1
|
Studzińska-Sroka E, Paczkowska-Walendowska M, Kledzik J, Galanty A, Gościniak A, Szulc P, Korybalska K, Cielecka-Piontek J. Antidiabetic Potential of Black Elderberry Cultivars Flower Extracts: Phytochemical Profile and Enzyme Inhibition. Molecules 2024; 29:5775. [PMID: 39683932 DOI: 10.3390/molecules29235775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Black elderberry (Sambucus nigra L.) flowers are rich in polyphenolic compounds, including chlorogenic acid and quercetin derivatives, which are known for their health benefits, particularly their antioxidant and antidiabetic properties. This study aimed to optimize the extraction conditions using the Box-Behnken model to maximize polyphenol yields from different elderberry flower cultivars and to evaluate their potential for antidiabetic action. The extracts were analyzed for their phytochemical content and assessed for enzyme inhibition, specifically targeting enzymes critical in carbohydrate digestion and glucose regulation. The anti-inflammatory activity was also assessed. Results indicated that the Black Beauty, Obelisk, and Haschberg cultivars demonstrated significant inhibition of α-glucosidase, with a high inhibitory potential against α-amylase enzymes for the Obelisk cultivar. Additionally, high chlorogenic acid content was strongly correlated with enzyme inhibition and antioxidant activity, suggesting its substantial role in glucose regulation. This study underscores the potential of elderberry flower extracts, particularly those rich in chlorogenic acid, as natural agents for managing blood glucose levels, warranting further exploration of their use in antidiabetic applications.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | | | - Justyna Kledzik
- Department of Pharmacognosy and Biomaterials, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Przeor M, Ahmed NM. Technological processing of Phaseolus vulgaris and Morus alba leaves to create a new nutritional food product for individuals with diabetes. Sci Rep 2024; 14:28686. [PMID: 39562697 PMCID: PMC11576864 DOI: 10.1038/s41598-024-80373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
Nutritionists found beans still rarely consumed in Western diet, despite its high nutritional value was proven and recommended by authorities. The study aimed to propose a simple and effective way of manufacturing a new common bean-based product targeted to diabetics. The key components, including important protein (common beans) and antidiabetic (white mulberry) sources, were carefully selected due to their proven properties. The formulated product underwent extensive analysis: composition, sensory and structure attributes, antioxidant and anti-enzymatic activity showing its antidiabetic potential. Additionally, the proposed label information was presented. The results demonstrate that the proposed blend of ingredients yields a product of exceptional nutritional value, with significant levels of both soluble and insoluble dietary fibers (36.66-48.49%) and proteins (21.22-18.25%). Furthermore, the product exhibits notable antiradical and anti-enzymatic properties. Through precise control of ingredient proportions, conventional raw materials can be fortified with a diverse array of plant-based sources renowned for their health benefits, while maintaining a palatable taste for consumers. The designed product, a savory snack with added bioactive compounds, represents an interesting option for consumers, holding promise as a potential dietary option with low glycemic index (40) for diabetics (anti-glucosidase activity ranged 66.72-70.66%). This study emphasizes the potential of plant-protein-rich foods in offering health-promoting benefits and further supports the use of common beans and natural antidiabetic agents in developing innovative food products.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Wojskiego Polskiego 28, Poznań, 60-637, Poland.
| | - Naglaa M Ahmed
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Wojskiego Polskiego 28, Poznań, 60-637, Poland
| |
Collapse
|
3
|
Tegegne BA, Adugna A, Yenet A, Yihunie Belay W, Yibeltal Y, Dagne A, Hibstu Teffera Z, Amare GA, Abebaw D, Tewabe H, Abebe RB, Zeleke TK. A critical review on diabetes mellitus type 1 and type 2 management approaches: from lifestyle modification to current and novel targets and therapeutic agents. Front Endocrinol (Lausanne) 2024; 15:1440456. [PMID: 39493778 PMCID: PMC11527681 DOI: 10.3389/fendo.2024.1440456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes mellitus (DM) has emerged as an international health epidemic due to its rapid rise in prevalence. Consequently, scientists and or researchers will continue to find novel, safe, effective, and affordable anti-diabetic medications. The goal of this review is to provide a thorough overview of the role that lifestyle changes play in managing diabetes, as well as the standard medications that are currently being used to treat the condition and the most recent advancements in the development of novel medical treatments that may be used as future interventions for the disease. A literature search was conducted using research databases such as PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, etc. Data were then abstracted from these publications using words or Phrases like "pathophysiology of diabetes", "Signe and symptoms of diabetes", "types of diabetes", "major risk factors and complication of diabetes", "diagnosis of diabetes", "lifestyle modification for diabetes", "current antidiabetic agents", and "novel drugs and targets for diabetes management" that were published in English and had a strong scientific foundation. Special emphasis was given to the importance of lifestyle modification, as well as current, novel, and emerging/promising drugs and targets helpful for the management of both T1DM and T2DM.
Collapse
Affiliation(s)
- Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Aderaw Yenet
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Wubetu Yihunie Belay
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yared Yibeltal
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Hachouf M, Aouacheri O, Saka S, Marzocchi A, Carlo Tenore G. Phenolic Profiling, In Vitro Antiglycation, Antioxidant Activities, and Antidiabetic Effect of Algerian Trigonella Foenum-Graecum L. in Rats Administered a β-Cell Toxicant. Chem Biodivers 2024:e202401183. [PMID: 39269990 DOI: 10.1002/cbdv.202401183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study sought to quantitatively assess individual and total polyphenols, mineral composition, antioxidant and antiglycation activities of Algerian fenugreek seeds (AFS) as well as the antidiabetic effect of its supplementation on streptozotocin-induced diabetic rats. Forty rats were divided into four groups (i) non diabetic rats, (ii) non diabetic rats +10 % AFS, (iii) diabetic rats, (iv) diabetic rats +10 % AFS. Flame-SAA analysis revealed a rich content in micro-elements, HPLC DAD-FLD analysis revealed twenty components with rutin and ferulic acid being the major compounds in AFS hydro-methanolic extract while spectrophotometric assays scrutinized moderate contents in total phenolics and flavonoids. The extract was potent in scavenging ABTS⋅+ and DPPH+ (42.06±2.14 and 55.84±4.14 mg TE/g), reducing Fe3+ and Mo6+ (35.12±2.45 and 29.89±3.12 mg TE/g) and inhibiting AGEs (IC50=1.03±0.02 mg/ml). In vivo, 10 %AFS- supplemented diet (w/w) was found to elicit a significant reduction in glycemia (66.74 %), TNF α (9.4 %), IL-6 (23.74 %), CRP (31.10 %), liver enzymes, lipid peroxidation (MDA) (47.24 %;30 %), protein carbonyl (PCO) (28.35 %; 27.15 %), improvement in insulin level (79.74 %), reduced glutathione amount (GSH) (41.01 %; 16.55 %), glutathione peroxidase (GPx) (45.80 %; 56.37 %), catalase (CAT) (24.44 %; 35.42 %) and glutathione-S-transferase (GST) (22.78 %; 22.90 %) activities, in liver and pancreas respectively, along with a rejuvenation of hepatic and pancreatic histological features. These outcomes disclosed that AFS is endowed with biologically effective components which could be decent applicant to attain the objective of mitigating glycation, oxidative stress and diabetes-related complications.
Collapse
Affiliation(s)
- Maram Hachouf
- Applied Biochemistry and Microbiology Laboratory, Department of biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Ouassila Aouacheri
- Animal Ecophysiology Laboratory, Department of biology, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Saad Saka
- Animal Ecophysiology Laboratory, Department of biology, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Adua Marzocchi
- ChimNutra labs, Department of Pharmacy, University of Naples "Federico II", 80131 Napoli, Italy
| | - Gian Carlo Tenore
- ChimNutra labs, Department of Pharmacy, University of Naples "Federico II", 80131 Napoli, Italy
| |
Collapse
|
5
|
Remigante A, Spinelli S, Gambardella L, Straface E, Cafeo G, Russo M, Caruso D, Dugo P, Dossena S, Marino A, Morabito R. Anion exchanger1 (AE1/SLC4A1) function is impaired in red blood cells from prediabetic subjects: Potential benefits of finger lime (Citrus australasica, Faustrime cultivar) juice extract. Cell Biochem Funct 2024; 42:e4105. [PMID: 39096031 DOI: 10.1002/cbf.4105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Prediabetes is a risk state that defines a high chance of developing diabetes and cardiovascular disease. Oxidative stress mediated by hyperglycemia-induced production of reactive species could play a crucial role in this context. In the present study, we investigated whether the anion exchange capability mediated by AE1 (SLC4A1), which is sensitive to oxidative stress, was altered in human red blood cells (RBCs) obtained from prediabetic volunteers. In addition, we assessed the precise composition of bioactive compounds and the potential benefits of finger lime juice extract (Citrus australasica, Faustrime cultivar) in counteracting oxidative stress-related functional alterations. Human RBCs from normal and prediabetic volunteers were incubated with 50 µg/mL juice extract for 2 h at 25°C. Juice extract restored alterations of the anion exchange capability mediated by AE1 and prevented the structural rearrangements of AE1 and α/β-spectrin in prediabetic RBCs. AE1 functional and structural alterations were not associated with an increase in lipid peroxidation or protein oxidation at the level of the plasma membrane. An increased production of intracellular ROS, which provoked the oxidation of hemoglobin to methemoglobin, both reverted by juice extract, was instead observed. Importantly, juice extract also induced a reduction in glycated hemoglobin levels in prediabetic RBCs. Finally, juice extract blunted the overactivation of the endogenous antioxidant enzymes catalase and superoxide dismutase and prevented glutathione depletion in prediabetic RBCs. These findings contribute to clarifying cellular and molecular mechanisms related to oxidative stress and glycation events that may influence RBC and systemic homeostasis in prediabetes, identify AE1 as a sensitive biomarker of RBC structural and function alterations in prediabetes and propose finger lime juice extract as a natural antioxidant for the treatment and/or prevention of the complications associated with the prediabetic condition.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Cafeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Bauer I, Rimbach G, Cordeiro S, Bosy-Westphal A, Weghuber J, Ipharraguerre IR, Lüersen K. A comprehensive in-vitro/ in-vivo screening toolbox for the elucidation of glucose homeostasis modulating properties of plant extracts (from roots) and its bioactives. Front Pharmacol 2024; 15:1396292. [PMID: 38989154 PMCID: PMC11233739 DOI: 10.3389/fphar.2024.1396292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.
Collapse
Affiliation(s)
- Ilka Bauer
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Anja Bosy-Westphal
- Division of Human Nutrition, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Ignacio R. Ipharraguerre
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
7
|
Tlhapi D, Ramaite I, Anokwuru C, van Ree T. Molecular Networking-Based Metabolome, In Vitro Antidiabetic and Anti-Inflammatory Effects of Breonadia salicina (Vahl) Hepper & J.R.I. Wood. Metabolites 2024; 14:291. [PMID: 38921427 PMCID: PMC11206052 DOI: 10.3390/metabo14060291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Breonadia salicina (Vahl) Hepper & J.R.I. Wood is widely distributed throughout Africa. It is used ethnobotanically to treat various diseases. However, the metabolic profile of the Breonadia species is not well characterized and the metabolites that are responsible for the bioactivity of this plant remain unknown. Therefore, there is a need to determine the phytochemical and bioactivity profile to identify metabolites that contribute to the antidiabetic, anti-inflammatory and antiproliferation activity, including the genotoxicity and cytotoxic effects, of Breonadia salicina. The study is aimed at exploring the metabolomic profile antidiabetic, anti-inflammatory and antiproliferation activity, as well as the genotoxicity and cytotoxicity effects, of constituents of B. salicina. The compounds in the B. salicina extract were analyzed by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS), and the resultant data were further analyzed using a molecular networking approach. The crude stem bark and root extracts showed the highest antidiabetic activity against α-amylase at the lowest test concentration of 62.5 µg/mL, with 74.53 ± 0.74% and 79.1 ± 1.5% inhibition, respectively. However, the crude stem bark and root extracts showed the highest antidiabetic activity against α-glucosidase at the lowest test concentration of 31.3 µg/mL, with 98.20 ± 0.15% and 97.98 ± 0.22% inhibition, respectively. The crude methanol leaf extract showed a decrease in the nitrite concentration at the highest concentration of 200 µg/mL, with cell viability of 90.34 ± 2.21%, thus showing anti-inflammatory activity. No samples showed significant cytotoxic effects at a concentration of 10 µg/mL against HeLa cells. Furthermore, a molecular network of Breonadia species using UPLC-QTOF-MS with negative mode electrospray ionization showed the presence of organic oxygen compounds, lipids, benzenoids, phenylpropanoids and polyketides. These compound classes were differentially distributed in the three different plant parts, indicating the chemical differences between the stem bark, root and leaf extracts of B. salicina. Therefore, the identified compounds may contribute to the antidiabetic and anti-inflammatory activity of Breonadia salicina. The stem bark, root and leaf extracts of B. salicina yielded thirteen compounds identified for the first time in this plant, offering a promising avenue for the discovery of new lead drugs for the treatment of diabetes and inflammation. The use of molecular networking produced a detailed phytochemical overview of this Breonadia species. The results reported in this study show the importance of searching for bioactive compounds from Breonadia salicina and provide new insights into the phytochemical characterization and bioactivity of different plant parts of Breonadia salicina.
Collapse
Affiliation(s)
- Dorcas Tlhapi
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (I.R.); (T.v.R.)
| | - Isaiah Ramaite
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (I.R.); (T.v.R.)
| | - Chinedu Anokwuru
- Department of Basic Sciences, School of Science and Technology, Babcock University, Ilishan Remo 121103, Nigeria;
| | - Teunis van Ree
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (I.R.); (T.v.R.)
| |
Collapse
|
8
|
Wang Y, Ai Q, Gu M, Guan H, Yang W, Zhang M, Mao J, Lin Z, Liu Q, Liu J. Comprehensive overview of different medicinal parts from Morus alba L.: chemical compositions and pharmacological activities. Front Pharmacol 2024; 15:1364948. [PMID: 38694910 PMCID: PMC11061381 DOI: 10.3389/fphar.2024.1364948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Morus alba L., a common traditional Chinese medicine (TCM) with a centuries-old medicinal history, owned various medicinal parts like Mori folium, Mori ramulus, Mori cortex and Mori fructus. Different medical parts exhibit distinct modern pharmacological effects. Mori folium exhibited analgesic, anti-inflammatory, hypoglycemic action and lipid-regulation effects. Mori ramulus owned anti-bacterial, anti-asthmatic and diuretic activities. Mori cortex showed counteraction action of pain, inflammatory, bacterial, and platelet aggregation. Mori fructus could decompose fat, lower blood lipids and prevent vascular sclerosis. The main chemical components in Morus alba L. covered flavonoids, phenolic compounds, alkaloids, and amino acids. This article comprehensively analyzed the recent literature related to chemical components and pharmacological actions of M. alba L., summarizing 198 of ingredients and described the modern activities of different extracts and the bioactive constituents in the four parts from M. alba L. These results fully demonstrated the medicinal value of M. alba L., provided valuable references for further comprehensive development, and layed the foundation for the utilization of M. alba L.
Collapse
Affiliation(s)
- Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qing Ai
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Wenqin Yang
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhao Lin
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
9
|
Zolotova D, Teterovska R, Bandere D, Lauberte L, Niedra S. Antidiabetic Properties of the Root Extracts of Dandelion ( Taraxacum officinale) and Burdock ( Arctium lappa). PLANTS (BASEL, SWITZERLAND) 2024; 13:1021. [PMID: 38611548 PMCID: PMC11013470 DOI: 10.3390/plants13071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Several preclinical studies suggest the potential of edible plants in controlling blood sugar levels and stabilizing diet. The goals of the study were to examine, analyze, and describe whether there are chemical compounds in dandelion and burdock roots that could have antidiabetic properties. The 70% ethyl alcohol and lyophilizate extracts (AE and LE, respectively), were used, and analyses were carried out on their total polysaccharide (TP), total phenolic content (TPC), tannin, and inulin. The antioxidant activity of extracts was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, and hypoglycemic properties were based on α-amylase activity. Liquid chromatography-mass spectrometry was used for the tentative identification of the chemical components. Qualitative techniques confirmed the presence of inulin in both roots. Analysis of TPC, tannin content, DPPH assay, and α-amylase activity revealed higher values for burdock compared to dandelion. However, dandelion exhibited higher TP content. Burdock contained a small amount of tannin, whereas the tannin content in dandelion was insignificant. All LE consistently exhibited higher values in all analyses and assays for all roots compared to AE. Despite burdock root showing overall better results, it is uncertain whether these plants can be recommended as antidiabetic agents without in vivo studies.
Collapse
Affiliation(s)
- Daria Zolotova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
| | - Renāte Teterovska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
- Department of Pharmaceuticals, Red Cross Medical College, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia; (L.L.); (S.N.)
| | - Santa Niedra
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia; (L.L.); (S.N.)
| |
Collapse
|
10
|
Jan S, Iram S, Bashir O, Shah SN, Kamal MA, Rahman S, Kim J, Jan AT. Unleashed Treasures of Solanaceae: Mechanistic Insights into Phytochemicals with Therapeutic Potential for Combatting Human Diseases. PLANTS (BASEL, SWITZERLAND) 2024; 13:724. [PMID: 38475570 DOI: 10.3390/plants13050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. Studies on the genetic makeup and composition of bioactive compounds have revealed them to be rich in steroidal alkaloids, saponins, terpenes, flavonoids, and phenolics. The Solanaceae family, having a rich abundance of bioactive compounds with varying degrees of pharmacological activities, holds significant promise in the management of different diseases. Investigation into Solanum species has revealed them to exhibit a wide range of pharmacological properties, including antioxidant, hepatoprotective, cardioprotective, nephroprotective, anti-inflammatory, and anti-ulcerogenic effects. Phytochemical analysis of isolated compounds such as diosgenin, solamargine, solanine, apigenin, and lupeol has shown them to be cytotoxic in different cancer cell lines, including liver cancer (HepG2, Hep3B, SMMC-772), lung cancer (A549, H441, H520), human breast cancer (HBL-100), and prostate cancer (PC3). Since analysis of their phytochemical constituents has shown them to have a notable effect on several signaling pathways, a great deal of attention has been paid to identifying the biological targets and cellular mechanisms involved therein. Considering the promising aspects of bioactive constituents of different Solanum members, the main emphasis was on finding and reporting notable cultivars, their phytochemical contents, and their pharmacological properties. This review offers mechanistic insights into the bioactive ingredients intended to treat different ailments with the least harmful effects for potential applications in the advancement of medical research.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Sana Iram
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ommer Bashir
- Department of School Education, Srinagar 190001, Jammu and Kashmir, India
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin AbdulAziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| |
Collapse
|
11
|
Hota D, Padhy BM, Maiti R, Bisoi D, Sahoo JP, Patro BK, Kumar P, Goel A, Banik SP, Chakraborty S, Rungta M, Bagchi M, Bagchi D. A Placebo-Controlled, Double-Blind Clinical Investigation to Evaluate the Efficacy of a Patented Trigonella foenum-graecum Seed Extract "Fenfuro®" in Type 2 Diabetics. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:147-156. [PMID: 37459747 DOI: 10.1080/27697061.2023.2233008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/30/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Trigonella foenum-graecum (Fenugreek) is an extensively researched phytotherapeutic for the management of Type 2 diabetes without any associated side effects. The major anti-diabetic bioactive constituents present in the plant are furostanolic saponins, which are more abundantly available in the seed of the plant. However, the bioavailability of these components depends on the method of extraction and hence formulation of the phytotherapeutic constitutes a critical step for its success. OBJECTIVE The present study reports the efficacy of a novel, patented fenugreek seed extract, Fenfuro®, containing significant amount of furostanolic saponins, in an open-labelled, two-armed, single centric study on a group of 204 patients with Type 2 diabetes mellitus over a period of twelve consecutive weeks. RESULTS Administration of Fenfuro® in the dosage of 500 mg twice daily along with metformin and/or sulfonylurea-based prescribed antidiabetic drug resulted in a reduction of post-prandial glucose by more than 33% along with significant reduction in fasting glucose, both of which were greater than what resulted for the patient group receiving only Metformin and/or Sulfonylurea therapy. Fenfuro® also resulted in reduction in mean baseline HOMA index from 4.27 to 3.765, indicating restoration of insulin sensitivity which was also supported by a significant decrease in serum insulin levels by >10% as well as slight reduction in the levels of C-peptide. However, in the case of the Metformin and/or Sulfonylurea group, insulin levels were found to increase by more than 14%, which clearly indicated that drug-induced suppression of glucose levels instead of restoration of glucose homeostasis. Administration of the formulation was also found to be free from any adverse side effects as there were no changes in hematological profile, liver function and renal function. CONCLUSION The study demonstrated the promising potential of this novel phytotherapeutic, Fenfuro®, in long-term holistic management of type-2 diabetes.
Collapse
Affiliation(s)
- Debasish Hota
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Biswa M Padhy
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Debasis Bisoi
- Department of Pharmacology, AIIMS, Bibinagar, Hyderabad, India
| | - Jyoti Prakash Sahoo
- Department of Pharmacology, SCB Medical College & Hospital, Cuttack, Orissa, India
| | - Binod K Patro
- Department of Community and Family Medicine, AIIMS, Bhubaneswar, Orissa, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Mehul Rungta
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Manashi Bagchi
- Department of R&D, Dr. Herbs LLC, Concord, California, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
12
|
Hernández-Martínez JA, Zepeda-Bastida A, Morales-Rodríguez I, Fernández-Luqueño F, Campos-Montiel R, Hereira-Pacheco SE, Medina-Pérez G. Potential Antidiabetic Activity of Apis mellifera Propolis Extraction Obtained with Ultrasound. Foods 2024; 13:348. [PMID: 38275714 PMCID: PMC10815508 DOI: 10.3390/foods13020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have linked phenolic compounds to the inhibition of digestive enzymes. Propolis extract is consumed or applied as a traditional treatment for some diseases. More than 500 chemical compounds have been identified in propolis composition worldwide. This research aimed to determine Mexican propolis extracts' total phenolic content, total flavonoid content, antioxidant activity, and digestive enzyme inhibitory activity (ɑ-amylase and ɑ-glucosidase). In vitro assays measured the possible effect on bioactive compounds after digestion. Four samples of propolis from different regions of the state of Oaxaca (Mexico) were tested (Eloxochitlán (PE), Teotitlán (PT), San Pedro (PSP), and San Jerónimo (PSJ)). Ethanol extractions were performed using ultrasound. The extract with the highest phenolic content was PE with 15,362.4 ± 225 mg GAE/100 g. Regarding the flavonoid content, the highest amount was found in PT with 8084.6 ± 19 mg QE/100 g. ABTS•+ and DPPH• radicals were evaluated. The extract with the best inhibition concentration was PE with 33,307.1 ± 567 mg ET/100 g. After simulated digestion, phenolics, flavonoids, and antioxidant activity decreased by 96%. In contrast, antidiabetic activity, quantified as inhibition of ɑ-amylase and ɑ-glucosidase, showed a mean decrease in enzyme activity of approximately 50% after the intestinal phase. Therefore, it is concluded that propolis extracts could be a natural alternative for treating diabetes, and it would be necessary to develop a protective mechanism to incorporate them into foods.
Collapse
Affiliation(s)
- Javier A. Hernández-Martínez
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| | - Armando Zepeda-Bastida
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| | - Irma Morales-Rodríguez
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Ramos Arizpe 25900, Coahuila, Mexico;
| | - Rafael Campos-Montiel
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| | - Stephanie E. Hereira-Pacheco
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Km 10.5 de la carretera San Martín Texmelucan, San Felipe Ixtacuixtla, Villa Mariano Matamoros 90120, Tlaxcala, Mexico;
| | - Gabriela Medina-Pérez
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| |
Collapse
|
13
|
Kong C, Duan C, Zhang Y, Wang Y, Yan Z, Zhou S. Non-starch polysaccharides from kidney beans: comprehensive insight into their extraction, structure and physicochemical and nutritional properties. Food Funct 2024; 15:62-78. [PMID: 38063031 DOI: 10.1039/d3fo03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Kidney beans (Phaseolus vulgaris L.) are an important legume source of carbohydrates, proteins, and bioactive molecules and thus have attracted increasing attention for their high nutritional value and sustainability. Non-starch polysaccharides (NSPs) in kidney beans account for a high proportion and have a significant impact on their biological functions. Herein, we critically update the information on kidney bean varieties and factors that influence the physicochemical properties of carbohydrates, proteins, and phenolic compounds. Furthermore, their extraction methods, structural characteristics, and health regulatory effects, such as the regulation of intestinal health and anti-obesity and anti-diabetic effects, are also summarized. This review will provide suggestions for further investigation of the structure of kidney bean NSPs, their relationships with biological functions, and the development of NSPs as novel plant carbohydrate resources.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Caiping Duan
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yixuan Zhang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yiying Wang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China.
| | - Sumei Zhou
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
14
|
Zhao Q, Yang J, Li J, Zhang L, Yan X, Yue T, Yuan Y. Hypoglycemic effect and intestinal transport of phenolics-rich extract from digested mulberry leaves in Caco-2/insulin-resistant HepG2 co-culture model. Food Res Int 2024; 175:113689. [PMID: 38129030 DOI: 10.1016/j.foodres.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Phenolics of mulberry (Morus alba L.) leaves (MLs) have potential anti-diabetic effects, but they may be chemically modified during gastrointestinal digestion so affect their biological activity. In this study, an in vitro digestion model coupled with Caco-2 monolayer and Caco-2/insulin-resistant HepG2 coculture model were used to study the transport and hypoglycemic effects of phenolics in raw MLs (U-MLs) and solid-fermented MLs (F-MLs). The results of LC-MS/MS analysis showed that the Papp (apparent permeability coefficient, 10-6cm/s) of phenolics in digested MLs ranged from 0.002 ± 0.00 (quercetin 3-O-glucoside) to 60.19 ± 0.67 (ferulic acid), indicating higher phenolic acids absorbability and poor flavonoids absorbability. The Papp values of phenolic extracts of F-MLs in Caco-2 monolayer were significantly higher (p > 0.05) than that of U-MLs. Digested phenolic extracts inhibited the activities of sucrase (60.13 ± 2.03 %) and maltase (82.35 ± 0.78 %) and decreased 9.28 ± 0.84 % of glucose uptake in Caco-2 monolayer. Furthermore, a decrease in the mRNA expression of glucose transporters SGLT1 (0.64 ± 0.18), GLUT2 (0.14 ± 0.02) and the sucrase-isomaltase (0.59 ± 0.00) was observed. In Caco-2/insulin-resistant HepG2 co-culture model, phenolic extracts regulated glucose metabolism by up-regulating the mRNA expressions of IRS1 (9.32-fold), Akt (17.07-fold) and GYS2 (1.5-fold), and down-regulating the GSK-3β (0.22-fold), PEPCK (0.49-fold) and FOXO1 (0.10-fold) mRNA levels. Both U-MLs and F-MLs could improve glucose metabolism, and the partial least squares (PLS) analysis showed that luteoforol and p-coumaric acid were the primary phenolics that strongly correlated with the hypoglycemic ability of MLs. Results suggested that phenolics of MLs can be used as dietary supplements to regulate glucose metabolism.
Collapse
Affiliation(s)
- Qiannan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jinyi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Techonology, Northwest University, Xi'an 710069, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Techonology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
15
|
Wal P. Phytochemicals and their Potential Mechanisms against Insulin Resistance. Curr Diabetes Rev 2024; 20:e081123223322. [PMID: 37946350 DOI: 10.2174/0115733998262924231020083353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Insulin's inception dates back to 1921 and was unveiled through a momentous revelation. Diabetes is a dangerous, long-term disease in which the body fails to generate enough insulin or utilize the insulin it creates adequately. This causes hyperglycemia, a state of high blood sugar levels, which can even put a person into a coma if not managed. Activation of the insulin receptor corresponds to two crucial metabolic functions, i.e., uptake of glucose and storage of glycogen. Type 2 diabetes mellitus (T2DM) exists as one of the most challenging medical conditions in the 21st century. The sedentary lifestyle and declining quality of food products have contributed to the rapid development of metabolic disorders. Hence, there is an urgent need to lay some reliable, significant molecules and modalities of treatment to combat and manage this epidemic. In this review, we have made an attempt to identify and enlist the major phytoconstituents along with the associated sources and existing mechanisms against insulin resistance. The conducted study may offer potential sustainable solutions for developing and formulating scientifically validated molecules and phytoconstituents as formulations for the management of this metabolic disorder.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (PHARMACY), NH19 Kanpur, Agra Highway, Bhauti Kanpur, Uttar Pradesh 209305, India
| |
Collapse
|
16
|
Przeor M. How Does In Vitro Digestion Change the Amount of Phenolics in Morus alba L. Leaf? Analysis of Preparations and Infusions. Metabolites 2024; 14:31. [PMID: 38248834 PMCID: PMC10818460 DOI: 10.3390/metabo14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The application of Morus alba L. in traditional oriental medicine and cuisine has resulted in numerous studies on its health-promoting effects. However, if the process is not monitored by the manufacturers, the processing of the leaves alters the obtained health-promoting properties and results in different health qualities in the final composition of dietary supplements. This article aims to analyze changes (using the HPLC/DAD method) in the proposed conditioned mulberry leaves in terms of key compounds (phenolic acids and flavonols) responsible for antioxidant activity after being digested in in vitro conditions. The analyzed material was leaves of white mulberry (Morus alba L.) cv. Żółwińska wielkolistna, conditioned (1-4 h) and non-conditioned. The conditioning process of mulberry proposed here, e.g., for industry production, resulted in variable transformations of polyphenols during in vitro digestion. For many polyphenols, especially those shown in the highest amounts, significant correlations were found between their content and conditioning, as well as the stage of digestion. In the case of mulberry infusions, the amounts of individual polyphenols were several times lower than in the preparations, which was due to the degree of dilution. Their amounts tended to decrease in the course of digestion. Taking this into account, it seems justified to continue research on the in vivo bioavailability of bioactive components from conditioned Morus alba L. leaves.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
17
|
Przeor M, Jokiel M. Morus alba L. Leaves (WML) Modulate Sweet (TAS1R) and Bitter (TAS2R) Taste in the Studies on Human Receptors - A New Perspective on the Utilization of White Mulberry Leaves in Food Production? PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:748-754. [PMID: 37796414 PMCID: PMC10665252 DOI: 10.1007/s11130-023-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
From the nutritional perspective, the main direction of the utilization of white mulberry (Morus alba L.) parts so far has been to produce dietary supplements or functional foods for individuals with diabetes or over-weight. Its leaves are widely known as a valuable source of bioactive compounds responsible for its antioxidant and antidiabetic effects, both in animals and humans. The authors found that processed leaves can also be investigated as potential bitter and/or sweet taste modulators-an important property of new functional foods. The study aimed to validate the inhibitory effect of Morus alba L. on the TAS2R3 and TAS2R13 bitter taste and TSA1R2/TSA1R3 receptors and determine the changes that the conditioning process caused in such receptors. The effect on the receptors was evaluated in specially transfected HEK293T cells, and the inhibition ratio was measured using the calcium release test. Moreover, the stability of phenolics in the simulated intestinal in vitro digestion process was determined. Results showed that the Morus alba leaf extracts were rich in gallic, chlorogenic and caffeic acids together with rutin and quercetin 3-(6-malonyl)-glucoside, while the conditioning process positively affected their amount. Most identified phenolics were reduced during in vitro digestion. In the taste receptors test, it was found that the phytochemicals from conditioned Morus alba leaf extract enhanced sweet taste, together with a reduction of bitter taste receptor activity in some cases. To conclude, the study has found that Morus alba, especially when conditioned for 4 h, seems to be a valuable modulator of taste, which should be considered in future research as a crucial reason for its new utilization.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland.
| | - Maria Jokiel
- PORT, Polish Center for Technology Development, Wrocław, Poland
| |
Collapse
|
18
|
Naoom AY, Kang W, Ghanem NF, Abdel-Daim MM, El-Demerdash FM. Actinidia deliciosa as a complemental therapy against nephropathy and oxidative stress in diabetic rats. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
19
|
Musfiroh I, Ifaya M, Sahidin I, Herawati DMD, Tjitraresmi A, Abdurrahman S, Muchtaridi M, Khairul Ikram NK. Isolation of phenolic compound from Lawsonia inermis and its prediction as anti-diabetic agent using molecular docking and molecular dynamic simulation. J Biomol Struct Dyn 2023; 42:11415-11424. [PMID: 37776010 DOI: 10.1080/07391102.2023.2262595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
High blood sugar is a defining feature of chronic disease, diabetes mellitus (DM). There are numerous commercially available medications for the treatment of DM. However, managing the patient's glucose levels remain a challenge because of the gradual reduction in beta-cell function and some side effects from the long-term use of various medications. Previous research has shown that the phenolic compound of henna plant (Lawsonia inermis L.) has the potential as anti-diabetic agent since it is able to suppress the digesting of α-amylase enzyme. In these studies, the plant' phenolic compounds have been isolated and characterized using UV, IR, NMR and LC-MS methods. Furthermore, the compound interaction into the active site of the α-amylase enzyme has been analyzed using molecular docking and molecular dynamics, as well as into α-glucosidase enzyme for predicting of the affinities. The results showed that isolated compound has the molecular formula of C15H10O6 with eleven degrees of unsaturation (DBE; double bond equivalence). The DBE value corresponds to the structure of the luteolin compound having an aromatic ring (8), a carbonyl group on the side chain (1) and a ketone ring with (2). The interaction study of the isolated compound with α-amylase and α-glucosidase enzyme using molecular docking compared to the positive control (acarbose) gave binding energy of -8.03 and -8.95 kcal/mol, respectively. The molecular dynamics simulation using the MM-PBSA method, complex stability based on solvent accessible surface area (SASA), root mean square deviation (RMSD), and root mean square fluctuation (RMSF) revealed that the compound has a high affinity for receptors. The characteristics of skin permeability, absorption, and distribution using ADME-Tox model were also well predicted. The results indicate that the phenolic compound isolated from L. inermis leaf was luteolin and it has the potential as an anti-diabetic agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Mus Ifaya
- Department of Pharmacy, Faculty of Science and Technology, Universitas Mandala Waluya, Southeast Sulawesi, Indonesia
| | - I Sahidin
- Faculty of Pharmacy, Universitas Halu Oleo Kendari, Southeast Sulawesi, Indonesia
| | - Dewi M D Herawati
- Division of Medical Nutrition, Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ami Tjitraresmi
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Syawal Abdurrahman
- Department of Medical Laboratory Technology, Faculty of Science and Technology, Universitas Mandala Waluya, Kendari, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | | |
Collapse
|
20
|
Chiribagula Valentin B, Ndjolo Philippe O, Mboni Henry M, Mushagalusa Kasali F. Ethnomedicinal Knowledge of Plants Used in Nonconventional Medicine in the Management of Diabetes Mellitus in Kinshasa (Democratic Republic of the Congo). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4621883. [PMID: 37771953 PMCID: PMC10533323 DOI: 10.1155/2023/4621883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Background People with diabetes, herbalists, and traditional medicine practitioners (TMPs) from Kinshasa use plants to treat diabetes, but no study has inventoried the plants used by these populations. The present study was conducted to identify the plants used in Kinshasa to treat diabetes mellitus. Methods The survey conducted in the form of a semistructured interview between March 2005 and August 2006 made it possible to collect ethnobotanical information from people with diabetes (n = 126), herbalists (n = 80), and TMPs (n = 120). Results The 326 subjects consulted (sex ratio M/F = 0.6, age 51 ± 7 years, and experience: 17 ± 5 years) provided information on 71 plants, most of which are trees (35%), belonging to 38 families dominated by Fabaceae (19.7%) and indicated in 51 other cases of consultation dominated by malaria (12%). From these 71 plants derived, 86 antidiabetic recipes were administered orally, where the leaf is the most used part (>50%) and the decoction (>46%) is the most common mode of preparation. This study reports for the first time the antidiabetic use of 11 species, among which Tephrosia vogeliiX (0.08), Chromolaena corymbosaX (0.06), and Baphia capparidifoliaX (0.06) present the highest consensus indexes (CI) and Marsdenia latifoliaW (UVp = 0.08) and Rauvolfia manniiX (UVp = 0.06) present the highest UVs. Conclusion The results show that Kinshasa people treat diabetes using several plants. Some are specific to the ecological environment; others are used in other regions. Pharmacological studies are underway to assess the therapeutic efficacy of these plants.
Collapse
Affiliation(s)
- Bashige Chiribagula Valentin
- Department of Pharmacy, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (Université de Lubumbashi), 27 Avenue Kato, Commune Kampemba, Lubumbashi, Congo
| | - Okusa Ndjolo Philippe
- Department of Pharmacy, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (Université de Lubumbashi), 27 Avenue Kato, Commune Kampemba, Lubumbashi, Congo
| | - Manya Mboni Henry
- Department of Pharmacy, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (Université de Lubumbashi), 27 Avenue Kato, Commune Kampemba, Lubumbashi, Congo
| | - Félicien Mushagalusa Kasali
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Université Officielle de Bukavu (UOB), P.O. Box: 570, Bukavu, Commune of Kadutu, Av. Karhale, Congo
| |
Collapse
|
21
|
Aldughaylibi FS, Raza MA, Naeem S, Rafi H, Alam MW, Souayeh B, Farhan M, Aamir M, Zaidi N, Mir TA. Extraction of Bioactive Compounds for Antioxidant, Antimicrobial, and Antidiabetic Applications. Molecules 2022; 27:molecules27185935. [PMID: 36144671 PMCID: PMC9503716 DOI: 10.3390/molecules27185935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
This study was designed to check the potential of secondary metabolites of the selected plants; Citrullus colocynthis, Solanum nigrum, Solanum surattense, Calotropis procera, Agave americana, and Anagallis arvensis for antioxidant, antibacterial, antifungal, and antidiabetic agents. Plant material was soaked in ethanol/methanol to get the crude extract, which was further partitioned via solvent extraction technique. GCMS and FTIR analytical techniques were applied to check the compounds responsible for causing antioxidant, antimicrobial, and antidiabetic activities. It was concluded that about 80% of studied extracts/fractions were active against α-amylase, ranging from 43 to 96%. The highest activity (96.63%) was exhibited by butanol fractions of A. arvensis while the least response (43.65%) was shown by the aqueous fraction of C. colocynthis and the methanol fraction of fruit of S. surattense. The highest antioxidant activity was shown by the ethyl acetate fraction of Anagallis arvensis (78.1%), while aqueous as well as n-hexane fractions are the least active throughout the assay. Results showed that all tested plants can be an excellent source of natural products with potential antimicrobial, antioxidant, and antidiabetic potential. The biological response of these species is depicted as a good therapeutic agent, and, in the future, it can be encapsulated for drug discovery.
Collapse
Affiliation(s)
| | - Muhammad Asam Raza
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
- Correspondence: (M.A.R.); (M.W.A.)
| | - Sumaira Naeem
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Humera Rafi
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.A.R.); (M.W.A.)
| | - Basma Souayeh
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Aamir
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Noushi Zaidi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Organ Transplant Centre of Excellence, Transplantation Research & Innovation (Dpt)-R, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
22
|
Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother 2022; 152:113217. [PMID: 35679719 DOI: 10.1016/j.biopha.2022.113217] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome. Diabetes has become more common in recent years. Chemically generated drugs are used to lessen the effects of DM and its following repercussions due to unpleasant side effects such as weight gain, gastrointestinal issues, and heart failure. On the other hand, medicinal plants could be a good source of anti-diabetic medications. This article aims to determine any plant matrix's positive potential. Food restriction, physical activity, and the use of antidiabetic plant-derived chemicals are all being promoted as effective ways to manage diabetes because they are less expensive and have fewer or no side effects. This review focuses on antidiabetic plants, along with their bioactive constituent, chemically characterization, and plant-based diets for diabetes management. There is minimal scientific data about the mechanism of action of the plant-based product has been found. The purpose of this article is to highlight anti-diabetic plants and plant-derived bioactive compounds that have anti-diabetic properties. It also provides researchers with data that may be used to build future strategies, such as identifying promising bioactive molecules to make diabetes management easier.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sumaia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nazneen Ahmeda Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Ovidiu Pop
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, KPK, Pakistan.
| |
Collapse
|
23
|
Qar J, Al-Trad B, khmaiseh A, Muhaidat R, Omari S, Al-Omari G, Al Zoubi M. The Effect of Eugenol Treatment on Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:623-633. [DOI: 10.13005/bpj/2401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cardiovascular diseases account for most of the morbidity and mortality associated with diabetes. Diabetic cardiomyopathy (DCM) is associated with heart failure in diabetic patients without relation to other cardiovascular diseases such as hypertension or coronary artery disorders. Eugenol is a phenolic compound extracted from the clove tree and exhibits effective mitigation of hyperglycemic conditions in diabetic animals. Thus, in the current study, we aimed to explore the effect of eugenol treatment on rats with DCM. The experimental animals included 30 Sprague Dawley male rats which are divided into three experimental groups (10 rats each) as the following: the non-diabetic control group (ND), diabetic group (D), and a treated-diabetic group (20mg/kg/day of eugenol) (D+E). Diabetes was induced by streptozotocin (STZ) injection (60 mg/ kg). After 6 weeks, blood samples and left ventricles were collected for analysis. Serum glucose levels, heart weight/body weight ratio, and the myocardial mRNA expression of transforming growth factor β1 (TGF-β1), tumor necrosis factor-α (TNF-α), caspase 3 (casp3), vascular endothelial growth factor-A (VEGF-A), and collagen IV were evaluated. Furthermore, the myocardial superoxide dismutase (SOD) activity was measured. Diabetic rats showed a significant appearance of hyperglycemia and increased expression of myocardial TNF-α, TGF-β1, caspase 3, and VEGF-A compared to the control group (P < 0.05), and a tendency to increase collagen IV (P < 0.1). On the other hand, the eugenol treatment mitigates diabetic-associated hyperglycemia and the increased mRNA expression levels of myocardial TGF-β1, VEGF-A, caspase 3, and TNF-α (P < 0.05). In addition, the overexpression of collagen IV was inhibited, and the myocardial SOD activity was improved in the diabetic rats treated with eugenol. The study provided evidence that eugenol may have a potential therapeutic effect in the experimental models of DCM by reducing the expression of pro-inflammatory, pro-fibrotic, angiogenic, and pro-apoptotic factors (TNF-α, TGF-β, collagen IV, VEGF-A, and caspase 3 respectively). It is recommended for further studies investigate the exact molecular processes by which eugenol may ameliorate the DCM phenotype.
Collapse
Affiliation(s)
- Janti Qar
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Bahaa Al-Trad
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Alaa khmaiseh
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | | | - Sahar Omari
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Ghada Al-Omari
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Mazhar Al Zoubi
- 2Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| |
Collapse
|
24
|
Rosero S, Del Pozo F, Simbaña W, Álvarez M, Quinteros MF, Carrillo W, Morales D. Polyphenols and Flavonoids Composition, Anti-Inflammatory and Antioxidant Properties of Andean Baccharis macrantha Extracts. PLANTS (BASEL, SWITZERLAND) 2022; 11:1555. [PMID: 35736706 PMCID: PMC9231361 DOI: 10.3390/plants11121555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
This study examined the leaves of Baccharis macrantha to obtain extracts of Baccharis macrantha (EBM) and to determine the total flavonoid content (TFC) and the total polyphenol content (TPC). The main objective of this work was to quantify TPC and TFC of extracts of B. macrantha from Ecuador and evaluate its antioxidant and anti-inflammatory activities and inhibition of lipid peroxidation. The extraction method was optimized with solvents, ethanol, and methanol, at temperatures of 30-60 °C and extraction times of 5-20 min. The optimal TFC extraction conditions were at EtOH25% at 50 °C for 10 min. The optimal TPC extraction conditions were at EtOH50% at 50 °C for 10 min. EBM was characterized by TLC and HPLC with three standards: gallic acid, catechin, and quercetin. EBM-EtOH25% and EBM-EtOH50% obtained at 50 °C for 10 min were used to identify quercetin and evaluate biologicals activities. Quercetin was detected in EBM (EtOH25% and EtOH50%). EBM anti-inflammatory activity was evaluated with the red blood cell stabilization (RBC) method. The RBC model showed values of 49.72% of protection lysis RBC to EBM-EtOH25% and 50.71% of protection lysis RBC to EBM-EtOH50%. The EBM in vitro inhibition of lipid peroxidation showed a protection of 77.00% (EtOH25%) and 73.11% (EtOH50%) when the TBARs method was used. EBM-EtOH25% and EtOH50% showed high antioxidant activity. EBM-EtOH25% presented values of ABTS (1172 µmol TE/g EBM), DPPH (836 µmol TE/g, EBM), and FRAP (85.70 µmol TE/g, EBM).
Collapse
Affiliation(s)
- Santiago Rosero
- Department of Research, Laboratory of Functional Foods, Department of Science and Engineering in Food and Biotechnology, Campus Huachi, Technical University of Ambato, Av. Los Chasquis y Río Payamino, Ambato 1801334, Ecuador; (S.R.); (F.D.P.); (W.S.); (M.Á.)
| | - Freddy Del Pozo
- Department of Research, Laboratory of Functional Foods, Department of Science and Engineering in Food and Biotechnology, Campus Huachi, Technical University of Ambato, Av. Los Chasquis y Río Payamino, Ambato 1801334, Ecuador; (S.R.); (F.D.P.); (W.S.); (M.Á.)
| | - Walter Simbaña
- Department of Research, Laboratory of Functional Foods, Department of Science and Engineering in Food and Biotechnology, Campus Huachi, Technical University of Ambato, Av. Los Chasquis y Río Payamino, Ambato 1801334, Ecuador; (S.R.); (F.D.P.); (W.S.); (M.Á.)
- Instituto Nacional de Biodiversidad (INABIO), Pje. Rumipamba 341 y Av. De los Shyris, Quito170506, Ecuador
| | - Mario Álvarez
- Department of Research, Laboratory of Functional Foods, Department of Science and Engineering in Food and Biotechnology, Campus Huachi, Technical University of Ambato, Av. Los Chasquis y Río Payamino, Ambato 1801334, Ecuador; (S.R.); (F.D.P.); (W.S.); (M.Á.)
| | - María Fernanda Quinteros
- Departamento de Investigación, Universidad Estatal de Bolívar, Guaranda-Bolívar 020102, Ecuador;
| | - Wilman Carrillo
- Departamento de Ingeniería Rural y Agroalimentaria, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Dayana Morales
- Department of Research, Laboratory of Functional Foods, Department of Science and Engineering in Food and Biotechnology, Campus Huachi, Technical University of Ambato, Av. Los Chasquis y Río Payamino, Ambato 1801334, Ecuador; (S.R.); (F.D.P.); (W.S.); (M.Á.)
| |
Collapse
|
25
|
Khadka D, Pandey K. Exploring the Crucial Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Plant Secondary Metabolite Production and Diabetes Management. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|