1
|
Cai J, Chen S, Liu Z, Li H, Wang P, Yang F, Li Y, Chen K, Sun M, Qiu M. RNA technology and nanocarriers empowering in vivo chimeric antigen receptor therapy. Immunology 2024; 173:634-653. [PMID: 39340367 DOI: 10.1111/imm.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The remarkable success of mRNA-based coronavirus 2019 (COVID-19) vaccines has propelled the advancement of nanomedicine, specifically in the realm of RNA technology and nanomaterial delivery systems. Notably, significant strides have been made in the development of RNA-based in vivo chimeric antigen receptor (CAR) therapy. In comparison to the conventional ex vivo CAR therapy, in vivo CAR therapy offers several benefits including simplified preparation, reduced costs, broad applicability and decreased potential for carcinogenic effects. This review summarises the RNA-based CAR constructs in in vivo CAR therapy, discusses the current applications of in vivo delivery vectors and outlines the immune cells edited with CAR molecules. We aim for the conveyed messages to contribute towards the advancement of in vivo CAR application.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Shaoyi Chen
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Zheng Liu
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Haoran Li
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Peiyu Wang
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Fan Yang
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yun Li
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Kezhong Chen
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Ming Sun
- Department of Oncology Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People's Republic of China
| | - Mantang Qiu
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Dieplinger J, Isabel Afonso Urich A, Mohsenzada N, Pinto JT, Dekner M, Paudel A. Influence of L-leucine content on the aerosolization stability of spray-dried protein dry powder inhalation (DPI). Int J Pharm 2024; 666:124822. [PMID: 39401580 DOI: 10.1016/j.ijpharm.2024.124822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Inhalable formulations of medicines intended to act locally in the lung are therapeutically effective at lower doses with targeted delivery, compared to parenteral or oral administration. Meanwhile, different APIs, including biologics, have proven to be challenging regarding formulation and final bioavailability. This study focuses on the production, improved stability performance, and delivery of spray-dried, inhalable protein powders to the lungs. By spray-drying 11 aqueous formulations of proteinX with varying L-leucine content and by employing a Design of Experiment (DoE), two formulations have been selected for stability studies based on the highest fine particle fraction (FPF), highest monomer content, and lowest particle size. We found that 5 %w/w L-leucine (based on protein content) resulted in similar or higher FPF at 2-8 °C and 25 °C/60 %RH (67.12 % and 48.50 %) stored for six months than 10 %w/w L-leucine (68.49 % and 35.04 %). This indicates that less leucine may be sufficient to produce stable, spray-dried inhalable particles with an improved FPF, and by doubling the leucine content, the aerosolization stability can deteriorate. We have discussed the postulated hypothesis underlying the observed stability behavior based on solid-state and morphological analysis. Our results suggest that spray-dried proteinX-leu-powders can be delivered to the lung at a lower dose than for intravenous administration.
Collapse
Affiliation(s)
- Johanna Dieplinger
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13 8010, Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13 8010, Graz, Austria
| | | | - Nila Mohsenzada
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13 8010, Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13 8010, Graz, Austria
| | | | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13 8010, Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13 8010, Graz, Austria.
| |
Collapse
|
3
|
Naaz A, Turnquist HR, Gorantla VS, Little SR. Drug delivery strategies for local immunomodulation in transplantation: Bridging the translational gap. Adv Drug Deliv Rev 2024; 213:115429. [PMID: 39142608 DOI: 10.1016/j.addr.2024.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Drug delivery strategies for local immunomodulation hold tremendous promise compared to current clinical gold-standard systemic immunosuppression as they could improve the benefit to risk ratio of life-saving or life-enhancing transplants. Such strategies have facilitated prolonged graft survival in animal models at lower drug doses while minimizing off-target effects. Despite the promising outcomes in preclinical animal studies, progression of these strategies to clinical trials has faced challenges. A comprehensive understanding of the translational barriers is a critical first step towards clinical validation of effective immunomodulatory drug delivery protocols proven for safety and tolerability in pre-clinical animal models. This review overviews the current state-of-the-art in local immunomodulatory strategies for transplantation and outlines the key challenges hindering their clinical translation.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| | - Heth R Turnquist
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States.
| | - Vijay S Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC, 27101, United States.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
4
|
Bao Z, Yung F, Hickman RJ, Aspuru-Guzik A, Bannigan P, Allen C. Data-driven development of an oral lipid-based nanoparticle formulation of a hydrophobic drug. Drug Deliv Transl Res 2024; 14:1872-1887. [PMID: 38158474 DOI: 10.1007/s13346-023-01491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Due to its cost-effectiveness, convenience, and high patient adherence, oral drug administration normally remains the preferred approach. Yet, the effective delivery of hydrophobic drugs via the oral route is often hindered by their limited water solubility and first-pass metabolism. To mitigate these challenges, advanced delivery systems such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been developed to encapsulate hydrophobic drugs and enhance their bioavailability. However, traditional design methodologies for these complex formulations often present intricate challenges because they are restricted to a relatively narrow design space. Here, we present a data-driven approach for the accelerated design of SLNs/NLCs encapsulating a model hydrophobic drug, cannabidiol, that combines experimental automation and machine learning. A small subset of formulations, comprising 10% of all formulations in the design space, was prepared in-house, leveraging miniaturized experimental automation to improve throughput and decrease the quantity of drug and materials required. Machine learning models were then trained on the data generated from these formulations and used to predict properties of all SLNs/NLCs within this design space (i.e., 1215 formulations). Notably, formulations predicted to be high-performers via this approach were confirmed to significantly enhance the solubility of the drug by up to 3000-fold and prevented degradation of drug. Moreover, the high-performance formulations significantly enhanced the oral bioavailability of the drug compared to both its free form and an over-the-counter version. Furthermore, this bioavailability matched that of a formulation equivalent in composition to the FDA-approved product, Epidiolex®.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Fion Yung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, M5S 1M1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
- CIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON, M5S 1M1, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
5
|
Aitipamula S, Bolla G. Optimizing Drug Development: Harnessing the Sustainability of Pharmaceutical Cocrystals. Mol Pharm 2024; 21:3121-3143. [PMID: 38814314 DOI: 10.1021/acs.molpharmaceut.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Environmental impacts of the industrial revolution necessitate adoption of sustainable practices in all areas of development. The pharmaceutical industry faces increasing pressure to minimize its ecological footprint due to its significant contribution to environmental pollution. Over the past two decades, pharmaceutical cocrystals have received immense popularity due to their ability to optimize the critical attributes of active pharmaceutical ingredients and presented an avenue to bring improved drug products to the market. This review explores the potential of pharmaceutical cocrystals as an ecofriendly alternative to traditional solid forms, offering a sustainable approach to drug development. From reducing the number of required doses to improving the stability of actives, from eliminating synthetic operations to using pharmaceutically approved chemicals, from the use of continuous and solvent-free manufacturing methods to leveraging published data on the safety and toxicology, the cocrystallization approach contributes to sustainability of drug development. The latest trends suggest a promising role of pharmaceutical cocrystals in bringing novel and improved medicines to the market, which has been further fuelled by the recent guidance from the major regulatory agencies.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Geetha Bolla
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
6
|
Shin YC, Than N, Park SJ, Kim HJ. Bioengineered human gut-on-a-chip for advancing non-clinical pharmaco-toxicology. Expert Opin Drug Metab Toxicol 2024; 20:593-606. [PMID: 38849312 DOI: 10.1080/17425255.2024.2365254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION There is a growing need for alternative models to advance current non-clinical experimental models because they often fail to accurately predict drug responses in human clinical trials. Human organ-on-a-chip models have emerged as promising approaches for advancing the predictability of drug behaviors and responses. AREAS COVERED We summarize up-to-date human gut-on-a-chip models designed to demonstrate intricate interactions involving the host, microbiome, and pharmaceutical compounds since these models have been reported a decade ago. This overview covers recent advances in gut-on-a-chip models as a bridge technology between non-clinical and clinical assessments of drug toxicity and metabolism. We highlight the promising potential of gut-on-a-chip platforms, offering a reliable and valid framework for investigating reciprocal crosstalk between the host, gut microbiome, and drug compounds. EXPERT OPINION Gut-on-a-chip platforms can attract multiple end users as predictive, human-relevant, and non-clinical model. Notably, gut-on-a-chip platforms provide a unique opportunity to recreate a human intestinal microenvironment, including dynamic bowel movement, luminal flow, oxygen gradient, host-microbiome interactions, and disease-specific manipulations restricted in animal and in vitro cell culture models. Additionally, given the profound impact of the gut microbiome on pharmacological bioprocess, it is critical to leverage breakthroughs of gut-on-a-chip technology to address knowledge gaps and drive innovations in predictive drug toxicology and metabolism.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nam Than
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Pontes JF, Diogo HP, Conceição E, Almeida MP, Borges Dos Santos RM, Grenha A. Development of a dry powder insufflation device with application in in vitro cell-based assays in the context of respiratory delivery. Eur J Pharm Sci 2024; 197:106775. [PMID: 38643941 DOI: 10.1016/j.ejps.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Research on pharmaceutical dry powders has been increasing worldwide, along with increased therapeutic strategies for an application through the pulmonary or the nasal routes. In vitro methodologies and tests that mimic the respiratory environment and the process of inhalation itself are, thus, essential. The literature frequently reports cell-based in vitro assays that involve testing the dry powders in suspension. This experimental setting is not adequate, as both the lung and the nasal cavity are devoid of abundant liquid. However, devices that permit powder insufflation over cells in culture are either scarce or technically complex and expensive, which is not feasible in early stages of research. In this context, this work proposes the development of a device that allows the delivery of dry powders onto cell surfaces, thus simulating inhalation more appropriately. Subsequently, a quartz crystal microbalance (QCM) was used to establish a technique enabling the determination of dry powder deposition profiles. Additionally, the determination of the viability of respiratory cells (A549) after the insufflation of a dry powder using the developed device was performed. In all, a prototype for dry powder insufflation was designed and developed, using 3D printing methods for its production. It allowed the homogenous dispersion of the insufflated powders over a petri dish and a QCM crystal, and a more detailed study on how dry powders disperse over the supports. The device, already protected by a patent, still requires further improvement, especially regarding the method for powder weighing and the efficiency of the insufflation process, which is being addressed. The impact of insufflation of air and of locust bean gum (LBG)-based microparticles revealed absence of cytotoxic effect, as cell viability roughly above 70 % was always determined.
Collapse
Affiliation(s)
- Jorge F Pontes
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Hermínio P Diogo
- University of Lisbon, Instituto Superior Técnico, Centro de Química Estrutural, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Eusébio Conceição
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Maria P Almeida
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Rui M Borges Dos Santos
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Ana Grenha
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
8
|
Chen F, Zhong H, Chan G, Ouyang D. A Comprehensive Analysis of Biopharmaceutical Products Listed in the FDA's Purple Book. AAPS PharmSciTech 2024; 25:88. [PMID: 38637407 DOI: 10.1208/s12249-024-02802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Although biopharmaceuticals constitute around 10% of the drug landscape, eight of the ten top-selling products were biopharmaceuticals in 2023. This study did a comprehensive analysis of the FDA's Purple Book database. Firstly, our research uncovered market trends and provided insights into biologics distributions. According to the investigation, although biotechnology has advanced and legislative shifts have made the approval process faster, there are still challenges to overcome, such as molecular instability and formulation design. Moreover, our research comprehensively analyzed biological formulations, pointing out significant strategies regarding administration routes, dosage forms, product packaging, and excipients. In conjunction with biologics, the widespread integration of innovative delivery strategies will be implemented to confront the evolving challenges in healthcare and meet an expanding array of treatment needs.
Collapse
Affiliation(s)
- Fuduan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Hao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
- Faculty of Health Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|
9
|
Yadav P, Singh Y, Chauhan D, Yadav PK, Kedar AS, Tiwari AK, Shah AA, Gayen JR, Chourasia MK. Development and approval of novel injectables: enhancing therapeutic innovations. Expert Opin Drug Deliv 2024; 21:639-662. [PMID: 38703363 DOI: 10.1080/17425247.2024.2351987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Novel injectables possess applications in both local and systemic therapeutics delivery. The advancement in utilized materials for the construction of complex injectables has tremendously upgraded their safety and efficacy. AREAS COVERED This review focuses on various strategies to produce novel injectables, including oily dispersions, in situ forming implants, injectable suspensions, microspheres, liposomes, and antibody-drug conjugates. We herein present a detailed description of complex injectable technologies and their related drug formulations permitted for clinical use by the United States Food and Drug Administration (USFDA). The excipients used, their purpose and the challenges faced during manufacturing such formulations have been critically discussed. EXPERT OPINION Novel injectables can deliver therapeutic agents in a controlled way at the desired site. However, several challenges persist with respect to their genericization. Astronomical costs incurred by innovator companies during product development, complexity of the product itself, supply limitations with respect to raw materials, intricate manufacturing processes, patent evergreening, product life-cycle extensions, relatively few and protracted generic approvals contribute to the exorbitant prices and access crunch. Moreover, regulatory guidance are grossly underdeveloped and significant efforts have to be directed toward development of effective characterization techniques.
Collapse
Affiliation(s)
- Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yuvraj Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini S Kedar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aarti Abhishek Shah
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Kharve K, Engley AS, Paine MF, Sprowl JA. Impact of Drug-Mediated Inhibition of Intestinal Transporters on Nutrient and Endogenous Substrate Disposition…an Afterthought? Pharmaceutics 2024; 16:447. [PMID: 38675109 PMCID: PMC11053474 DOI: 10.3390/pharmaceutics16040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
A large percentage (~60%) of prescription drugs and new molecular entities are designed for oral delivery, which requires passage through a semi-impervious membrane bilayer in the gastrointestinal wall. Passage through this bilayer can be dependent on membrane transporters that regulate the absorption of nutrients or endogenous substrates. Several investigations have provided links between nutrient, endogenous substrate, or drug absorption and the activity of certain membrane transporters. This knowledge has been key in the development of new therapeutics that can alleviate various symptoms of select diseases, such as cholestasis and diabetes. Despite this progress, recent studies revealed potential clinical dangers of unintended altered nutrient or endogenous substrate disposition due to the drug-mediated disruption of intestinal transport activity. This review outlines reports of glucose, folate, thiamine, lactate, and bile acid (re)absorption changes and consequent adverse events as examples. Finally, the need to comprehensively expand research on intestinal transporter-mediated drug interactions to avoid the unwanted disruption of homeostasis and diminish therapeutic adverse events is highlighted.
Collapse
Affiliation(s)
- Kshitee Kharve
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
| | - Andrew S. Engley
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (A.S.E.); (M.F.P.)
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (A.S.E.); (M.F.P.)
| | - Jason A. Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
| |
Collapse
|
11
|
Yu J, Dan N, Eslami SM, Lu X. State of the Art of Silica Nanoparticles: An Overview on Biodistribution and Preclinical Toxicity Studies. AAPS J 2024; 26:35. [PMID: 38514482 DOI: 10.1208/s12248-024-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Over the past few years, nanoparticles have drawn particular attention in designing and developing drug delivery systems due to their distinctive advantages like improved pharmacokinetics, reduced toxicity, and specificity. Along with other successful nanosystems, silica nanoparticles (SNPs) have shown promising effects for therapeutic and diagnostic purposes. These nanoparticles are of great significance owing to their modifiable surface with various ligands, tunable particle size, and large surface area. The rate and extent of degradation and clearance of SNPs depend on factors such as size, shape, porosity, and surface modification, which directly lead to varying toxic mechanisms. Despite SNPs' enormous potential for clinical and pharmaceutical applications, safety concerns have hindered their translation into the clinic. This review discusses the biodistribution, toxicity, and clearance of SNPs and the formulation-related factors that ultimately influence clinical efficacy and safety for treatment. A holistic view of SNP safety will be beneficial for developing an enabling SNP-based drug product.
Collapse
Affiliation(s)
- Joshua Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Nirnoy Dan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Seyyed Majid Eslami
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
12
|
Liu Y, Wu Z, Chen Y, Guan Y, Guo H, Yang M, Yue P. Rubusoside As a Multifunctional Stabilizer for Novel Nanocrystal-Based Solid Dispersions with a High Drug Loading: A Case Study. J Pharm Sci 2024; 113:699-710. [PMID: 37659720 DOI: 10.1016/j.xphs.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The oral bioavailability of poorly soluble drugs has always been the focus of pharmaceutical researchers. We innovatively combined nanocrystal technology and solid dispersion technology to prepare novel nanocrystalline solid dispersions (NCSDs), which enable both the solidification and redispersion of nanocrystals, offering a promising new pathway for oral delivery of insoluble Chinese medicine ingredients. The rubusoside (Rub) was first used as the multifunctional stabilizer of novel apigenin nanocrystal-based solid dispersions (AP-NSD), improving the in vitro solubilization rate of the insoluble drug apigenin(AP). AP-NSD has been produced using a combination of homogenisation and spray-drying technology. The effects of stabilizer type and concentration on AP nanosuspensions (AP-NS) particles, span, and zeta potential were studied. And the effects of different types of protective agents on the yield and redispersibility of AP-NSD were also studied. Furthermore, AP-NSD was characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). Solubility was used to assess the in vitro dissolution of AP-NSD relative to APIs and amorphous solid dispersions (AP-ASD), and AP-ASD was prepared by the solvent method. The results showed that 20% Rub stabilized AP-NSD exhibited high drug-loading and good redispersibility and stability, and higher in vitro dissolution rate, which may be related to the presence of Rub on surface of drug. Therefore provides a natural and safe option for the development of formulations for insoluble drugs.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Zhenfeng Wu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yongmei Guan
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Huiwen Guo
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Ming Yang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China.
| |
Collapse
|
13
|
Zhai J, Cote T, Chen Y. Challenges and advances of the stability of mRNA delivery therapeutics. NUCLEIC ACID INSIGHTS 2024; 1:101-113. [PMID: 38903876 PMCID: PMC11189690 DOI: 10.18609/nai.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
mRNA therapeutics have garnered significant attention in the biomedical realm, showing immense potential across a spectrum of applications from COVID-19 to cancer treatments. Their ability to trigger precise protein expression, particularly in genome editing, is pivotal in minimizing off-target effects. At the core of mRNA therapy lies a dual-component system, comprising the mRNA itself and a delivery vehicle. The breakthrough success of novel COVID-19 vaccines has catapulted lipid nanoparticles to prominence as the preferred delivery vehicle. However, despite their US FDA approval and efficacy, lipid nanoparticles face a significant challenge: poor stability at room temperature, which limits their applications in various geographic regions with disparities in infrastructure and technology. This review aims to dissect the issue of stability inherent in lipid nanoparticles and other mRNA delivery platforms such as polymer-based materials and protein derivative materials. We herein endeavor to unravel the factors contributing to their instability and explore potential strategies to enhance their stability. By doing so, we provide a comprehensive analysis of the current landscape of mRNA delivery systems, highlighting both their successes and limitations, and paving the way for future advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Jin Zhai
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Trystin Cote
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Chobisa D, Muniyandi A, Sishtla K, Corson TW, Yeo Y. Long-Acting Microparticle Formulation of Griseofulvin for Ocular Neovascularization Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306479. [PMID: 37940612 PMCID: PMC10939919 DOI: 10.1002/smll.202306479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss in older adults. nAMD is treated with biologics targeting vascular endothelial growth factor; however, many patients do not respond to the current therapy. Here, a small molecule drug, griseofulvin (GRF), is used due to its inhibitory effect on ferrochelatase, an enzyme important for choroidal neovascularization (CNV). For local and sustained delivery to the eyes, GRF is encapsulated in microparticles based on poly(lactide-co-glycolide) (PLGA), a biodegradable polymer with a track record in long-acting formulations. The GRF-loaded PLGA microparticles (GRF MPs) are designed for intravitreal application, considering constraints in size, drug loading content, and drug release kinetics. Magnesium hydroxide is co-encapsulated to enable sustained GRF release over >30 days in phosphate-buffered saline with Tween 80. Incubated in cell culture medium over 30 days, the GRF MPs and the released drug show antiangiogenic effects in retinal endothelial cells. A single intravitreal injection of MPs containing 0.18 µg GRF releases the drug over 6 weeks in vivo to inhibit the progression of laser-induced CNV in mice with no abnormality in the fundus and retina. Intravitreally administered GRF MPs prove effective in preventing CNV, providing proof-of-concept toward a novel, cost-effective nAMD therapy.
Collapse
Affiliation(s)
- Dhawal Chobisa
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
- Integrated Product Development Organization, Innovation Plaza Dr. Reddy's Laboratories, Hyderabad, 500050, India
| | - Anbukkarasi Muniyandi
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Timothy W Corson
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Longre S, Rana D, Rangra S, Jindal AB, Salave S, Vitore J, Benival D. Quality-by-Design Based Development of Doxycycline Hyclate-Loaded Polymeric Microspheres for Prolonged Drug Release. AAPS PharmSciTech 2024; 25:49. [PMID: 38424393 DOI: 10.1208/s12249-024-02760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
This study explores a novel approach to address the challenges of delivering highly water-soluble drug molecules by employing hydrophobic ion-pairing (HIP) complexes within poly (lactic-co-glycolic acid) (PLGA) microspheres. The HIP complex, formed between doxycycline hyclate (DH) and docusate sodium (DS), renders the drug hydrophobic. The development of the microspheres was done using the QbD approach, namely, Box-Behnken Design (BBD). A comprehensive characterization of the HIP complex confirmed the successful conversion of DH. DH and the HIP complex were effectively loaded into PLGA microspheres using the oil-in-water (O/W) emulsion solvent evaporation method. Results demonstrated significant improvements in percentage entrapment efficiency (% EE) and drug loading (% DL) for DH within the HIP complex-loaded PLGA microspheres compared to DH-loaded microspheres alone. Additionally, the initial burst release of DH reduced to 3% within the initial 15 min, followed by sustained drug release over 8 days. The modified HIP complex strategy offers a promising platform for improving the delivery of highly water-soluble small molecules. It provides high % EE, % DL, minimal initial burst release, and sustained release, thus having the potential to enhance patient compliance and drug delivery efficiency.
Collapse
Affiliation(s)
- Suraj Longre
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Shagun Rangra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Jyotsna Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India.
| |
Collapse
|
16
|
Wei Y, Pence IJ, Wiatrowski A, Slade JB, Evans CL. Quantitative analysis of drug tablet aging by fast hyper-spectral stimulated Raman scattering microscopy. Analyst 2024; 149:1436-1446. [PMID: 38050860 DOI: 10.1039/d3an01527k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Pharmaceutical development of solid-state formulations requires testing active pharmaceutical ingredients (API) and excipients for uniformity and stability. Solid-state properties such as component distribution and grain size are crucial factors that influence the dissolution profile, which greatly affect drug efficacy and toxicity, and can only be analyzed spatially by chemical imaging (CI) techniques. Current CI techniques such as near infrared microscopy and confocal Raman spectroscopy are capable of high chemical and spatial resolution but cannot achieve the measurement speeds necessary for integration into the pharmaceutical production and quality assurance processes. To fill this gap, we demonstrate fast chemical imaging by epi-detected sparse spectral sampling stimulated Raman scattering to quantify API and excipient degradation and distribution.
Collapse
Affiliation(s)
- Yuxiao Wei
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
- Harvard Medical School, Department of Biological and Biomedical Sciences, 260 Longwood Ave, Boston, Massachusetts 02115, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Anna Wiatrowski
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Julia B Slade
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
17
|
Wang M, Wang S, Zhang C, Ma M, Yan B, Hu X, Shao T, Piao Y, Jin L, Gao J. Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern. Int J Nanomedicine 2024; 19:1571-1595. [PMID: 38406600 PMCID: PMC10888034 DOI: 10.2147/ijn.s445269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Long-acting injectable microspheres have been on the market for more than three decades, but if calculated on the brand name, only 12 products have been approved by the FDA due to numerous challenges in achieving a fully controllable drug release pattern. Recently, more and more researches on the critical factors that determine the release kinetics of microspheres shifted from evaluating the typical physicochemical properties to exploring the microstructure. The microstructure of microspheres mainly includes the spatial distribution and the dispersed state of drug, PLGA and pores, which has been considered as one of the most important characteristics of microspheres, especially when comparative characterization of the microstructure (Q3) has been recommended by the FDA for the bioequivalence assessment. This review extracted the main variables affecting the microstructure formation from microsphere formulation compositions and preparation processes and highlighted the latest advances in microstructure characterization techniques. The further understanding of the microsphere microstructure has significant reference value for the development of long-acting injectable microspheres, particularly for the development of the generic microspheres.
Collapse
Affiliation(s)
- Mengdi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Changhao Zhang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Ming Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Xinming Hu
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Tianjiao Shao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Yan Piao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Lili Jin
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| |
Collapse
|
18
|
Smith MY, Gaglio B, Anatchkova M. The use of implementation science theories, models, and frameworks in implementation research for medicinal products: A scoping review. Health Res Policy Syst 2024; 22:17. [PMID: 38287407 PMCID: PMC10823700 DOI: 10.1186/s12961-024-01102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The uptake, adoption and integration of new medicines and treatment regimens within healthcare delivery can take a decade or more. Increasingly, implementation science (IS) research is being used to bridge this gap between the availability of new therapeutic evidence and its actual application in clinical practice. Little is known, however, about the quality of IS research in this area, including the degree to which theories, models and frameworks (TMFs) are being used. The objective of this study was to conduct a scoping review of the use of TMFs in implementation research involving medicinal products. METHODS A search was conducted for English language abstracts and manuscripts describing the application of TMFs in IS studies for medicinal products. Eligible publications were those published between 1 January 1974 and 12 December 2022. All records were screened at the title and abstract stage; included full-text papers were abstracted using data extraction tables designed for the study. Study quality was appraised using the Implementation Research Development Tool. RESULTS The initial scoping search identified 2697 publications, of which 9 were ultimately eligible for inclusion in the review. Most studies were published after 2020 and varied in their objectives, design and therapeutic area. Most studies had sample sizes of fewer than 50 participants, and all focused on the post-marketing phase of drug development. The TMF most frequently used was the Consolidated Framework for Implementation Research (CFIR). Although most studies applied all TMF domains, TMF use was limited to instrument development and/or qualitative analysis. Quality appraisals indicated the need for engaging patients and other stakeholders in the implementation research, reporting on the cost of implementation strategies, and evaluating the unintended consequences of implementation efforts. CONCLUSIONS We found that few IS studies involving medicinal products reported using TMFs. Those that did encompassed a wide variety of therapeutic indications and medicinal products; all were in the post-marketing phase and involved limited application of the TMFs. Researchers should consider conducting IS in earlier phases of drug development and integrating the TMFs throughout the research process. More consistent and in-depth use of TMFs may help advance research in this area.
Collapse
Affiliation(s)
- Meredith Y Smith
- Evidera, Inc., Bethesda, MD, United States of America.
- Department of Regulatory and Quality Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States of America.
| | | | | |
Collapse
|
19
|
Xie P, Yang X, Fatima Z, Yang R, Sun H, Xing Y, Xu X, Gu J, Liu L, Li D. Simultaneous separation and analysis of multiple doxorubicin hydrochloride liposomes forms in serum by circular nonuniform electric field gel electrophoresis. Anal Chim Acta 2024; 1287:342110. [PMID: 38182347 DOI: 10.1016/j.aca.2023.342110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Liposomal formulations have traditionally been considered the most therapeutically effective drug delivery systems (DDS). However, their pharmacokinetics study and efficacy assessment are still challenging given size heterogeneity and unknown forms in vivo. The pharmacodynamic evaluation that solely analyzes total drug concentration is unfit for the liposomal formulation study. Hence, it is crucial to develop effective strategies for the separation and analysis of different forms of liposomal formulations in order to contribute to the study of pharmacokinetic profiles associated with both liposome-incorporated and non-liposomal drugs. (84) RESULTS: A laboratory-built circular nonuniform electric field gel electrophoresis (CNEFGE) system was developed in this study for simultaneous separation and analysis of various forms of doxorubicin hydrochloride (DOX•HCl) liposomes. Liposomes were effectively fractionized based on their size and higher concentration in situ in the concentration zone, obtaining liposome recovery >95 % and a 3.04 concentration factor. It was found that the technique could be used to evaluate not only the size distribution of liposomes but also the drug loading capacity related to size. The charge-to-size-based separation mechanism has also allowed the simultaneous separation of liposome-entrapped drugs, protein-bound drugs, and free drugs in various forms, and the technique has been successfully employed in serum. Moreover, the quantification analysis of liposomes incubated with serum for 72 h showed that the proportion of the ratio of DOX•HCl in liposome-entrapped drugs, protein-bound drugs, and free drugs is approximately 97:2:1. (143) SIGNIFICANCE: Using the separation principle of gel electrophoresis and the electrification characteristics of drug carriers, this study developed and implemented an efficient approach for the simultaneous separation and concentration of multiple forms of drug liposomes in vivo. This approach offers a wide range of applications in the pharmacokinetics, efficacy, and safety evaluation of drug carriers and liposomes. (56).
Collapse
Affiliation(s)
- Peijie Xie
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Xinlei Yang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Zakia Fatima
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Ruilin Yang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Huaze Sun
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Yuhang Xing
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Xin Xu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lu Liu
- Pathology and Pathophysiology, Medical College, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China.
| | - Donghao Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China; Department of Chemistry, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
20
|
Wang LLW, Gao Y, Chandran Suja V, Boucher ML, Shaha S, Kapate N, Liao R, Sun T, Kumbhojkar N, Prakash S, Clegg JR, Warren K, Janes M, Park KS, Dunne M, Ilelaboye B, Lu A, Darko S, Jaimes C, Mannix R, Mitragotri S. Preclinical characterization of macrophage-adhering gadolinium micropatches for MRI contrast after traumatic brain injury in pigs. Sci Transl Med 2024; 16:eadk5413. [PMID: 38170792 DOI: 10.1126/scitranslmed.adk5413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.
Collapse
Affiliation(s)
- Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Kaitlyn Warren
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan Janes
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Michael Dunne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Bolu Ilelaboye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Solomina Darko
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Camilo Jaimes
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| |
Collapse
|
21
|
Vishakha S, Navneesh N, Kurmi BD, Gupta GD, Verma SK, Jain A, Patel P. An Expedition on Synthetic Methodology of FDA-approved Anticancer Drugs (2018-2021). Anticancer Agents Med Chem 2024; 24:590-626. [PMID: 38288815 DOI: 10.2174/0118715206259585240105051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 05/29/2024]
Abstract
New drugs being established in the market every year produce specified structures for selective biological targeting. With medicinal insights into molecular recognition, these begot molecules open new rooms for designing potential new drug molecules. In this review, we report the compilation and analysis of a total of 56 drugs including 33 organic small molecules (Mobocertinib, Infigratinib, Sotorasib, Trilaciclib, Umbralisib, Tepotinib, Relugolix, Pralsetinib, Decitabine, Ripretinib, Selpercatinib, Capmatinib, Pemigatinib, Tucatinib, Selumetinib, Tazemetostat, Avapritinib, Zanubrutinib, Entrectinib, Pexidartinib, Darolutamide, Selinexor, Alpelisib, Erdafitinib, Gilteritinib, Larotrectinib, Glasdegib, Lorlatinib, Talazoparib, Dacomitinib, Duvelisib, Ivosidenib, Apalutamide), 6 metal complexes (Edotreotide Gallium Ga-68, fluoroestradiol F-18, Cu 64 dotatate, Gallium 68 PSMA-11, Piflufolastat F-18, 177Lu (lutetium)), 16 macromolecules as monoclonal antibody conjugates (Brentuximabvedotin, Amivantamab-vmjw, Loncastuximabtesirine, Dostarlimab, Margetuximab, Naxitamab, Belantamabmafodotin, Tafasitamab, Inebilizumab, SacituzumabGovitecan, Isatuximab, Trastuzumab, Enfortumabvedotin, Polatuzumab, Cemiplimab, Mogamulizumab) and 1 peptide enzyme (Erwiniachrysanthemi-derived asparaginase) approved by the U.S. FDA between 2018 to 2021. These drugs act as anticancer agents against various cancer types, especially non-small cell lung, lymphoma, breast, prostate, multiple myeloma, neuroendocrine tumor, cervical, bladder, cholangiocarcinoma, myeloid leukemia, gastrointestinal, neuroblastoma, thyroid, epithelioid and cutaneous squamous cell carcinoma. The review comprises the key structural features, approval times, target selectivity, mechanisms of action, therapeutic indication, formulations, and possible synthetic approaches of these approved drugs. These crucial details will benefit the scientific community for futuristic new developments in this arena.
Collapse
Affiliation(s)
- S Vishakha
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - N Navneesh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Texas A & M University, Kingsville, 78363, Texas, United States of America
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
22
|
Kaur G, Khanna B, Yusuf M, Sharma A, Khajuria A, Alajangi HK, Jaiswal PK, Sachdeva M, Barnwal RP, Singh G. A Path of Novelty from Nanoparticles to Nanobots: Theragnostic Approach for Targeting Cancer Therapy. Crit Rev Ther Drug Carrier Syst 2024; 41:1-38. [PMID: 38305340 DOI: 10.1615/critrevtherdrugcarriersyst.2023046674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Pharmaceutical development of cancer therapeutics is a dynamic area of research. Even after decades of intensive work, cancer continues to be a dreadful disease with an ever-increasing global incidence. The progress of nanotechnology in cancer research has overcome inherent limitations in conventional cancer chemotherapy and fulfilled the need for target-specific drug carriers. Nanotechnology uses the altered patho-physiological microenvironment of malignant cells and offers various advantages like improved solubility, reduced toxicity, prolonged drug circulation with controlled release, circumventing multidrug resistance, and enhanced biodistribution. Early cancer detection has a crucial role in selecting the best drug regime, thus, diagnosis and therapeutics go hand in hand. Furthermore, nanobots are an amazing possibility and promising innovation with numerous significant applications, particularly in fighting cancer and cleaning out blood vessels. Nanobots are tiny robots, ranging in size from 1 to 100 nm. Moreover, the nanobots would work similarly to white blood cells, watching the bloodstream and searching for indications of distress. This review articulates the evolution of various organic and inorganic nanoparticles and nanobots used as therapeutics, along with their pros and cons. It also highlights the shift in diagnostics from conventional methods to more advanced techniques. This rapidly growing domain is providing more space for engineering desired nanoparticles that can show miraculous results in therapeutic and diagnostic trials.
Collapse
Affiliation(s)
- Gursharanpreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhawna Khanna
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mohammed Yusuf
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Hema K Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep K Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843, USA
| | - Mandip Sachdeva
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL, USA
| | | | | |
Collapse
|
23
|
Hsein H, Madi C, Mazel V, Tchoreloff P, Busignies V. Tableting properties of freeze-dried trehalose: Physico-chemical and mechanical investigation. Int J Pharm 2023; 648:123598. [PMID: 37956724 DOI: 10.1016/j.ijpharm.2023.123598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Freeze-drying of biopharmaceutical products is the method of choice in order to improve their stability and storage conditions. Such freeze-dried products are usually intended for parenteral route administration. However, many biopharmaceutical materials administered by parenteral route are used to treat local diseases particularly in the gastro-intestinal tract. Therefore, many studies concentrate nowadays their effort on developing alternative dosage forms to deliver biopharmaceutical molecules by the oral route. Tablets are the most popular solid pharmaceutical dosage form used for oral administration since they present many advantages, but poor informations are available on the possibility of tableting freeze-dried powders. In this study, we evaluate the compaction behavior of freeze-dried trehalose powder since trehalose is one of the most used cryo and lyoprotectant for the lyophilisation of biopharmaceutical entities. Results show that freeze-dried trehalose powder can be tableted while remaining amorphous and the obtained compacts present very specific properties in terms of compressibility, tabletability, brittleness and viscoelasticity compared to the crystalline trehalose and compared to classical pharmaceutical excipients.
Collapse
Affiliation(s)
- Hassana Hsein
- Univ. Bordeaux, Laboratoire de Pharmacie Galénique et Biopharmacie, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, Talence, F-33400, France.
| | - Charbel Madi
- Univ. Bordeaux, Laboratoire de Pharmacie Galénique et Biopharmacie, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, Talence, F-33400, France
| | - Vincent Mazel
- Univ. Bordeaux, Laboratoire de Pharmacie Galénique et Biopharmacie, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, Talence, F-33400, France
| | - Pierre Tchoreloff
- Univ. Bordeaux, Laboratoire de Pharmacie Galénique et Biopharmacie, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, Talence, F-33400, France
| | - Virginie Busignies
- Univ. Bordeaux, Laboratoire de Pharmacie Galénique et Biopharmacie, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, Talence, F-33400, France
| |
Collapse
|
24
|
Lefol L, Bawuah P, Zeitler J, Verin J, Danede F, Willart J, Siepmann F, Siepmann J. Drug release from PLGA microparticles can be slowed down by a surrounding hydrogel. Int J Pharm X 2023; 6:100220. [PMID: 38146325 PMCID: PMC10749250 DOI: 10.1016/j.ijpx.2023.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/27/2023] Open
Abstract
This study aimed to evaluate and better understand the potential impact that a layer of surrounding hydrogel (mimicking living tissue) can have on the drug release from PLGA microparticles. Ibuprofen-loaded microparticles were prepared with an emulsion solvent extraction/evaporation method. The drug loading was about 48%. The surface of the microparticles appeared initially smooth and non-porous. In contrast, the internal microstructure of the particles exhibited a continuous network of tiny pores. Ibuprofen release from single microparticles was measured into agarose gels and well-agitated phosphate buffer pH 7.4. Optical microscopy, scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and X-ray μCT imaging were used to characterize the microparticles before and after exposure to the release media. Importantly, ibuprofen release was much slower in the presence of a surrounding agarose gel, e.g., the complete release took two weeks vs. a few days in well agitated phosphate buffer. This can probably be attributed to the fact that the hydrogel sterically hinders substantial system swelling and, thus, slows down the related increase in drug mobility. In addition, in this particular case, the convective flow in agitated bulk fluid likely damages the thin PLGA layer at the microparticles' surface, giving the outer aqueous phase more rapid access to the inner continuous pore network: Upon contact with water, the drug dissolves and rapidly diffuses out through a continuous network of water-filled channels. Without direct surface access, most of the drug "has to wait" for the onset of substantial system swelling to be released.
Collapse
Affiliation(s)
- L.A. Lefol
- Univ. Lille, Inserm, CHU Lille, U1008, Lille F-59000, France
| | - P. Bawuah
- Univ. Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB3 0AS, UK
| | - J.A. Zeitler
- Univ. Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB3 0AS, UK
| | - J. Verin
- Univ. Lille, Inserm, CHU Lille, U1008, Lille F-59000, France
| | - F. Danede
- Univ. Lille, USTL UMET UMR CNRS 8207, Villeneuve d'Ascq F-59650, France
| | - J.F. Willart
- Univ. Lille, USTL UMET UMR CNRS 8207, Villeneuve d'Ascq F-59650, France
| | - F. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, Lille F-59000, France
| | - J. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, Lille F-59000, France
| |
Collapse
|
25
|
Hall SR, Rasmussen SA, Crittenden E, Dawson CA, Bartlett KE, Westhorpe AP, Albulescu LO, Kool J, Gutiérrez JM, Casewell NR. Repurposed drugs and their combinations prevent morbidity-inducing dermonecrosis caused by diverse cytotoxic snake venoms. Nat Commun 2023; 14:7812. [PMID: 38097534 PMCID: PMC10721902 DOI: 10.1038/s41467-023-43510-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
Morbidity from snakebite envenoming affects approximately 400,000 people annually. Tissue damage at the bite-site often leaves victims with catastrophic life-long injuries and is largely untreatable by current antivenoms. Repurposed small molecule drugs that inhibit specific snake venom toxins show considerable promise for tackling this neglected tropical disease. Using human skin cell assays as an initial model for snakebite-induced dermonecrosis, we show that the drugs 2,3-dimercapto-1-propanesulfonic acid (DMPS), marimastat, and varespladib, alone or in combination, inhibit the cytotoxicity of a broad range of medically important snake venoms. Thereafter, using preclinical mouse models of dermonecrosis, we demonstrate that the dual therapeutic combinations of DMPS or marimastat with varespladib significantly inhibit the dermonecrotic activity of geographically distinct and medically important snake venoms, even when the drug combinations are delivered one hour after envenoming. These findings strongly support the future translation of repurposed drug combinations as broad-spectrum therapeutics for preventing morbidity caused by snakebite.
Collapse
Affiliation(s)
- Steven R Hall
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sean A Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, 7th Floor of MacKenzie Building, 5788 University Avenue, Halifax, NS, B3H 1V8, Canada
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charlotte A Dawson
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Keirah E Bartlett
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P Westhorpe
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, PO Box 11501-2060, San José, Costa Rica
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
26
|
Ng F, Nicoulin V, Peloso C, Curia S, Richard J, Lopez-Noriega A. In Vitro and In Vivo Hydrolytic Degradation Behaviors of a Drug-Delivery System Based on the Blend of PEG and PLA Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55495-55509. [PMID: 38011651 DOI: 10.1021/acsami.2c13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
This paper presents the in vitro and in vivo degradation of BEPO, a marketed in situ forming depot technology used for the formulation of long-acting injectables. BEPO is composed of a solution of a blend of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) triblock and diblock in an organic solvent, where a therapeutic agent may be dissolved or suspended. Upon contact with an aqueous environment, the solvent diffuses and the polymers precipitate, entrapping the drug and forming a reservoir. Two representative BEPO compositions were subjected to a 3-month degradation study in vitro by immersion in phosphate-buffered saline at 37 °C and in vivo after subcutaneous injection in minipig. The material erosion rate, as a surrogate of the bioresorption, determined via the depot weight loss, changed substantially, depending on the composition and content of polymers within the test item. The swelling properties and internal morphology of depots were shown to be highly dependent on the solvent exchange rate during the precipitation step. Thermal analyses displayed an increase of the depot glass transition temperature over the degradation process, with no crystallinity observed at any stage. The chemical composition of degraded depots was determined by 1H NMR and gel permeation chromatography and demonstrated an enrichment in homopolymers, i.e., free PLA and (m)PEG, to the detriment of (m)PEG-PLA copolymers in both formulations. It was observed that the relative ratio of the degradants within the depot is driven by the initial polymer composition. Interestingly, in vitro and in vivo results showed very good qualitative consistency. Taken together, the outcomes from this study demonstrate that the different hydrolytic degradation behaviors of the BEPO compositions can be tuned by adjusting the polymer composition of the formulation.
Collapse
Affiliation(s)
- Feifei Ng
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Victor Nicoulin
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | - Silvio Curia
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Joël Richard
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | |
Collapse
|
27
|
Niloy KK, Lowe TL. Injectable systems for long-lasting insulin therapy. Adv Drug Deliv Rev 2023; 203:115121. [PMID: 37898336 DOI: 10.1016/j.addr.2023.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insulin therapy is the mainstay to treat diabetes characterizedd by hyperglycemia. However, its short half-life of only 4-6 min limits its effectiveness in treating chronic diabetes. Advances in recombinant DNA technology and protein engineering have led to several insulin analogue products that have up to 42 h of glycemic control. However, these insulin analogues still require once- or twice-daily injections for optimal glycemic control and have poor patient compliance and adherence issues. To achieve insulin release for more than one day, different injectable delivery systems including microspheres, in situ forming depots, nanoparticles and composite systems have been developed. Several of these delivery systems have advanced to clinical trials for once-weekly insulin injection. This review comprehensively summarizes the developments of injectable insulin analogs and delivery systems covering the whole field of injectable long-lasting insulin technologies from prototype design, preclinical studies, clinical trials to marketed products for the treatment of diabetes.
Collapse
Affiliation(s)
- Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
28
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
29
|
Yoshida T, Kojima H. Oral Drug Delivery Systems Applied to Launched Products: Value for the Patients and Industrial Considerations. Mol Pharm 2023; 20:5312-5331. [PMID: 37856863 DOI: 10.1021/acs.molpharmaceut.3c00482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Drug delivery systems (DDS) control the amount, rate, and site of administration of drug substances in the body as well as their release and ADME (absorption, distribution, metabolism, excretion). Among the various types of DDS, amount-controlled DDS for solubilization and absorption increase the bioavailability. Time- and amount-controlled DDS are controlled release formulations classified as (1) membrane-type, (2) matrix-type, (3) osmotic-type, and (4) ion-exchange type. Timed-release formulations also control the time and amount of release and the absorption of drugs. Site- and amount-controlled DDS are characterized by colonic delivery and intestinal lymph-targeting to improve release and ADME of drug substances. Finally, site-, time-, and amount-controlled DDS are gastroretentive formulations and local delivery in the oral cavity to improve site retention, release, and ADME of drugs. DDS can enhance efficacy, reduce adverse effects, and optimize the dosing frequency of various drug products to increase patient value. This review focuses on patient value and industrial considerations of launched oral DDS. We provide a technological overview of candidate and marketed DDS, as well as the pros/cons of the technologies for industrialization with consideration to excipients, manufacturing, and storage stability. Moreover, to demonstrate the usefulness of the technology and support the selection and development of the best technologies for patients, we also describe patient value from clinical studies and analyses, particularly with regard to increased new medical options, higher efficacy, reduced adverse effects, reduced number of doses and clinic visits, easier administration, higher quality of life, greater adherence, and satisfaction.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Pharmaceutical Research and Technology Laboratories, Astellas Pharma Inc, 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Laboratories, Astellas Pharma Inc, 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| |
Collapse
|
30
|
Bao Z, Bufton J, Hickman RJ, Aspuru-Guzik A, Bannigan P, Allen C. Revolutionizing drug formulation development: The increasing impact of machine learning. Adv Drug Deliv Rev 2023; 202:115108. [PMID: 37774977 DOI: 10.1016/j.addr.2023.115108] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Over the past few years, the adoption of machine learning (ML) techniques has rapidly expanded across many fields of research including formulation science. At the same time, the use of lipid nanoparticles to enable the successful delivery of mRNA vaccines in the recent COVID-19 pandemic demonstrated the impact of formulation science. Yet, the design of advanced pharmaceutical formulations is non-trivial and primarily relies on costly and time-consuming wet-lab experimentation. In 2021, our group published a review article focused on the use of ML as a means to accelerate drug formulation development. Since then, the field has witnessed significant growth and progress, reflected by an increasing number of studies published in this area. This updated review summarizes the current state of ML directed drug formulation development, introduces advanced ML techniques that have been implemented in formulation design and shares the progress on making self-driving laboratories a reality. Furthermore, this review highlights several future applications of ML yet to be fully exploited to advance drug formulation research and development.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jack Bufton
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada; Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5S 1M1, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada; CIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON M5S 1M1, Canada; Acceleration Consortium, Toronto, ON M5S 3H6, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Acceleration Consortium, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
31
|
Lamparelli EP, Marino M, Szychlinska MA, Della Rocca N, Ciardulli MC, Scala P, D’Auria R, Testa A, Viggiano A, Cappello F, Meccariello R, Della Porta G, Santoro A. The Other Side of Plastics: Bioplastic-Based Nanoparticles for Drug Delivery Systems in the Brain. Pharmaceutics 2023; 15:2549. [PMID: 38004530 PMCID: PMC10674524 DOI: 10.3390/pharmaceutics15112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Plastics have changed human lives, finding a broad range of applications from packaging to medical devices. However, plastics can degrade into microscopic forms known as micro- and nanoplastics, which have raised concerns about their accumulation in the environment but mainly about the potential risk to human health. Recently, biodegradable plastic materials have been introduced on the market. These polymers are biodegradable but also bioresorbable and, indeed, are fundamental tools for drug formulations, thanks to their transient ability to pass through biological barriers and concentrate in specific tissues. However, this "other side" of bioplastics raises concerns about their toxic potential, in the form of micro- and nanoparticles, due to easier and faster tissue accumulation, with unknown long-term biological effects. This review aims to provide an update on bioplastic-based particles by analyzing the advantages and drawbacks of their potential use as components of innovative formulations for brain diseases. However, a critical analysis of the literature indicates the need for further studies to assess the safety of bioplastic micro- and nanoparticles despite they appear as promising tools for several nanomedicine applications.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Antonino Testa
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellbeing Sciences, Parthenope University of Naples, 80133 Naples, Italy;
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
32
|
Ciocîlteu MV, Scorei IR, Rău G, Nicolicescu C, Biţă A, Ene VL, Simionescu A, Turcu-Ştiolică A, Dinescu VC, Neamţu J, Mogoantă L, Mogoşanu GD. Zinc-Boron-PLGA biocomposite material: preparation, structural characterization, and in vitro assessment. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:567-577. [PMID: 38184838 PMCID: PMC10863689 DOI: 10.47162/rjme.64.4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Nowadays, the state-of-the-art discoveries in the field of delivery systems for therapeutic purposes have redefined the importance of biocompatible and biodegradable poly(lactic-co-glycolic acid (PLGA) nanocomposites. The study aimed to obtain a biocomposite material, with improved properties of its constituents [zinc-boron (Zn-B) complex and PLGA], by a simple, cost-effective method. The water∕oil∕water double emulsion technique allowed the adjustment of the synthesis parameters, to maximize the degree of Zn-B complex encapsulation. The morphological aspects of the samples were established by scanning electron microscopy (SEM). Particle size distribution was determined by dynamic light scattering (DLS). Morphology was typical for PLGA, spherical one. Depending on the synthesis conditions, the obtained particles have diameters between 10-450 nm. Zeta potential (ZP) showed that the particles have electronegative surface charge, offering a favorable perspective on aggregation, flocculation, and dispersion phenomena. It was observed, applying the design of experiments, that the particles size increased with increasing amounts of PLGA and polyvinyl alcohol (PVA), while ZP increased with higher PLGA and smaller PVA amounts in the formulation. The encapsulation efficiency was determined by ultra-high performance liquid chromatography∕mass spectrometry (UHPLC∕MS). The in vitro assessment was performed using Vero CCL-81 epithelial cell line and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Zn-B-PLGA biocomposite has promising characteristics and can be used for future biomedical applications.
Collapse
Affiliation(s)
- Maria Viorica Ciocîlteu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
| | - Gabriela Rău
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Claudiu Nicolicescu
- Department of Engineering and Management of Technological Systems, Faculty of Mechanics, University of Craiova, Drobeta Turnu-Severin, Romania
| | - Andrei Biţă
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Vladimir Lucian Ene
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Polytechnic Bucharest, Romania
| | - Andreea Simionescu
- Department of Chemistry, Faculty of Exact Sciences, University of Craiova, Romania
| | - Adina Turcu-Ştiolică
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Johny Neamţu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Romania
- Romanian Academy of Medical Sciences, Craiova Subsidiary, Romania
| | - George Dan Mogoşanu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
33
|
Zhang H, Zhao J, Chinnathambi A, Meganathan V, Gu X. Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells. J Biochem Mol Toxicol 2023; 37:e23424. [PMID: 37519128 DOI: 10.1002/jbt.23424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023]
Abstract
Multiple myeloma (MM) is an incurable cancer that is characterized by malignant plasma cell proliferation. Approximately 10% of all blood cancers are MM, and there is no standard curative therapy. In this work, we intended to synthesize, characterize, and assess the anticancer effects of selenium/chitosan/polyethylene glycol-carvacrol nanocomposites (SCP-Car-NCs) on MM U266 cells in vitro. Various characterization techniques were used to characterize the synthesized SCP-Car-NCs. Several in vitro free radical scavenging experiments were conducted to test the ability of synthesized SCP-Car-NCs to scavenge the different free radicals. The cytotoxicity of SCP-Car-NCs was assessed on Vero and U266 cells using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. By using various fluorescence staining techniques, the amount of reactive oxygen species (ROS) generation, MMP, and apoptosis were measured. Using commercial test kits, the levels of oxidative stress and apoptotic biomarkers in control and treated U266 cells were assessed. The highest peak in the UV spectral analysis was found to be at 271 nm, demonstrating the development of SCP-Car-NCs. Fourier transform infrared analysis showed that the synthesized SCP-Car-NCs contained a variety of stretching and bonding. The X-ray diffraction study confirmed the crystallinity of SCP-Car-NCs. The dynamic light scattering analysis showed that the SCP-Car-NCs had an average size of 171 nm. The different free radicals, such as the 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, and peroxyl radicals, were significantly scavenged by the SCP-Car-NCs. According to the MTT assay results, the SCP-Car-NCs decreased the viability of U266 cells while having no impact on the proliferation of Vero cells. The SCP-Car-NCs significantly boosted ROS production, decreased the MMP level, and promoted apoptosis, as evidenced by the fluorescence staining experiments. In U266 cells treated with SCP-Car-NCs, the level of thiobarbituric acid reactive substances increased while superoxide dismutases and glutathione levels were reduced. In the SCP-Car-NCs treated U266 cells, it was found that the Bax, caspase-3, and -9 activities had increased while the Bcl-2 level had decreased. In conclusion, our findings show that SCP-Car-NCs treatment reduced the viability and increased apoptosis in the U266 cells, providing a new insight on SCP-Car-NCs' potential for usage in the future to treat MM.
Collapse
Affiliation(s)
- Haixi Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
- Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
- Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Xuezhong Gu
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
- Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
34
|
Dobbs Spendlove M, M. Gibson T, McCain S, Stone BC, Gill T, Pickett BE. Pathway2Targets: an open-source pathway-based approach to repurpose therapeutic drugs and prioritize human targets. PeerJ 2023; 11:e16088. [PMID: 37790614 PMCID: PMC10544355 DOI: 10.7717/peerj.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
Background Recent efforts to repurpose existing drugs to different indications have been accompanied by a number of computational methods, which incorporate protein-protein interaction networks and signaling pathways, to aid with prioritizing existing targets and/or drugs. However, many of these existing methods are focused on integrating additional data that are only available for a small subset of diseases or conditions. Methods We have designed and implemented a new R-based open-source target prioritization and repurposing method that integrates both canonical intracellular signaling information from five public pathway databases and target information from public sources including OpenTargets.org. The Pathway2Targets algorithm takes a list of significant pathways as input, then retrieves and integrates public data for all targets within those pathways for a given condition. It also incorporates a weighting scheme that is customizable by the user to support a variety of use cases including target prioritization, drug repurposing, and identifying novel targets that are biologically relevant for a different indication. Results As a proof of concept, we applied this algorithm to a public colorectal cancer RNA-sequencing dataset with 144 case and control samples. Our analysis identified 430 targets and ~700 unique drugs based on differential gene expression and signaling pathway enrichment. We found that our highest-ranked predicted targets were significantly enriched in targets with FDA-approved therapeutics for colorectal cancer (p-value < 0.025) that included EGFR, VEGFA, and PTGS2. Interestingly, there was no statistically significant enrichment of targets for other cancers in this same list suggesting high specificity of the results. We also adjusted the weighting scheme to prioritize more novel targets for CRC. This second analysis revealed epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), and two mitogen-activated protein kinases (MAPK14 and MAPK3). These observations suggest that our open-source method with a customizable weighting scheme can accurately prioritize targets that are specific and relevant to the disease or condition of interest, as well as targets that are at earlier stages of development. We anticipate that this method will complement other approaches to repurpose drugs for a variety of indications, which can contribute to the improvement of the quality of life and overall health of such patients.
Collapse
Affiliation(s)
- Mauri Dobbs Spendlove
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Trenton M. Gibson
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Shaney McCain
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Benjamin C. Stone
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | | | - Brett E. Pickett
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
35
|
Kambayashi A. In Silico Modeling Approaches Coupled with In Vitro Characterization in Predicting In Vivo Performance of Drug Delivery System Formulations. Mol Pharm 2023; 20:4344-4353. [PMID: 37523273 DOI: 10.1021/acs.molpharmaceut.3c00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Optimization of the in vivo performance of dosage forms in humans is essential in developing not only conventional formulations but also drug delivery system (DDS) formulations. Although animal experiments are still useful for these formulations, in silico approaches have become increasingly important for DDS formulations with regard to species-specific differences in physiology that can affect the in vivo performance of dosage forms between animals and humans. Furthermore, it is also important to couple in vitro characterizations with in silico models to predict in vivo performance in humans precisely. In this review article, I summarized in vitro-in silico approaches to predicting the in vivo performance of oral DDS formulations (amorphous solid dispersions, lipid-based formulations, nanosized formulations, cyclodextrins-based formulations, sustained release products, enteric coat products, and orally disintegrating tablets) and parenteral DDS formulations (cyclodextrins-based formulations, liposomes, and inhaled formulations).
Collapse
Affiliation(s)
- Atsushi Kambayashi
- Pharmaceutical Research and Technology Laboratories, Astellas Pharma Incorporated, 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| |
Collapse
|
36
|
Schutzman R, Shi NQ, Olsen KF, Ackermann R, Tang J, Liu YY, Hong JKY, Wang Y, Qin B, Schwendeman A, Schwendeman SP. Mechanistic evaluation of the initial burst release of leuprolide from spray-dried PLGA microspheres. J Control Release 2023; 361:297-313. [PMID: 37343723 DOI: 10.1016/j.jconrel.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Spray-dried poly(lactic-co-glycolic acid) (PLGA) peptide-loaded microspheres have demonstrated similar long-term in vitro release kinetics compared to those produced by the solvent evaporation method and commercial products. However, the difficult-to-control initial burst release over the first 24 h after administration presents an obstacle to product development and establishing bioequivalence. Currently, detailed information about underlying mechanisms of the initial burst release from microspheres is limited. We investigated the mechanism and extent of initial burst release using 16 previously developed spray-dried microsphere formulations of the hormone drug, leuprolide acetate, with similar composition to the commercial 1-month Lupron Depot® (LD). The burst release kinetics was measured with a previously validated continuous monitoring system as well as traditional sample-and-separate methods. The changes in pore structure and polymer permeability were investigated by SEM imaging and the uptake of a bodipy-dextran probe. In vitro results were compared to pharmacokinetics in rats over the same interval. High-burst, spray-dried microspheres were differentiated in the well-mixed continuous monitoring system but reached an upper limit when measured by the sample-and-separate method. Pore-like occlusions observed by confocal microscopy in some formulations indicated that particle swelling may have contributed to probe diffusion through the polymer phase and showed the extensive internal pore structure of spray-dried particles. Continuous monitoring revealed a rapid primary (1°) phase followed by a constant-rate secondary (2°) release phase, which comprised ∼80% and 20% of the 24-hr release, respectively. The ratio of 1° phase duration (t1°) and the characteristic probe diffusion time (τ) was highly correlated to 1° phase release for spray dried particles. Of the four spray-dried formulations administered in vivo, three spray-dried microspheres with similar polymer density showed nearly ideal linear correlation between in vivo absorption and well-mixed in vitro release kinetics over the first 24 h. By contrast, the more structurally dense LD and a more-dense in-house formulation showed a slight lag phase in vivo relative to in vitro. Furthermore, in vitro dimensionless times (tburst/τ) were highly correlated with pharmacokinetic parameters for spray-dried microspheres but not for LD. While the correlation of increases in effective probe diffusion and 1° phase release strongly suggests diffusion through the polymer matrix as a major release mechanism both in vitro and in vivo, a fixed lower limit for this release fraction implies an alternative release mechanism. Overall, continuous monitoring release and probe diffusion appears to have potential in differentiating between leuprolide formulations and establishing relationships between in vitro release and in vivo absorption during the initial burst period.
Collapse
Affiliation(s)
- Richard Schutzman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Nian-Qiu Shi
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA; School of Pharmacy, Jilin Medical University, Jilin 132013, Jilin Province, China
| | - Karl F Olsen
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Rose Ackermann
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Ya-Yuan Liu
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Bin Qin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Yu L, Liu S, Jia S, Xu F. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. Biomed Pharmacother 2023; 165:115049. [PMID: 37364480 DOI: 10.1016/j.biopha.2023.115049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
The management and treatment of disease are achieved via the use of pharmacologically active substances or drugs. Drugs do not, however, have an intrinsic ability to be effective; rather, how well they work depends on how they are administered or supplied. Treatment of a variety of biological illnesses, such as autoimmune disorders, cancer, and bacterial infections, requires effective drug delivery. Drug absorption, distribution, metabolism, duration of therapeutic impact, pharmacokinetics, excretion, and toxicity can all be impacted by drug administration. Improved chemistry and materials are required for the delivery of therapeutic concentration of novel treatments to the specified targets within the body, as well as for the necessary duration of time. This requirement is accompanied by the development of new therapeutics. Formulating a medication as a DDS is a promising strategy for directly addressing numerous typical barriers to adherence, such as frequent dosage, such as frequent dosage, side effects, and a delayed beginning of the action. In the current review, we give a compendium of drug delivery and controlled release and subsequently highlight some of the newest developments in the realm, with a particular emphasis on cutting-edge methods for targeted therapy. In each instance, we outline the obstacles to efficient drug administration as well as the chemical and material developments that are allowing the sector to overcome these obstacles and have a positive clinical impact.
Collapse
Affiliation(s)
- Ling Yu
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shengmao Liu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Jia
- Digestive Diseases center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Feng Xu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
38
|
Nikjoo D, van der Zwaan I, Rudén J, Frenning G. Engineered microparticles of hyaluronic acid hydrogel for controlled pulmonary release of salbutamol sulphate. Int J Pharm 2023; 643:123225. [PMID: 37451326 DOI: 10.1016/j.ijpharm.2023.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Most pulmonary drugs are immediate-release formulations with short duration of action. Controlled release systems provide the ability to deliver drugs at a controlled rate, which helps maintain drug concentrations within the therapeutic window for a longer period of time. This study aimed to produce microparticles (MPs) of hyaluronic acid hydrogel (HAGA) loaded with salbutamol sulphate (SS) for controlled release in the lung. The drug-loaded MPs were prepared via spray drying and underwent extensive characterization, which revealed that SS was successfully encapsulated in the HAGA matrix. The prepared MPs (denoted as HASS) ranged in size from 1.6 ± 0.4 μm to 1.7 ± 0.5 μm with a fine particle fraction (FPF) of 48-56% and showed improvement in aerodynamic properties compared to unloaded HAGA hydrogel MPs. In vitro drug release studies performed in a Transwell system confirmed the potential of the particles to release the drug in a sustained manner. The drug release was delayed for all formulations, with a t63 between 5 and 30 min, compared to <1min for pure SS. This study advances our understanding of the formulation of a highly soluble drug to achieve controlled release in the lung.
Collapse
Affiliation(s)
- Dariush Nikjoo
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden; Division of Material Science, Department of Engineering Science and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Irès van der Zwaan
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden
| | - Jonas Rudén
- Pharmaceutical Development, Orexo AB, 751 05, Uppsala, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden.
| |
Collapse
|
39
|
Liu W, Choi SJ, George D, Li L, Zhong Z, Zhang R, Choi SY, Selaru FM, Gracias DH. Untethered shape-changing devices in the gastrointestinal tract. Expert Opin Drug Deliv 2023; 20:1801-1822. [PMID: 38044866 PMCID: PMC10872387 DOI: 10.1080/17425247.2023.2291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Advances in microfabrication, automation, and computer engineering seek to revolutionize small-scale devices and machines. Emerging trends in medicine point to smart devices that emulate the motility, biosensing abilities, and intelligence of cells and pathogens that inhabit the human body. Two important characteristics of smart medical devices are the capability to be deployed in small conduits, which necessitates being untethered, and the capacity to perform mechanized functions, which requires autonomous shape-changing. AREAS COVERED We motivate the need for untethered shape-changing devices in the gastrointestinal tract for drug delivery, diagnosis, and targeted treatment. We survey existing structures and devices designed and utilized across length scales from the macro to the sub-millimeter. These devices range from triggerable pre-stressed thin film microgrippers and spring-loaded devices to shape-memory and differentially swelling structures. EXPERT OPINION Recent studies demonstrate that when fully enabled, tether-free and shape-changing devices, especially at sub-mm scales, could significantly advance the diagnosis and treatment of GI diseases ranging from cancer and inflammatory bowel disease (IBD) to irritable bowel syndrome (IBS) by improving treatment efficacy, reducing costs, and increasing medication compliance. We discuss the challenges and possibilities associated with ensuring safe, reliable, and autonomous operation of these smart devices.
Collapse
Affiliation(s)
- Wangqu Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Soo Jin Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ling Li
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zijian Zhong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ruili Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Si Young Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Florin M. Selaru
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Narmani A, Jahedi R, Bakhshian-Dehkordi E, Ganji S, Nemati M, Ghahramani-Asl R, Moloudi K, Hosseini SM, Bagheri H, Kesharwani P, Khani A, Farhood B, Sahebkar A. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Deliv 2023; 20:937-954. [PMID: 37294853 DOI: 10.1080/17425247.2023.2223941] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ehsan Bakhshian-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Hosseini
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ali Khani
- Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Chung EP, Nguyen JQ, Tellkamp-Schehr T, Goebel K, Ollek A, Krein C, Wells AR, Sebastian EA, Goebel A, Niese S, Leung KP. A Soft Skin Adhesive (SSA) Patch for Extended Release of Pirfenidone in Burn Wounds. Pharmaceutics 2023; 15:1842. [PMID: 37514029 PMCID: PMC10386754 DOI: 10.3390/pharmaceutics15071842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
As much as half or more of deep partial-thickness burn wounds develop hypertrophic scarring and contracture. Once formed, treatments are only minimally effective. Pirfenidone (Pf), indicated for treatment of idiopathic pulmonary fibrosis, is an anti-inflammatory and anti-fibrotic small molecule that potentially can be repurposed as a preventative against scarring in burn wounds. We present a drug-in-matrix patch with a soft skin adhesive (SSA) wound-contacting layer for multi-day drug delivery of Pf into burn wounds at the point of injury. Our patch construction consists of an SSA adhesive layer (Liveo™ MG7-9850, Dupont, Wilmington, DE, USA) for wound fixation, an acrylic co-polymer drug matrix (DURO-TAK 87-2852, Henkel, Düsseldorf, Germany) as the drug (Pf) reservoir, and an outermost protective polyurethane backing. By employing a drug-in-matrix patch design, Pf can be loaded as high as 2 mg/cm2. Compared to the acrylic co-polymer adhesive patch preparations and commercial films, adding an SSA layer markedly reduces skin stripping observed under scanning electron microscopy (SEM). Moreover, the addition of varying SSA thicknesses did not interfere with the in vitro release kinetics or drug permeation in ex vivo porcine skin. The Pf patch can be easily applied onto and removed from deep partial-thickness burn wounds on Duroc pigs. Continuous multi-day dosing of Pf by the patches (>200 μg/cm2/day) reduced proinflammatory biomarkers in porcine burn wounds. Pf patches produced by the manual laboratory-scale process showed excellent stability, maintaining intact physical patch properties and in vitro biological activity for up to one year under long-term (25 °C at 60% RH) and 6 months under accelerated (40 °C at 75% RH) test conditions. To manufacture our wound safe-and-extended-release patch, we present scale-up processes using a machine-driven automated roll-to-roll pilot scale coater.
Collapse
Affiliation(s)
- Eugene P Chung
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jesse Q Nguyen
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| | | | - Katja Goebel
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Anita Ollek
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Cliff Krein
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Adrienne R Wells
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
- MicRoN Core, Harvard Medical School, Boston, MA 02215, USA
| | - Eliza A Sebastian
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| | - Anja Goebel
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Svenja Niese
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Kai P Leung
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
42
|
Graf TP, Qiu SY, Varshney D, Laracuente ML, Euliano EM, Munnangi P, Pogostin BH, Baryakova T, Garyali A, McHugh KJ. A Scalable Platform for Fabricating Biodegradable Microparticles with Pulsatile Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300228. [PMID: 36862114 PMCID: PMC10247432 DOI: 10.1002/adma.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/20/2023] [Indexed: 06/02/2023]
Abstract
Pulsatile drug delivery systems have the potential to improve patient adherence and therapeutic efficacy by providing a sequence of doses in a single injection. Herein, a novel platform, termed Particles Uniformly Liquified and Sealed to Encapsulate Drugs (PULSED) is developed, which enables the high-throughput fabrication of microparticles exhibiting pulsatile release. In PULSED, biodegradable polymeric microstructures with an open cavity are formed using high-resolution 3D printing and soft lithography, filled with drug, and sealed using a contactless heating step in which the polymer flows over the orifice to form a complete shell around a drug-loaded core. Poly(lactic-co-glycolic acid) particles with this structure can rapidly release encapsulated material after delays of 10 ± 1, 15 ± 1, 17 ± 2, or 36 ± 1 days in vivo, depending on polymer molecular weight and end group. The system is even compatible with biologics, releasing over 90% of bevacizumab in its bioactive form after a two-week delay in vitro. The PULSED system is highly versatile, offering compatibility with crystalline and amorphous polymers, easily injectable particle sizes, and compatibility with several newly developed drug loading methods. Together, these results suggest that PULSED is a promising platform for creating long-acting drug formulations that improve patient outcomes due to its simplicity, low cost, and scalability.
Collapse
Affiliation(s)
- Tyler P Graf
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Sherry Yue Qiu
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Dhruv Varshney
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Mei-Li Laracuente
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Erin M Euliano
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Pujita Munnangi
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Brett H Pogostin
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | | | - Arnav Garyali
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
43
|
Dragar Č, Rekar Ž, Potrč T, Nemec S, Kralj S, Kocbek P. Influence of Polymer Concentration on Drying of SPION Dispersions by Electrospinning. Pharmaceutics 2023; 15:1619. [PMID: 37376067 DOI: 10.3390/pharmaceutics15061619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
To improve the physical stability of nanoparticle dispersions, several methods for their transformation into stable and easily dispersible dry products have been investigated thus far. Recently, electrospinning was shown to be a novel nanoparticle dispersion drying method, which addresses the crucial challenges of the current drying methods. It is a relatively simple method, but it is affected by various ambient, process, and dispersion parameters, which impact the properties of the electrospun product. The aim of this study was, thus, to investigate the influence of the most important dispersion parameter, namely the total polymer concentration, on the drying method efficiency and the properties of the electrospun product. The formulation was based on a mixture of hydrophilic polymers poloxamer 188 and polyethylene oxide in the weight ratio of 1:1, which is acceptable for potential parenteral application. We showed that the total polymer concentration of prior-drying samples is closely related to their viscosity and conductivity, also affecting the morphology of the electrospun product. However, the change in morphology of the electrospun product does not affect the efficiency of SPION reconstitution from the electrospun product. Regardless of the morphology, the electrospun product is not in powder form and is therefore safer to handle compared to powder nanoformulations. The optimal total polymer concentration in the prior-drying SPION dispersion, which enables the formation of an easily dispersible electrospun product with high SPION-loading (65% (w/w)) and fibrillar morphology, was shown to be 4.2% (w/v).
Collapse
Affiliation(s)
- Črt Dragar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Žan Rekar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tanja Potrč
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Nanos SCI, Nanos Scientificae d.o.o., SI-1000 Ljubljana, Slovenia
| | - Petra Kocbek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
44
|
Baryakova TH, Pogostin BH, Langer R, McHugh KJ. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat Rev Drug Discov 2023; 22:387-409. [PMID: 36973491 PMCID: PMC10041531 DOI: 10.1038/s41573-023-00670-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/29/2023]
Abstract
Poor medication adherence is a pervasive issue with considerable health and socioeconomic consequences. Although the underlying reasons are generally understood, traditional intervention strategies rooted in patient-centric education and empowerment have proved to be prohibitively complex and/or ineffective. Formulating a pharmaceutical in a drug delivery system (DDS) is a promising alternative that can directly mitigate many common impediments to adherence, including frequent dosing, adverse effects and a delayed onset of action. Existing DDSs have already positively influenced patient acceptability and improved rates of adherence across various disease and intervention types. The next generation of systems have the potential to instate an even more radical paradigm shift by, for example, permitting oral delivery of biomacromolecules, allowing for autonomous dose regulation and enabling several doses to be mimicked with a single administration. Their success, however, is contingent on their ability to address the problems that have made DDSs unsuccessful in the past.
Collapse
Affiliation(s)
| | | | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
45
|
Młynek M, Trzciński JW, Ciach T. Recent Advances in the Polish Research on Polysaccharide-Based Nanoparticles in the Context of Various Administration Routes. Biomedicines 2023; 11:biomedicines11051307. [PMID: 37238978 DOI: 10.3390/biomedicines11051307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are the most abundant polymers in nature. They exhibit robust biocompatibility, reliable non-toxicity, and biodegradable character; thus, they are employed in multiple biomedical applications. The presence of chemically accessible functional groups on the backbone of biopolymers (amine, carboxyl, hydroxyl, etc.) makes them suitable materials for chemical modification or drug immobilisation. Among different drug delivery systems (DDSs), nanoparticles have been of great interest in scientific research in the last decades. In the following review, we want to address the issue of rational design of nanoparticle (NP)-based drug delivery systems in reference to the specificity of the medication administration route and resulting requirements. In the following sections, readers can find a comprehensive analysis of the articles published by authors with Polish affiliations in the last few years (2016-2023). The article emphasises NP administration routes and synthetic approaches, followed by in vitro and in vivo attempts toward pharmacokinetic (PK) studies. The 'Future Prospects' section was constructed to address the critical observations and gaps found in the screened studies, as well as to indicate good practices for polysaccharide-based nanoparticle preclinical evaluation.
Collapse
Affiliation(s)
- Mateusz Młynek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jakub Waldemar Trzciński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
46
|
Ingle RG, Fang WJ. An Overview of the Stability and Delivery Challenges of Commercial Nucleic Acid Therapeutics. Pharmaceutics 2023; 15:pharmaceutics15041158. [PMID: 37111643 PMCID: PMC10143938 DOI: 10.3390/pharmaceutics15041158] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Nucleic acid (NA)-based biopharmaceuticals have emerged as promising therapeutic modalities. NA therapeutics are a diverse class of RNA and DNA and include antisense oligonucleotides, siRNA, miRNA, mRNA, small activating RNA, and gene therapies. Meanwhile, NA therapeutics have posed significant stability and delivery challenges and are expensive. This article discusses the challenges and opportunities for achieving stable formulations of NAs with novel drug delivery systems (DDSs). Here we review the current progress in the stability issues and the significance of novel DDSs associated with NA-based biopharmaceuticals, as well as mRNA vaccines. We also highlight the European Medicines Agency (EMA) and US Food and Drug Administration (FDA)-approved NA-based therapeutics with their formulation profiles. NA therapeutics could impact future markets if the remaining challenges and requirements are addressed. Regardless of the limited information available for NA therapeutics, reviewing and collating the relevant facts and figures generates a precious resource for formulation experts familiar with the NA therapeutics' stability profile, their delivery challenges, and regulatory acceptance.
Collapse
Affiliation(s)
- Rahul G Ingle
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
- Dr. Rajendra Gode College of Pharmacy, Amravati 444602, India
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
47
|
Bashiri G, Padilla MS, Swingle KL, Shepherd SJ, Mitchell MJ, Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. LAB ON A CHIP 2023; 23:1432-1466. [PMID: 36655824 PMCID: PMC10013352 DOI: 10.1039/d2lc00799a] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Nanoparticle (NP)-based therapeutics have ushered in a new era in translational medicine. However, despite the clinical success of NP technology, it is not well-understood how NPs fundamentally change in biological environments. When introduced into physiological fluids, NPs are coated by proteins, forming a protein corona (PC). The PC has the potential to endow NPs with a new identity and alter their bioactivity, stability, and destination. Additionally, the conformation of proteins is sensitive to their physical and chemical surroundings. Therefore, biological factors and protein-NP-interactions can induce changes in the conformation and orientation of proteins in vivo. Since the function of a protein is closely connected to its folded structure, slight differences in the surrounding environment as well as the surface characteristics of the NP materials may cause proteins to lose or gain a function. As a result, this can alter the downstream functionality of the NPs. This review introduces the main biological factors affecting the conformation of proteins associated with the PC. Then, four types of NPs with extensive utility in biomedical applications are described in greater detail, focusing on the conformation and orientation of adsorbed proteins. This is followed by a discussion on the instances in which the conformation of adsorbed proteins can be leveraged for therapeutic purposes, such as controlling protein conformation in assembled matrices in tissue, as well as controlling the PC conformation for modulating immune responses. The review concludes with a perspective on the remaining challenges and unexplored areas at the interface of PC and NP research.
Collapse
Affiliation(s)
- Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
48
|
Wang Z, Hu Y, Xue Y, Wu Y, Zeng Q, Chen H, Guo Y, Liang P, Liang T, Shen C, Jiang C, Liu L, Shen Q, Zhu H, Liu Q. 4'-OH as the Action Site of Lipids and MRP1 for Enhanced Transdermal Delivery of Flavonoids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913526 DOI: 10.1021/acsami.2c18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To date, the transdermal delivery study mainly focused on the drug delivery systems' design and efficacy evaluation. Few studies reported the structure-affinity relationship of the drug with the skin, further revealing the action sites of the drugs for enhanced permeation. Flavonoids attained a considerable interest in transdermal administration. The aim is to develop a systematic approach to evaluate the substructures that were favorable for flavonoid delivery into the skin and understand how these action sites interacted with lipids and bound to multidrug resistance protein 1 (MRP1) for enhanced transdermal delivery. First, we investigated the permeation properties of various flavonoids on the porcine skin or rat skin. We found that 4'-OH (hydroxyl group on the carbon 4' position) rather than 7-OH on the flavonoids was the key group for flavonoid permeation and retention, while 4'-OCH3 and -CH2═CH2-CH-(CH3)2 were unfavorable for drug delivery. 4'-OH could decrease flavonoids' lipophilicity to an appropriate log P and polarizability for better transdermal drug delivery. In the stratum corneum, flavonoids used 4'-OH as a hand to specifically grab the C═O group of the ceramide NS (Cer), which increased the miscibility of flavonoids and Cer and then disturbed the lipid arrangement of Cer, thereby facilitating their penetration. Subsequently, we constructed overexpressed MRP1 HaCaT/MRP1 cells by permanent transfection of human MRP1 cDNA in wild HaCaT cells. In the dermis, we observed that 4'-OH, 7-OH, and 6-OCH3 substructures were involved in H-bond formation within MRP1, which increased the flavonoid affinity with MRP1 and flavonoid efflux transport. Moreover, the expression of MRP1 was significantly enhanced after the treatment of flavonoids on the rat skin. Collectively, 4'-OH served as the action site for increased lipid disruption and enhanced affinity for MRP1, which facilitate the transdermal delivery of flavonoids, providing valuable guidelines for molecular modification and drug design of flavonoids.
Collapse
Affiliation(s)
- Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| |
Collapse
|
49
|
Wang N, Zhang Y, Wang W, Ye Z, Chen H, Hu G, Ouyang D. How can machine learning and multiscale modeling benefit ocular drug development? Adv Drug Deliv Rev 2023; 196:114772. [PMID: 36906232 DOI: 10.1016/j.addr.2023.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hongyu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Guanghui Hu
- Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau, China.
| |
Collapse
|
50
|
Stiepel RT, Duggan E, Batty CJ, Ainslie KM. Micro and nanotechnologies: The little formulations that could. Bioeng Transl Med 2023; 8:e10421. [PMID: 36925714 PMCID: PMC10013823 DOI: 10.1002/btm2.10421] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/22/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
The first publication of micro- and nanotechnology in medicine was in 1798 with the use of the Cowpox virus by Edward Jenner as an attenuated vaccine against Smallpox. Since then, there has been an explosion of micro- and nanotechnologies for medical applications. The breadth of these micro- and nanotechnologies is discussed in this piece, presenting the date of their first report and their latest progression (e.g., clinical trials, FDA approval). This includes successes such as the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines from Pfizer, Moderna, and Janssen (Johnson & Johnson) as well as the most popular nanoparticle therapy, liposomal Doxil. However, the enormity of the success of these platforms has not been without challenges. For example, we discuss why the production of Doxil was halted for several years, and the bankruptcy of BIND therapeutics, which relied on a nanoparticle drug carrier. Overall, the field of micro- and nanotechnology has advanced beyond these challenges and continues advancing new and novel platforms that have transformed therapies, vaccines, and imaging. In this review, a wide range of biomedical micro- and nanotechnology is discussed to serve as a primer to the field and provide an accessible summary of clinically relevant micro- and nanotechnology platforms.
Collapse
Affiliation(s)
- Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Eliza Duggan
- North Carolina School of Science and MathematicsDurhamNorth CarolinaUSA
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
- Department of Microbiology and Immunology, UNC School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|