1
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
2
|
Huang J, Korsunsky A, Yazdani M, Chen J. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Front Mol Neurosci 2024; 16:1334370. [PMID: 38273937 PMCID: PMC10808746 DOI: 10.3389/fnmol.2023.1334370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of transmembrane ion channels that are widely expressed, have important physiological roles, and are associated with many human diseases. These proteins are actively pursued as promising drug targets, benefitting greatly from advances in structural and mechanistic studies of TRP channels. At the same time, the complex, polymodal activation and regulation of TRP channels have presented formidable challenges. In this short review, we summarize recent progresses toward understanding the structural basis of TRP channel function, as well as potential ligand binding sites that could be targeted for therapeutics. A particular focus is on the current understanding of the molecular mechanisms of TRP channel activation and regulation, where many fundamental questions remain unanswered. We believe that a deeper understanding of the functional mechanisms of TRP channels will be critical and likely transformative toward developing successful therapeutic strategies targeting these exciting proteins. This endeavor will require concerted efforts from computation, structural biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and clinical studies.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Aron Korsunsky
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Mahdieh Yazdani
- Modeling and Informatics, Merck & Co., Inc., West Point, PA, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
3
|
Oi-Kano Y, Goto T, Takahashi H, Iwasaki Y, Kawada T. Effect of Oleuropein on Anti-Obesity and Uncoupling Protein 1 Level in Brown Adipose Tissue in Mild Treadmill Walking Rats with Diet-Induced Obesity. J Nutr Sci Vitaminol (Tokyo) 2024; 70:193-202. [PMID: 38945884 DOI: 10.3177/jnsv.70.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.
Collapse
Affiliation(s)
- Yuriko Oi-Kano
- Laboratory of Nutrition Chemistry, Faculty of Home Economics, Kobe Women's University
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Iwasaki
- Laboratory of Animal Function, Kyoto Prefectural University
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
4
|
Wei X, Yang Q, Yang Z, Huang T, Yang H, Wang L, Pan L, Ding J. Discovery of novel TRPV1 modulators through machine learning-based molecular docking and molecular similarity searching. Chem Biol Drug Des 2023; 102:409-423. [PMID: 37489095 DOI: 10.1111/cbdd.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 07/26/2023]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel belongs to the transient receptor potential channel superfamily and participates in many physiological processes. TRPV1 modulators (both agonists and antagonists) can effectively inhibit pain caused by various factors and have curative effects in various diseases, such as itch, cancer, and cardiovascular diseases. Therefore, the development of TRPV1 channel modulators is of great importance. In this study, the structure-based virtual screening and ligand-based virtual screening methods were used to screen compound databases respectively. In the structure-based virtual screening route, a full-length human TRPV1 protein was first constructed, three molecular docking methods with different precisions were performed based on the hTRPV1 structure, and a machine learning-based rescoring model by the XGBoost algorithm was constructed to enrich active compounds. In the ligand-based virtual screening route, the ROCS program was used for 3D shape similarity searching and the EON program was used for electrostatic similarity searching. Final 77 compounds were selected from two routes for in vitro assays. The results showed that 8 of them were identified as active compounds, including three hits with IC50 values close to capsazepine. In addition, one hit is a partial agonist with both agonistic and antagonistic activity. The mechanisms of some active compounds were investigated by molecular dynamics simulation, which explained their agonism or antagonism.
Collapse
Affiliation(s)
- Xinmiao Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Qifan Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Zhijiang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Tengxin Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Hang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Liangliang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Junjie Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
5
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
6
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
7
|
Cotero V, Graf J, Miwa H, Hirschstein Z, Qanud K, Huerta TS, Tai N, Ding Y, Jimenez-Cowell K, Tomaio JN, Song W, Devarajan A, Tsaava T, Madhavan R, Wallace K, Loghin E, Morton C, Fan Y, Kao TJ, Akhtar K, Damaraju M, Barenboim L, Maietta T, Ashe J, Tracey KJ, Coleman TR, Di Carlo D, Shin D, Zanos S, Chavan SS, Herzog RI, Puleo C. Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nat Biomed Eng 2022; 6:683-705. [PMID: 35361935 PMCID: PMC10127248 DOI: 10.1038/s41551-022-00870-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.
Collapse
Affiliation(s)
- Victoria Cotero
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - John Graf
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Hiromi Miwa
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Khaled Qanud
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tomás S Huerta
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Yuyan Ding
- Yale School of Medicine, New Haven, CT, USA
| | - Kevin Jimenez-Cowell
- Yale School of Medicine, New Haven, CT, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Weiguo Song
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Alex Devarajan
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tea Tsaava
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Radhika Madhavan
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Kirk Wallace
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Evelina Loghin
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Christine Morton
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Ying Fan
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Tzu-Jen Kao
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | | | | | | | | | - Jeffrey Ashe
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | | | - Chris Puleo
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA.
| |
Collapse
|
8
|
RAGE Regulating Vascular Remodeling in Diabetes by Regulating Mitochondrial Dynamics with JAK2/STAT3 Pathway. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2685648. [PMID: 35498181 PMCID: PMC9054424 DOI: 10.1155/2022/2685648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
In this research, we will explore the role and modulation of mitochondrial dynamics in diabetes vascular remodeling. Only a few cell types express the pattern recognition receptor, also known as the AGE receptor (RAGE). However, it is triggered in almost all of the cells that have been investigated thus far by events that are known to cause inflammation. Here, Type 2 diabetes was studied in both cellular and animal models. Elevated Receptor for advanced glycation end products (RAGE), phosphorylated JAK2 (p-JAK2), phosphorylated STAT3 (p-STAT3), transient receptor potential ion channels (TRPM), and phosphorylated dynamin-related protein 1 (p-DRP1) were observed in the context of diabetes. In addition, we found that inhibition of RAGE was followed by a remarkable decrease in the expression of the above proteins. It has also been demonstrated by western blotting and immunofluorescence results in vivo and in vitro. Suppressing STAT3 and DRP1 phosphorylation produced effects similar to those of RAGE inhibition on the proliferation, cell cycle, migration, invasion, and expression of TRPM in VSMCs and vascular tissues obtained from diabetic animals. These findings indicate that RAGE regulates vascular remodeling via mitochondrial dynamics through modulating the JAK2/STAT3 axis in diabetes. The findings could be crucial in gaining a better understanding of diabetes-related vascular remodeling. It also contributes to a better cytopathological understanding of diabetic vascular disease and provides a theoretical foundation for novel targets that aid in the prevention and treatment of diabetes-related cardiovascular problems.
Collapse
|
9
|
Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022; 11:1190. [PMID: 35406753 PMCID: PMC8997886 DOI: 10.3390/cells11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
Collapse
Affiliation(s)
- Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Barbara A. Niemeyer
- Department of Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany;
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
10
|
Roy P, Martinelli I, Moruzzi M, Maggi F, Amantini C, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK, Tomassoni D. Ion channels alterations in the forebrain of high-fat diet fed rats. Eur J Histochem 2021; 65:3305. [PMID: 34814650 PMCID: PMC8636841 DOI: 10.4081/ejh.2021.3305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
Evidence suggests that transient receptor potential (TRP) ion channels dysfunction significantly contributes to the physiopathology of metabolic and neurological disorders. Dysregulation in functions and expression in genes encoding the TRP channels cause several inherited diseases in humans (the so-called 'TRP channelopathies'), which affect the cardiovascular, renal, skeletal, and nervous systems. This study aimed to evaluate the expression of ion channels in the forebrain of rats with diet-induced obesity (DIO). DIO rats were studied after 17 weeks under a hypercaloric diet (high-fat diet, HFD) and were compared to the control rats with a standard diet (CHOW). To determine the systemic effects of HFD exposure, we examined food intake, fat mass content, fasting glycemia, insulin levels, cholesterol, and triglycerides. qRT-PCR, Western blot, and immunochemistry analysis were performed in the frontal cortex (FC) and hippocampus (HIP). After 17 weeks of HFD, DIO rats increased their body weight significantly compared to the CHOW rats. In DIO rats, TRPC1 and TRPC6 were upregulated in the HIP, while they were downregulated in the FC. In the case of TRPM2 expression, instead was increased both in the HIP and in the FC. These could be related to the increase of proteins and nucleic acid oxidation. TRPV1 and TRPV2 gene expression showed no differences both in the FC and HIP. In general, qRT-PCR analyses were confirmed by Western blot analysis. Immunohistochemical procedures highlighted the expression of the channels in the cell body of neurons and axons, particularly for the TRPC1 and TRPC6. The alterations of TRP channel expression could be related to the activation of glial cells or the neurodegenerative process presented in the brain of the DIO rat highlighted with post synaptic protein (PSD 95) alterations. The availability of suitable animal models may be useful for studying possible pharmacological treatments to counter obesity-induced brain injury. The identified changes in DIO rats may represent the first insight to characterize the neuronal alterations occurring in obesity. Further investigations are necessary to characterize the role of TRP channels in the regulation of synaptic plasticity and obesity-related cognitive decline.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino.
| | | | | | - Federica Maggi
- Department of Molecular Medicine, La Sapienza University of Rome.
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino.
| | | | | | | | | | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino.
| |
Collapse
|
11
|
Li X, Lai L, Su J, Chen S, Lin S, Wang B, Gao J, Zhang L, Yao K, Duan S. Novel association between a transient receptor potential cation channel subfamily M member 5 expression quantitative trait locus rs35197079 and decreased susceptibility of gestational diabetes mellitus in a Chinese population. J Diabetes Investig 2021; 12:2062-2070. [PMID: 33979016 PMCID: PMC8565411 DOI: 10.1111/jdi.13572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/29/2022] Open
Abstract
AIMS/INTRODUCTION Emerging evidence suggests that expression quantitative trait loci (eQTLs) are more likely to associate with complex diseases. Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a ubiquitously expressed voltage-gated cation channel that acts indispensably to trigger insulin secretion in pancreatic β-cells. The present study evaluated the association between TRPM5 eQTL single-nucleotide polymorphisms and the risk of gestational diabetes mellitus (GDM) in a Chinese population. MATERIALS AND METHODS A total of 380 unrelated Chinese pregnant women including 241 GDM patients and 139 controls were included in this study. The eQTL single-nucleotide polymorphisms of TRPM5 were obtained from the GTEx eQTL Browser, and were subsequently genotyped using the Agena MassARRAY iPLEX platform. RESULTS Logistic regression analysis and linear regression analysis showed that rs35197079 and rs74848824 were significantly associated with reduced GDM risk and lower fasting plasma glucose levels after adjusting confounder factors in dominant genetic models. Stratification analysis based on pre-pregnancy body mass index validated a strong association between rs35197079 and GDM susceptibility in underweight and normal weight individuals. Luciferase and electrophoretic mobility shift assays carried out in rat pancreatic β-cells showed that rs35197079 was functional. CONCLUSIONS The TRPM5 eQTL single-nucleotide polymorphism rs35197079 was associated with decreased GDM susceptibility in a Chinese population, especially in underweight and normal weight pregnant women, and it was functional in modulating gene transcription.
Collapse
Affiliation(s)
- Xi Li
- Shenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Liping Lai
- Endocrine DepartmentFutian Center for Chronic Disease ControlShenzhenChina
| | - Jindi Su
- Shenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Shiguo Chen
- Shenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Sheng Lin
- Shenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Baojiang Wang
- Shenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Jian Gao
- Shenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Linghua Zhang
- Shenzhen Health Development Research CenterShenzhenChina
| | - Keqin Yao
- Shenzhen Health Development Research CenterShenzhenChina
| | - Shan Duan
- Shenzhen Maternity and Child Healthcare HospitalShenzhenChina
| |
Collapse
|
12
|
Sun W, Luo Y, Zhang F, Tang S, Zhu T. Involvement of TRP Channels in Adipocyte Thermogenesis: An Update. Front Cell Dev Biol 2021; 9:686173. [PMID: 34249940 PMCID: PMC8264417 DOI: 10.3389/fcell.2021.686173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Obesity prevalence became a severe global health problem and it is caused by an imbalance between energy intake and expenditure. Brown adipose tissue (BAT) is a major site of mammalian non-shivering thermogenesis or energy dissipation. Thus, modulation of BAT thermogenesis might be a promising application for body weight control and obesity prevention. TRP channels are non-selective calcium-permeable cation channels mainly located on the plasma membrane. As a research focus, TRP channels have been reported to be involved in the thermogenesis of adipose tissue, energy metabolism and body weight regulation. In this review, we will summarize and update the recent progress of the pathological/physiological involvement of TRP channels in adipocyte thermogenesis. Moreover, we will discuss the potential of TRP channels as future therapeutic targets for preventing and combating human obesity and related-metabolic disorders.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yixuan Luo
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Fei Zhang
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Park SJ, Yu Y, Beyak MJ. Effect of high-fat diet on mechanosensitive transient receptor potential channel activation in vagal afferent neurons. Can J Physiol Pharmacol 2021; 99:660-666. [PMID: 33108741 DOI: 10.1139/cjpp-2020-0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mechanical stimulation of the gastrointestinal tract is an important stimulus of satiety and can be transduced by transient receptor potential (TRP) channels. Several studies have revealed attenuated vagally-mediated satiety responses including mechanosensitivity in diet-induced obesity; however, ion channels underlying this hyposensitivity have not been fully understood. This study aimed to examine the effect of chronic high-fat diet on activation of selected mechanosensitive TRP channels in vagal afferents. C57/BL6 mice were fed on either a high-fat or low-fat diet for 6-8 weeks. An increase in the intracellular calcium to hypotonic solution and activators of TRPV1, TRPV4, and TRPA1 was measured in nodose neurons using Ca2+-imaging techniques. Jejunal afferent nerve firing induced by mechanical stimulation and TRP channel agonists was measured using in vitro extracellular multiunit afferent recording. In high-fat diet-fed mice, we observed reduced calcium influx and jejunal afferent response induced by mechanical stimuli and agonists of TRPV4 and TRPA1, but not TRPV1. Our data show diet-induced obesity disrupts the activation of TRPV4 and TRPA1, at both the cellular level and the level of nerve terminals in the small intestine, which may partly explain reduced mechanosensitivity of vagal afferents and may contribute to decreased gut-brain satiety signaling in obesity.
Collapse
Affiliation(s)
- Sung Jin Park
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Michael J Beyak
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Abstract
Diabetes is on the rise across the globe affecting more than 463 million people and crucially increasing morbidities of diabetes-associated diseases. Urgent and immense actions are needed to improve diabetes prevention and treatment. Regarding the correlation of diabetes with many associated diseases, inhibition of the disease progression is more crucial than controlling symptoms. Currently, anti-diabetic drugs are accompanied by undesirable side-effects and target confined types of biomolecules. Thus, extensive research is demanding to identify novel disease mechanisms and molecular targets as probable candidates for effective treatment of diabetes. This review discusses the conventional molecule targets that have been applied for their therapeutic rationale in treatment of diabetes. Further, the emerging and prospective molecular targets for the future focus of library screenings are presented.
Collapse
Affiliation(s)
- Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Kumar V, Mahajan N, Khare P, Kondepudi KK, Bishnoi M. Role of TRPV1 in colonic mucin production and gut microbiota profile. Eur J Pharmacol 2020; 888:173567. [PMID: 32946867 DOI: 10.1016/j.ejphar.2020.173567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
This study focuses on exploring the role of sensory cation channel Transient Receptor Potential channel subfamily Vanilloid 1 (TRPV1) in gut health, specifically mucus production and microflora profile in gut. We employed resiniferatoxin (ultrapotent TRPV1 agonist) induced chemo-denervation model in rats and studied the effects of TRPV1 ablation on colonic mucus secretion patterns. Histological and transcriptional analysis showed substantial decrease in mucus production as well as in expression of genes involved in goblet cell differentiation, mucin production and glycosylation. 16S metagenome analysis revealed changes in abundance of various gut bacteria, including decrease in beneficial bacteria like Lactobacillus spp and Clostridia spp. Also, TRPV1 ablation significantly decreased the levels of short chain fatty acids, i.e. acetate and butyrate. The present study provides first evidence that systemic TRPV1 ablation leads to impairment in mucus production and causes dysbiosis in gut. Further, it suggests to address mucin production and gut microbiota related adverse effects during the development of TRPV1 antagonism/ablation-based therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Vijay Kumar
- National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Neha Mahajan
- National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon expressway, Faridabad, Haryana, 121001, India
| | - Pragyanshu Khare
- National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India.
| |
Collapse
|
16
|
González-Mercado A, Magaña-Torres MT, Sánchez-López JY, Ríos-Silva M, Ibarra-Cortés B, Trujillo X, Huerta M. The Relationship of Single Nucleotide Polymorphisms in the TRPV1 Gene with Lipid Profile, Glucose, and Blood Pressure in Mexican Population. Genet Test Mol Biomarkers 2020; 24:420-424. [PMID: 32460554 DOI: 10.1089/gtmb.2019.0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: We analyzed the frequencies of the rs222749 G>A, rs222747 G>C, rs224534 G>A, and rs8065080 C > T polymorphisms in the TRPV1 gene and their relationships with biomarkers in a Mexican population. Materials and Methods: We included 195 students from two Mexican universities (72.3% female and 27.7% male, mean age, 20.8 ± 3.3 years). The biomarkers analyzed were lipid profile, glucose levels, blood pressure (BP), and body mass index. DNA was obtained from leukocytes by the dodecyltrimethylammonium bromide and cetyltrimethylammonium bromide method and polymorphisms were determined with TaqMan single nucleotide polymorphism (SNP) genotyping assays. Results: Alterations in lipid profile were total cholesterol ≥200 mg/dL in 9.7% of participants, triglycerides (TG) ≥150 mg/dL in 9.2%, high-density lipoprotein (HDL) <35 mg/dL in 6.7%, and low-density lipoprotein (LDL) ≥130 mg/dL in 6.2% of participants. Moreover, 8.2% of the subjects had BP values consistent with hypertension. The most frequent alleles were rs222749G (89.2%), rs222747G (69.2%), rs224534G (59.7%), and rs8065080T (62.3%). An analysis of the associations between the genotypic data and the biomarkers showed that the rs222749GA and rs224534GA genotypes were associated with higher diastolic and systolic BP values, respectively; the rs222747CC genotype was associated with lower LDL levels; the rs224534AA genotype was associated with higher HDL levels and lower triglycerides and LDL. The GGGC/GCAT and GGGT/GCAT haplotypes were associated with higher systolic BP. Conclusions: This study suggests a possible association between TRPV1 gene polymorphisms and BP and lipid profiles in a Mexican population.
Collapse
Affiliation(s)
- Anahí González-Mercado
- Institute of Human Genetics "Dr. Enrique Corona Rivera," Department of Molecular and Genomic Biology, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Dr. Enrico Stefani Research Unit, University Center for Biomedical Research, Universidad de Colima, Colima, México
| | - María Teresa Magaña-Torres
- Genetics Division, Western Biomedical Research Center, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Josefina Yoaly Sánchez-López
- Genetics Division, Western Biomedical Research Center, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Mónica Ríos-Silva
- Dr. Enrico Stefani Research Unit, University Center for Biomedical Research, Universidad de Colima, Colima, México.,Universidad de Colima-Cátedras CONACyT, Colima, México
| | - Bertha Ibarra-Cortés
- Institute of Human Genetics "Dr. Enrique Corona Rivera," Department of Molecular and Genomic Biology, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Xochitl Trujillo
- Dr. Enrico Stefani Research Unit, University Center for Biomedical Research, Universidad de Colima, Colima, México
| | - Miguel Huerta
- Dr. Enrico Stefani Research Unit, University Center for Biomedical Research, Universidad de Colima, Colima, México
| |
Collapse
|
17
|
Inprasit C, Huang YC, Lin YW. Evidence for acupoint catgut embedding treatment and TRPV1 gene deletion increasing weight control in murine model. Int J Mol Med 2020; 45:779-792. [PMID: 31922226 PMCID: PMC7015137 DOI: 10.3892/ijmm.2020.4462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a global health problem affecting the general population. Acupoint catgut embedding (ACE) is an alternative treatment that involves the implantation of absorbable catgut suture at acupoints. The transient receptor vanilloid member 1 (TRPV1) is a calcium ion channel that responds to several chemical ligands and is identified in numerous locations throughout the body. The aim of the present study was to examine the effect of ACE treatment on obesity and its associated complications through various neural mechanisms in a murine model. A C57/BL6 wild type (WT) and TRPV1‑/‑ (KO) mouse model was utilized to exclude any psychological factors associated with obesity. The WT‑HFD‑ACE and WT‑HFD‑SHAM groups received weekly ACE or placebo treatments at the bilateral ST36 acupoint. The mice were fed with a normal mice chow diet (ND) or a high‑fat food diet (HFD; 45 kcal%), and their body weights were recorded once a week. After 8 weeks, the subjects were sacrificed and changes in the levels of a number of biomarkers were investigated using ELISA, immunoblotting and immunofluorescence. The results indicated a significant decrease in body weight variation for the WT‑HFD‑ACE group compared with the WT‑HFD and WT‑HFD‑SHAM groups, using the WT‑ND group as the body weight baseline. By contrast, KO mice fed with ND or HFD demonstrated notable body weight maintenance throughout the experimental period. Similar patterns were observed in adipose tissue mass, glucose, leptin and insulin plasma levels, and protein molecule density of TRPV1 and its associated molecules in the hypothalamus and nucleus tractus solitarii. In contrast, in the prefrontal cortex, significant decreases in the concentrations of MAPK pathway proteins in the WT‑HFD and WT‑HFD‑SHAM groups were observed. The levels of these proteins were significantly increased in the WT‑HFD‑ACE and KO‑HFD groups. These results suggested that TRPV1 and its associated pathways may be involved in body weight maintenance, and may be controlled through ACE treatment or genetic manipulation.
Collapse
Affiliation(s)
- Chanya Inprasit
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University
| | - Yu-Chuen Huang
- College of Chinese Medicine, School of Chinese Medicine, China Medical University
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University
| |
Collapse
|
18
|
Singh R, Bansal Y, Sodhi RK, Singh DP, Bishnoi M, Kondepudi KK, Medhi B, Kuhad A. Berberine attenuated olanzapine-induced metabolic alterations in mice: Targeting transient receptor potential vanilloid type 1 and 3 channels. Life Sci 2020; 247:117442. [PMID: 32081663 DOI: 10.1016/j.lfs.2020.117442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) channels are emerging therapeutic targets for metabolic disorders. Berberine, which is a modulator of TRPV1, has proven antiobesity and antidiabetic potentials. The present study was aimed to investigate the protective effects of berberine in olanzapine-induced alterations in hypothalamic appetite control, inflammation and metabolic aberrations in mice targeting TRPV1 channels. Female BALB/c mice (18-23 g) were treated with olanzapine (6 mg/kg, p.o.) for six weeks to induce metabolic alterations, while berberine (100 and 200 mg/kg, p.o.) and metformin (100 mg/kg, p.o) were used as test and standard interventions respectively. Weekly assessment of feed-water intake, body temperature and body weight was done, while locomotion was measured at the end of week 1 and 6. Serum glucose and lipid profile were assessed by biochemical methods, while other serum biomarkers were assessed by ELISA. qPCR was used to quantify the mRNA expression in the hypothalamus. Olanzapine treatment significantly increased the feed intake, weight gain, adiposity index, while reduced body temperature and locomotor activity which were reversed by berberine treatment. Berberine treatment reduced serum ghrelin and leptin levels as well decrease in hypothalamic mRNA expression of orexigenic neuropeptides, inflammatory markers and ghrelin receptor in olanzapine-treated mice. Olanzapine treatment increased expression of TRPV1/TRPV3 in the hypothalamus which was significantly decreased by berberine treatment. Our results suggest that berberine, by TRPV1/TRPV3 modulation, attenuated the olanzapine-induced metabolic alterations in mice. Hence berberine supplementation in psychiatric patients could be a preventive approach to reduce the metabolic adverse effects of antipsychotics.
Collapse
Affiliation(s)
- Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dhirendra Pratap Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India; Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; ICMR-National Institute of Occupational Health (NIOH), Ahmedabad 380016, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
19
|
Ahamad J, Toufeeq I, Khan MA, Ameen MSM, Anwer ET, Uthirapathy S, Mir SR, Ahmad J. Oleuropein: A natural antioxidant molecule in the treatment of metabolic syndrome. Phytother Res 2019; 33:3112-3128. [DOI: 10.1002/ptr.6511] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Javed Ahamad
- Faculty of PharmacyTishk International University Erbil Iraq
| | - Ibrahim Toufeeq
- Faculty of PharmacyTishk International University Erbil Iraq
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and ResearchJamia Hamdard New Delhi India
| | | | - Esra T. Anwer
- Faculty of PharmacyTishk International University Erbil Iraq
| | | | - Showkat R. Mir
- Department of Pharmacognosy, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy)Jamia Hamdard New Delhi India
| | - Javed Ahmad
- Department of Pharmaceutics, College of PharmacyNajran University Najran Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
21
|
Non-Analgesic Symptomatic or Disease-Modifying Potential of TRPA1. Med Sci (Basel) 2019; 7:medsci7100099. [PMID: 31547502 PMCID: PMC6836032 DOI: 10.3390/medsci7100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
TRPA1, a versatile ion channel of the Transient Receptor Potential (TRP) channel family, detects a large variety of chemicals and can contribute to signal processing of other stimuli, e.g., due to its sensitivity to cytosolic calcium elevation or phosphoinositolphosphate modulation. At first, TRPA1 was found on sensory neurons, where it can act as a sensor for potential or actual tissue damage that ultimately may elicit pain or itch as warning symptoms. This review provides an update regarding the analgesic and antipruritic potential of TRPA1 modulation and the respective clinical trials. Furthermore, TRPA1 has been found in an increasing amount of other cell types. Therefore, the main focus of the review is to discuss the non-analgesic and particularly the disease-modifying potential of TRPA1. This includes diseases of the respiratory system, cancer, ischemia, allergy, diabetes, and the gastrointestinal system. The involvement of TRPA1 in the respective pathophysiological cascades is so far mainly based on pre-clinical data.
Collapse
|
22
|
Dhakal S, Lee Y. Transient Receptor Potential Channels and Metabolism. Mol Cells 2019; 42:569-578. [PMID: 31446746 PMCID: PMC6715338 DOI: 10.14348/molcells.2019.0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707,
Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707,
Korea
| |
Collapse
|
23
|
Gao P, Yan Z, Zhu Z. The role of adipose TRP channels in the pathogenesis of obesity. J Cell Physiol 2019; 234:12483-12497. [PMID: 30618095 DOI: 10.1002/jcp.28106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension Chongqing China
| |
Collapse
|
24
|
Molinas AJR, Desmoulins LD, Hamling BV, Butcher SM, Anwar IJ, Miyata K, Enix CL, Dugas CM, Satou R, Derbenev AV, Zsombok A. Interaction between TRPV1-expressing neurons in the hypothalamus. J Neurophysiol 2019; 121:140-151. [PMID: 30461371 PMCID: PMC6383661 DOI: 10.1152/jn.00004.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel expressed in the peripheral and central nervous systems. TRPV1-dependent mechanisms take part in a wide range of physiological and pathophysiological pathways including the regulation of homeostatic functions. TRPV1 expression in the hypothalamus has been described as well as evidence that TRPV1-dependent excitatory inputs to hypothalamic preautonomic neurons are diminished in diabetic conditions. Here we aimed to determine the functional expression of TRPV1 in two hypothalamic nuclei known to be involved in the central control of metabolism and to test the hypothesis that TRPV1-expressing neurons receive TRPV1-expressing inputs. A mouse model (TRPV1Cre/tdTom) was generated to identify TRPV1-expressing cells and determine the cellular properties of TRPV1-expressing neurons in adult mice. Our study demonstrated the functional expression of TRPV1 in the dorsomedial hypothalamic nucleus and paraventricular nucleus in adult mice. Our findings revealed that a subset of TRPV1Cre/tdTom neurons receive TRPV1-expressing excitatory inputs, indicating direct interaction between TRPV1-expressing neurons. In addition, astrocytes likely play a role in the modulation of TRPV1-expressing neurons. In summary, this study identified specific hypothalamic regions where TRPV1 is expressed and functional in adult mice and the existence of direct connections between TRPV1Cre/tdTom neurons. NEW & NOTEWORTHY Transient receptor potential vanilloid type 1 (TRPV1) is expressed in the hypothalamus, and TRPV1-dependent regulation of preautonomic neurons is decreased in hyperglycemic conditions. Our study demonstrated functional expression of TRPV1 in two hypothalamic nuclei involved in the control of energy homeostasis. Our results also revealed that a subset of TRPV1-expressing neurons receive TRPV1-expressing excitatory inputs. These findings suggest direct interaction between TRPV1-expressing neurons.
Collapse
Affiliation(s)
- Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Brooke V Hamling
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Sierra M Butcher
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Imran J Anwar
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Courtney L Enix
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Courtney M Dugas
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| |
Collapse
|
25
|
Xing Y, Ming J, Liu T, Zhang N, Zha D, Lin Y. Decreased Expression of TRPV4 Channels in HEI-OC1 Cells Induced by High Glucose Is Associated with Hearing Impairment. Yonsei Med J 2018; 59:1131-1137. [PMID: 30328329 PMCID: PMC6192885 DOI: 10.3349/ymj.2018.59.9.1131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/21/2018] [Accepted: 08/10/2018] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Previous reports have shown that hyperglycemia-induced inhibition of transient receptor potential vanilloid sub type 4 (TRPV4), a transient receptor potential ion channel, affects the severity of hearing impairment (HI). In this study, we explored the role of TRPV4 in HI using HEI-OC1 cells exposed to high glucose (HG). MATERIALS AND METHODS HEI-OC1 cells were cultured in a HG environment (25 mM D-glucose) for 48 hours, and qRT-PCR and Western blotting were used to analyze the expression of TRPV4 at the mRNA and protein level. TRPV4 agonist (GSK1016790A) or antagonist (HC-067047) in cultured HEI-OC1 cells was used to obtain abnormal TRPV4 expression. Functional TRPV4 activity was assessed in cultured HEI-OC1 cells using the MTT assay and a cell death detection ELISA. RESULTS TRPV4 agonists exerted protective effects against HG-induced HI, as evidenced by increased MTT levels and inhibition of apoptosis in HEI-OC1 cells. TRPV4 overexpression significantly increased protein levels of phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), while TRPV4 antagonists had the opposite effect. Our results indicated that TRPV4 is a hyperglycemia-related factor that can inhibit cell proliferation and promote cell apoptosis by activating the MAPK signaling pathway in HEI-OC1 cells. CONCLUSION Our results show that the overexpression of TRPV4 can attenuate cell death in HEI-OC1 cells exposed to HG.
Collapse
Affiliation(s)
- Ying Xing
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Jie Ming
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Tao Liu
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Nana Zhang
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, Forth Military Medical University, Xi'an, China.
| | - Ying Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, Forth Military Medical University, Xi'an, China.
| |
Collapse
|
26
|
Liu C, Li C, Deng Z, Du E, Xu C. Long Non-coding RNA BC168687 is Involved in TRPV1-mediated Diabetic Neuropathic Pain in Rats. Neuroscience 2018; 374:214-222. [PMID: 29421435 DOI: 10.1016/j.neuroscience.2018.01.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in a diverse range of molecular and biological processes, and dysregulation of lncRNAs has been observed in the pathogenesis of various human diseases. We observed alterations in mechanical withdrawal thresholds (MWT) and thermal withdrawal latencies (TWL) in streptozotocin (STZ)-induced diabetic rats treated with small interfering RNA (siRNA) of lncRNA BC168687. We detected expression of transient receptor potential vanilloid type 1 (TRPV1) in rat dorsal root ganglia (DRG) by a series of molecular experiments. We determined relative levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in rat serum by enzyme-linked immunosorbent assay (ELISA). In addition, we examined extracellular regulated protein kinases (ERK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways by Western blot (WB). We showed that the MWT and TWL of diabetic rats increased significantly compared with control. Expression of TRPV1 receptors in DRG substantially decreased. Relative levels of TNF-α and IL-1β in the serum of lncRNA BC168687 siRNA-treated rats were reduced. Phosphorylation (p)-ERK and p-p38 signaling pathways in DRG were also decreased. Taken together, we concluded lncRNA BC168687 siRNA may alleviate TRPV1-mediated diabetic neuropathic pain.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Congcong Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330006, PR China
| | - Zeyu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Errong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China.
| |
Collapse
|
27
|
Vennekens R, Mesuere M, Philippaert K. TRPM5 in the battle against diabetes and obesity. Acta Physiol (Oxf) 2018; 222. [PMID: 28834354 DOI: 10.1111/apha.12949] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022]
Abstract
TRPM5 is a non-selective monovalent cation channel activated by increases in intracellular Ca2+ . It has a distinct expression pattern: expression is detected in chemosensitive tissues from solitary chemosensory cells to the taste receptor cells and in pancreatic β-cells. The role of TRPM5 has been investigated with the use of knockout mouse models. Trpm5-/- mice have a lack of type II taste perception and show reduced glucose-induced insulin secretion. Expression levels of TRPM5 are reduced in obese, leptin-signalling-deficient mice, and mutations in TRPM5 have been associated with type II diabetes and metabolic syndrome. In this review, we aim to give an overview of the activation, selectivity, modulation and physiological roles of TRPM5.
Collapse
Affiliation(s)
- R. Vennekens
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| | - M. Mesuere
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| | - K. Philippaert
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| |
Collapse
|
28
|
Overactivity of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus: Electrophysiological Findings in db/db Mice. J Neurosci 2017; 37:11140-11150. [PMID: 29038244 DOI: 10.1523/jneurosci.1706-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism.SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus. Despite the importance of the brain-liver pathway, the overall activity of liver-related neurons in control and diabetic conditions is not known. This is a significant gap in knowledge, which prevents developing strategies to improve glucose homeostasis via altering the brain-liver pathway. One of the key findings of our study is the overall shift toward excitation in liver-related hypothalamic neurons in the diabetic condition. This overactivity may be one of the underlying mechanisms of elevated sympathetic activity known in metabolically compromised patients and animal models.
Collapse
|
29
|
Cold-sensing TRPM8 channel participates in circadian control of the brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2415-2427. [PMID: 28943398 DOI: 10.1016/j.bbamcr.2017.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
Transient receptor potential (TRP) channels are known to regulate energy metabolism, and TRPM8 has become an interesting player in this context. Here we demonstrate the role of the cold sensor TRPM8 in the regulation of clock gene and clock controlled genes in brown adipose tissue (BAT). We investigated TrpM8 temporal profile in the eyes, suprachiasmatic nucleus and BAT; only BAT showed temporal variation of TrpM8 transcripts. Eyes from mice lacking TRPM8 lost the temporal profile of Per1 in LD cycle. This alteration in the ocular circadian physiology may explain the delay in the onset of locomotor activity in response to light pulse, as compared to wild type animals (WT). Brown adipocytes from TrpM8 KO mice exhibited a larger multilocularity in comparison to WT or TrpV1 KO mice. In addition, Ucp1 and UCP1 expression was significantly reduced in TrpM8 KO mice in comparison to WT mice. Regarding circadian components, the expression of Per1, Per2, Bmal1, Pparα, and Pparβ oscillated in WT mice kept in LD, whereas in the absence of TRPM8 the expression of clock genes was reduced in amplitude and lack temporal oscillation. Thus, our results reveal new roles for TRPM8 channel: it participates in the regulation of clock and clock-controlled genes in the eyes and BAT, and in BAT thermogenesis. Since disruption of the clock machinery has been associated with many metabolic disorders, the pharmacological modulation of TRPM8 channel may become a promising therapeutic target to counterbalance weight gain, through increased thermogenesis, energy expenditure, and clock gene activation.
Collapse
|
30
|
Thiel G, Lesch A, Rubil S, Backes TM, Rössler OG. Regulation of Gene Transcription Following Stimulation of Transient Receptor Potential (TRP) Channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:167-189. [PMID: 29305012 DOI: 10.1016/bs.ircmb.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transient receptor potential (TRP) channels belong to a heterogeneous superfamily of cation channels that are involved in the regulation of numerous biological functions, including regulation of Ca2+ and glucose homeostasis, tumorigenesis, temperature, and pain sensation. To understand the functions of TRP channels, their associated intracellular signaling pathways and molecular targets have to be identified on the cellular level. Stimulation of TRP channels frequently induces an influx of Ca2+ ions into the cells and the subsequent activation of protein kinases. These intracellular signal transduction pathways ultimately induce changes in the gene expression pattern of the cells. Here, we review the effects of TRPC6, TRPM3, and TRPV1 channel stimulation on the activation of the stimulus-responsive transcription factors AP-1, CREB, Egr-1, Elk-1, and NFAT. Following activation, these transcription factors induce the transcription of delayed response genes. We propose that many biological functions of TRP channels can be explained by the activation of stimulus-responsive transcription factors and their delayed response genes. The proteins encoded by those delayed response genes may be responsible for the biochemical and physiological changes following TRP channel activation.
Collapse
Affiliation(s)
- Gerald Thiel
- Saarland University Medical Faculty, Homburg, Germany.
| | - Andrea Lesch
- Saarland University Medical Faculty, Homburg, Germany
| | - Sandra Rubil
- Saarland University Medical Faculty, Homburg, Germany
| | | | | |
Collapse
|
31
|
Transient Receptor Potential (TRP) Channels in Drug Discovery: Old Concepts & New Thoughts. Pharmaceuticals (Basel) 2017; 10:ph10030064. [PMID: 28684697 PMCID: PMC5620608 DOI: 10.3390/ph10030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/04/2023] Open
|
32
|
Bruce KD, Zsombok A, Eckel RH. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front Endocrinol (Lausanne) 2017; 8:60. [PMID: 28421037 PMCID: PMC5378716 DOI: 10.3389/fendo.2017.00060] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
- *Correspondence: Kimberley D. Bruce,
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert H. Eckel
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
| |
Collapse
|
33
|
Oi-Kano Y, Iwasaki Y, Nakamura T, Watanabe T, Goto T, Kawada T, Watanabe K, Iwai K. Oleuropein aglycone enhances UCP1 expression in brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling. J Nutr Biochem 2016; 40:209-218. [PMID: 27951473 DOI: 10.1016/j.jnutbio.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/07/2023]
Abstract
Oleuropein is the pungent principle of raw olives. Oleuropein aglycone (OA) is a major phenolic compound in extra virgin olive oil and the absorbed form of oleuropein. We aimed to determine the mechanism underlying the nutritional effects of oleuropein and OA on interscapular brown adipose tissue (IBAT) in rats with high-fat (HF) diet-induced obesity by examining the agonistic activity of oleuropein and OA toward the transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). Four-week-old male Sprague-Dawley rats were fed an HF (palm oil 30% wt:wt) diet alone or with oleuropein (HF-O, 1 g/kg diet) for 28 days. In rats fed HF-O compared to HF, urinary noradrenaline, adrenaline and UCP1 levels in IBAT were significantly higher, whereas plasma leptin levels and the total weight of the abdominal cavity adipose tissue were significantly lower. In anaesthetized 7-week-old male Sprague-Dawley rats, the OA (3.8 mg of intravenous injection)-induced increase in plasma noradrenaline secretion was suppressed by TRPA1 or TRPV1 antagonist and by a β2- or β3-adrenoceptor antagonist. Furthermore, OA-activated rat and human TRPV1s expressed on HEK293 cells at the same level as zingerone (pungent component in ginger). OA also activated humanTRPA1, and its potency was approximately 10-fold stronger than that for TRPV1. These findings suggest that OA is the agonist of both TRPA1 and TRPV1 and that OA enhances UCP1 expression in IBAT with a concomitant decrease in the visceral fat mass of HF-diet-induced obese rats through enhanced noradrenaline secretion via β-adrenergic action following TRPA1 and TRPV1 activation.
Collapse
Affiliation(s)
- Yuriko Oi-Kano
- Laboratory of Nutrition Chemistry, Faculty of Home Economics, Kobe Women's University, Suma, Kobe, Japan.
| | - Yusaku Iwasaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Toshiyuki Nakamura
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | - Tatsuo Watanabe
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | - Kazuo Iwai
- Laboratory of Nutrition Chemistry, Faculty of Home Economics, Kobe Women's University, Suma, Kobe, Japan
| |
Collapse
|