1
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
2
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. DISCOVER NANO 2023; 18:66. [PMID: 37382765 PMCID: PMC10409709 DOI: 10.1186/s11671-023-03849-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Malaria is a life-threatening, blood-borne disease with over two hundred million cases throughout the world and is more prevalent in Sub-Saharan Africa than anywhere else in the world. Over the years, several treatment agents have been developed for malaria; however, most of these active pharmaceutical ingredients exhibit poor aqueous solubility and low bioavailability and may result in drug-resistant parasites, thus increasing malaria cases and eventually, deaths. Factors such as these in therapeutics have led to a better appreciation of nanomaterials. The ability of nanomaterials to function as drug carriers with a high loading capacity and targeted drug delivery, good biocompatibility, and low toxicity renders them an appealing alternative to conventional therapy. Nanomaterials such as dendrimers and liposomes have been demonstrated to be capable of enhancing the efficacy of antimalarial drugs. This review discusses the recent development of nanomaterials and their benefits in drug delivery for the potential treatment of malaria.
Collapse
Affiliation(s)
- Linda N Kekani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
4
|
Januário EFD, Vidovix TB, Bissaro CA, Defendi RO, Jorge LMDM, Bergamasco R, Vieira AMS. Evaluation of the black soybean hulls agro-industrial waste for chloroquine removal from aqueous medium and treatment of multi-components. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2186426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
| | - Taynara Basso Vidovix
- Department of Chemical Engineering, State University of Maringa, Maringá, Paraná, Brazil
| | | | - Rafael Oliveira Defendi
- Department of Chemical Engineering, Federal Technological University of Paraná, Apucarana, Paraná, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Maringá, Paraná, Brazil
| | | |
Collapse
|
5
|
Chaudhary KR, Kujur S, Singh K. Recent advances of nanotechnology in COVID 19: A critical review and future perspective. OPENNANO 2023; 9. [PMCID: PMC9749399 DOI: 10.1016/j.onano.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The global anxiety and economic crisis causes the deadly pandemic coronavirus disease of 2019 (COVID 19) affect millions of people right now. Subsequently, this life threatened viral disease is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, morbidity and mortality of infected patients are due to cytokines storm syndrome associated with lung injury and multiorgan failure caused by COVID 19. Thereafter, several methodological advances have been approved by WHO and US-FDA for the detection, diagnosis and control of this wide spreadable communicable disease but still facing multi-challenges to control. Herein, we majorly emphasize the current trends and future perspectives of nano-medicinal based approaches for the delivery of anti-COVID 19 therapeutic moieties. Interestingly, Nanoparticles (NPs) loaded with drug molecules or vaccines resemble morphological features of SARS-CoV-2 in their size (60–140 nm) and shape (circular or spherical) that particularly mimics the virus facilitating strong interaction between them. Indeed, the delivery of anti-COVID 19 cargos via a nanoparticle such as Lipidic nanoparticles, Polymeric nanoparticles, Metallic nanoparticles, and Multi-functionalized nanoparticles to overcome the drawbacks of conventional approaches, specifying the site-specific targeting with reduced drug loading and toxicities, exhibit their immense potential. Additionally, nano-technological based drug delivery with their peculiar characteristics of having low immunogenicity, tunable drug release, multidrug delivery, higher selectivity and specificity, higher efficacy and tolerability switch on the novel pathway for the prevention and treatment of COVID 19.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India,Corresponding author at: Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, MOGA, Punjab 142001, India
| | - Sima Kujur
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| |
Collapse
|
6
|
Gholizadeh O, Yasamineh S, Amini P, Afkhami H, Delarampour A, Akbarzadeh S, Karimi Matloub R, Zahedi M, Hosseini P, Hajiesmaeili M, Poortahmasebi V. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J 2022; 19:206. [PMID: 36463213 PMCID: PMC9719161 DOI: 10.1186/s12985-022-01935-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
In December 2019, Coronavirus Disease 2019 (COVID-19) was reported in Wuhan, China. Comprehensive strategies for quick identification, prevention, control, and remedy of COVID-19 have been implemented until today. Advances in various nanoparticle-based technologies, including organic and inorganic nanoparticles, have created new perspectives in this field. These materials were extensively used to control COVID-19 because of their specific attribution to preparing antiviral face masks, various safety sensors, etc. In this review, the most current nanoparticle-based technologies, applications, and achievements against the coronavirus were summarized and highlighted. This paper also offers nanoparticle preventive, diagnostic, and treatment options to combat this pandemic.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Parya Amini
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Abbasali Delarampour
- Microbiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parastoo Hosseini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Hajiesmaeili
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Rauf A, Abu-Izneid T, Khalil AA, Hafeez N, Olatunde A, Rahman M, Semwal P, Al-Awthan YS, Bahattab OS, Khan IN, Khan MA, Sharma R. Nanoparticles in clinical trials of COVID-19: An update. Int J Surg 2022; 104:106818. [PMID: 35953020 PMCID: PMC9359769 DOI: 10.1016/j.ijsu.2022.106818] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/01/2022]
Abstract
Once the World Health Organization (WHO) declared the COVID-19 (Coronavirus Infectious Disease-19) outbreak to be pandemic, massive efforts have been launched by researchers around the globe to combat this emerging infectious disease. Strategies that must be investigated such as expanding testing capabilities, developing effective medicines, as well as developing safe and effective vaccines for COVID-19 disease that produce long-lasting immunity to human system. Now-a-days, bio-sensing, medication delivery, imaging, and antimicrobial treatment are just a few of the medical applications for nanoparticles (NPs). Since the early 1990s, nanoparticle drug delivery methods have been employed in clinical trials. Since then, the discipline of nanomedicine has evolved in tandem with expanding technological demands to better medicinal delivery. Newer generations of NPs have emerged in recent decades that are capable of performing additional delivery tasks, allowing for therapy via novel therapeutic modalities. Many of these next generation NPs and associated products have entered clinical trials and have been approved for diverse indications in the present clinical environment. For systemic applications, NPs or nanomedicine-based drug delivery systems have substantial benefits over their non-formulated and free drug counterparts. Nanoparticle systems, for example, are capable of delivering medicines and treating parts of the body that are inaccessible to existing delivery systems. As a result, NPs medication delivery is one of the most studied preclinical and clinical systems. NPs-based vaccines delivering SARS-CoV-2 antigens will play an increasingly important role in prolonging or improving COVID-19 vaccination outcomes. This review provides insights about employing NPs-based drug delivery systems for the treatment of COVID-19 to increase the bioavailability of current drugs, reducing their toxicity, and to increase their efficiency. This article also exhibits their capability and efficacy, and highlighting the future aspects and challenges on nanoparticle products in clinical trials of COVID-19.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University for Science and Technology, Al Ain, United Arab Emirates
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, 54000, Pakistan
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-KPK, 25120, KPK, Pakistan
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
| | | | - Omar Salem Bahattab
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ishaq N Khan
- Institute of Basic Medical Sciences Khyber Medical University, Peshawar, 25100, Pakistan
| | - Muhammad Arslan Khan
- Department of Pharmacy, Faculty of Pharmacy, The University of Lahore, 54000, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra &Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Wang L, Wang Z, Cao L, Ge K. Constructive strategies for drug delivery systems in antivirus disease therapy by safety materials. BIOSAFETY AND HEALTH 2022; 4:161-170. [PMID: 35291339 PMCID: PMC8912974 DOI: 10.1016/j.bsheal.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Li Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Zhaoshuo Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Lingzhi Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
9
|
In Vitro Validation of Antiparasitic Activity of PLA-Nanoparticles of Sodium Diethyldithiocarbamate against Trypanosoma cruzi. Pharmaceutics 2022; 14:pharmaceutics14030497. [PMID: 35335875 PMCID: PMC8954078 DOI: 10.3390/pharmaceutics14030497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite responsible for Chagas disease, which affects millions around the world and is not treatable in its chronic stage. Sodium diethyldithiocarbamate is a compound belonging to the carbamate class and, in a previous study, demonstrated high efficacy against T. cruzi, showing itself to be a promising compound for the treatment of Chagas disease. This study investigates the encapsulation of sodium diethyldithiocarbamate by poly-lactic acid in nanoparticles, a system of biodegradable nanoparticles that is capable of reducing the toxicity caused by free DETC against cells and maintaining the antiparasitic activity. The nanosystem PLA-DETC was fabricated using nanoprecipitation, and its physical characterization was measured via DLS, SEM, and AFM, demonstrating a small size around 168 nm and a zeta potential of around −19 mv. Furthermore, the toxicity was determined by MTT reduction against three cell lines (VERO, 3T3, and RAW), and when compared to free DETC, we observed a reduction in cell mortality, demonstrating the importance of DETC nanoencapsulation. In addition, the nanoparticles were stained with FITC and put in contact with cells for 24 h, followed by confirmation of whether the nanosystem was inside the cells. Lastly, the antiparasitic activity against different strains of T. cruzi in trypomastigote forms was determined by resazurin reduction and ROS production, which demonstrated high efficacy towards T. cruzi equal to that of free DETC.
Collapse
|
10
|
Nano Drug Delivery Platforms for Dental Application: Infection Control and TMJ Management-A Review. Polymers (Basel) 2021; 13:polym13234175. [PMID: 34883678 PMCID: PMC8659450 DOI: 10.3390/polym13234175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
The oral cavity is an intricate environment subjected to various chemical, physical, and thermal injuries. The effectiveness of the local and systemically administered drugs is limited mainly due to their toxicities and poor oral bioavailability that leads to the limited effectiveness of the drugs in the target tissues. To address these issues, nanoparticle drug delivery systems based on metals, liposomes, polymeric particles, and core shells have been developed in recent years. Nano drug delivery systems have applications in the treatment of patients suffering from temporomandibular joint disorders such as preventing degeneration of cartilage in patients suffering from rheumatoid arthritis and osteoarthritis and alleviating the pain along with it. The antibacterial dental applications of nano-drug delivery systems such as silver and copper-based nanoparticles include these agents used to arrest dental caries, multiple steps in root canal treatment, and patients suffering from periodontitis. Nanoparticles have been used in adjunct with antifungals to treat oral fungal infections such as candida albicans in denture wearers. Acyclovir being the most commonly used antiviral has been used in combination with nanoparticles against an array of viral infections such as the herpes simplex virus. Nanoparticles based combination agents offer more favorable drug release in a controlled manner along with efficient delivery at the site of action. This review presents an updated overview of the recently developed nanoparticles delivery systems for the management of temporomandibular joint disorders along with the treatment of different oral infections.
Collapse
|
11
|
Ahmed D, Puthussery H, Basnett P, Knowles JC, Lange S, Roy I. Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. Int J Mol Sci 2021; 22:ijms222312852. [PMID: 34884657 PMCID: PMC8658019 DOI: 10.3390/ijms222312852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
This study deals with the process of optimization and synthesis of Poly(3-hydroxybutyrate) microspheres with encapsulated Cl-amidine. Cl-amidine is an inhibitor of peptidylarginine deiminases (PADs), a group of calcium-dependent enzymes, which play critical roles in a number of pathologies, including autoimmune and neurodegenerative diseases, as well as cancer. While Cl-amidine application has been assessed in a number of in vitro and in vivo models; methods of controlled release delivery remain to be investigated. P(3HB) microspheres have proven to be an effective delivery system for several compounds applied in antimicrobial, wound healing, cancer, and cardiovascular and regenerative disease models. In the current study, P(3HB) microspheres with encapsulated Cl-amidine were produced in a size ranging from ~4–5 µm and characterized for surface morphology, porosity, hydrophobicity and protein adsorption, in comparison with empty P(3HB) microspheres. Cl-amidine encapsulation in P(3HB) microspheres was optimized, and these were found to be less hydrophobic, compared with the empty microspheres, and subsequently adsorbed a lower amount of protein on their surface. The release kinetics of Cl-amidine from the microspheres were assessed in vitro and expressed as a function of encapsulation efficiency. There was a burst release of ~50% Cl-amidine in the first 24 h and a zero order release from that point up to 16 days, at which time point ~93% of the drug had been released. As Cl-amidine has been associated with anti-cancer effects, the Cl-amidine encapsulated microspheres were assessed for the inhibition of vascular endothelial growth factor (VEGF) expression in the mammalian breast cancer cell line SK-BR-3, including in the presence of the anti-proliferative drug rapamycin. The cytotoxicity of the combinatorial effect of rapamycin with Cl-amidine encapsulated P(3HB) microspheres was found to be 3.5% more effective within a 24 h period. The cells treated with Cl-amidine encapsulated microspheres alone, were found to have 36.5% reduction in VEGF expression when compared with untreated SK-BR-3 cells. This indicates that controlled release of Cl-amidine from P(3HB) microspheres may be effective in anti-cancer treatment, including in synergy with chemotherapeutic agents. Using controlled drug-delivery of Cl-amidine encapsulated in Poly(3-hydroxybutyrate) microspheres may be a promising novel strategy for application in PAD-associated pathologies.
Collapse
Affiliation(s)
- Dina Ahmed
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Hima Puthussery
- School of Life Sciences, University of Westminster, London W1W 6XH, UK; (H.P.); (P.B.)
| | - Pooja Basnett
- School of Life Sciences, University of Westminster, London W1W 6XH, UK; (H.P.); (P.B.)
| | - Jonathan C. Knowles
- Department of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
- Correspondence: emails: (S.L.); (I.R.); Tel.: +44-(0)207-911-5000 (ext. 64832) (S.L.); +44-(0)114-222-5962 (ext. 64096) (I.R.)
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: emails: (S.L.); (I.R.); Tel.: +44-(0)207-911-5000 (ext. 64832) (S.L.); +44-(0)114-222-5962 (ext. 64096) (I.R.)
| |
Collapse
|
12
|
Cavalcanti IDL, de Fátima Ramos Dos Santos Medeiros SM, Dos Santos Macêdo DC, Ferro Cavalcanti IM, de Britto Lira Nogueira MC. Nanocarriers in the Delivery of Hydroxychloroquine to the Respiratory System: An Alternative to COVID-19. Curr Drug Deliv 2021; 18:583-595. [PMID: 32860358 DOI: 10.2174/1567201817666200827110445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
In response to the global outbreak caused by SARS-CoV-2, this article aims to propose the development of nanosystems for the delivery of hydroxychloroquine in the respiratory system to the treatment of COVID-19. A descriptive literature review was conducted, using the descriptors "COVID-19", "Nanotechnology", "Respiratory Syndrome" and "Hydroxychloroquine", in the PubMed, ScienceDirect and SciElo databases. After analyzing the articles according to the inclusion and exclusion criteria, they were divided into 3 sessions: Coronavirus: definitions, classifications and epidemiology, pharmacological aspects of hydroxychloroquine and pharmaceutical nanotechnology in targeting of drugs. We used 131 articles published until July 18, 2020. Hydroxychloroquine seems to promote a reduction in viral load, in vivo studies, preventing the entry of SARS-CoV-2 into lung cells, and the safety of its administration is questioned due to the toxic effects that it can develop, such as retinopathy, hypoglycemia and even cardiotoxicity. Nanosystems for the delivery of drugs in the respiratory system may be a viable alternative for the administration of hydroxychloroquine, which may enhance the therapeutic effect of the drug with a consequent decrease in its toxicity, providing greater safety for implementation in the clinic in the treatment of COVID-19.
Collapse
|
13
|
Lim JW, Ahn YR, Park G, Kim HO, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021; 13:1570. [PMID: 34683863 PMCID: PMC8540357 DOI: 10.3390/pharmaceutics13101570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| |
Collapse
|
14
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
15
|
The Potential of a Site-Specific Delivery of Thiamine Hydrochloride as a Novel Insect Repellent Exerting Long-Term Protection on Human Skin: In-vitro, Ex-vivo Study and Clinical Assessment. J Pharm Sci 2021; 110:3659-3669. [PMID: 34358530 DOI: 10.1016/j.xphs.2021.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 11/20/2022]
Abstract
Thiamine hydrochloride (TH) was thought to exert a good insect repellent activity. The purpose of this work was to develop a formulation that releases TH in sustained regimen on human skin. Long lasting protection against mosquito bites was achieved. Pullulan acetate (PA) was used to prepare TH nanospheres. Optimal system was incorporated in Pluronic® hydrogel. Formulae were tested for in-vitro release and ex-vivo permeation. Complete protection time (CPT) was done adopting Kaplan-Meier survival function for the synthetic repellent (DEET), TH solution and nanospheres in hydrogel. Release profile of TH solution, nanospheres and nanosphere-loaded hydrogel (DG) demonstrated an added effect of DG, where t 1/2 was 11.2 ± 1.4 h. SEM for DG showed homogenous dispersion of nanospheres inside the matrix of the gel. Ex-vivo permeation showed only 0.761 ± 0.04% of TH in hydrogel permeated the skin after 12 h, while 44.98 ± 3.2% permeated when TH solution was applied. Clinical study revealed a significant difference in CPT between TH solution with either DEET or (DG) (p<0.05), and no significant difference between DEET and DG with CPT 400 ± 31 and 360 ± 18 min, respectively (P > 0.05). The high efficacy of TH-loaded hydrogel rendered it a successful alternative for DEET, offering long protection against mosquito bites.
Collapse
|
16
|
Dawre S, Maru S. Human respiratory viral infections: Current status and future prospects of nanotechnology-based approaches for prophylaxis and treatment. Life Sci 2021; 278:119561. [PMID: 33915132 PMCID: PMC8074533 DOI: 10.1016/j.lfs.2021.119561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
Respiratory viral infections are major cause of highly mortal pandemics. They are impacting socioeconomic development and healthcare system globally. These emerging deadly respiratory viruses develop newer survival strategies to live inside host cells and tricking the immune system of host. Currently, medical facilities, therapies and research -development teams of every country kneel down before novel corona virus (SARS-CoV-2) which claimed ~2,828,629 lives till date. Thus, there is urgent requirement of novel treatment strategies to combat against these emerging respiratory viral infections. Nanocarriers come under the umbrella of nanotechnology and offer numerous benefits compared to traditional dosage forms. Further, unique physicochemical properties (size, shape and surface charge) of nanocarriers provide additional advantage for targeted delivery. This review discusses in detail about the respiratory viruses, their transmission mode and cell invasion pathways, survival strategies, available therapies, and nanocarriers for the delivery of therapeutics. Further, the role of nanocarriers in the development of treatment therapy against SARS-CoV-2 is also overviewed.
Collapse
Affiliation(s)
- Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy &, Technology Management, SVKM's NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra 425405, India.
| | - Saurabh Maru
- School of Pharmacy and Technology Management, SVKM's NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
17
|
Fetz AE, Wallace SE, Bowlin GL. Electrospun Polydioxanone Loaded With Chloroquine Modulates Template-Induced NET Release and Inflammatory Responses From Human Neutrophils. Front Bioeng Biotechnol 2021; 9:652055. [PMID: 33987174 PMCID: PMC8111017 DOI: 10.3389/fbioe.2021.652055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The implantation of a biomaterial quickly initiates a tissue repair program initially characterized by a neutrophil influx. During the acute inflammatory response, neutrophils release neutrophil extracellular traps (NETs) and secrete soluble signals to modulate the tissue environment. In this work, we evaluated chloroquine diphosphate, an antimalarial with immunomodulatory and antithrombotic effects, as an electrospun biomaterial additive to regulate neutrophil-mediated inflammation. Electrospinning of polydioxanone was optimized for rapid chloroquine elution within 1 h, and acute neutrophil-biomaterial interactions were evaluated in vitro with fresh human peripheral blood neutrophils at 3 and 6 h before quantifying the release of NETs and secretion of inflammatory and regenerative factors. Our results indicate that chloroquine suppresses NET release in a biomaterial surface area–dependent manner at the early time point, whereas it modulates signal secretion at both early and late time points. More specifically, chloroquine elution down-regulates interleukin 8 (IL-8) and matrix metalloproteinase nine secretion while up-regulating hepatocyte growth factor, vascular endothelial growth factor A, and IL-22 secretion, suggesting a potential shift toward a resolving neutrophil phenotype. Our novel repurposing of chloroquine as a biomaterial additive may therefore have synergistic, immunomodulatory effects that are advantageous for biomaterial-guided in situ tissue regeneration applications.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Shannon E Wallace
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| |
Collapse
|
18
|
Kamat S, Kumari M. Repurposing Chloroquine Against Multiple Diseases With Special Attention to SARS-CoV-2 and Associated Toxicity. Front Pharmacol 2021; 12:576093. [PMID: 33912030 PMCID: PMC8072386 DOI: 10.3389/fphar.2021.576093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroquine and its derivatives have been used since ages to treat malaria and have also been approved by the FDA to treat autoimmune diseases. The drug employs pH-dependent inhibition of functioning and signalling of the endosome, lysosome and trans-Golgi network, immunomodulatory actions, inhibition of autophagy and interference with receptor binding to treat cancer and many viral diseases. The ongoing pandemic of COVID-19 has brought the whole world on the knees, seeking an urgent hunt for an anti-SARS-CoV-2 drug. Chloroquine has shown to inhibit receptor binding of the viral particles, interferes with their replication and inhibits "cytokine storm". Though multiple modes of actions have been employed by chloroquine against multiple diseases, viral diseases can provide an added advantage to establish the anti-SARS-CoV-2 mechanism, the in vitro and in vivo trials against SARS-CoV-2 have yielded mixed results. The toxicological effects and dosage optimization of chloroquine have been studied for many diseases, though it needs a proper evaluation again as chloroquine is also associated with several toxicities. Moreover, the drug is inexpensive and is readily available in many countries. Though much of the hope has been created by chloroquine and its derivatives against multiple diseases, repurposing it against SARS-CoV-2 requires large scale, collaborative, randomized and unbiased clinical trials to avoid false promises. This review summarizes the use and the mechanism of chloroquine against multiple diseases, its side-effects, mechanisms and the different clinical trials ongoing against "COVID-19".
Collapse
Affiliation(s)
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
19
|
|
20
|
Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. EMERGENT MATERIALS 2021; 4:75-99. [PMID: 33615140 PMCID: PMC7881345 DOI: 10.1007/s42247-021-00168-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the recent outbreak of coronavirus 2019 (COVID-19). Although nearly two decades have passed since the emergence of pandemics such as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), no effective drug against the CoV family has yet been approved, so there is a need to find newer therapeutic targets. Currently, simultaneous research across the globe is being performed to discover efficient vaccines or drugs, including both conventional therapies used to treat previous similar diseases and emerging therapies like nanomedicine. Nanomedicine has already proven its value through its application drug delivery and nanosensors in other diseases. Nanomedicine and its components can play an important role in various stages of prevention, diagnosis, treatment, vaccination, and research related to COVID-19. Nano-based antimicrobial technology can be integrated into personal equipment for the greater safety of healthcare workers and people. Various nanomaterials such as quantum dots can be used as biosensors to diagnose COVID-19. Nanotechnology offers benefits from the use of nanosystems, such as liposomes, polymeric and lipid nanoparticles, metallic nanoparticles, and micelles, for drug encapsulation, and facilitates the improvement of pharmacological drug properties. Antiviral functions for nanoparticles can target the binding, entry, replication, and budding of COVID-19. The toxicity-related inorganic nanoparticles are one of the limiting factors of its use that should be further investigated and modified. In this review, we are going to discuss nanomedicine options for COVID-19 management, similar applications for related viral diseases, and their gap of knowledge.
Collapse
Affiliation(s)
- Farzan Vahedifard
- Altman Clinical and Translational Research Institute, University of California San Diego Health Center, San Diego, CA USA
| | - Krishnan Chakravarthy
- Division of Pain Medicine, Department of Anesthesiology, University of California San Diego Health Center, 9400 Campus Point Dr, La Jolla, San Diego, CA USA
| |
Collapse
|
21
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
22
|
Aguilera-Correa JJ, Esteban J, Vallet-Regí M. Inorganic and Polymeric Nanoparticles for Human Viral and Bacterial Infections Prevention and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E137. [PMID: 33435597 PMCID: PMC7826792 DOI: 10.3390/nano11010137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases hold third place in the top 10 causes of death worldwide and were responsible for more than 6.7 million deaths in 2016. Nanomedicine is a multidisciplinary field which is based on the application of nanotechnology for medical purposes and can be defined as the use of nanomaterials for diagnosis, monitoring, control, prevention, and treatment of diseases, including infectious diseases. One of the most used nanomaterials in nanomedicine are nanoparticles, particles with a nano-scale size that show highly tunable physical and optical properties, and the capacity to a wide library of compounds. This manuscript is intended to be a comprehensive review of the available recent literature on nanoparticles used for the prevention and treatment of human infectious diseases caused by different viruses, and bacteria from a clinical point of view by basing on original articles which talk about what has been made to date and excluding commercial products, but also by highlighting what has not been still made and some clinical concepts that must be considered for futures nanoparticles-based technologies applications.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
23
|
Wong SK. Repurposing New Use for Old Drug Chloroquine against Metabolic Syndrome: A Review on Animal and Human Evidence. Int J Med Sci 2021; 18:2673-2688. [PMID: 34104100 PMCID: PMC8176183 DOI: 10.7150/ijms.58147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are traditional anti-malarial drugs that have been repurposed for new therapeutic uses in many diseases due to their simple usage and cost-effectiveness. The pleiotropic effects of CQ and HCQ in regulating blood pressure, glucose homeostasis, lipid, and carbohydrate metabolism have been previously described in vivo and in humans, thus suggesting their role in metabolic syndrome (MetS) prevention. The anti-hyperglycaemic, anti-hyperlipidaemic, cardioprotective, anti-hypertensive, and anti-obesity effects of CQ and HCQ might be elicited through reduction of inflammatory response and oxidative stress, improvement of endothelial function, activation of insulin signalling pathway, inhibition of lipogenesis and autophagy, as well as regulation of adipokines and apoptosis. In conclusion, the current state of knowledge supported the repurposing of CQ and HCQ usage in the management of MetS.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Borcan F, Len A, Dehelean CA, Dudás Z, Ghiulai R, Iftode A, Racoviceanu R, Soica CM. Design and Assessment of a Polyurethane Carrier Used for the Transmembrane Transfer of Acyclovir. NANOMATERIALS 2020; 11:nano11010051. [PMID: 33379150 PMCID: PMC7823466 DOI: 10.3390/nano11010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
THE Herpes simplex viruses (HSV-1, HSV-2) are responsible for a wide variety of conditions, from cutaneous-mucosal to central nervous system (CNS) infections and occasional infections of the visceral organs, some of them with a lethal end. Acyclovir is often used intravenously, orally, or locally to treat herpetic infections but it must be administered with caution to patients with kidney disease and to children of early age. The main objectives of this study were to synthesize and evaluate new polyurethane nanoparticles that might be used as proper transmembrane carriers for acyclovir. Polyurethane particles were obtained by a polyaddition process: a mixture of two aliphatic diisocyanates used as organic phase was added to a mixture of butanediol and polyethylene glycol used as aqueous phase. Two different samples (with and without acyclovir, respectively) were synthesized and characterized by UV-Vis spectra in order to assess the encapsulation efficacy and the release profile, FT-IR, DSC, SEM, and SANS for structural characterization, as well as skin irritation tests. Nearly homogeneous samples with particle sizes between 78 and 91 nm have been prepared and characterized revealing a medium tendency to form clusters and a high resistance to heat up to 300 °C. The release profile of these nanoparticles is characteristic to a drug delivery system with a late discharge of the loaded active agents. Very slight increases in the level of transepidermal water loss and erythema were found in a 15-day evaluation on human skin. The results suggest the synthesis of a non-irritative carrier with a high encapsulation efficacy that can be successfully used for the transmembrane transfer of acyclovir.
Collapse
Affiliation(s)
- Florin Borcan
- Department I, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Adél Len
- Neutron Spectroscopy Department, Centre for Energy Research, H-1121 Budapest, Hungary;
- Faculty of Engineering and Information Technology, University of Pécs, H-7624 Pécs, Hungary
| | - Cristina A. Dehelean
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
| | - Zoltán Dudás
- Neutron Spectroscopy Department, Centre for Energy Research, H-1121 Budapest, Hungary;
- “Coriolan Drăgulescu” Institute of Chemistry, 300223 Timisoara, Romania
- Correspondence: (Z.D.); (R.G.); Tel.: +36-1-392-2222/1849 (Z.D.); +40-723-326-823 (R.G.)
| | - Roxana Ghiulai
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
- Correspondence: (Z.D.); (R.G.); Tel.: +36-1-392-2222/1849 (Z.D.); +40-723-326-823 (R.G.)
| | - Andrada Iftode
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
| | - Roxana Racoviceanu
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
| | - Codruta M. Soica
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
| |
Collapse
|
25
|
Zeng J, Shirihai OS, Grinstaff MW. Modulating lysosomal pH: a molecular and nanoscale materials design perspective. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2020; 2:25-37. [PMID: 33403369 PMCID: PMC7781074 DOI: 10.36069/jols/20201204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lysosomes, membrane-bound organelles, play important roles in cellular processes including endocytosis, phagocytosis, and autophagy. Lysosomes maintain cellular homeostasis by generating a highly acidic environment of pH 4.5 - 5.0 and by housing hydrolytic enzymes that degrade engulfed biomolecules. Impairment of lysosomal function, especially in its acidification, is a driving force in the pathogenesis of diseases including neurodegeneration, cancer, metabolic disorders, and infectious diseases. Therefore, lysosomal pH is an attractive and targetable site for therapeutic intervention. Currently, there is a dearth of strategies or materials available to specifically modulate lysosomal acidification. This review focuses on the key aspects of how lysosomal pH is implicated in various diseases and discusses design strategies and molecular or nanoscale agents for lysosomal pH modulation, with the ultimate goal of developing novel therapeutic solutions.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Department of Neurology, School of Medicine, Yale University, New Haven, CT 06511
| | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90045
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| |
Collapse
|
26
|
Colloidal properties of self-assembled cationic hyperbranched-polyethyleneimine covered poly lactide-co-glycolide nanoparticles: Exploring modified release and cell delivery of methotrexate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Medhi R, Srinoi P, Ngo N, Tran HV, Lee TR. Nanoparticle-Based Strategies to Combat COVID-19. ACS APPLIED NANO MATERIALS 2020; 3:8557-8580. [PMID: 37556239 PMCID: PMC7482545 DOI: 10.1021/acsanm.0c01978] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is the worst pandemic disease of the current millennium. This disease is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first exhibited human-to-human transmission in December 2019 and has infected millions of people within months across 213 different countries. Its ability to be transmitted by asymptomatic carriers has put a massive strain on the currently available testing resources. Currently, there are no clinically proven therapeutic methods that clearly inhibit the effects of this virus, and COVID-19 vaccines are still in the development phase. Strategies need to be explored to expand testing capacities, to develop effective therapeutics, and to develop safe vaccines that provide lasting immunity. Nanoparticles (NPs) have been widely used in many medical applications, such as biosensing, drug delivery, imaging, and antimicrobial treatment. SARS-CoV-2 is an enveloped virus with particle-like characteristics and a diameter of 60-140 nm. Synthetic NPs can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. Hence, NP-based strategies for tackling this virus have immense potential. NPs have been previously found to be effective tools against many viruses, especially against those from the Coronaviridae family. This Review outlines the role of NPs in diagnostics, therapeutics, and vaccination for the other two epidemic coronaviruses, the 2003 severe acute respiratory syndrome (SARS) virus and the 2012 Middle East respiratory syndrome (MERS) virus. We also highlight nanomaterial-based approaches to address other coronaviruses, such as human coronaviruses (HCoVs); feline coronavirus (FCoV); avian coronavirus infectious bronchitis virus (IBV); coronavirus models, such as porcine epidemic diarrhea virus (PEDV), porcine reproductive and respiratory syndrome virus (PRRSV), and transmissible gastroenteritis virus (TGEV); and other viruses that share similarities with SARS-CoV-2. This Review combines the salient principles from previous antiviral studies with recent research conducted on SARS-CoV-2 to outline NP-based strategies that can be used to combat COVID-19 and similar pandemics in the future.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Pannaree Srinoi
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Nhat Ngo
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Hung-Vu Tran
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| |
Collapse
|
28
|
Zhou W, Wang H, Yang Y, Chen ZS, Zou C, Zhang J. Chloroquine against malaria, cancers and viral diseases. Drug Discov Today 2020; 25:S1359-6446(20)30367-6. [PMID: 32947043 PMCID: PMC7492153 DOI: 10.1016/j.drudis.2020.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Quinoline (QN) derivatives are often used for the prophylaxis and treatment of malaria. Chloroquine (CQ), a protonated, weakly basic drug, exerts its antimalarial effect mainly by increasing pH and accumulating in the food vacuole of the parasites. Repurposing CQ is an emerging strategy for new indications. Given the inhibition of autophagy and its immunomodulatory action, CQ shows positive efficacy against cancer and viral diseases, including Coronavirus 2019 (COVID-19). Here, we review the underlying mechanisms behind the antimalarial, anticancer and antiviral effects of CQ. We also discuss the clinical evidence for the use of CQ and hydroxychloroquine (HCQ) against COVID-19.
Collapse
Affiliation(s)
- Wenmin Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hui Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA.
| | - Chang Zou
- The Second Clinical Medical College of Jinan University, Shenzhen, 518020, PR China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
29
|
Phytol-Loaded Solid Lipid Nanoparticles as a Novel Anticandidal Nanobiotechnological Approach. Pharmaceutics 2020; 12:pharmaceutics12090871. [PMID: 32933144 PMCID: PMC7558427 DOI: 10.3390/pharmaceutics12090871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Phytol is a diterpene alcohol and can be found as a product of the metabolism of chlorophyll in plants. This compound has been explored as a potential antimicrobial agent, but it is insoluble in water. In this study, we describe a novel approach for an interesting anticandidal drug delivery system containing phytol. Different formulations of phytol-loaded solid lipid nanoparticles (SLN) were designed and tested using a natural lipid, 1,3-distearyl-2-oleyl-glycerol (TG1). Different compositions were considered to obtain three formulations with 1:10, 1:5, and 1:3 w/w phytol/TG1 ratios. All the formulations were prepared by emulsification solvent evaporation method and had their physicochemical properties assessed. The biocompatibility assay was performed in the HEK-293 cell line and the antifungal efficacy was demonstrated in different strains of Candida ssp., including different clinical isolates. Spherical and uniform SLN (<300 nm, PdI < 0.2) with phytol-loading efficiency >65% were achieved. Phytol-loaded SLN showed a dose-dependent cytotoxic effect in the HEK-293 cell line. The three tested formulations of phytol-loaded SLN considerably enhanced the minimal inhibitory concentration of phytol against 15 strains of Candida spp. Considering the clinical isolates, the formulations containing the highest phytol/TG1 ratios showed MICs at 100%. Thus, the feasibility and potential of phytol-loaded SLN was demonstrated in vitro, being a promising nanocarrier for phytol delivery from an anticandidal approach.
Collapse
|
30
|
Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020; 25:E3760. [PMID: 32824757 PMCID: PMC7464666 DOI: 10.3390/molecules25163760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Polymeric nanocarriers (PNs) have demonstrated to be a promising alternative to treat intracellular infections. They have outstanding performance in delivering antimicrobials intracellularly to reach an adequate dose level and improve their therapeutic efficacy. PNs offer opportunities for preventing unwanted drug interactions and degradation before reaching the target cell of tissue and thus decreasing the development of resistance in microorganisms. The use of PNs has the potential to reduce the dose and adverse side effects, providing better efficiency and effectiveness of therapeutic regimens, especially in drugs having high toxicity, low solubility in the physiological environment and low bioavailability. This review provides an overview of nanoparticles made of different polymeric precursors and the main methodologies to nanofabricate platforms of tuned physicochemical and morphological properties and surface chemistry for controlled release of antimicrobials in the target. It highlights the versatility of these nanosystems and their challenges and opportunities to deliver antimicrobial drugs to treat intracellular infections and mentions nanotoxicology aspects and future outlooks.
Collapse
Affiliation(s)
- Arturo Sánchez
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| | - Susana P. Mejía
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), Carrera, 72A Nº 78B–141 Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| |
Collapse
|
31
|
de Almeida Júnior RF, de Souza KSC, Galdino OA, da Silva Junior AA, Arrais RF, Machado PRL, Farias KJS, de Rezende AA. Chloroquine as a promising adjuvant therapy for type 1 Diabetes Mellitus. Sci Rep 2020; 10:12098. [PMID: 32694530 PMCID: PMC7374610 DOI: 10.1038/s41598-020-69001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 11/09/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine, are promising anti-inflammatory drugs for the treatment of Diabetes mellitus (DM) to prevent associated complications. Therefore, this study evaluated the anti-inflammatory effects of CQ-free and CQ-incorporated polylactic acid nanoparticles (NPs) in the peripheral blood mononuclear cells (PBMCs) of patients with type 1 Diabetes mellitus (T1DM). In total, 25 normoglycemic individuals and 25 patients with T1DM aged 10-16 years were selected and glycemic controls evaluated. After cell viability assessed by MTT assay, T1DM PBMCs were subjected to a CQ concentration of 10 µM in three different conditions: not treated (NT), treated with CQ, and treated with CQ NPs. The cells were incubated for 48 h, and the mRNA expressions of cytokines IL1B, IFNG, TNFA, IL12, and IL10 were determined by relative quantification through real-time PCR at 24 h intervals. IL1B expression decreased in CQ and CQ NP-treated cells after 48 h (p < 0.001) and 24 h (p < 0.05) of treatment, respectively. IFNG and IL12 expressions significantly decreased (p < 0.001) in cells treated with CQ and CQ NPs at 24 and 48 h compared to NT. TNFA and IL10 expressions significantly decreased after 48 h (p < 0.001) and 24 h (p < 0.002), respectively, by both CQ and CQ NPs treatment. Despite being a preliminary in vitro study, CQ has anti-inflammatory activity in the primary cells of T1DM patients and could represent an alternative and adjuvant anti-inflammatory therapy to prevent diabetes complications.
Collapse
Affiliation(s)
- Renato Ferreira de Almeida Júnior
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande Do Norte (UFRN), Av. General Gustavo Cordeiro de Farias, S/N, Faculdade de Farmácia, Petrópolis, Natal, RN, CEP: 59012-570, Brazil
| | - Karla Simone Costa de Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande Do Norte (UFRN), Av. General Gustavo Cordeiro de Farias, S/N, Faculdade de Farmácia, Petrópolis, Natal, RN, CEP: 59012-570, Brazil
| | - Ony Araujo Galdino
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande Do Norte (UFRN), Av. General Gustavo Cordeiro de Farias, S/N, Faculdade de Farmácia, Petrópolis, Natal, RN, CEP: 59012-570, Brazil
| | | | - Ricardo Fernando Arrais
- Department of Pediatrics, Pediatric Endocrinology Unit, Federal University of Rio Grande Do Norte, (UFRN), Natal, RN, 59012-570, Brazil
| | - Paula Renata Lima Machado
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande Do Norte (UFRN), Av. General Gustavo Cordeiro de Farias, S/N, Faculdade de Farmácia, Petrópolis, Natal, RN, CEP: 59012-570, Brazil
| | - Kleber Juvenal Silva Farias
- Center of Education and Health, Federal University of Campina Grande, Campina Grande, PB, 58175-000, Brazil.
| | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande Do Norte (UFRN), Av. General Gustavo Cordeiro de Farias, S/N, Faculdade de Farmácia, Petrópolis, Natal, RN, CEP: 59012-570, Brazil.
| |
Collapse
|
32
|
Picot S, Marty A, Bienvenu AL, Blumberg LH, Dupouy-Camet J, Carnevale P, Kano S, Jones MK, Daniel-Ribeiro CT, Mas-Coma S. Coalition: Advocacy for prospective clinical trials to test the post-exposure potential of hydroxychloroquine against COVID-19. One Health 2020; 9:100131. [PMID: 32292817 PMCID: PMC7128742 DOI: 10.1016/j.onehlt.2020.100131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our coalition of public health experts, doctors, and scientists worldwide want to draw attention to the need for high-quality evaluation protocols of the potential beneficial effect of hydroxychloroquine (HCQ) as a post-exposure drug for exposed people. In the absence of an approved, recognized effective pre or post-exposure prophylactic drug or vaccine for COVID-19, nor of any approved and validated therapeutic drug, coupled with social and political pressure raised by publicity both regarding the potential beneficial effect of hydroxychloroquine (HCQ) as well as potential risks from HCQ, we urge the immediate proper clinical trials. Specifically, we mean using HCQ for post-exposure of people with close contact with patients with positive COVID19 rtPCR, including home and medical caregivers. We have reviewed the mechanisms of antiviral effect of HCQ, the risk-benefit ratio taking into consideration the PK/PD of HCQ and the thresholds of efficacy. We have studied its use as an antimalarial, an antiviral, and an immunomodulating drug and concluded that the use of HCQ at doses matching that of the standard treatment of Systemic Lupus erythematous, which has proven safety and efficacy in terms of HCQ blood and tissue concentration adapted to bodyweight (2,3), at 6 mg/kg/day 1 (loading dose) followed by 5 mg/kg/ day, with a maximum limit of 600 mg/day in all cases should swiftly be clinically evaluated as a post-exposure drug for exposed people.
Collapse
Affiliation(s)
- Stephane Picot
- Malaria Research Unit, ICBMS, UMR 5246, CNRS, INSA, CPE University Lyon, 69100 Villeurbanne, France
- Institute of Parasitology and Medical Mycology, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| | - Aileen Marty
- Translational Medicine, HWCOM, FIU Health Travel Medicine Program and Vaccine Clinic Commander, Emergency Response Team Development, Miami, FL, United States
| | - Anne-Lise Bienvenu
- Malaria Research Unit, ICBMS, UMR 5246, CNRS, INSA, CPE University Lyon, 69100 Villeurbanne, France
- Groupement Hospitalier Nord, Service Pharmacie, Hospices Civils de Lyon, 69004 Lyon, France
| | - Lucille H. Blumberg
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, 2131 Johannesburg, South Africa
| | - Jean Dupouy-Camet
- Faculté de Médecine Paris Descartes, Académie Vétérinaire de France, Paris, France
| | - Pierre Carnevale
- Institute of Research for Development (former), Montpellier Centre, BP 64501, 34394 Montpellier, France
| | - Shigeyuki Kano
- Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa de Diagnóstico e Treinamento, Fiocruz. Av. Brasil 4365. CEP 21.040-360, Rio de Janeiro, Brazil
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, 46100, Valencia, Spain
| |
Collapse
|