and the proportion of it increased in the late stage. Different brain states were observed during seizures using Granger causality (GC). Moreover, seizure detection classifiers trained by early-stage data were less accurate when tested in late-stage data. SIGNIFICANCE Neuromodulation especially closed-loop deep brain stimulation (DBS) is effective in the treatment of refractory TLE. Although the frequency or amplitude of the stimulation is generally adjusted in existing closed-loop DBS devices in clinical usage, the adjustment rarely considers the pathological progression of chronic TLE. This suggests that an important factor affecting the therapeutic effect of neuromodulation may have been overlooked. The present study reveals time-varying electrophysiological and epileptic network properties in chronic TLE rats and indicates that classifiers of seizure detection and neuromodulation parameters might be designed to adapt to the current state dynamically with the progression of epilepsy.
Collapse
Affiliation(s)
- Yufang Yang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
| | - Fang Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; Institute of Advanced Digital Technology and Instrument, Zhejiang University, Hangzhou, China.
| | | | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; The MOE Frontier Science Center for Brain Science and Brain-machine Integration, Hangzhou, China.
| |
Collapse
|
14
|
Clark LN, Gao Y, Wang GT, Hernandez N, Ashley-Koch A, Jankovic J, Ottman R, Leal SM, Rodriguez SMB, Louis ED. Whole genome sequencing identifies candidate genes for familial essential tremor and reveals biological pathways implicated in essential tremor aetiology. EBioMedicine 2022; 85:104290. [PMID: 36183486 PMCID: PMC9525816 DOI: 10.1016/j.ebiom.2022.104290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Essential tremor (ET), one of the most common neurological disorders, has a phenotypically heterogeneous presentation characterized by bilateral kinetic tremor of the arms and, in some patients, tremor involving other body regions (e.g., head, voice). Genetic studies suggest that ET is genetically heterogeneous. Methods We analyzed whole genome sequence data (WGS) generated on 104 multi-generational white families with European ancestry affected by ET. Genome-wide parametric linkage and association scans were analyzed using adjusted logistic regression models through the application of the Pseudomarker software. To investigate the additional contribution of rare variants in familial ET, we also performed an aggregate variant non-parametric linkage (NPL) analysis using the collapsed haplotype method implemented in CHP-NPL software. Findings Parametric linkage analysis of common variants identified several loci with significant evidence of linkage (HLOD ≥3.6). Among the gene regions within the strongest ET linkage peaks were BTC (4q13.3, HLOD=4.53), N6AMT1 (21q21.3, HLOD=4.31), PCDH9 (13q21.32, HLOD=4.21), EYA1 (8q13.3, HLOD=4.04), RBFOX1 (16p13.3, HLOD=4.02), MAPT (17q21.31, HLOD=3.99) and SCARB2 (4q21.1, HLOD=3.65). CHP-NPL analysis identified fifteen additional genes with evidence of significant linkage (LOD ≥3.8). These genes include TUBB2A, VPS33B, STEAP1B, SPINK5, ZRANB1, TBC1D3C, PDPR, NPY4R, ETS2, ZNF736, SPATA21, ARL17A, PZP, BLK and CCDC94. In one ET family contributing to the linkage peak on chromosome 16p13.3, we identified a likely pathogenic heterozygous canonical splice acceptor variant in exon 2 of RBFOX1 (ENST00000547372; c.4-2A>G), that co-segregated with the ET phenotype in the family. Interpretation Linkage and association analyses of WGS identified several novel ET candidate genes, which are implicated in four major pathways that include 1) the epidermal growth factor receptor-phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha-AKT serine/threonine kinase 1 (EGFR-PI3K-AKT) and Mitogen-activated protein Kinase 1 (ERK) pathways, 2) Reactive oxygen species (ROS) and DNA repair, 3) gamma-aminobutyric acid-ergic (GABAergic) system and 4) RNA binding and regulation of RNA processes. Our study provides evidence for a possible overlap in the genetic architecture of ET, neurological disease, cancer and aging. The genes and pathways identified can be prioritized in future genetic and functional studies. Funding National Institutes of Health, NINDS, NS073872 (USA) and NIA AG058131(USA).
Collapse
Affiliation(s)
- Lorraine N Clark
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA.
| | - Yizhe Gao
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gao T Wang
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Ruth Ottman
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Suzanne M Leal
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra M Barral Rodriguez
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA.
| |
Collapse
|
15
|
Krishna S, Hervey-Jumper SL. Neural Regulation of Cancer: Cancer-Induced Remodeling of the Central Nervous System. Adv Biol (Weinh) 2022; 6:e2200047. [PMID: 35802914 PMCID: PMC10182823 DOI: 10.1002/adbi.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Indexed: 01/28/2023]
Abstract
In recent years, there have been significant advances in understanding the neuronal influence on the biology of solid tumors such as prostate, pancreatic, gastric, and brain cancers. An increasing amount of experimental evidence across multiple tumor types strongly suggests the existence of bidirectional crosstalk between cancer cells and the neural microenvironment. However, unlike cancers affecting many solid organs, brain tumors, namely gliomas, can synaptically integrate into neural circuits and thus can exert a greater potential to induce dynamic remodeling of functional circuits resulting in long-lasting behavioral changes. The first part of the review describes dynamic changes in language, sensory, and motor networks following glioma development and presents evidence focused on how different patterns of glioma-induced cortical reorganization may predict the degree and time course of functional recovery in brain tumor patients. The second part focuses on the network and cellular-level mechanisms underlying glioma-induced cerebral reorganization. Finally, oncological and clinical factors influencing glioma-induced network remodeling in glioma patients are reviewed.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
- Weill Neurosciences Institute, University of California, San Francisco, CA, 94143, USA
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
16
|
Kapur J, Long L, Dixon-Salazar T. Consequences: Bench to home. Epilepsia 2022; 63 Suppl 1:S14-S24. [PMID: 35999173 DOI: 10.1111/epi.17342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023]
Abstract
Seizure clusters (also referred to as acute repetitive seizures) consist of several seizures interspersed with brief interictal periods. Seizure clusters can break down γ-aminobutyric acidergic (GABAergic) inhibition of dentate granule cells, leading to hyperactivation. Functional changes to GABAA receptors, which play a vital neuroinhibitory role, can include altered GABAA receptor subunit trafficking and cellular localization, intracellular chloride accumulation, and dysregulation of proteins critical to chloride homeostasis. A reduction in neuroinhibition and potentiation of excitatory neurotransmission in CA1 pyramidal neurons represent pathological mechanisms that underlie seizure clusters. Benzodiazepines are well-established treatments for seizure clusters; however, there remain barriers to appropriate care. At the clinical level, there is variability in seizure cluster definitions, such as the number and/or type of seizures associated with a cluster as well as the interictal duration between seizures. This can lead to delays in diagnosis and timely treatment. There are gaps in understanding between clinicians, their patients, and caregivers regarding acute treatment for seizure clusters, such as the use of rescue medications and emergency services. This lack of consensus to define seizure clusters in addition to a lack of education for appropriate treatment can affect quality of life for patients and place a greater burden on patient families and caregivers. For patients with seizure clusters, the sense of unpredictability can lead to continuous traumatic stress, during which patients and families live with a heightened level of anxiety. Clinicians can affect patient quality of life and clinical outcomes through improved seizure cluster education and treatment, such as the development and implementation of a personalized seizure action plan as well as prescriptions for suitable rescue medications indicated for seizure clusters and instructions for their proper use. In all, the combination of targeted therapy along with patient education and support can improve quality of life.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Lucretia Long
- Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
17
|
Pharmacological perspectives and mechanisms involved in epileptogenesis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epileptogenesis can be defined as the process by which a previously healthy brain develops a tendency toward recurrent electrical activity, occurring in three phases: first as an initial trigger (such as stroke, infections, and traumatic brain injury); followed by the latency period and the onset of spontaneous and recurrent seizures which characterizes epilepsy.
Main body
The mechanisms that may be involved in epileptogenesis are inflammation, neurogenesis, migration of neurons to different regions of the brain, neural reorganization, and neuroplasticity.In recent years, experimental studies have enabled the discovery of several mechanisms involved in the process of epileptogenesis, mainly neuroinflammation, that involves the activation of glial cells and an increase in specific inflammatory mediators. The lack of an experimental animal model protocol for epileptogenic compounds contributes to the difficulty in understanding disease development and the creation of new drugs.
Conclusion
To solve these difficulties, a new approach is needed in the development of new AEDs that focus on the process of epileptogenesis and the consolidation of animal models for studies of antiepileptogenic compounds, aiming to reach the clinical phases of the study. Some examples of these compounds are rapamycin, which inhibits mTOR signaling, and losartan, that potentiates the antiepileptogenic effect of some AEDs. Based on this, this review discusses the main mechanisms involved in epileptogenesis, as well as its pharmacological approach.
Collapse
|
18
|
Kim S, Park S, Choi TG, Kim SS. Role of Short Chain Fatty Acids in Epilepsy and Potential Benefits of Probiotics and Prebiotics: Targeting “Health” of Epileptic Patients. Nutrients 2022; 14:nu14142982. [PMID: 35889939 PMCID: PMC9322917 DOI: 10.3390/nu14142982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The WHO’s definition of health transcends the mere absence of disease, emphasizing physical, mental, and social well-being. As this perspective is being increasingly applied to the management of chronic diseases, research on gut microbiota (GM) is surging, with a focus on its potential for persistent and noninvasive dietary therapeutics. In patients with epilepsy (PWE), a chronic lack of seizure control along with often neglected psychiatric comorbidities greatly disrupt the quality of life. Evidence shows that GM-derived short chain fatty acids (SCFAs) may impact seizure susceptibility through modulating (1) excitatory/inhibitory neurotransmitters, (2) oxidative stress and neuroinflammation, and (3) psychosocial stress. These functions are also connected to shared pathologies of epilepsy and its two most common psychiatric consequences: depression and anxiety. As the enhancement of SCFA production is enabled through direct administration, as well as probiotics and prebiotics, related dietary treatments may exert antiseizure effects. This paper explores the potential roles of SCFAs in the context of seizure control and its mental comorbidities, while analyzing existing studies on the effects of pro/prebiotics on epilepsy. Based on currently available data, this study aims to interpret the role of SCFAs in epileptic treatment, extending beyond the absence of seizures to target the health of PWE.
Collapse
Affiliation(s)
- Soomin Kim
- Department of Preliminary Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Siyeon Park
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA;
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| |
Collapse
|
19
|
Gomes-Duarte A, Venø MT, de Wit M, Senthilkumar K, Broekhoven MH, van den Herik J, Heeres FR, van Rossum D, Rybiczka-Tesulov M, Legnini I, van Rijen PC, van Eijsden P, Gosselaar PH, Rajewsky N, Kjems J, Vangoor VR, Pasterkamp RJ. Expression of Circ_Satb1 Is Decreased in Mesial Temporal Lobe Epilepsy and Regulates Dendritic Spine Morphology. Front Mol Neurosci 2022; 15:832133. [PMID: 35310884 PMCID: PMC8927295 DOI: 10.3389/fnmol.2022.832133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a chronic disease characterized by recurrent seizures that originate in the temporal lobes of the brain. Anti-epileptic drugs (AEDs) are the standard treatment for managing seizures in mTLE patients, but are frequently ineffective. Resective surgery is an option for some patients, but does not guarantee a postoperative seizure-free period. Therefore, further insight is needed into the pathogenesis of mTLE to enable the design of new therapeutic strategies. Circular RNAs (circRNAs) have been identified as important regulators of neuronal function and have been implicated in epilepsy. However, the mechanisms through which circRNAs contribute to epileptogenesis remain unknown. Here, we determine the circRNA transcriptome of the hippocampus and cortex of mTLE patients by using RNA-seq. We report 333 differentially expressed (DE) circRNAs between healthy individuals and mTLE patients, of which 23 circRNAs displayed significant adjusted p-values following multiple testing correction. Interestingly, hippocampal expression of circ_Satb1, a circRNA derived from special AT-rich sequence binding protein 1 (SATB1), is decreased in both mTLE patients and in experimental epilepsy. Our work shows that circ_Satb1 displays dynamic patterns of neuronal expression in vitro and in vivo. Further, circ_Satb1-specific knockdown using CRISPR/CasRx approaches in hippocampal cultures leads to defects in dendritic spine morphology, a cellular hallmark of mTLE. Overall, our results identify a novel epilepsy-associated circRNA with disease-specific expression and previously unidentified cellular effects that are relevant for epileptogenesis.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Morten T. Venø
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Marina de Wit
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ketharini Senthilkumar
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mark H. Broekhoven
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joëlle van den Herik
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Fleur R. Heeres
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Daniëlle van Rossum
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mateja Rybiczka-Tesulov
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ivano Legnini
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Peter C. van Rijen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Peter H. Gosselaar
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Vamshidhar R. Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: R. Jeroen Pasterkamp,
| |
Collapse
|
20
|
Muthiah N, Akwayena E, Vodovotz L, Sharma N, Jeong JH, White GE, Abel TJ. Comparison of traditional and closed loop vagus nerve stimulation for treatment of pediatric drug-resistant epilepsy: A propensity-matched retrospective cohort study. Seizure 2022; 94:74-81. [PMID: 34872020 PMCID: PMC11423706 DOI: 10.1016/j.seizure.2021.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE For epilepsy patients with drug-resistant, unresectable epilepsy, vagus nerve stimulation (VNS) is an option for seizure control. Approximately 40-70% of patients will achieve ≥50% seizure reduction with VNS. New closed loop VNS models detect ictal tachycardia and responsively stimulate the vagus nerve. The effectiveness of closed loop VNS compared to traditional VNS for pediatric epilepsy is unknown. METHODS An 11-year retrospective electronic medical record review at Children's Hospital of Pittsburgh was performed. Patients with drug-resistant epilepsy who underwent VNS implantation were included. Patients were divided into groups based on VNS model: traditional versus closed loop. Those who transitioned from traditional to closed loop VNS were excluded. Given potential for selection bias, propensity scores matching was utilized to compare traditional to closed loop VNS patients. Patients with focal versus generalized epilepsy were also separately analyzed. The primary outcome was "VNS response", defined as at least 50% seizure frequency reduction from baseline. RESULTS A total of 320 patients were included in this sample. The percentage of matched patients (total n = 220: n = 179 traditional VNS, n = 41 closed loop VNS) who responded to VNS after one year of therapy was 43% for traditional VNS and 39% for closed loop VNS (p = 0.64). After two years of therapy, a higher proportion of closed loop VNS patients than traditional VNS patients responded to VNS among all subgroups, though no differences were statistically significant (p>0.05). Notably, for those with generalized epilepsy, 73% of closed loop patients responded to VNS compared to only 46% of traditional patients (p = 0.10). After two years of VNS therapy, patients were taking approximately the same quantity of antiseizure medications as baseline (change of +0.074 +/- 0.90 ) with no difference between VNS models (p = 0.87). SIGNIFICANCE Among pediatric patients with drug-resistant epilepsy, closed loop VNS trends towards a higher rate of VNS response after two years of treatment, especially among generalized epilepsy patients. Neither model of VNS allows patients to reduce antiseizure medication quantity after two years.
Collapse
Affiliation(s)
- Nallammai Muthiah
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Emefa Akwayena
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lena Vodovotz
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikhil Sharma
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jong-Hyeon Jeong
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Clinical and Translational Science Institute (CTSI), University of Pittsburgh, Pittsburgh, PA, USA
| | - Gretchen E White
- Clinical and Translational Science Institute (CTSI), University of Pittsburgh, Pittsburgh, PA, USA; Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Tröscher AR, Gruber J, Wagner JN, Böhm V, Wahl AS, von Oertzen TJ. Inflammation Mediated Epileptogenesis as Possible Mechanism Underlying Ischemic Post-stroke Epilepsy. Front Aging Neurosci 2021; 13:781174. [PMID: 34966269 PMCID: PMC8711648 DOI: 10.3389/fnagi.2021.781174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Post-stroke Epilepsy (PSE) is one of the most common forms of acquired epilepsy, especially in the elderly population. As people get increasingly older, the number of stroke patients is expected to rise and concomitantly the number of people with PSE. Although many patients are affected by post-ischemic epileptogenesis, not much is known about the underlying pathomechanisms resulting in the development of chronic seizures. A common hypothesis is that persistent neuroinflammation and glial scar formation cause aberrant neuronal firing. Here, we summarize the clinical features of PSE and describe in detail the inflammatory changes after an ischemic stroke as well as the chronic changes reported in epilepsy. Moreover, we discuss alterations and disturbances in blood-brain-barrier leakage, astrogliosis, and extracellular matrix changes in both, stroke and epilepsy. In the end, we provide an overview of commonalities of inflammatory reactions and cellular processes in the post-ischemic environment and epileptic brain and discuss how these research questions should be addressed in the future.
Collapse
Affiliation(s)
| | - Joachim Gruber
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Judith N Wagner
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Vincent Böhm
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Tim J von Oertzen
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|
22
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. In vitro Oscillation Patterns Throughout the Hippocampal Formation in a Rodent Model of Epilepsy. Neuroscience 2021; 479:1-21. [PMID: 34710537 DOI: 10.1016/j.neuroscience.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Specific oscillatory patterns are considered biomarkers of pathological neuronal network in brain diseases, such as epilepsy. However, the dynamics of underlying oscillations during the epileptogenesis throughout the hippocampal formation in the temporal lobe epilepsy is not clear. Here, we characterized in vitro oscillatory patterns within the hippocampal formation of epileptic rats, under 4-aminopyridine (4-AP)-induced hyperexcitability and during the spontaneous network activity, at two periods of epileptogenesis. First, at the beginning of epileptic chronic phase, 30 days post-pilocarpine-induced Status Epilepticus (SE). Second, at the established epilepsy, 60 days post-SE. The 4-AP-bathed slices from epileptic rats had increased susceptibility to ictogenesis in CA1 at 30 days post-SE, and in entorhinal cortex and dentate gyrus at 60 days post-SE. Higher power and phase coherence were detected mainly for gamma and/or high frequency oscillations (HFOs), in a region- and stage-specific manner. Interestingly, under spontaneous network activity, even without 4-AP-induced hyperexcitability, slices from epileptic animals already exhibited higher power of gamma and HFOs in different areas of hippocampal formation at both periods of epileptogenesis, and higher phase coherence in fast ripples at 60 days post-SE. These findings reinforce the critical role of gamma and HFOs in each one of the hippocampal formation areas during ongoing neuropathological processes, tuning the neuronal network to epilepsy.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
| |
Collapse
|
23
|
Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193:114786. [PMID: 34571003 DOI: 10.1016/j.bcp.2021.114786] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.
Collapse
Affiliation(s)
- Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | | |
Collapse
|
24
|
Kunii N, Koizumi T, Kawai K, Shimada S, Saito N. Vagus Nerve Stimulation Amplifies Task-Induced Cerebral Blood Flow Increase. Front Hum Neurosci 2021; 15:726087. [PMID: 34434098 PMCID: PMC8380847 DOI: 10.3389/fnhum.2021.726087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022] Open
Abstract
Background Vagus nerve stimulation (VNS) is an established palliative surgical treatment for refractory epilepsy. Recently, pairing VNS with rehabilitation received growing attention for their joint effect on neural plasticity. However, objective biological measurements proving the interaction between VNS effects and cortical recruitment are lacking. Studies reported that VNS induced little blood flow increase in the cerebral cortex. Objective This study tested the hypothesis that pairing VNS with a cognitive task amplifies task-induced cerebral blood flow (CBF). Methods This study included 21 patients implanted with vagus nerve stimulator to treat refractory epilepsy. Near-infrared spectroscopy (NIRS) with sensors on the forehead measured CBF changes in the frontal cortices in response to VNS. Cerebral blood flow was measured when VNS was delivered during a resting state or a verbal fluency task. We analyzed the VNS effect on CBF in relation to stimulation intensity and clinical responsiveness. Results We observed no CBF change when VNS was delivered during rest, irrespective of stimulation intensity or responsiveness. Cerebral blood flow changed significantly when a verbal fluency task was paired with VNS in a stimulation intensity-dependent manner. Cerebral blood flow changes in the non-responders showed no intensity-dependency. Conclusion Our results could be an important biological proof of the interaction between VNS effects and cortical recruitment, supporting the validity of pairing VNS with rehabilitation.
Collapse
Affiliation(s)
- Naoto Kunii
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoyuki Koizumi
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
25
|
Deciphering the mechanisms of regulation of an excitatory synapse via cyclooxygenase-2. A review. Biochem Pharmacol 2021; 192:114729. [PMID: 34400127 DOI: 10.1016/j.bcp.2021.114729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Cyclooxygenase (COX) is a heme-containing enzyme that produces prostaglandins (PGs) via a pathway known as the arachidonic acid (AA) cascade. Two isoforms of COX enzyme (COX-1 and COX-2) and splice variant (COX-3) have been described so far. COX-2 is a neuronal enzyme that is intensively produced during activation of the synapse and glutamate (Glu) release. The end product of COX-2 action, prostaglandin E2 (PGE2), regulates Glu level in a retrograde manner. At the same time, the level of Glu, the primary excitatory neurotransmitter, is regulated in the excitatory synapse via Glu receptors, both ionotropic and metabotropic ones. Glu receptors are known modulators of behavior, engaged in cognition and mood. So far, the interaction between ionotropic N-methyl-D-aspartate (NMDA) receptors or metabotropic glutamate (mGluRs) receptors and COX-2 was found. Here, based on literature data and own research, a new mechanism of action of COX-2 in an excitatory synapse will be presented.
Collapse
|
26
|
Dos Santos RR, Bernardino TC, da Silva MCM, de Oliveira ACP, Drumond LE, Rosa DV, Massensini AR, Moraes MFD, Doretto MC, Romano-Silva MA, Reis HJ. Neurochemical abnormalities in the hippocampus of male rats displaying audiogenic seizures, a genetic model of epilepsy. Neurosci Lett 2021; 761:136123. [PMID: 34293418 DOI: 10.1016/j.neulet.2021.136123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epilepsy is a disorder characterized by recurrent seizures that affects 1% of the population. However, the neurochemical alterations observed in epilepsy are not fully understood. There are different animal models of epilepsy, such as genetic or drug induced. In the present study, we utilize Wistar Audiogenic Rats (WAR), a murine strain that develops seizures in response to high intensity audio stimulation, in order to investigate abnormalities in glutamatergic and GABAergic systems. METHODS Synaptosomes and glial plasmalemmal vesicles were prepared from hippocampus and cortex, respectively. Glutamate and GABA release and uptake were assayed by monitoring the fluorescence and using L-[3H]-radiolabeled compounds. Glutamate and calcium concentration in the synaptosomes were also measured. The expression of neuronal calcium sensor 1 (NCS-1) was determined by western blot. RESULTS Glutamate and GABA release evoked by KCl was decreased in WAR compared to control Wistar rats. Calcium independent release was not considerably different in both groups. The total amount of glutamate of synaptosomes, as well as glutamate uptake by synaptosomes and GPV were also decreased in WAR in comparison with the controls. In addition, [Ca2+]i of hippocampal synaptosomes, as well as NCS-1 expression in the hippocampus, were increased in WAR in comparison with controls. CONCLUSION In conclusion, our results suggest that WAR have important alterations in the glutamatergic and GABAergic pathways, as well as an increased expression of NCS-1 in the hippocampus and inferior colliculus. These alterations may be linked to the spreading of hyperexcitability and recruitment of various brain regions.
Collapse
Affiliation(s)
- Rodrigo Ribeiro Dos Santos
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil; Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Túlio C Bernardino
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Antônio C P de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Luciana E Drumond
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Daniela V Rosa
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - André R Massensini
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria C Doretto
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - Helton J Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
27
|
Hébert-Seropian B, Boucher O, Citherlet D, Roy-Côté F, Gravel V, Obaid S, Bouthillier A, Nguyen DK. Decreased self-reported appetite following insular cortex resection in patients with epilepsy. Appetite 2021; 166:105479. [PMID: 34186157 DOI: 10.1016/j.appet.2021.105479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023]
Abstract
Entrenched deep within the Sylvian fissure, the insula has long been considered one of the least understood regions of the human brain, in part due to its restricted accessibility. However, recent evidence suggests that the insula plays a key role in gustation, interoception, cognitive and emotional processes, and likely integrates these different functions to contribute to the homeostatic control of food intake. In the past decade, our team has identified the insula as a potential site of epileptogenicity, which can be successfully treated by microsurgical resection. While most surgeries are successful in controlling insular epileptic seizures and lead to few postoperative deficits, the subtle changes that may occur in food-related experiences are still unknown. Using a self-report questionnaire, the present study sought to fill this gap by assessing changes in appetite in patients who underwent unilateral partial or complete insular resections (n = 17) as part of their epilepsy surgery. We compared them to a group of patients who underwent temporal lobe epilepsy surgery (n = 22) as a lesion-control group. A majority (59%) of the insular patients reported an alteration in appetite, with most of these changes being characterized by a persistent reduction. Such changes were rarely reported following temporal lobectomy (14%). While they significantly differed in terms of appetite changes, both groups were similar when examining post-surgical changes in weight, diet, exercise and eating habits. Insular patients with altered appetite also showed behavioral signs of dysfunctional interoceptive and gustatory functions, corroborating the idea that these systems play a role in the regulation of feeding behaviours. This research pushes our understanding of the mechanisms underlying food intake and could lead to avenues for the treatment of eating disorders.
Collapse
Affiliation(s)
- Benjamin Hébert-Seropian
- Département de psychologie, Université du Québec à Montréal, Montreal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Olivier Boucher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Département de psychologie, Université de Montréal, Montreal, QC, Canada; Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Daphné Citherlet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Département de neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Frédérique Roy-Côté
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Département de psychologie, Université de Montréal, Montreal, QC, Canada
| | - Victoria Gravel
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Département de psychologie, Université de Montréal, Montreal, QC, Canada
| | - Sami Obaid
- Division de neurochirurgie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada; Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Alain Bouthillier
- Division de neurochirurgie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada; Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Département de neurosciences, Université de Montréal, Montreal, QC, Canada; Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
28
|
Minkin K, Gabrovski K, Karazapryanov P, Milenova Y, Sirakov S, Karakostov V, Romanski K, Dimova P. Awake Epilepsy Surgery in Patients with Focal Cortical Dysplasia. World Neurosurg 2021; 151:e257-e264. [PMID: 33872840 DOI: 10.1016/j.wneu.2021.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Awake craniotomy (AC) and direct electric stimulation emerged together with epilepsy surgery >80 years ago. The goal of our study was to evaluate the benefits of awake surgery in patients with drug-resistant epilepsy caused by focal cortical dysplasia (FCD) affecting eloquent areas. METHODS Our material included 95 patients with drug-resistant epilepsy and FCD, who were operated on between January 2009 and December 2018. These 95 patients were assigned into 3 groups: AC; general anesthesia (GA) with intraoperative neuromonitoring; and GA without intraoperative neuromonitoring. We investigated the following variables: age at surgery, lesion side, eloquent cortex involvement, brain mapping success rate, epilepsy surgery success rate, intraoperative complications, postoperative complications, and intraoperative changes of the preoperative resection plan according to results of the brain mapping by direct electric stimulation. RESULTS We found statistically significant differences between the AC and GA groups in the mean age at operation, lesion side, eloquent localization, and postoperative transient neurologic deficit. Seizure outcome in the AC was satisfactory (71% complete seizure control) and comparable to the seizure outcome in the GA groups. Our preoperative plan was changed because of functional constraints in 6 patients (43%) operated on during AC. CONCLUSIONS AC during epilepsy surgery for FCD in eloquent areas may change the preoperative plan. The good rate of postoperative seizure control and the absence of permanent postoperative neurologic deficit in our series is the main proof that AC is a useful tool in patients with FCD involving the eloquent cortex.
Collapse
Affiliation(s)
- Krasimir Minkin
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria.
| | - Kaloyan Gabrovski
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Petar Karazapryanov
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Yoana Milenova
- Department of Neurology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Stanimir Sirakov
- Department of Interventional Radiology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Vasil Karakostov
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Kiril Romanski
- Department of Neurosurgery, Military Medical Academy, Sofia, Bulgaria
| | - Petia Dimova
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| |
Collapse
|
29
|
Anwer F, Oliveri F, Kakargias F, Panday P, Arcia Franchini AP, Iskander B, Hamid P. Post-Traumatic Seizures: A Deep-Dive Into Pathogenesis. Cureus 2021; 13:e14395. [PMID: 33987052 PMCID: PMC8110294 DOI: 10.7759/cureus.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 11/05/2022] Open
Abstract
Post-traumatic seizures (PTS) have become an emerging challenge for neurologists worldwide with the rise of brain injuries. Trauma can lead to various outcomes, ranging from naive spasms to debilitating post-traumatic epilepsy (PTE). In this article, we will explore the pathogenesis of convulsions following a concussion. We will look at multiple studies to explain the various structural, metabolic, and inflammatory changes leading to seizures. Additionally, we will explore the association between severity and location of injury and PTE. PTE's pathophysiology is not entirely implicit, and we are still in the dark as to which anti-epileptic drugs will be useful in circumventing these attacks. The purpose of this narrative review is to explain the post-traumatic brain changes in detail so that such attacks can be either thwarted or treated more resourcefully in the future.
Collapse
Affiliation(s)
- Fatima Anwer
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Federico Oliveri
- Cardiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Fotios Kakargias
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Priyanka Panday
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ana P Arcia Franchini
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Beshoy Iskander
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
30
|
Qu S, Zhou C, Howe R, Shen W, Huang X, Catron M, Hu N, Macdonald RL. The K328M substitution in the human GABA A receptor gamma2 subunit causes GEFS+ and premature sudden death in knock-in mice. Neurobiol Dis 2021; 152:105296. [PMID: 33582225 PMCID: PMC8243844 DOI: 10.1016/j.nbd.2021.105296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shimian Qu
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Chengwen Zhou
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Rachel Howe
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Wangzhen Shen
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Xuan Huang
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Mackenzie Catron
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Ningning Hu
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Robert L Macdonald
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America; Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, United States of America; Pharmacology, Vanderbilt University, Nashville, TN 37232, United States of America.
| |
Collapse
|
31
|
Budaszewski Pinto C, de Sá Couto-Pereira N, Kawa Odorcyk F, Cagliari Zenki K, Dalmaz C, Losch de Oliveira D, Calcagnotto ME. Effects of acute seizures on cell proliferation, synaptic plasticity and long-term behavior in adult zebrafish. Brain Res 2021; 1756:147334. [PMID: 33539794 DOI: 10.1016/j.brainres.2021.147334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023]
Abstract
Acute seizures may cause permanent brain damage depending on the severity. The pilocarpine animal model has been broadly used to study the acute effects of seizures on neurogenesis and plasticity processes and the resulting epileptogenesis. Likewise, zebrafish is a good model to study neurogenesis and plasticity processes even in adulthood. Thus, the aim of this study is to evaluate the effects of pilocarpine-induced acute seizures-like behavior on neuroplasticity and long-term behavior in adult zebrafish. To address this issue, adult zebrafish were injected with Pilocarpine (350 mg/Kg, i.p; PILO group) or Saline (control group). Experiments were performed at 1, 2, 3, 10 or 30 days after injection. We evaluated behavior using the Light/Dark preference, Open Tank and aggressiveness tests. Flow cytometry and BrdU were carried out to detect changes in cell death and proliferation, while Western blotting was used to verify different proliferative, synaptic and neural markers in the adult zebrafish telencephalon. We identified an increased aggressive behavior and increase in cell death in the PILO group, with increased levels of cleaved caspase 3 and PARP1 1 day after seizure-like behavior induction. In addition, there were decreased levels of PSD95 and SNAP25 and increased BrdU positive cells 3 days after seizure-like behavior induction. Although most synaptic and cell death markers levels seemed normal by 30 days after seizures-like behavior, persistent aggressive and anxiolytic-like behaviors were still detected as long-term effects. These findings might indicate that acute severe seizures induce short-term biochemical alterations that ultimately reflects in a long-term altered phenotype.
Collapse
Affiliation(s)
- Charles Budaszewski Pinto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Losch de Oliveira
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
33
|
In Vitro and In Vivo Study of the Short-Term Vasomotor Response during Epileptic Seizures. Brain Sci 2020; 10:brainsci10120942. [PMID: 33297329 PMCID: PMC7762235 DOI: 10.3390/brainsci10120942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Epilepsy remains one of the most common brain disorders, and the different types of epilepsy encompass a wide variety of physiological manifestations. Clinical and preclinical findings indicate that cerebral blood flow is usually focally increased at seizure onset, shortly after the beginning of ictal events. Nevertheless, many questions remain about the relationship between vasomotor changes in the epileptic foci and the epileptic behavior of neurons and astrocytes. To study this relationship, we performed a series of in vitro and in vivo experiments using the 4-aminopyridine model of epileptic seizures. It was found that in vitro pathological synchronization of neurons and the depolarization of astrocytes is accompanied by rapid short-term vasoconstriction, while in vivo vasodilation during the seizure prevails. We suggest that vasomotor activity during epileptic seizures is a correlate of the complex, self-sustained response that includes neuronal and astrocytic oscillations, and that underlies the clinical presentation of epilepsy.
Collapse
|
34
|
Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep 2020; 9:102-114. [PMID: 32760846 PMCID: PMC7390835 DOI: 10.1016/j.ibror.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular and cellular mechanisms involved during the onset of epilepsy is crucial for elucidating the overall mechanism of epileptogenesis and therapeutic strategies. Previous studies, using a pentylenetetrazole (PTZ)-induced kindling mouse model, showed that astrocyte activation and an increase in perineuronal nets (PNNs) and extracellular matrix (ECM) molecules occurred within the hippocampus. However, the mechanisms of initiation and suppression of these changes, remain unclear. Herein, we analyzed the attenuation of astrocyte activation caused by dizocilpine (MK-801) administration, as well as the anticonvulsant effect of α-pinene on seizures and production of ECM molecules. Our results showed that MK-801 significantly reduced kindling acquisition, while α-pinene treatment prevented an increase in seizures incidences. Both MK-801 and α-pinene administration attenuated astrocyte activation by PTZ and significantly attenuated the increase in ECM molecules. Our results indicate that astrocyte activation and an increase in ECM may contribute to epileptogenesis and suggest that MK-801 and α-pinene may prevent epileptic seizures by suppressing astrocyte activation and ECM molecule production.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan
| | - Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, 814-0198, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
35
|
Ismail FY, Ljubisavljevic MR, Johnston MV. A conceptual framework for plasticity in the developing brain. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:57-66. [PMID: 32958193 DOI: 10.1016/b978-0-444-64150-2.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this chapter, we highlight the various definitions of early brain plasticity commonly used in the scientific literature. We then present a conceptual framework of early brain plasticity that focuses on plasticity at the level of the synapse (synaptic plasticity) and the level of the network (connectivity). The proposed framework is organized around three main domains through which current theories and principles of early brain plasticity can be integrated: (1) the mechanisms of plasticity and constraints at the synaptic level and network connectivity, (2) the importance of temporal considerations related to the development of the immature brain, and (3) the functions early brain plasticity serve. We then apply this framework to discuss some clinical disorders caused by and/or associated with impaired plasticity mechanisms. We propose that a careful examination of the relationship between mechanisms, constraints, and functions of early brain plasticity in health and disease may provide an integrative understanding of the current theories and principles generated by experimental and observational studies.
Collapse
Affiliation(s)
- Fatima Y Ismail
- Department of Pediatrics, United Arab Emirates University, Al-Ain, United Arab Emirates; Department of Neurology (adjunct), Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | | | - Michael V Johnston
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
36
|
Alteration of Extracellular Matrix Molecules and Perineuronal Nets in the Hippocampus of Pentylenetetrazol-Kindled Mice. Neural Plast 2019; 2019:8924634. [PMID: 31827499 PMCID: PMC6885262 DOI: 10.1155/2019/8924634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
The pathophysiological processes leading to epilepsy are poorly understood. Understanding the molecular and cellular mechanisms involved in the onset of epilepsy is crucial for drug development. Epileptogenicity is thought to be associated with changes in synaptic plasticity; however, whether extracellular matrix molecules—known regulators of synaptic plasticity—are altered during epileptogenesis is unknown. To test this, we used a pentylenetetrazole- (PTZ-) kindling model mouse to investigate changes to hippocampal parvalbumin- (PV-) positive neurons, extracellular matrix molecules, and perineuronal nets (PNNs) after the last kindled seizure. We found an increase in Wisteria floribunda agglutinin- (WFA-) and Cat-315-positive PNNs and a decrease in PV-positive neurons not surrounded by PNNs, in the hippocampus of PTZ-kindled mice compared to control mice. Furthermore, the expression of WFA- and Cat-315-positive molecules increased in the extracellular space of PTZ-kindled mice. In addition, consistent with previous studies, astrocytes were activated in PTZ-kindled mice. We propose that the increase in PNNs after kindling decreases neuroplasticity in the hippocampus and helps maintain the neural circuit for recurrent seizures. This study shows that possibility of changes in extracellular matrix molecules due to astrocyte activation is associated with epilepticus in PTZ-kindled mice.
Collapse
|
37
|
MMP-9 Contributes to Dendritic Spine Remodeling Following Traumatic Brain Injury. Neural Plast 2019; 2019:3259295. [PMID: 31198417 PMCID: PMC6526556 DOI: 10.1155/2019/3259295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/03/2019] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) occurs when a blow to the head causes brain damage. Apart from physical trauma, it causes a wide range of cognitive, behavioral, and emotional deficits including impairments in learning and memory. On neuronal level, TBI may lead to circuitry remodeling and in effect imbalance between excitatory and inhibitory neurotransmissions. Such change in brain homeostasis may often lead to brain disorders. The basic units of neuronal connectivity are dendritic spines that are tiny protrusions forming synapses between two cells in a network. Spines are dynamic structures that undergo morphological transformation throughout life. Their shape is strictly related to an on/off state of synapse and the strength of synaptic transmission. Matrix metalloproteinase-9 (MMP-9) is an extrasynaptically operating enzyme that plays a role in spine remodeling and has been reported to be activated upon TBI. The aim of the present study was to evaluate the influence of MMP-9 on dendritic spine density and morphology following controlled cortical impact (CCI) as animal model of TBI. We examined spine density and dendritic spine shape in the cerebral cortex and the hippocampus. CCI caused a marked decrease in spine density as well as spine shrinkage in the cerebral cortex ipsilateral to the injury, when compared to sham animals and contralateral side both 1 day and 1 week after the insult. Decreased spine density was also observed in the dentate gyrus of the hippocampus; however, in contrast to the cerebral cortex, spines in the DG became more filopodia-like. In mice lacking MMP-9, no effects of TBI on spine density and morphology were observed.
Collapse
|
38
|
Altered Glutamate Receptor Ionotropic Delta Subunit 2 Expression in Stau2-Deficient Cerebellar Purkinje Cells in the Adult Brain. Int J Mol Sci 2019; 20:ijms20071797. [PMID: 30979012 PMCID: PMC6480955 DOI: 10.3390/ijms20071797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/13/2023] Open
Abstract
Staufen2 (Stau2) is an RNA-binding protein that is involved in dendritic spine morphogenesis and function. Several studies have recently investigated the role of Stau2 in the regulation of its neuronal target mRNAs, with particular focus on the hippocampus. Here, we provide evidence for Stau2 expression and function in cerebellar Purkinje cells. We show that Stau2 downregulation (Stau2GT) led to an increase of glutamate receptor ionotropic delta subunit 2 (GluD2) in Purkinje cells when animals performed physical activity by voluntary wheel running compared with the age-matched wildtype (WT) mice (C57Bl/6J). Furthermore, Stau2GT mice showed lower performance in motor coordination assays but enhanced motor learning abilities than did WT mice, concomitantly with an increase in dendritic GluD2 expression. Together, our results suggest the novel role of Stau2 in Purkinje cell synaptogenesis in the mouse cerebellum.
Collapse
|
39
|
Chwiej JG, Ciesielka SW, Skoczen AK, Janeczko KJ, Sandt C, Planeta KL, Setkowicz ZK. Biochemical Changes Indicate Developmental Stage in the Hippocampal Formation. ACS Chem Neurosci 2019; 10:628-635. [PMID: 30375847 DOI: 10.1021/acschemneuro.8b00471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The literature showing how age of humans or animals influences the IR absorption spectra recorded in different brain regions is very poor. A very limited number of studies used FTIR microspectroscopy for analysis of the aging process, however there is lack of data concerning the biomolecular changes occurring in the course of postnatal development of the central nervous system. Therefore, in this paper the topographic and semiquantitative biochemical changes occurring within the rat hippocampus during postnatal development were examined. To achieve the goal of the study, three groups of normal male rats differing in age were investigated. These were 6, 30, and 60 day old animals, and the chosen ages correspond to the neonatal period, childhood, and early adulthood in humans, respectively. Already, preliminary topographic analysis identified a number of significant changes in the accumulation of biomolecules within the hippocampal formation occurring during brain development. Such observation was confirmed by further semiquantitative analysis of intensities of selected absorption bands or ratios of their intensities. The detailed examinations were done for four hippocampal cellular layers (multiform, molecular, pyramidal, and granular layers), and the results showed that the accumulation of most biomolecules, including both saturated and unsaturated lipids as well as compounds containing phosphate and carbonyl groups, was significantly higher in adulthood comparing to the neonatal period. What is more, the increases in their levels were observed mostly between 6th and 30th days of animals' life. The unsaturation level of lipids did not change during postnatal development, although the differences in unsaturated and saturated lipids contents were noticed between examined animal groups. Significant differences in relative secondary structure of proteins were found between young adult rats and animals in neonatal period for which the relative level of proteins with β-type secondary structure was the highest.
Collapse
Affiliation(s)
- Joanna G. Chwiej
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Stanislaw W. Ciesielka
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Agnieszka K. Skoczen
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Krzysztof J. Janeczko
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow 30-387, Poland
| | | | - Karolina L. Planeta
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Zuzanna K. Setkowicz
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow 30-387, Poland
| |
Collapse
|
40
|
Zhang Y, Chopp M, Zhang ZG, Zhang Y, Zhang L, Lu M, Zhang T, Winter S, Doppler E, Brandstäetter H, Mahmood A, Xiong Y. Cerebrolysin Reduces Astrogliosis and Axonal Injury and Enhances Neurogenesis in Rats After Closed Head Injury. Neurorehabil Neural Repair 2019; 33:15-26. [PMID: 30499355 DOI: 10.1177/1545968318809916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cerebrolysin is a neuropeptide preparation with neuroprotective and neurotrophic properties. Our previous study demonstrates that cerebrolysin significantly improves functional recovery in rats after mild traumatic brain injury (mTBI). OBJECTIVE To determine histological outcomes associated with therapeutic effects of cerebrolysin on functional recovery after TBI. METHODS In this prospective, randomized, blinded, and placebo-controlled study, adult Wistar rats with mild TBI induced by a closed head impact were randomly assigned to one of the cerebrolysin dose groups (0.8, 2.5, 7.5 mL/kg) or placebo, which were administered 4 hours after TBI and then daily for 10 consecutive days. Functional tests assessed cognitive, behavioral, motor, and neurological performance. Study end point was day 90 after TBI. Brains were processed for histological tissue analyses of astrogliosis, axonal injury, and neurogenesis. RESULTS Compared with placebo, cerebrolysin significantly reduced amyloid precursor protein accumulation, astrogliosis, and axonal damage in various brain regions and increased the number of neuroblasts and neurogenesis in the dentate gyrus. There was a significant dose effect of cerebrolysin on functional outcomes at 3 months after injury compared with saline treatment. Cerebrolysin at a dose of ⩾0.8 mL/kg significantly improved cognitive function, whereas at a dose of ⩾2.5 mL/kg, cerebrolysin also significantly improved sensorimotor function at various time points. There were significant correlations between multiple histological and functional outcomes 90 days after mTBI. CONCLUSIONS Our findings demonstrate that cerebrolysin reduces astrogliosis and axonal injury and promotes neurogenesis, which may contribute to improved functional recovery in rats with mTBI.
Collapse
Affiliation(s)
| | - Michael Chopp
- 1 Henry Ford Hospital, Detroit, MI, USA
- 2 Oakland University, Rochester, MI, USA
| | | | - Yi Zhang
- 1 Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- 1 Henry Ford Hospital, Detroit, MI, USA
| | - Mei Lu
- 1 Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | - Ye Xiong
- 1 Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
41
|
Transient Morphological Alterations in the Hippocampus After Pentylenetetrazole-Induced Seizures in Rats. Neurochem Res 2018; 43:1671-1682. [DOI: 10.1007/s11064-018-2583-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
|