1
|
Uboldi M, Chiappa A, Briatico-Vangosa F, Melocchi A, Zema L. 3D printing of partially-coated floating systems for controlled release of drugs into the stomach. Int J Pharm 2025; 675:125513. [PMID: 40157562 DOI: 10.1016/j.ijpharm.2025.125513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
This work focused on the development of a retentive drug delivery system (DDS) able to float in the gastric fluids and to ensure prolonged release of drugs over a pre-defined period of time, being then safely emptied from the stomach. To this end, the design step played a pivotal role. The device was thus devised to be composed of a polyvinyl alcohol-based matrix with a tapered geometry, which was partially coated with an insoluble layer of thermoplastic elastomer. This way, release of allopurinol (ALP), used as model drug, could occur only from the uncoated surfaces, while the peculiar geometry of the hydrophilic swellable/erodible matrix was intended to balance the increase in the diffusional path over time with a wider release area. In addition, the coating featured air pockets, whose volume was sized to compensate for the weight force of the DDS once immersed in gastric fluids, thus ensuring its long-lasting buoyancy. By easing the entrance of gastric fluids when the matrix is completely exhausted, such air pockets would also favor sinking and removal of the DDS from the pylorus. Given the multi-layered geometry of the final floating device, including hard-to-fabricate details (e.g. uncoated surfaces, voids), fused deposition modeling 3D printing was identified as the technique of choice for its effectiveness in manufacturing complex shapes. Various formulations were tested for fabricating both the inner matrix and the outer coating, assessing their thermo-mechanical properties, printability and release behavior. The gastro-retentive system demonstrated prolonged buoyancy (> 12 h) and a wide portfolio of ALP release performances, differing in rate and duration, which would make it a promising platform for personalized delivery of drugs in the upper gastrointestinal tract.
Collapse
Affiliation(s)
- Marco Uboldi
- PhormulaMi Research group, Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, Milano 20133, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Francesco Briatico-Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Alice Melocchi
- PhormulaMi Research group, Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, Milano 20133, Italy.
| | - Lucia Zema
- PhormulaMi Research group, Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, Milano 20133, Italy
| |
Collapse
|
2
|
Panraksa P, Chaiwarit T, Chanabodeechalermrung B, Worajittiphon P, Jantrawut P. Fabrication of Cellulose Derivatives-Based Highly Porous Floating Tablets for Gastroretentive Drug Delivery via Sugar Templating Method. Polymers (Basel) 2025; 17:485. [PMID: 40006147 PMCID: PMC11859971 DOI: 10.3390/polym17040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
This work presents an innovative application of the sugar templating method to fabricate highly porous floating tablets based on cellulose derivatives for gastroretentive drug delivery systems (GRDDS). Ethyl cellulose (EC) and hydroxypropyl methylcellulose (HPMC) were utilized to develop formulations that optimize porosity, buoyancy, and drug release. Among the tested formulations, E10H5/CPM, consisting of 10% w/w EC and 5% w/w HPMC loaded with chlorpheniramine maleate (CPM), exhibited the most favorable properties, including high porosity (94.4%), uniform pore distribution, immediate buoyancy, and over 24 h of floating time. E10H5/CPM tablets demonstrated superior drug release performance compared to an EC-only formulation (E10/CPM), attributed to the presence of HPMC, which facilitated improved hydration and diffusion. The in vitro release study showed that E10H5/CPM achieved a cumulative release of 79.01% over 72 h, following a Fickian diffusion mechanism. However, a limitation was noted in drug loading, with E10H5/CPM incorporating 6.40 mg of CPM, compared to 8.72 mg in E10/CPM. Future work should focus on enhancing drug load and further optimizing polymer composition to improve the release profile. Overall, this study underscores the potential of sugar templating in developing cost-effective, scalable floating tablet formulations for improved gastric retention and localized drug delivery.
Collapse
Affiliation(s)
- Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Baramee Chanabodeechalermrung
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| |
Collapse
|
3
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2025; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
4
|
Halper J. Narrative Review and Guide: State of the Art and Emerging Opportunities of Bioprinting in Tissue Regeneration and Medical Instrumentation. Bioengineering (Basel) 2025; 12:71. [PMID: 39851345 PMCID: PMC11760465 DOI: 10.3390/bioengineering12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Three-dimensional printing was introduced in the 1980s, though bioprinting started developing a few years later. Today, 3D bioprinting is making inroads in medical fields, including the production of biomedical supplies intended for internal use, such as biodegradable staples. Medical bioprinting enables versatility and flexibility on demand and is able to modify and individualize production using several established printing methods. A great selection of biomaterials and bioinks is available, including natural, synthetic, and mixed options; they are biocompatible and non-toxic. Many bioinks are biodegradable and they accommodate cells so upon implantation, they integrate within the new environment. Bioprinting is suitable for printing tissues using living or viable components, such as collagen scaffolding, cartilage components, and cells, and also for printing parts of structures, such as teeth, using artificial man-made materials that will become embedded in vivo. Bioprinting is an integral part of tissue engineering and regenerative medicine. The addition of newly developed smart biomaterials capable of incorporating dynamic changes in shape depending on the nature of stimuli led to the addition of the fourth dimension of time in the form of changing shape to the three static dimensions. Four-dimensional bioprinting is already making significant inroads in tissue engineering and regenerative medicine, including new ways to create dynamic tissues. Its future lies in constructing partial or whole organ generation.
Collapse
Affiliation(s)
- Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Swain SK, Jena BR, Parhi R. Recent Developments and Applications of 3D-Printing Technology in Pharmaceutical Drug Delivery Systems: A New Research Direction and Future Trends. Curr Pharm Des 2025; 31:2-25. [PMID: 39289943 DOI: 10.2174/0113816128309717240826101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 09/19/2024]
Abstract
The advent of 3D printing technology has emerged as a key technical revolution in recent years, enabling the development and production of innovative medication delivery methods in the pharmaceutical sector. The designs, concepts, techniques, key challenges, and potential benefits during 3D-printing technology are the key points discussed in this review. This technology primarily enables rapid, safe, and low-cost development of pharmaceutical formulations during the conventional and additive manufacturing processes. This phenomenon has wide-ranging implications in current as well as future medicinal developments. Advanced technologies such as Ink-Jet printing, drop-on-demand printing, Zip dose, Electrohydrodynamic Printing (Ejet) etc., are the current focus of the drug delivery systems for enhancing patient convenience and improving medication compliance. The current and future applications of various software, such as CAD software, and regulatory aspects in 3D and 4D printing technology are discussed briefly in this article. With respect to the prospective trajectory of 3D and 4D printing, it is probable that the newly developed methods will be predominantly utilized in pharmacies and hospitals to accommodate the unique requirements of individuals or niche groups. As a result, it is imperative that these technologies continue to advance and be improved in comparison to 2D printing in order to surmount the aforementioned regulatory and technical obstacles, render them applicable to a vast array of drug delivery systems, and increase their acceptability among patients of every generation.
Collapse
Affiliation(s)
- Surya Kanta Swain
- Amity Institute of Pharmacy, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kadampukur, Kolkata 700135, West Bengal, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani 752050, Khurda, Odisha, India
| | - Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar 788011, Assam, India
| |
Collapse
|
6
|
Nyavanandi D, Mandati P, Vidiyala N, Parupathi P, Kolimi P, Mamidi HK. Enhancing Patient-Centric Drug Development: Coupling Hot Melt Extrusion with Fused Deposition Modeling and Pressure-Assisted Microsyringe Additive Manufacturing Platforms with Quality by Design. Pharmaceutics 2024; 17:14. [PMID: 39861666 PMCID: PMC11769097 DOI: 10.3390/pharmaceutics17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines. Depending on the age, sex, and disease state, each patient might need a different dose, combination of medicines, and drug release pattern from the medications. By employing traditional practices, developing patient-centric medications remains challenging and unaddressed. Over the last few years, much research has been conducted exploring various additive manufacturing techniques for developing on-demand, complex, and patient-centric medications. Among all the techniques, nozzle-based additive manufacturing platforms such as pressure-assisted microsyringe (PAM) and fused deposition modeling (FDM) have been investigated thoroughly to develop various medications. Both nozzle-based techniques involve the application of thermal energy. However, PAM can also be operated under ambient conditions to process semi-solid materials. Nozzle-based techniques can also be paired with the hot melt extrusion (HME) process for establishing a continuous manufacturing platform by employing various in-line process analytical technology (PAT) tools for monitoring critical process parameters (CPPs) and critical material attributes (CMAs) for delivering safe, efficacious, and quality medications to the patient population without compromising critical quality attributes (CQAs). This review covers an in-depth discussion of various critical parameters and their influence on product quality, along with a note on the continuous manufacturing process, quality by design, and future perspectives.
Collapse
Affiliation(s)
- Dinesh Nyavanandi
- Small Molecule Drug Product Development, Cerevel Therapeutics, Cambridge, MA 02141, USA;
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (P.M.); (P.K.)
| | - Nithin Vidiyala
- Small Molecule Drug Product Development, Cerevel Therapeutics, Cambridge, MA 02141, USA;
| | - Prashanth Parupathi
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (P.M.); (P.K.)
| | | |
Collapse
|
7
|
Kakuk M, Alexandra Mészáros L, Farkas D, Tonka-Nagy P, Tóth B, Nagy ZK, Antal I, Kállai-Szabó N. Evaluation of floatability characteristics of gastroretentive tablets using VIS imaging with artificial neural networks. Eur J Pharm Biopharm 2024; 204:114493. [PMID: 39270990 DOI: 10.1016/j.ejpb.2024.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Gastroretentive dosage forms are recommended for several active substances because it is often necessary for the drug to be released from the carrier system into the stomach over an extended period. Among gastroretentive dosage forms, floating tablets are a very popular pharmaceutical technology. In this study, it was investigated whether a rapid, nondestructive method can be used to characterize the floating properties of a tablet. To accomplish our objective, the same composition was compressed, and varied compression forces were applied to achieve the desired tablet. In addition to physical examinations, digital microscopic images of the tablets were captured and analyzed using image analysis techniques, allowing the investigation of the floatability of the dosage form. Image processing algorithms and artificial neural networks (ANNs) were utilized to classify the samples based on their strength and floatability. The input dataset consisted solely of the acquired images. It has been shown by our research that visible imaging coupled with pattern recognition neural networks is an efficient way to categorize these samples based on their floatability. Rapid and non-destructive digital imaging of tablet surfaces is facilitated by this method, offering insights into both crushing strength and floating properties.
Collapse
Affiliation(s)
- Melinda Kakuk
- Department of Pharmaceutics, Semmelweis University, 9 Hőgyes Endre Street, Budapest H-1092, Hungary; Egis Pharmaceuticals PLC, 116-120 Bökényföldi Street, Budapest H-1165, Hungary
| | - Lilla Alexandra Mészáros
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-111 Budapest, Műegyetem rakpart 3, Hungary
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, 9 Hőgyes Endre Street, Budapest H-1092, Hungary
| | - Péter Tonka-Nagy
- Egis Pharmaceuticals PLC, 116-120 Bökényföldi Street, Budapest H-1165, Hungary
| | - Bence Tóth
- Department of Pharmaceutics, Semmelweis University, 9 Hőgyes Endre Street, Budapest H-1092, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-111 Budapest, Műegyetem rakpart 3, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 9 Hőgyes Endre Street, Budapest H-1092, Hungary.
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, 9 Hőgyes Endre Street, Budapest H-1092, Hungary.
| |
Collapse
|
8
|
Zhai Y, Sun Z, Zhang T, Zhou C, Kong X. Mechanical Property of Thermoplastic Polyurethane Vascular Stents Fabricated by Fused Filament Fabrication. MICROMACHINES 2024; 15:1266. [PMID: 39459140 PMCID: PMC11509589 DOI: 10.3390/mi15101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Vascular stents have many applications in treating arterial stenosis and other vascular-related diseases. The ideal vascular stent for clinical application should have radial support and axial bending mechanical properties that meet the requirements of vascular deformation coordination. The materials used for vascular stents implanted in the human body should have corresponding biocompatibility to ensure that the stents do not cause coagulation, hemolysis, and other reactions in the blood. This study fabricated four types of vascular stents, including inner hexagon, arrowhead, quadrilateral, and outer hexagonal, using fused filament fabrication technology and thermoplastic polyurethane (TPU) as materials. By evaluating the effects of edge width and wall thickness on the radial support and axial bending performance, it was found that the inner hexagonal stent exhibited the best radial support and axial bending performance under the same conditions. The design and fabrication of vascular stents based on 3D printing technology have promising application prospects in personalized customized vascular repair therapy.
Collapse
Affiliation(s)
- Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China; (Y.Z.)
| | - Zezhi Sun
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China; (Y.Z.)
| | - Tie Zhang
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China; (Y.Z.)
| | - Changchun Zhou
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China;
| | - Xiangpeng Kong
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
9
|
Briones Nieva CA, Real JP, Campos SN, Romero AI, Villegas M, Gonzo EE, Bermúdez JM, Palma SD, Cid AG. Modeling and evaluation of ivermectin release kinetics from 3D-printed tablets. Ther Deliv 2024; 15:845-858. [PMID: 39434694 PMCID: PMC11497972 DOI: 10.1080/20415990.2024.2412511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Aim: This study focused on evaluating the influence of geometric dimensions on the drug release kinetics of 3D-printed tablets.Materials & methods: An ink based on Gelucire 50/13 was prepared to print ivermectin-loaded tablets. The ink was characterized physicochemically and tablet dissolution tests were carried out.Results: The results confirmed the suitability of the ink for 3D printing at a temperature >46°C. Changes in the crystallinity of ivermectin were observed without chemical interactions with the polymer. 3D printed tablets with varied proportional sizes showed dual behavior in their release profiles, while tablets with only thickness reduction exhibited zero-order kinetics.Conclusion: These findings highlight the versatility of 3D printing to create systems with specific and customized release profiles.
Collapse
Affiliation(s)
- Cintia Alejandra Briones Nieva
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta, 4400, Argentina
| | - Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Santiago Nicolás Campos
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta, 4400, Argentina
| | - Analía Irma Romero
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta, 4400, Argentina
| | - Mercedes Villegas
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta, 4400, Argentina
| | - Elio Emilio Gonzo
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta, 4400, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta, 4400, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta, 4400, Argentina
| |
Collapse
|
10
|
Algahtani MS, Ahmad J, Mohammed AA, Ahmad MZ. Extrusion-based 3D printing for development of complex capsular systems for advanced drug delivery. Int J Pharm 2024; 663:124550. [PMID: 39103062 DOI: 10.1016/j.ijpharm.2024.124550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
This review explores the feasibility of extrusion-based 3D printing techniques for producing complex dosage forms (such as capsular shells/devices) that provide controlled drug release and targeted delivery. The current discussion explores how extrusion-based 3D printing techniques, particularly Fused Deposition Modelling (FDM) and Pressure-Assisted Modelling (PAM), offer significant advantages in fabricating such complex dosage forms. This technology enables the fabrication of single-, dual-, or multi-compartment capsular systems with customized designs/geometry of the capsular shell to achieve delayed, sustained, or pulsatile drug release. The impact of customized design/geometry on the biopharmaceutical performances of loaded therapeutics is comprehensively discussed. The potential of 3D printing techniques for different specialized drug delivery purposes like gastric floating, implants, suppositories, and printfills are also addressed. This technique has the potential to significantly improve the therapeutic outcomes, and patient adherence to medication regimens, and pave the way for personalized medicine.
Collapse
Affiliation(s)
- Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia.
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| |
Collapse
|
11
|
Wang L, Yong LX, Loo SCJ. Utilizing Food Waste in 3D-Printed PLA Formulations to Achieve Sustainable and Customizable Controlled Delivery Systems. ACS OMEGA 2024; 9:34140-34150. [PMID: 39130598 PMCID: PMC11307293 DOI: 10.1021/acsomega.4c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
This is the first study that explores blending polylactic acid (PLA) with various biomasses, including food wastes-brewer's spent grain (BSG), spent coffee grounds (SCG), sesame cake (SC), and thermoplastic starch (TPS) biomass to create composite gastric floating drug delivery systems (GFDDS) through 3D printing. The aim is to investigate the influence of biomass percentage, biomass type, and printing parameters on their corresponding drug release profiles. 3D-printed (3DP) composite filaments were prepared by blending biomasses and PLA before in vitro drug release studies were performed using hydrophilic and hydrophobic model drugs, metoprolol tartrate (MT), and risperidone (RIS). The data revealed that release profiles were influenced by composite compositions and wall thicknesses of 3DP GFDDS capsules. Up to 15% of food waste could be blended with PLA for all food waste types tested. Delivery studies for PLA-food wastes found that MT was fully released by 4 h, exhibiting burst release profiles after a lag time of 0.5 to 1.5 h, and RIS could achieve a sustained release profile of approximately 48 h. PLA-TPS was utilized as a comparison and demonstrated variable release profiles ranging from 8 to 120 h, depending on the TPS content. The results demonstrated the potential for adjusting drug release profiles by incorporating affordable biomasses into GFDDS. This study presents a promising direction for creating delivery systems that are sustainable, customizable, and cost-effective, utilizing sustainable materials that can also be employed for agricultural, nutraceutical, personal care, and wastewater treatment applications.
Collapse
Affiliation(s)
- Liwen Wang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Ling Xin Yong
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, 59 Nanyang
Drive, 636921 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
12
|
Waqar MA, Mubarak N, Khan AM, Khan R, Shaheen F, Shabbir A. Advanced polymers and recent advancements on gastroretentive drug delivery system; a comprehensive review. J Drug Target 2024; 32:655-671. [PMID: 38652465 DOI: 10.1080/1061186x.2024.2347366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Oral route of drug administration is typically the initial option for drug administration because it is both practical and affordable. However, major drawback of this route includes the release of drug at a specified place thus reduces the bioavailability. This could be overcome by utilising the gastroretentive drug delivery system (GRRDS). Prolonged stomach retention improves bioavailability and increases solubility for medicines that are unable to dissolve in high pH environments. Many recent advancements in the floating, bio adhesive, magnetic, expandable, raft forming and ion exchange systems have been made that had led towards advanced form of drug delivery. From the past few years, floating drug delivery system has been most commonly utilised for the delivery of drug in a delayed manner. Various polymers have been utilised for manufacturing of these systems, including alginates, chitosan, pectin, carrageenan's, xanthan gum, hydroxypropyl cellulose, carbomer, polyethylene oxide and sodium carboxy methyl cellulose. Chitosan, pectin and xanthan gum have been found to be most commonly used polymers in the manufacturing of drug inclusion complex for gastroretentive drug delivery. This study aimed to define various types and advanced polymers as well as also highlights recent advances and future perspectives of gastroretentive drug delivery system.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Rabeel Khan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Farwa Shaheen
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Afshan Shabbir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| |
Collapse
|
13
|
Turac IR, Porfire A, Iurian S, Crișan AG, Casian T, Iovanov R, Tomuță I. Expanding the Manufacturing Approaches for Gastroretentive Drug Delivery Systems with 3D Printing Technology. Pharmaceutics 2024; 16:790. [PMID: 38931911 PMCID: PMC11207633 DOI: 10.3390/pharmaceutics16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (I.-R.T.); (S.I.); (A.G.C.); (T.C.); (R.I.); (I.T.)
| | | | | | | | | | | |
Collapse
|
14
|
Mohammed AA, Alqahtani AA, Ahmed MM. Design and fabrication of 3D-printed gastric floating tablets of captopril: effect of geometry and thermal crosslinking of polymer on floating behavior and drug release. Pharm Dev Technol 2024; 29:517-529. [PMID: 38721970 DOI: 10.1080/10837450.2024.2352491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The present study aims to investigate the potential of the 3D printing technique to design gastroretentive floating tablets (GFTs) for modifying the drug release profile of an immediate-release tablet. A 3D-printed floating shell enclosing a captopril tablet was designed having varying number of drug-release windows. The impact of geometrical changes in the design of delivery system and thermal cross-linking of polymers were evaluated to observe the influence on floating ability and drug release. Water uptake, water insolubilization, Differential Scanning Calorimetry (DSC), and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) were performed to assess the degree of thermal cross-linking of polyvinyl alcohol (PVA) filament. The 3D-printed GFT9 was considered the optimized gastric floating tablet that exhibited >12 h of total floating time with zero floating lag time and successfully accomplished modified-drug release by exhibiting >80% of drug release in 8 h. The zero-order release model, with an r2 value of 0.9923, best fitted the drug release kinetic data of the GFT9, which followed a super case II drug transport mechanism with an n value of 0.95. The optimized gastric floating device (GFT9) also exhibited the highest MDT values (238.55), representing slow drug release from the system due to thermal crosslinking and the presence of a single drug-releasing window in the device.
Collapse
Affiliation(s)
- Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Abdulsalam A Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
15
|
Rajput A, Pingale P, Telange D, Musale S, Chalikwar S. A current era in pulsatile drug delivery system: Drug journey based on chronobiology. Heliyon 2024; 10:e29064. [PMID: 38813204 PMCID: PMC11133509 DOI: 10.1016/j.heliyon.2024.e29064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
Almost all biological processes in the human body are regulated by circadian rhythm, which results in drastically different biochemical and physiological conditions throughout a 24 h period. Hence, suitable drug delivery systems should be efficiently monitored to attain the required therapeutic plasma concentration and therapeutic drug responses when needed as per chrono pharmacological concepts. "Chronotherapy" is the fast and transient release of a particular quantity of drug substance post a predetermined off-release period, termed as 'lag time'. Due to rhythmic variations, it is typically unnecessary to administer a medicine drug in an unhealthy condition constantly. Pulsatile drug delivery systems have received a lot of attention in pharmaceutical development because they give a quick or rate-controlled drug release after administration, followed by an anticipated lag period. Patients with various illnesses, such as asthma, hypertension, joint inflammation, and ulcers, can benefit from a pulsatile drug delivery system. Thus, a pulsatile drug delivery system may be a potential system for managing different diseases. This review mainly focuses on pulsatile drug delivery systems. It reviews and discusses the rationale, drug release mechanism, need, and system classification. In addition, it covers mainly externally regulated pulsatile drug delivery systems and recent advances in pulsatile systems like artificial intelligence and 3D printing. It also covers the ethical issues associated with pulsatile drug delivery systems.
Collapse
Affiliation(s)
- Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik, 422005, Maharashtra, India
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Shubham Musale
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India
| | - Shailesh Chalikwar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education & Research, Karwand Naka, Shirpur, 425405, Maharashtra, India
| |
Collapse
|
16
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
17
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
18
|
Aguilar-de-Leyva Á, Casas M, Ferrero C, Linares V, Caraballo I. 3D Printing Direct Powder Extrusion in the Production of Drug Delivery Systems: State of the Art and Future Perspectives. Pharmaceutics 2024; 16:437. [PMID: 38675099 PMCID: PMC11054165 DOI: 10.3390/pharmaceutics16040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The production of tailored, on-demand drug delivery systems has gained attention in pharmaceutical development over the last few years, thanks to the application of 3D printing technology in the pharmaceutical field. Recently, direct powder extrusion (DPE) has emerged among the extrusion-based additive manufacturing techniques. It is a one-step procedure that allows the direct processing of powdered formulations. The aim of this systematic literature review is to analyze the production of drug delivery systems using DPE. A total of 27 articles have been identified through scientific databases (Scopus, PubMed, and ScienceDirect). The main characteristics of the three types of 3D printers based on DPE have been discussed. The selection of polymers and auxiliary excipients, as well as the flowability of the powder mixture, the rheological properties of the molten material, and the printing temperatures have been identified as the main critical parameters for successful printing. A wide range of drug delivery systems with varied geometries and different drug release profiles intended for oral, buccal, parenteral, and transdermal routes have been produced. The ability of this technique to manufacture personalized, on-demand drug delivery systems has been proven. For all these reasons, its implementation in hospital settings in the near future seems promising.
Collapse
Affiliation(s)
| | - Marta Casas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.A.-d.-L.); (C.F.) (V.L.); (I.C.)
| | | | | | | |
Collapse
|
19
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
20
|
Parvanda R, Kala P, Sharma V. Bibliometric Analysis-Based Review of Fused Deposition Modeling 3D Printing Method (1994-2020). 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:383-405. [PMID: 38389670 PMCID: PMC10880680 DOI: 10.1089/3dp.2021.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
This study aimed at the detailed bibliometric analysis (BA) of fused deposition modeling (FDM) to understand the trend and research area. Web of Science database was used for extracting data using keywords, and 2793 documents were analyzed. From the analysis, the most influential and productive authors, countries, sources, and so on were identified and corresponding interrelations were represented by a three-field plot. Lotka's law was derived for author productivity and its reliability was verified by the Kolmogorov-Smirnov (K-S) test. Bradford's law was used for identifying the core sources contributing to the field of FDM. From the trend topic analysis, it was found that initially the research was focused upon removing error related to deposition as well as part orientation, but with the course of time, it diversified to include topics such as optimization of printing parameters, materials, and applications. Based on the inferences from BA, the article also discusses on current research trend and highlights certain future areas for research work.
Collapse
Affiliation(s)
- Rishi Parvanda
- Mechanical Engineering Department, BITS Pilani, Pilani, India
| | - Prateek Kala
- Mechanical Engineering Department, BITS Pilani, Pilani, India
| | - Varun Sharma
- Mechanical and Industrial Engineering Department, IIT Roorkee, Roorkee, India
| |
Collapse
|
21
|
Pan S, Ding S, Zhou X, Zheng N, Zheng M, Wang J, Yang Q, Yang G. 3D-printed dosage forms for oral administration: a review. Drug Deliv Transl Res 2024; 14:312-328. [PMID: 37620647 DOI: 10.1007/s13346-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Oral administration is the most commonly used form of treatment due to its advantages, including high patient compliance, convenient administration, and minimal preparation required. However, the traditional preparation process of oral solid preparation has many defects. Although continuous manufacturing line that combined all the unit operations has been developed and preliminarily applied in the pharmaceutical industry, most of the currently used manufacturing processes are still complicated and discontinuous. As a result, these complex production steps will lead to low production efficiency and high quality control risk of the final product. Additionally, the large-scale production mode is inappropriate for the personalized medicines, which commonly is customized with small amount. Several attractive techniques, such as hot-melt extrusion, fluidized bed pelletizing and spray drying, could effectively shorten the process flow, but still, they have inherent limitations that are challenging to address. As a novel manufacturing technique, 3D printing could greatly reduce or eliminate these disadvantages mentioned above, and could realize a desirable continuous production for small-scale personalized manufacturing. In recent years, due to the participation of 3D printing, the development of printed drugs has progressed by leaps and bounds, especially in the design of oral drug dosage forms. This review attempts to summarize the new development of 3D printing technology in oral preparation and also discusses their advantages and disadvantages as well as potential applications.
Collapse
Affiliation(s)
- Siying Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sheng Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meng Zheng
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China
| | - Juan Wang
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China.
| |
Collapse
|
22
|
Figueiredo S, Fernandes AI, Carvalho FG, Pinto JF. Exploring Environmental Settings to Improve the Printability of Paroxetine-Loaded Filaments by Fused Deposition Modelling. Pharmaceutics 2023; 15:2636. [PMID: 38004614 PMCID: PMC10675712 DOI: 10.3390/pharmaceutics15112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The successful integration of hot-melt extrusion (HME) and fused deposition modelling (FDM) depends on a better understanding of the impact of environmental conditions on the printability of formulations, since they significantly affect the properties of the raw materials, whose control is crucial to enable three-dimensional printing (3DP). Hence, the objective of this work was to investigate the correlation between the environmental settings and the properties of paroxetine (PRX)-loaded filaments, previously produced by HME, which affect printability by FDM. The influence of different drying methods of the physical mixtures (PMs) and HME-filaments (FILs) on the quality and printability of these products was also assessed. The printability of FILs was evaluated in terms of the water content, and the mechanical and thermal properties of the products. Stability studies and physicochemical, thermal, and in vitro dissolution tests were carried out on the 3D-printed tablets. Stability studies demonstrated the high ductility of the PRX loaded FILs, especially under high humidity conditions. Under low humidity storage conditions (11% RH), the FILs became stiffer and were successfully used to feed the FDM printer. Water removal was slow when carried out passively in a controlled atmosphere (desiccator) or accelerated by using active drying methods (heat or microwave). Pre-drying of the PRX/excipients and/or PMs did not show any positive effect on the printability of the FIL. On the contrary, dry heat and, preferably, microwave mediated drying processes were shown to reduce the holding time required for successful FDM printing, enabling on-demand production at the point of care.
Collapse
Affiliation(s)
- Sara Figueiredo
- iMed.Ulisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (S.F.); (J.F.P.)
- LEF-Infosaúde, Laboratório de Estudos Farmacêuticos, Rua das Ferrarias del Rei nº6, Urbanização da Fábrica da Pólvora, 2730-269 Barcarena, Portugal;
| | - Ana I. Fernandes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Fátima G. Carvalho
- LEF-Infosaúde, Laboratório de Estudos Farmacêuticos, Rua das Ferrarias del Rei nº6, Urbanização da Fábrica da Pólvora, 2730-269 Barcarena, Portugal;
| | - João F. Pinto
- iMed.Ulisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (S.F.); (J.F.P.)
| |
Collapse
|
23
|
Xue A, Li W, Tian W, Zheng M, Shen L, Hong Y. A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022. Pharmaceuticals (Basel) 2023; 16:1521. [PMID: 38004387 PMCID: PMC10675621 DOI: 10.3390/ph16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are "drug release" and "drug dosage forms". In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation.
Collapse
Affiliation(s)
- Aile Xue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenjie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenxiu Tian
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Minyue Zheng
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| |
Collapse
|
24
|
Agarwal P, Arora G, Panwar A, Mathur V, Srinivasan V, Pandita D, Vasanthan KS. Diverse Applications of Three-Dimensional Printing in Biomedical Engineering: A Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1140-1163. [PMID: 37886418 PMCID: PMC10599440 DOI: 10.1089/3dp.2022.0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A three-dimensional (3D) printing is a robotically controlled state-of-the-art technology that is promising for all branches of engineering with a meritorious emphasis to biomedical engineering. The purpose of 3D printing (3DP) is to create exact superstructures without any framework in a brief period with high reproducibility to create intricate and complex patient-tailored structures for organ regeneration, drug delivery, imaging processes, designing personalized dose-specific tablets, developing 3D models of organs to plan surgery and to understand the pathology of disease, manufacturing cost-effective surgical tools, and fabricating implants and organ substitute devices for prolonging the lives of patients, etc. The formulation of bioinks and programmed G codes help to obtain precise 3D structures, which determines the stability and functioning of the 3D-printed structures. Three-dimensional printing for medical applications is ambitious and challenging but made possible with the culmination of research expertise from various fields. Exploring and expanding 3DP for biomedical and clinical applications can be life-saving solutions. The 3D printers are cost-effective and eco-friendly, as they do not release any toxic pollutants or waste materials that pollute the environment. The sampling requirements and processing parameters are amenable, which further eases the production. This review highlights the role of 3D printers in the health care sector, focusing on their roles in tablet development, imaging techniques, disease model development, and tissue regeneration.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gargi Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
| | - Amit Panwar
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, Hong Kong
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Government of NCT of Delhi, New Delhi, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
25
|
Alqahtani AA, Mohammed AA, Fatima F, Ahmed MM. Fused Deposition Modelling 3D-Printed Gastro-Retentive Floating Device for Propranolol Hcl Tablets. Polymers (Basel) 2023; 15:3554. [PMID: 37688178 PMCID: PMC10490505 DOI: 10.3390/polym15173554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Three-dimensional printing has revolutionized drug manufacturing and has provided a solution to the limitations associated with the conventional manufacturing method by designing complex drug delivery systems with customized drug release profiles for personalized therapies. The present investigation aims to design a gastric floating tablet with prolonged gastric floating time and sustained drug release profile. In the present study, a gastro retentive floating device (GRFD) was designed and fabricated using a fused deposition modelling (FDM)-based 3D printing technique. This device acts as a multifunctional dosage form exhibiting prolonged gastric retention time and sustained drug release profile with improved oral bioavailability in the upper gastrointestinal tract. Commercial polyvinyl alcohol (PVA) and polylactic acid (PLA) filaments were used to design GRFD, which was comprised of dual compartments. The outer sealed compartment acts as an air-filled chamber that imparts buoyancy to the device and the inner compartment is filled with a commercial propranolol hydrochloride immediate-release tablet. The device is designed as a round-shaped shell with a central opening of varying size (1 mm, 2 mm, 3 mm, and 4 mm), which acts as a drug release window. Scanning electron microscope (SEM) images were used to determine morphological characterization. The in vitro buoyancy and drug release were evaluated using the USP type II dissolution apparatus. All the designed GRFDs exhibit good floating ability and sustained drug release profiles. GRFDs fabricated using PLA filament show maximum buoyancy (>24 h) and sustained drug release for up to 10 h. The floating ability and drug release from the developed devices were governed by the drug release window opening size and the filament material affinity towards the gastric fluid. The designed GRFDs show great prospects in modifying the drug release characteristics and could be applied to any conventional immediate-release product.
Collapse
Affiliation(s)
- Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
26
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
27
|
Amin OM, El Qady HN, Abd El-Fattah MA. An Intragastric Delivery Device Employing FDM Technology: 3D-Printed Tablet Containing Green Developed Mosapride-Saccharin Co-crystals. AAPS PharmSciTech 2023; 24:127. [PMID: 37264247 DOI: 10.1208/s12249-023-02578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
Mosapride citrate (MC) is a poorly soluble short half-life drug with more pronounced absorption in the stomach. The present study aimed to incorporate MC co-crystals with enhanced solubility into 3D-printed floating tablets. MC co-crystals were prepared via the green method using Saccharin sod. as a co-former at a (1:1) molar ratio. The prepared co-crystals were assessed for solubility, FTIR, thermal behavior, and SEM. Then, it was incorporated into zero % infill 3D-printed tablets of different configurations at two thickness levels by the FDM printing technique. Printed tablets were evaluated for dimensions, weight deviation, friability, and in vitro floating behavior. Drug release and kinetic of the MC release were also assessed. Solubility study of the co-crystals showed a significant (p value < 0.05) increased solubility over pure MC. FTIR and thermal behavior confirmed hydrogen bonding formation during co-crystallization. The obstructed particles had an erratic protrusion form, similar to a nodule, as illustrated by SEM. The printed tablets showed acceptable physicochemical properties. Tablets floated for about ≥ 12 h without floating lag time. In vitro drug release exhibited variable extended release profiles with different lag times depending on the configuration indicating that the tablet's wall thickness and surface area were the factors manipulated to control drug release. Kinetic analysis of the release data displayed intermediate kinetics between zero-order and diffusional kinetics. The intragastric extended release profile for MC co-crystals of improved solubility could be successfully, economically, and quickly developed utilizing the 3D printing technique.
Collapse
Affiliation(s)
- Omnya Mahmoud Amin
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
| | - Hesham Nassereldin El Qady
- Design Workshops Department, Faculty of Applied Sciences and Arts, The German University in Cairo, Cairo, Egypt
| | - Marwa Adel Abd El-Fattah
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
28
|
Brewster PR, Mohammad Ishraq Bari S, Walker GM, Werfel TA. Current and future directions of drug delivery for the treatment of mental illnesses. Adv Drug Deliv Rev 2023; 197:114824. [PMID: 37068660 PMCID: PMC11479664 DOI: 10.1016/j.addr.2023.114824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Mental illnesses including anxiety disorders, autism spectrum disorder, post-traumatic stress disorder, schizophrenia, depression, and others exact an immense toll on the healthcare system and society at large. Depression alone impacts 21 million adults and costs over $200 billion annually in the United States. However, pharmaceutical strategies to treat mental illnesses are lagging behind drug development in many other disease areas. Because many of the shortcomings of therapeutics for mental illness relate to delivery problems, drug delivery technologies have the potential to radically improve the effectiveness of therapeutics for these diseases. This review describes the current pharmacotherapeutic approaches to treating mental illnesses as well as drug delivery approaches that have improved existing therapies. Approaches to improve drug bioavailability, provide controlled release of therapeutics, and enable drug targeting to the central nervous system (CNS) will be highlighted. Moreover, next-generation delivery approaches such as environmentally-controlled release and interval/sequential drug release will be addressed. Based on the evolving landscape of the treatment of mental illnesses, the nascent field of drug delivery in mental health has tremendous potential for growth in terms of both economic and patient impact.
Collapse
Affiliation(s)
- Parker R Brewster
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, USA; Department of Chemical Engineering, University of Mississippi, University, MS 38677, USA
| | | | - Glenn M Walker
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, USA
| | - Thomas A Werfel
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, USA; Department of Chemical Engineering, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
29
|
Iftekar SF, Aabid A, Amir A, Baig M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers (Basel) 2023; 15:polym15112519. [PMID: 37299318 DOI: 10.3390/polym15112519] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
3D printing has revolutionized various industries by enabling the production of complex designs and shapes. Recently, the potential of new materials in 3D printing has led to an exponential increase in the technology's applications. However, despite these advancements, the technology still faces significant challenges, including high costs, low printing speeds, limited part sizes, and strength. This paper critically reviews the recent trends in 3D printing technology, with a particular focus on the materials and their applications in the manufacturing industry. The paper highlights the need for further development of 3D printing technology to overcome its limitations. It also summarizes the research conducted by experts in this field, including their focuses, techniques, and limitations. By providing a comprehensive overview of the recent trends in 3D printing, this review aims to provide valuable insights into the technology's prospects.
Collapse
Affiliation(s)
- Syed Fouzan Iftekar
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur 50725, Malaysia
| | - Abdul Aabid
- Department of Engineering Management, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Adibah Amir
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur 50725, Malaysia
| | - Muneer Baig
- Department of Engineering Management, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| |
Collapse
|
30
|
Mora-Castaño G, Millán-Jiménez M, Caraballo I. Hydrophilic High Drug-Loaded 3D Printed Gastroretentive System with Robust Release Kinetics. Pharmaceutics 2023; 15:pharmaceutics15030842. [PMID: 36986703 PMCID: PMC10057139 DOI: 10.3390/pharmaceutics15030842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Three-dimensional printing (3DP) technology enables an important improvement in the design of new drug delivery systems, such as gastroretentive floating tablets. These systems show a better temporal and spatial control of the drug release and can be customized based on individual therapeutic needs. The aim of this work was to prepare 3DP gastroretentive floating tablets designed to provide a controlled release of the API. Metformin was used as a non-molten model drug and hydroxypropylmethyl cellulose with null or negligible toxicity was the main carrier. High drug loads were assayed. Another objective was to maintain the release kinetics as robust as possible when varying drug doses from one patient to another. Floating tablets using 10–50% w/w drug-loaded filaments were obtained by Fused Deposition Modelling (FDM) 3DP. The sealing layers of our design allowed successful buoyancy of the systems and sustained drug release for more than 8 h. Moreover, the effect of different variables on the drug release behaviour was studied. It should be highlighted that the robustness of the release kinetics was affected by varying the internal mesh size, and therefore the drug load. This could represent a step forward in the personalization of the treatments, a key advantage of 3DP technology in the pharmaceutical field.
Collapse
|
31
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
32
|
Annuryanti F, Domínguez-Robles J, Anjani QK, Adrianto MF, Larrañeta E, Thakur RRS. Fabrication and Characterisation of 3D-Printed Triamcinolone Acetonide-Loaded Polycaprolactone-Based Ocular Implants. Pharmaceutics 2023; 15:243. [PMID: 36678872 PMCID: PMC9863928 DOI: 10.3390/pharmaceutics15010243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Triamcinolone acetonide (TA) is a corticosteroid that has been used to treat posterior segment eye diseases. TA is injected intravitreally in the management of neovascular disorders; however, frequent intravitreal injections result in many potential side effects and poor patient compliance. In this work, a 3D bioprinter was used to prepare polycaprolactone (PCL) implants loaded with TA. Implants were manufactured with different shapes (filament-, rectangular-, and circle-shaped) and drug loadings (5, 10, and 20%). The characterisation results showed that TA was successfully mixed and incorporated within the PCL matrix without using solvents, and drug content reached almost 100% for all formulations. The drug release data demonstrate that the filament-shaped implants (SA/V ratio~7.3) showed the highest cumulative drug release amongst all implant shapes over 180 days, followed by rectangular- (SA/V ratio~3.7) and circle-shaped implants (SA/V ratio~2.80). Most implant drug release data best fit the Korsmeyer−Peppas model, indicating that diffusion was the prominent release mechanism. Additionally, a biocompatibility study was performed; the results showed >90% cell viability, thus proving that the TA-loaded PCL implants were safe for ocular application.
Collapse
Affiliation(s)
- Febri Annuryanti
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, C Campus, Mulyorejo, Surabaya 60115, Indonesia
| | - Juan Domínguez-Robles
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, C Campus, Mulyorejo, Surabaya 60115, Indonesia
| | - Eneko Larrañeta
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Raghu Raj Singh Thakur
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
33
|
Blynskaya EV, Tishkov SV, Vinogradov VP, Alekseev KV, Marakhova AI, Vetcher AA. Polymeric Excipients in the Technology of Floating Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14122779. [PMID: 36559272 PMCID: PMC9786229 DOI: 10.3390/pharmaceutics14122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The combination of targeted transport and improvement of the release profile of the active pharmaceutical ingredient (API) is a current trend in the development of oral medicinal products (MP). A well-known way to implement this concept is to obtain floating gastroretentive delivery systems that provide a long stay of the dosage form (DF) on the surface of the stomach contents. The nomenclature of excipients (Es) of a polymeric nature used in the technology of obtaining floating drug delivery systems (FDDS) is discussed. Based on the data presented in research papers, the most widely used groups of polymers, their properties, and their purpose in various technological approaches to achieving buoyancy have been determined. In addition, ways to modify the release of APIs in these systems and the Es used for this are described. The current trends in the use of polymers in the technology of floating dosage forms (FDF) and generalized conclusions about the prospects of this direction are outlined.
Collapse
Affiliation(s)
- Evgenia V. Blynskaya
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey V. Tishkov
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Vladimir P. Vinogradov
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Konstantin V. Alekseev
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya St., 117588 Moscow, Russia
- Correspondence:
| |
Collapse
|
34
|
Mandati P, Dumpa N, Alzahrani A, Nyavanandi D, Narala S, Wang H, Bandari S, Repka MA, Tiwari S, Langley N. Hot-Melt Extrusion-Based Fused Deposition Modeling 3D Printing of Atorvastatin Calcium Tablets: Impact of Shape and Infill Density on Printability and Performance. AAPS PharmSciTech 2022; 24:13. [PMID: 36477554 DOI: 10.1208/s12249-022-02470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The main objective of the current research was to investigate the effect of tablet shapes (heart-shaped and round tablets) and infill densities (50% and 100%) on the drug release profiles of 3D printed tablets prepared by hot-melt extrusion paired with fused deposition modeling techniques. Drug-loaded filaments of 1.5 mm and 2.5 mm diameters were extruded using a Process 11 mm hot-melt extruder employing atorvastatin calcium as a model drug and Kollicoat® IR, Kollidon® VA64, Kollidon® 12PF, and Kolliphor® P407 as hydrophilic polymers. Filaments of Kollicoat® IR in combination with Kollidon® VA64/Kollidon® 12PF has resulted in successful printing of immediate release tablets. The mechanical properties of drug-loaded filaments were evaluated using a 3-point bend test and stiffness test. The transformation of a crystalline drug to an amorphous form and the absence of drug-polymer interactions were confirmed by differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The effect of infill density on drug release profiles was greater than that of tablet shape. The stability of 3D printed tablets was preserved even after storage under accelerated conditions (40 ± 2°C and 75 ± 5% RH) for 6 months. Thus, the 3D printing process of hot-melt extrusion paired with fused deposition modeling serves as an alternative manufacturing approach for developing patient-focused doses.
Collapse
Affiliation(s)
- Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Nagireddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA. .,Pii Center for Pharmaceutical Technology, The University of Mississippi, Mississippi, 38677, University, USA.
| | - Sandip Tiwari
- BASF Corporation, 500 White Plains Road, New York, Tarrytown, USA
| | - Nigel Langley
- BASF Corporation, 500 White Plains Road, New York, Tarrytown, USA
| |
Collapse
|
35
|
Tunable Drug Release from Fused Deposition Modelling (FDM) 3D-Printed Tablets Fabricated Using a Novel Extrudable Polymer. Pharmaceutics 2022; 14:pharmaceutics14102192. [PMID: 36297626 PMCID: PMC9611745 DOI: 10.3390/pharmaceutics14102192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional (3D) printing is proving to be a pivotal technology for developing personalized dosage forms with bench to bedside feasibility. Fused deposition modelling (FDM) 3D printing has emerged as the most used technique wherein molten drug-loaded polymer filaments are deposited layer-by-layer to fabricate a predefined shape and internal geometry. However, for precise FDM 3D printing, it is imperative for the filaments to have peculiar mechanical/physicochemical properties, which the majority of the FDA/GRAS approved polymers lack. In the current study, a novel water-soluble polymer, Poly(2-ethyl-tetra-oxazoline) [PETOx] has been investigated as an extrudable and printable polymer with two different types of drug molecule—dextromethorphan hydrobromide (DXM) and hydrochlorothiazide (HCTZ). Hot-stage microscopy experiments of drug:polymer (1:1 w/w) and filaments were carried out at 25−275 °C. HCTZ-loaded filament showed higher toughness of 17 ± 3.25 × 106 J/m3 compared with DXM and drug-free filament. Moisture sorption and flexural analysis was performed to understand the correlation of mechanical properties and storage humidity to printability. Varying the number of outer perimeters of each layer (shell number) was observed to affect the drug release pattern from the printlets. The DXM one-shell printlet showed >80%, whereas the DXM five-shell printlet showed >60% of the drug release within 60 min. PETOx could prove to be a high-performance and versatile 3D printable polymer.
Collapse
|
36
|
Shukla S, Huston RH, Cox BD, Satoskar AR, Narayan RJ. Transdermal delivery via medical device technologies. Expert Opin Drug Deliv 2022; 19:1505-1519. [PMID: 36222232 DOI: 10.1080/17425247.2022.2135503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite their effectiveness and indispensability, many drugs are poorly solvated in aqueous solutions. Over recent decades, the need for targeted drug delivery has led to the development of pharmaceutical formulations with enhanced lipid solubility to improve their delivery properties. Therefore, a dependable approach for administering lipid-soluble drugs needs to be developed. AREAS COVERED The advent of 3D printing or additive manufacturing (AM) has revolutionized the development of medical devices, which can effectively enable the delivery of lipophilic drugs to the targeted tissues. This review focuses on the use of microneedles and iontophoresis for transdermal drug delivery. Microneedle arrays, inkjet printing, and fused deposition modeling have emerged as valuable approaches for delivering several classes of drugs. In addition, iontophoresis has been successfully employed for the effective delivery of macromolecular drugs. EXPERT OPINION Microneedle arrays, inkjet printing, and fused deposition are potentially useful for many drug delivery applications; however, the clinical and commercial adoption rates of these technologies are relatively low. Additional efforts is needed to enable the pharmaceutical community to fully realize the benefits of these technologies.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ryan H Huston
- Department of Microbiology, The Ohio State University, 484 W. 12 Ave, Columbus, OH 43210, USA
| | - Blake D Cox
- Division of Anatomy, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| |
Collapse
|
37
|
Evaluation of Hydroxyethyl Cellulose Grades as the Main Matrix Former to Produce 3D-Printed Controlled-Release Dosage Forms. Pharmaceutics 2022; 14:pharmaceutics14102103. [PMID: 36297538 PMCID: PMC9609046 DOI: 10.3390/pharmaceutics14102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Diclofenac sodium tablets were successfully prepared via hot-melt extrusion (HME) and fused deposition modeling (FDM), using different molecular-weight (Mw) grades of hydroxyethyl cellulose (HEC) as the main excipient. Hydroxypropyl cellulose (HPC) was added to facilitate HME and to produce drug-loaded, uniform filaments. The effect of the HEC grades (90–1000 kDa) on the processability of HME and FDM was assessed. Mechanical properties of the filaments were evaluated using the three-point bend (3PB) test. Breaking stress and distance were set in relation to the filament feedability to identify printer-specific thresholds that enable proper feeding. The study demonstrated that despite the HEC grade used, all formulations were at least printable. However, only the HEC L formulation was feedable, showing the highest breaking stress (29.40 ± 1.52 MPa) and distance (1.54 ± 0.08 mm). Tablet drug release showed that the release was Mw dependent up to a certain HEC Mw limit (720 kDa). Overall, the release was driven by anomalous transport due to drug diffusion and polymer erosion. The results indicate that despite being underused in FDM, HEC is a suitable main excipient for 3D-printed dosage forms. More research on underutilized polymers in FDM should be encouraged to increase the limited availability.
Collapse
|
38
|
Wang N, Shi H, Yang S. 3D printed oral solid dosage form: Modified release and improved solubility. J Control Release 2022; 351:407-431. [PMID: 36122897 DOI: 10.1016/j.jconrel.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Oral solid dosage form is currently the most common used form of drug. 3D Printing, also known as additive manufacturing (AM), can quickly print customized and individualized oral solid dosage form on demand. Compared with the traditional tablet manufacturing process, 3D Printing has many advantages. By rationally selecting the formulation composition and cleverly designing the printing structure, 3D printing can improve the solubility of the drug and achieve precise modify of the drug release. 3D printed oral solid dosage form, however, still has problems such as limitations in formulation selection. And the selection process of the formulation lacks scientificity and standardization. Structural design of some 3D printing approaches is relatively scarce. This article reviews the formulation selection and structure design of 3D printed oral solid dosage form, providing more ideas for achieving modified drug release and solubility improvement of 3D printed oral solid dosage form through more scientific and extensive formulation selection and more sophisticated structural design.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China; Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
39
|
Zhang L, Forgham H, Shen A, Wang J, Zhu J, Huang X, Tang SY, Xu C, Davis TP, Qiao R. Nanomaterial integrated 3D printing for biomedical applications. J Mater Chem B 2022; 10:7473-7490. [PMID: 35993266 DOI: 10.1039/d2tb00931e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D printing technology, otherwise known as additive manufacturing, has provided a promising tool for manufacturing customized biomaterials for tissue engineering and regenerative medicine applications. A vast variety of biomaterials including metals, ceramics, polymers, and composites are currently being used as base materials in 3D printing. In recent years, nanomaterials have been incorporated into 3D printing polymers to fabricate innovative, versatile, multifunctional hybrid materials that can be used in many different applications within the biomedical field. This review focuses on recent advances in novel hybrid biomaterials composed of nanomaterials and 3D printing technologies for biomedical applications. Various nanomaterials including metal-based nanomaterials, metal-organic frameworks, upconversion nanoparticles, and lipid-based nanoparticles used for 3D printing are presented, with a summary of the mechanisms, functional properties, advantages, disadvantages, and applications in biomedical 3D printing. To finish, this review offers a perspective and discusses the challenges facing the further development of nanomaterials in biomedical 3D printing.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Helen Forgham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ao Shen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiafan Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.,Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
40
|
Fabrication of a Shell-Core Fixed-Dose Combination Tablet Using Fused Deposition Modeling 3D Printing. Eur J Pharm Biopharm 2022; 177:211-223. [PMID: 35835328 DOI: 10.1016/j.ejpb.2022.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
Fixed-dose combinations (FDCs) achieve optimal goals for treatment with minimal side effects, decreased administration of large number of tablets, thus, greater convenience, and improved patient compliance. However, conventional FDCs do not have a guaranteed place in the future of patient-centered drug development because of the difficulty in achieving dose titration of each drug for individualized specific health needs and desired therapeutic outcomes. In the current study, FDCs of two antihypertensive drugs were fabricated with two distinct compartments using fused deposition modeling three-dimensional printing (FDM-3DP). Atorvastatin calcium and Amlodipine besylate loaded filaments were prepared by hot-melt extrusion. Shell-core FDC tablets were designed to have different infills for individualized dosing. Differential scanning calorimetry and powder X-ray diffraction revealed that both drugs were transformed into amorphous forms within the polymeric carriers. The fabricated tablets met the United States Pharmacopeia acceptance criteria for friability, content uniformity, and dissolution testing. The fabricated tablets were stable at room temperature with respect to drug content and thermal behavior over six months. This dynamic dosage form provides flexibility in dose titration and maintains the advantages of FDCs, thus achieving optimal therapeutic outcomes in different healthcare facilities.
Collapse
|
41
|
Compounding Tailored Veterinary Chewable Tablets Close to the Point-of-Care by Means of 3D Printing. Pharmaceutics 2022; 14:pharmaceutics14071339. [PMID: 35890235 PMCID: PMC9315874 DOI: 10.3390/pharmaceutics14071339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Certain patient populations receive insufficient medicinal treatment due to a lack of commercially available products. The number of approved veterinary products is limited, making animals a patient population with suboptimal medicinal treatments available. To answer to this unmet need, compounding and off-label use of human-marketed products are practiced. Both of which have a significant risk of preparation errors. Hence, there is a dire demand to find and implement a more automated approach to the accurate, precise, and rapid production of veterinary dosage forms close to the point-of-care. This study aimed to assess the use of semi-solid extrusion-based 3D printing for the preparation of tailored doses of theophylline in the form of a chewable dosage form suitable for veterinary use. This study proved that semi-solid extrusion-based 3D printing could successfully be utilized to manufacture pet-friendly, chewable theophylline-loaded tablets. The prepared dosage forms showed a high correlation (R2 = 0.9973) between the designed size and obtained drug amount and met the USP and Ph. Eur. content uniformity criteria. Furthermore, the stability study showed the dosage form being stable and able to be used for up to three months after printing.
Collapse
|
42
|
Bácskay I, Ujhelyi Z, Fehér P, Arany P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14071312. [PMID: 35890208 PMCID: PMC9318419 DOI: 10.3390/pharmaceutics14071312] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since the appearance of the 3D printing in the 1980s it has revolutionized many research fields including the pharmaceutical industry. The main goal is to manufacture complex, personalized products in a low-cost manufacturing process on-demand. In the last few decades, 3D printing has attracted the attention of numerous research groups for the manufacturing of different drug delivery systems. Since the 2015 approval of the first 3D-printed drug product, the number of publications has multiplied. In our review, we focused on summarizing the evolution of the produced drug delivery systems in the last 20 years and especially in the last 5 years. The drug delivery systems are sub-grouped into tablets, capsules, orodispersible films, implants, transdermal delivery systems, microneedles, vaginal drug delivery systems, and micro- and nanoscale dosage forms. Our classification may provide guidance for researchers to more easily examine the publications and to find further research directions.
Collapse
Affiliation(s)
- Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Petra Arany
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
43
|
Omachi Y. Gastroretentive Sustained-Release Tablets Combined with a Solid Self-Micro-Emulsifying Drug Delivery System Adsorbed onto Fujicalin®. AAPS PharmSciTech 2022; 23:157. [PMID: 35672486 DOI: 10.1208/s12249-022-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Gastroretentive drug delivery systems (GRDDS) get retained in the stomach for a long time, thus facilitating the absorption of drugs in the upper gastrointestinal tract. However, drugs that are difficult to dissolve or unstable in an acidic environment are not suitable for GRDDS. The current study designs GRDDS combined with a self-micro-emulsifying drug delivery system (SMEDDS) for drugs with solubility or stability problems in the stomach. The model drug fenofibrate was formulated into the optimized liquid SMEDDS composed of 50 w/w% Capryol® PGMC, 40 w/w% Kolliphor® RH40, and 10 w/w% Transcutol® HP and solidified through adsorption on several porous adsorbents. In a dissolution medium at pH 1.2, the powdered SMEDDS using Fujicalin® dissolved quickly and achieved higher drug dissolution than other adsorbents. Based on these results, a gastroretentive bilayer tablet consisting of a drug release layer and a swelling layer was designed. The drug release layer was formulated with the powdered SMEDDS and hydroxypropyl methylcellulose (HPMC) as a release modifier. HPMC was also added to the swelling layer as a water-swellable polymer. The dissolution rate depended on the viscosity of the HPMC in the drug release layer. The time for 90% drug release was extended from 3.7 to 12.0 h by increasing the viscosity grade of HPMC from 0.1 to 100 K. Moreover, the tablet swelled and maintained a size comparable to a human pylorus diameter or more for at least 24 h. This GRDDS could apply to a broader range of drug candidates.
Collapse
Affiliation(s)
- Yoshihiro Omachi
- Pharmaceutical Technology R&D Division, Spera Pharma, Inc., 17-85, Jusohonmachi 2-chome, Yodogawa ku, Osaka, 532-0024, Japan.
| |
Collapse
|
44
|
Nashed N, Lam M, Ghafourian T, Pausas L, Jiri M, Majumder M, Nokhodchi A. An Insight into the Impact of Thermal Process on Dissolution Profile and Physical Characteristics of Theophylline Tablets Made through 3D Printing Compared to Conventional Methods. Biomedicines 2022; 10:biomedicines10061335. [PMID: 35740357 PMCID: PMC9219830 DOI: 10.3390/biomedicines10061335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
The dissolution profile is of great importance in drug delivery and is affected by the manufacturing method. Thus, it is important to study the influence of the thermal process on drug release in emerging technologies such as 3D printing-fused deposition modeling (FDM). For this purpose, the characteristics of 3D printed tablets were compared to those of tablets prepared by other thermal methods such as hot-melt extrusion (HME) and non-thermal methods such as physical mixture (PM). Theophylline was used as a drug model and blends of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) were used as a matrix former. The solid state of the drug in all formulations was investigated by differential scanning calorimetry, X-ray powder diffraction, and Fourier-transformed infrared spectroscopy. All studied tablets had the same weight and surface area/volume (SA/V). Dissolution data showed that, for some formulations, printed tablets interestingly had a faster release profile despite having the highest hardness values (>550 N) compared to HME and PM tablets. Porosity investigations showed that 100% infill printed tablets had the highest porosity (~20%) compared to HME (<10%) and PM tablets (≤11%). True density records were the lowest in printed tablets (~1.22 g/m3) compared to tablets made from both HME and PM methods (~1.26 g/m3), reflecting the possible increase in polymer specific volume while printing. This increase in the volume of polymer network may accelerate water and drug diffusion from/within the matrix. Thus, it is a misconception that the 3D printing process will always retard drug release based on increased tablet hardness. Hardness, porosity, density, solid-state of the drug, SA/V, weight, and formulation components are all factors contributing to the release profile where the total balance can either slow down or accelerate the release profile.
Collapse
Affiliation(s)
- Nour Nashed
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK; (N.N.); (M.L.)
| | - Matthew Lam
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK; (N.N.); (M.L.)
| | - Taravat Ghafourian
- School of Life Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, Luton LU1 3JU, UK;
| | - Lluis Pausas
- M2M Pharmaceuticals Ltd., The Gateway Building, 1 Collegiate Square, Thames Valley Science Park, Reading RG2 9LH, UK; (L.P.); (M.J.); (M.M.)
| | - Memory Jiri
- M2M Pharmaceuticals Ltd., The Gateway Building, 1 Collegiate Square, Thames Valley Science Park, Reading RG2 9LH, UK; (L.P.); (M.J.); (M.M.)
| | - Mridul Majumder
- M2M Pharmaceuticals Ltd., The Gateway Building, 1 Collegiate Square, Thames Valley Science Park, Reading RG2 9LH, UK; (L.P.); (M.J.); (M.M.)
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK; (N.N.); (M.L.)
- Correspondence: ; Tel.: +44-1273872811
| |
Collapse
|
45
|
Pavan Kalyan BG, Kumar L. 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech 2022; 23:92. [PMID: 35301602 PMCID: PMC8929713 DOI: 10.1208/s12249-022-02242-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.
Collapse
|
46
|
Kulinowski P, Malczewski P, Łaszcz M, Baran E, Milanowski B, Kuprianowicz M, Dorożyński P. Development of Composite, Reinforced, Highly Drug-Loaded Pharmaceutical Printlets Manufactured by Selective Laser Sintering-In Search of Relevant Excipients for Pharmaceutical 3D Printing. MATERIALS 2022; 15:ma15062142. [PMID: 35329594 PMCID: PMC8950795 DOI: 10.3390/ma15062142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
3D printing by selective laser sintering (SLS) of high-dose drug delivery systems using pure brittle crystalline active pharmaceutical ingredients (API) is possible but impractical. Currently used pharmaceutical grade excipients, including polymers, are primarily designed for powder compression, ensuring good mechanical properties. Using these excipients for SLS usually leads to poor mechanical properties of printed tablets (printlets). Composite printlets consisting of sintered carbon-stained polyamide (PA12) and metronidazole (Met) were manufactured by SLS to overcome the issue. The printlets were characterized using DSC and IR spectroscopy together with an assessment of mechanical properties. Functional properties of the printlets, i.e., drug release in USP3 and USP4 apparatus together with flotation assessment, were evaluated. The printlets contained 80 to 90% of Met (therapeutic dose ca. 600 mg), had hardness above 40 N (comparable with compressed tablets) and were of good quality with internal porous structure, which assured flotation. The thermal stability of the composite material and the identity of its constituents were confirmed. Elastic PA12 mesh maintained the shape and structure of the printlets during drug dissolution and flotation. Laser speed and the addition of an osmotic agent in low content influenced drug release virtually not changing composition of the printlet; time to release 80% of Met varied from 0.5 to 5 h. Composite printlets consisting of elastic insoluble PA12 mesh filled with high content of crystalline Met were manufactured by 3D SLS printing. Dissolution modification by the addition of an osmotic agent was demonstrated. The study shows the need to define the requirements for excipients dedicated to 3D printing and to search for appropriate materials for this purpose.
Collapse
Affiliation(s)
- Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Piotr Malczewski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Marta Łaszcz
- Department of Falsified Medicines and Medical Devices, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland;
| | - Ewelina Baran
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznan, Poland;
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland;
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland;
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Department of Spectroscopic Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
- Correspondence:
| |
Collapse
|
47
|
Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. 3D printed medicine for the management of chronic diseases: The road less travelled. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2021.100043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
48
|
Anwar-Fadzil AFB, Yuan Y, Wang L, Kochhar JS, Kachouie NN, Kang L. Recent progress in three-dimensionally-printed dosage forms from a pharmacist perspective. J Pharm Pharmacol 2022; 74:1367-1390. [PMID: 35191505 DOI: 10.1093/jpp/rgab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Additive manufacturing (AM), commonly known as 3D printing (3DP), has opened new frontiers in pharmaceutical applications. This review is aimed to summarise the recent development of 3D-printed dosage forms, from a pharmacists' perspective. METHODS Keywords including additive manufacturing, 3D printing and drug delivery were used for literature search in PubMed, Excerpta Medica Database (EMBASE) and Web of Science, to identify articles published in the year 2020. RESULTS For each 3DP study, the active pharmaceutical ingredients, 3D printers and materials used for the printing were tabulated and discussed. 3DP has found its applications in various dosage forms for oral delivery, transdermal delivery, rectal delivery, vaginal delivery, implant and bone scaffolding. Several topics were discussed in detail, namely patient-specific dosing, customisable drug administration, multidrug approach, varying drug release, compounding pharmacy, regulatory progress and future perspectives. AM is expected to become a common tool in compounding pharmacies to make polypills and personalised medications. CONCLUSION 3DP is an enabling tool to fabricate dosage forms with intricate structure designs, tailored dosing, drug combinations and controlled release, all of which lend it to be highly conducive to personalisation, thereby revolutionising the future of pharmacy practice.
Collapse
Affiliation(s)
| | - Yunong Yuan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lingxin Wang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jaspreet S Kochhar
- Personal Health Care, Procter & Gamble, Singapore, Republic of Singapore
| | - Nezamoddin N Kachouie
- Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
49
|
Oladeji S, Mohylyuk Conceptualisation V, Andrews GP. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: the enhancement of printability using plasticised HPMCAS. Int J Pharm 2022; 616:121553. [PMID: 35131354 DOI: 10.1016/j.ijpharm.2022.121553] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
3D printing (3DP) by fused deposition modelling (FDM) is one of the most extensively developed methods in additive manufacturing. Optimizing printability by improving feedability, nozzle extrusion, and layer deposition is crucial for manufacturing solid oral dosage forms with desirable properties. This work aimed to use HPMCAS (AffinisolTM HPMCAS 716) to prepare filaments for FDM-3DP using hot-melt extrusion (HME). It explored and demonstrated the effect of HME-filament composition and fabrication on printability by evaluating thermal, mechanical, and thermo-rheological properties. It also showed that the HME-Polymer filament composition used in FDM-3DP manufacture of oral solid dosage forms provides a tailored drug release profile. HME (HAAKE MiniLab) and FDM-3DP (MakerBot) were used to prepare HME-filaments and printed objects, respectively. Two diverse ways of improving the mechanical properties of HME-filaments were deduced by changing the formulation to enable feeding through the roller gears of the printer nozzle. These include plasticizing the polymer and adding an insoluble structuring agent (talc) into the formulation. Experimental feedability was predicted using texture analysis results was a function of PEG concentration, and glass-transition temperature (Tg) values of HME-filaments. The effect of high HME screw speed (100 rpm) resulted in inhomogeneity of HME-filament, which resulted in inconsistency of the printer nozzle extrudate and printed layers. The variability of the glass-transition temperature (Tg) of the HME-filament supported by scanning electron microscopy (SEM) images of nozzle extrudates and the lateral wall of the printed tablet helped explain this result. The melt viscosity of HPMCAS formulations was investigated using a capillary rheometer. The high viscosity of unplasticized HPMCAS was concluded to be an additional restriction for nozzle extrusion. The plasticization of HPMCAS and the addition of talc into the formulation were shown to improve thickness consistency of printed layers (using homogeneous HME-filaments). A good correlation (R2=0.9546) between the solidification threshold (low-frequency oscillation test determined by parallel-plate rheometer) and Tg of HME-filaments was also established. Drug-loaded and placebo HPMCAS-based formulations were shown to be successfully printed, with the former providing tailored drug release profiles based on variation of internal geometry (infill).
Collapse
Affiliation(s)
- Simisola Oladeji
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Valentyn Mohylyuk Conceptualisation
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University - Queen's University Belfast joint College (CQC)/ Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University - Queen's University Belfast joint College (CQC)/ Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
50
|
Floating Ricobendazole Delivery Systems: A 3D Printing Method by Co-Extrusion of Sodium Alginate and Calcium Chloride. Int J Mol Sci 2022; 23:ijms23031280. [PMID: 35163203 PMCID: PMC8835811 DOI: 10.3390/ijms23031280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
At present, the use of benzimidazole drugs in veterinary medicine is strongly limited by both pharmacokinetics and formulative issues. In this research, the possibility of applying an innovative semi-solid extrusion 3D printing process in a co-axial configuration was speculated, with the aim of producing a new gastro-retentive dosage form loaded with ricobendazole. To obtain the drug delivery system (DDS), the ionotropic gelation of alginate in combination with a divalent cation during the extrusion was exploited. Two feeds were optimized in accordance with the printing requirements and the drug chemical properties: the crosslinking ink, i.e., a water ethanol mixture containing CaCl2 at two different ratios 0.05 M and 0.1 M, hydroxyethyl cellulose 2% w/v, Tween 85 0.1% v/v and Ricobendazole 5% w/v; and alginate ink, i.e., a sodium alginate solution at 6% w/v. The characterization of the dried DDS obtained from the extrusion of gels containing different amounts of calcium chloride showed a limited effect on the ink extrudability of the crosslinking agent, which on the contrary strongly influenced the final properties of the DDS, with a difference in the polymeric matrix toughness and resulting effects on floating time and drug release.
Collapse
|