1
|
Jiang S. Copper (II) complex supported on magnetic nanoparticles as a novel nanocatalyst for the synthesis of imidazo[1,2-a]pyridines. Mol Divers 2024; 28:3859-3877. [PMID: 38267750 DOI: 10.1007/s11030-023-10781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
Research on the synthesis of imidazo[1,2-a]pyridines has gained great importance among synthetic chemists because there have been numerous reports of their biological and medicinal activities. In this respect, we fabricated CuCl2 immobilized on Fe3O4 nanoparticles modified with 1,10-phenanthroline-5,6-diol [Fe3O4@Diol/Phen-CuCl2] and investigated its catalytic activity for the preparation of imidazo[1,2-a]pyridine derivatives through one-pot three-component reaction of 2-aminopyridines, aldehydes and terminal alkynes under ecofriendly conditions. FT-IR spectroscopy, EDX, SEM, TEM, XRD, TGA, VSM and ICP-OES techniques employed in order to identify the structure of the as-constructed Fe3O4@Diol/Phen-CuCl2 nanocatalyst. This catalytic system has a series of advantages such as the synthesis of imidazo[1,2-a]pyridine products with high yields in suitable time, performing the reactions in an environmentally friendly solvent (PEG), easy preparation of the catalyst with a simple method, and the recyclability of the Fe3O4@Diol/Phen-CuCl2 nanocatalyst.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang, 033000, Shanxi, People's Republic of China.
| |
Collapse
|
2
|
Doğan Y, Öziç C, Ertaş E, Baran A, Rosic G, Selakovic D, Eftekhari A. Activated carbon-coated iron oxide magnetic nanocomposite (IONPs@CtAC) loaded with morin hydrate for drug-delivery applications. Front Chem 2024; 12:1477724. [PMID: 39498376 PMCID: PMC11532056 DOI: 10.3389/fchem.2024.1477724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Cancer is a major disease that affects millions of people around the world every year. It affects individuals of all ages, races, and backgrounds. Since drugs used to treat cancer cannot distinguish between cancerous and healthy cells, they cause systemic toxicity along with serious side effects. Recently, controlled drug-release systems have been developed to reduce the side effects caused by anticancer drugs used for treatment. Morin is an anticancer drug with a flavonol structure. It has been extensively researched for its antioxidant, anti-inflammatory, antitumoral, and antibacterial properties, especially found in Chinese herbs and fruits, and its multiple positive effects on different diseases. In this study, a nanocomposite with magnetic properties was synthesized by coating biocompatible activated carbon obtained using the fruits of the Celtis tournefortii plant on the surface of iron oxide magnetic nanoparticles. Characterization of the synthesized activated carbon-coated iron oxide magnetic nanocomposite was confirmed by Fourier transform infrared, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, dynamic light scattering, zeta potential, and vibrating sample magnetometry. The cytotoxic effects of the drug-loaded magnetic nanocomposite were examined in HT-29 (colorectal), T98-G (glioblastoma) cancer cell lines, and human umbilical vein endothelial cell (HUVEC) healthy cell line. The morin loading and release behavior of the activated carbon-coated iron oxide magnetic nanocomposite were studied, and the results showed that up to 60% of the adsorbed morin was released within 4 h. In summary, activated carbon-coated iron oxide magnetic nanocomposite carriers have shown promising results for the delivery of the morin drug.
Collapse
Affiliation(s)
- Yusuf Doğan
- Kızıltepe Vocational School, Mardin Artuklu University, Mardin, Türkiye
| | - Cem Öziç
- Department of Basic Medical Sciences, Department of Medical Biology, Faculty of Medicine, Kafkas University, Kars, Türkiye
| | - Erdal Ertaş
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Türkiye
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Türkiye
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Türkiye
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
3
|
Dos Santos G, Urbassek HM, Bringa EM. Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations. Sci Rep 2024; 14:22012. [PMID: 39317768 PMCID: PMC11422501 DOI: 10.1038/s41598-024-73129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, T c , similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. T c is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, T c decreases with the NP diameter D by at most 10% at D = 2 nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of T c is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining T c . Extrapolating the inverse of the magnetization as function of temperature near T c gives a lower T c than the maximum of the susceptibility.
Collapse
Affiliation(s)
- Gonzalo Dos Santos
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, 5500, Mendoza, Argentina
| | - Herbert M Urbassek
- Physics Department, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany.
| | - Eduardo M Bringa
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, 5500, Mendoza, Argentina
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| |
Collapse
|
4
|
Molinar-Díaz J, Arjuna A, Abrehart N, McLellan A, Harris R, Islam MT, Alzaidi A, Bradley CR, Gidman C, Prior MJW, Titman J, Blockley NP, Harvey P, Marciani L, Ahmed I. Development of Resorbable Phosphate-Based Glass Microspheres as MRI Contrast Media Agents. Molecules 2024; 29:4296. [PMID: 39339291 PMCID: PMC11434598 DOI: 10.3390/molecules29184296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
In this research, resorbable phosphate-based glass (PBG) compositions were developed using varying modifier oxides including iron (Fe2O3), copper (CuO), and manganese (MnO2), and then processed via a rapid single-stage flame spheroidisation process to manufacture dense (i.e., solid) and highly porous microspheres. Solid (63-200 µm) and porous (100-200 µm) microspheres were produced and characterised via SEM, XRD, and EDX to investigate their surface topography, structural properties, and elemental distribution. Complementary NMR investigations revealed the formation of Q2, Q1, and Q0 phosphate species within the porous and solid microspheres, and degradation studies performed to evaluate mass loss, particle size, and pH changes over 28 days showed no significant differences among the microspheres (63-71 µm) investigated. The microspheres produced were then investigated using clinical (1.5 T) and preclinical (7 T) MRI systems to determine the R1 and R2 relaxation rates. Among the compositions investigated, manganese-based porous and solid microspheres revealed enhanced levels of R2 (9.7-10.5 s-1 for 1.5 T; 17.1-18.9 s-1 for 7 T) and R1 (3.4-3.9 s-1 for 1.5 T; 2.2-2.3 s-1 for 7 T) when compared to the copper and iron-based microsphere samples. This was suggested to be due to paramagnetic ions present in the Mn-based microspheres. It is also suggested that the porosity in the resorbable PBG porous microspheres could be further explored for loading with drugs or other biologics. This would further advance these materials as MRI theranostic agents and generate new opportunities for MRI contrast-enhancement oral-delivery applications.
Collapse
Affiliation(s)
- Jesús Molinar-Díaz
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Composites Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2GX, UK
| | - Andi Arjuna
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Nichola Abrehart
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alison McLellan
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Roy Harris
- Research Design Service East Midlands, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ahlam Alzaidi
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Chris R Bradley
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, UK
| | - Charlotte Gidman
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Malcolm J W Prior
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, UK
| | - Jeremy Titman
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nicholas P Blockley
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter Harvey
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, UK
| | - Luca Marciani
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Ghosh S, Bhaskar R, Mishra R, Arockia Babu M, Abomughaid MM, Jha NK, Sinha JK. Neurological insights into brain-targeted cancer therapy and bioinspired microrobots. Drug Discov Today 2024; 29:104105. [PMID: 39029869 DOI: 10.1016/j.drudis.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Richa Mishra
- Department of Computer Science and Engineering, Parul University, Vadodara, Gujrat 391760, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
6
|
Patri S, Thanh NTK, Kamaly N. Magnetic iron oxide nanogels for combined hyperthermia and drug delivery for cancer treatment. NANOSCALE 2024; 16:15446-15464. [PMID: 39113663 DOI: 10.1039/d4nr02058h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hyperthermia and chemotherapy represent potential modalities for cancer treatments. However, hyperthermia can be invasive, while chemotherapy drugs often have severe side effects. Recent clinical investigations have underscored the potential synergistic efficacy of combining hyperthermia with chemotherapy, leading to enhanced cancer cell killing. In this context, magnetic iron oxide nanogels have emerged as promising candidates as they can integrate superparamagnetic iron oxide nanoparticles (IONPs), providing the requisite magnetism for magnetic hyperthermia, with the nanogel scaffold facilitating smart drug delivery. This review provides an overview of the synthetic methodologies employed in fabricating magnetic nanogels. Key properties and designs of these nanogels are discussed and challenges for their translation to the clinic and the market are summarised.
Collapse
Affiliation(s)
- Sofia Patri
- Department of Materials, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- Biophysic Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| |
Collapse
|
7
|
Bai H, Teng G, Zhang C, Yang J, Yang W, Tian F. Magnetic materials as adsorbents for the pre-concentration and separation of active ingredients from herbal medicine. J Sep Sci 2024; 47:e2400274. [PMID: 39073301 DOI: 10.1002/jssc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Herbal medicine (HM) is crucial in disease management and contains complex compounds with few active pharmacological ingredients, presenting challenges in quality control of raw materials and formulations. Effective separation, identification, and analysis of active components are vital for HM efficacy. Traditional methods like liquid-liquid extraction and solid-phase extraction are time-consuming and environmentally concerning, with limitations such as sorbent issues, pressure, and clogging. Magnetic solid-phase extraction uses magnetic sorbents for targeted analyte separation and enrichment, offering rapid, pressure-free separation. However, inorganic magnetic particles' aggregation and oxidation, as well as lack of selectivity, have led to the use of various coatings and modifications to enhance specificity and selectivity for complex herbal samples. This review delves into magnetic composites in HM pretreatment, specifically focusing on encapsulated or modified magnetic nanoparticles and materials like silica, ionic liquids, graphene family derivatives, carbon nanotubes, metal-organic frameworks, covalent organic frameworks, and molecularly imprinted polymers.
Collapse
Affiliation(s)
- Hezhao Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Guohua Teng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Chen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Jingyi Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
8
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
9
|
Kortman VG, de Vries E, Jovanova J, Sakes A. Magnetic Stimulation for Programmed Shape Morphing: Review of Four-Dimensional Printing, Challenges and Opportunities. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:977-993. [PMID: 39359596 PMCID: PMC11442361 DOI: 10.1089/3dp.2023.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In the field of Additive Manufacturing, four-dimensional (4D) printing has emerged as a promising technique to fabricate smart structures capable of undergoing shape morphing in response to specific stimuli. Magnetic stimulation offers a safe, remote, and rapid actuation mechanism for magnetically responsive structures. This review provides a comprehensive overview of the various strategies and manufacturing approaches employed in the development of magnetically stimulated shape morphing 4D-printed structures, based on an extensive literature search. The review explores the use of magnetic stimulation either individually or in combination with other stimuli. While most of the literature focuses on single-stimulus responsive structures, a few examples of multi-stimuli responsive structures are also presented. We investigate the influence of the orientation of magnetic particles in smart material composites, which can be either random or programmed during or after printing. Finally, the similarities and differences among the different strategies and their impact on the resulting shape-morphing behavior are analyzed. This systematic overview functions as a guide for readers in selecting a manufacturing approach to achieve a specific magnetically actuated shape-morphing effect.
Collapse
Affiliation(s)
- Vera G Kortman
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
- Department of Marine and Transport Technology, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Ellen de Vries
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Jovana Jovanova
- Department of Marine and Transport Technology, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Aimée Sakes
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
10
|
Li J, Guo Y. A sandwich chemiluminescent magnetic microparticle immunoassay for cryptococcal antigen detection. Expert Rev Mol Diagn 2024; 24:533-540. [PMID: 38879820 DOI: 10.1080/14737159.2024.2369243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/03/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. Cryptococcal antigen (CrAg) testing from serum and cerebrospinal fluid (CSF) has been regarded as a gold standard for early diagnosis. This study aimed to develop and validate a rapid and sensitive sandwich chemiluminescent magnetic microparticle immunoassay (CMIA) for quantitative detection of CrAg in sera. RESEARCH DESIGN AND METHODS CMIA is based on magnetic beads modified with capture antibodies and biotinylated antibodies and Streptavidin-polyHRP, where biotinylated antibodies functioned as the recognition element and Streptavidin-polyHRP as the signal component. Assay parameters were first optimized, and then assay performances were evaluated. RESULTS Under optimized conditions, the total runtime of the CMIA was 22 min. The assay had a wide linear range (2 -10,000 ng/mL) and high analytical sensitivity (0.24 ng/mL), together with acceptable reproducibility, accuracy, and stability. Besides, it exhibited no cross-reactivity with other pathogens. Importantly, the assay showed 92.91% (95% CI, 80.97-93.02%) overall qualitative agreement with a commercial ELISA kit in a retrospective cohort of 55 cases with confirmed cryptococcal infection, and 72 controls without evidence of invasive fungal disease (IFD). CONCLUSION These results demonstrated that the present study paved a novel strategy for reliable quantitative detection of CrAg in sera.
Collapse
Affiliation(s)
- Junpu Li
- The Clinical Laboratory of Tianjin Chest Hospital, Tianjin, P.R. China
| | - Yan Guo
- Department of Medical Ultrasound, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
11
|
Shan S, Zhang C, Cheng M, Qi Y, Yu D, Wildgruber M, Ma X. SPFS: SNR peak-based frequency selection method to alleviate resolution degradation in MPI real-time imaging. Phys Med Biol 2024; 69:115028. [PMID: 38593815 DOI: 10.1088/1361-6560/ad3c90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Objective. The primary objective of this study is to address the reconstruction time challenge in magnetic particle imaging (MPI) by introducing a novel approach named SNR-peak-based frequency selection (SPFS). The focus is on improving spatial resolution without compromising reconstruction speed, thereby enhancing the clinical potential of MPI for real-time imaging.Approach. To overcome the trade-off between reconstruction time and spatial resolution in MPI, the researchers propose SPFS as an innovative frequency selection method. Unlike conventional SNR-based selection, SPFS prioritizes frequencies with signal-to-noise ratio (SNR) peaks that capture crucial system matrix information. This adaptability to varying quantities of selected frequencies enhances versatility in the reconstruction process. The study compares the spatial resolution of MPI reconstruction using both SNR-based and SPFS frequency selection methods, utilizing simulated and real device data.Main results.The research findings demonstrate that the SPFS approach substantially improves image resolution in MPI, especially when dealing with a limited number of frequency components. By focusing on SNR peaks associated with critical system matrix information, SPFS mitigates the spatial resolution degradation observed in conventional SNR-based selection methods. The study validates the effectiveness of SPFS through the assessment of MPI reconstruction spatial resolution using both simulated and real device data, highlighting its potential to address a critical limitation in the field.Significance.The introduction of SPFS represents a significant breakthrough in MPI technology. The method not only accelerates reconstruction time but also enhances spatial resolution, thus expanding the clinical potential of MPI for various applications. The improved real-time imaging capabilities of MPI, facilitated by SPFS, hold promise for advancements in drug delivery, plaque assessment, tumor treatment, cerebral perfusion evaluation, immunotherapy guidance, andin vivocell tracking.
Collapse
Affiliation(s)
- Shihao Shan
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, People's Republic of China
| | - Chenglong Zhang
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, People's Republic of China
| | - Min Cheng
- Xintai hospital of traditional Chinese medicine, Tai'an, Shandong, People's Republic of China
| | - Yafei Qi
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich D-81337, Germany
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, People's Republic of China
| |
Collapse
|
12
|
Liu Y, Gao H, Shang Y, Sun S, Guan W, Zheng T, Wu L, Cong M, Zhang L, Li G. IKVAV functionalized oriented PCL/Fe 3O 4 scaffolds for magnetically modulating DRG growth behavior. Colloids Surf B Biointerfaces 2024; 239:113967. [PMID: 38761494 DOI: 10.1016/j.colsurfb.2024.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.
Collapse
Affiliation(s)
- Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yuqing Shang
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Linliang Wu
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; The People's Hospital of Rugao, Affiliated Hospital of Nantong University, Nantong 226599, PR China
| | - Meng Cong
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
13
|
Wang L, Zhang Y, Zeng DP, Zhu Y, Ling Z, Wang Y, Yang J, Wang H, Xu ZL, Tian Y, Sun Y, Shen YD. Development of an Open Droplet Microchannel-Based Magnetosensor for Immunofluorometric Assay of Trimethoprim in Chicken and Pork Samples with a Wide Linear Range. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6772-6780. [PMID: 38478886 DOI: 10.1021/acs.jafc.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Trimethoprim (TMP), functioning as a synergistic antibacterial agent, is utilized in diagnosing and treating diseases affecting livestock and poultry. Human consumption of the medication indirectly may lead to its drug accumulation in the body and increase drug resistance due to its prolonged metabolic duration in livestock and poultry, presenting significant health hazards. Most reported immunoassay techniques, such as ELISA and immunochromatographic assay (ICA), find it challenging to achieve the dual advantages of high sensitivity, simplicity of operation, and a wide detection range. Consequently, an open droplet microchannel-based magnetosensor for immunofluorometric assay (OMM-IFA) of trimethoprim was created, featuring a gel imager to provide a signal output derived from the highly specific antibody (Ab) targeting trimethoprim. The method exhibited high sensitivity in chicken and pork samples, with LODs of 0.300 and 0.017 ng/mL, respectively, and a wide linear range, covering trimethoprim's total maximum residue limits (MRLs). Additionally, the spiked recoveries in chicken and pork specimens varied between 81.6% and 107.9%, maintaining an acceptable variation coefficient below 15%, aligning well with the findings from the ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique. The developed method achieved a much wider linear range of about 5 orders of magnitude of 10-2-103 levels with grayscale signals as the output signal, which exhibited high sensitivity, excellent applicability and simple operability based on magnetic automation.
Collapse
Affiliation(s)
- Lei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongyi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Dao-Ping Zeng
- Wens Institute, Wens Foodstuff Groups Co., Ltd., Yunfu 527499, China
| | - Yuxian Zhu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhou Ling
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou 510410, China
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Nanda SS, Yi DK. Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application. Int J Mol Sci 2024; 25:3266. [PMID: 38542240 PMCID: PMC10969916 DOI: 10.3390/ijms25063266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
15
|
Abafogi AT, Lee J, Kim J, Lee SW, Jang S, Park S. Automated sepsis detection with vancomycin- and allantoin-polydopamine magnetic nanoparticles. Sci Rep 2024; 14:3693. [PMID: 38355732 PMCID: PMC10867076 DOI: 10.1038/s41598-024-54236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024] Open
Abstract
Rapid and accurate identification of the bacteria responsible for sepsis is paramount for effective patient care. Molecular diagnostic methods, such as polymerase chain reaction (PCR), encounter challenges in sepsis due to inhibitory compounds in the blood, necessitating their removal for precise analysis. In this study we present an innovative approach that utilizes vancomycin (Van) and allantoin (Al)-conjugated polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the rapid and automated enrichment of bacteria and their DNA extraction from blood without inducing clumping and aggregation of blood. Al/Van-PDA-MNPs, facilitated by IMS, eliminate the need for preliminary sample treatments, providing a swift and efficient method for bacterial concentration and DNA extraction within an hour. Employing Al/Van-PDA-MNPs within an automated framework has markedly improved our ability to pre-concentrate various Gram-negative and Gram-positive bacteria directly from blood samples. This advancement has effectively reduced the detection threshold to 102 colony-forming unit/mL by both PCR and quantitative PCR. The method's expedited processing time, combined with its precision, positions it as a feasible diagnostic tool for diverse healthcare settings, ranging from small clinics to large hospitals. Furthermore, the innovative application of nanoparticles for DNA extraction holds promising potential for advancing sepsis diagnostics, enabling earlier interventions and improving patient outcomes.
Collapse
Affiliation(s)
| | - Jinyeop Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
- KingoBio Inc., Seoul, 08390, Korea
| | - Joochan Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Sei Won Lee
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
16
|
Akhtar MF, Afzaal A, Saleem A, Roheel A, Khan MI, Imran M. A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Med Oncol 2024; 41:53. [PMID: 38198041 DOI: 10.1007/s12032-023-02277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Various conventional treatments including endocrine therapy, radiotherapy, surgery, and chemotherapy have been used for several decades to treat breast cancer; however, these therapies exhibit various life-threatening and debilitating adverse effects in patients. Additionally, combination therapies are required for prompt action as well as to prevent drug resistance toward standard breast cancer medications. Ferrite nanoparticles (NPs) are increasingly gaining momentum for their application in the diagnosis and treatment of breast cancer. Spinel ferrites are particularly used against breast cancer and have shown in vitro and in vivo better efficacy as compared to conventional cancer therapies. Magnetic resonance imaging contrast agents, magnetic particle imaging tracers, cell separation, and immune assays are some aspects related to the diagnosis of breast cancer against which different ferrite NPs have been successfully evaluated. Moreover, citrate-coated nickel ferrite, Mg/Zn ferrites, poly amidoamine dendrimers, cobalt ferrites, graphene oxide cobalt ferrites, doxorubicin functionalized cobalt ferrites, chitosan-coated zinc ferrites, PEG-coated cobalt ferrite, and copper ferrite NPs have demonstrated antiproliferative action against different breast cancer cells. Oxaliplatin-loaded polydopamine/BSA-copper ferrites, functionalized cobalt and zinc ferrites of curcumin, oxaliplatin-copper ferrite NPs, tamoxifen/diosgenin encapsulated ZnO/Mn ferrites, and fabricated core-shell fibers of doxorubicin have been developed to increase the bioavailability and anti-proliferative effect and decrease the toxicity of anticancer drugs. These ferrite NPs showed an anticancer effect at different doses in the presence or absence of an external magnetic field. The present review covers the in-depth investigations of ferrite NPs for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Aysha Afzaal
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Amna Roheel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
17
|
Geng Y, Zhang H, Dong Z, Zhang H. Effects of electroconvulsive therapy on functional brain networks in patients with schizophrenia. BMC Psychiatry 2024; 24:29. [PMID: 38191362 PMCID: PMC10773126 DOI: 10.1186/s12888-023-05408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Schizophrenia is a kind of intractable brain disorder. Electroconvulsive therapy (ECT) has been used to rapidly improve the clinical symptoms of patients with schizophrenia, but the effect of ECT on topological attributes of brain functional network in patients with schizophrenia has not been clear. The purpose of this study was to investigate the brain functional network mechanism of ECT against schizophrenia. METHODS Thirty-one patients with schizophrenia and fifty healthy controls matching age, gender, and years of education were included. All participants underwent general data collection and magnetic resonance imaging scanning before ECT, and clinical symptoms were assessed using the Positive And Negative Syndrome Scale (PANSS). MRI and clinical symptoms were collected again after the first and eighth ECT application. The functional brain network was constructed on the basis of magnetic resonance imaging, and the global and node topological properties were analyzed. Repeated measure variance analysis was used to explore the changes of the topological attribute values and clinical symptom scores before and after ECT, and Bonferroni post hoc analysis was performed. The independent sample t-test was used to compare the differences in the topological attribute values between patients and healthy controls at three time points before and after ECT. Partial correlation analysis was performed for topological attribute values and clinical symptom scores of abnormal brain regions in the patient groups and their changes during ECT. A general linear regression model was used to predict the outcome after the final eighth ECT using the patient's response to the first ECT. RESULTS (1) One ECT can restore the gamma(γ), lamuda(λ), sigma(σ), nodal global efficiency (Ne) of right insular gyrus ventral agranular insula (INS_R_vIa) and nodal local efficiency (NLe) of bilateral fusiform gyrus medioventral area37 (FuG_A37mv). Eight ECT can also restore the NLe of cortex rostral lingual gyrus (MVOcC _R_rLinG). Eight ECT did not improve the Ne of right superior parietal lobule rostral area 7 (SPL_R_A7r) and NLe of left superior frontal gyrus medial area 6 (SFG_L_A6m). (2) Even after only the first use of ECT, total PANSS scores began to decrease (mean ΔPANSSECT1 was 11.7%; Range, 2%-32.8%), decreased significantly after the eighth application (mean ΔPANSSECT8 was 86.0%; Range,72.5% to 97.9%). Five patients met the response criteria after ECT1 (20% reduction in PANSS total score), and all patients met the response criteria after ECT8. (3) Linear regression analysis showed that ΔPANSSECT1 was a significant predictor of ΔPANSSECT8 (F=5.387, P=0.028), and ΔPANSSECT1 explained 15.7% of the variance of ΔPANSSECT8 (R2=0.157). CONCLUSIONS ECT was able to normalize γ, λ, σ, Ne of INS_R_vIa, NLe of bilateral FuG_A37mv in SZ patients after the first treatment, and NLe of MVOcC_R_rLinG after the eighth ECT. ECT significantly alleviates psychotic symptoms in patients with SZ, and its efficacy after eight sessions can be predicted by the patient's response to the first session of ECT.
Collapse
Affiliation(s)
- Yibo Geng
- Department of Magnetic Resonance Imaging, The Second Affiliated Hospital, Xinxiang Medical University, Henan, China
- Mental Hospital, Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang Mental Image Engineering Technology Research Center, Xinxiang, 453002, China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhao Dong
- Department of Magnetic Resonance Imaging, The Second Affiliated Hospital, Xinxiang Medical University, Henan, China
- Mental Hospital, Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang Mental Image Engineering Technology Research Center, Xinxiang, 453002, China
| | - Haisan Zhang
- Department of Magnetic Resonance Imaging, The Second Affiliated Hospital, Xinxiang Medical University, Henan, China.
- Mental Hospital, Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang Mental Image Engineering Technology Research Center, Xinxiang, 453002, China.
| |
Collapse
|
18
|
Ju S, Cho HY. Biohybrid Nanoparticle-Based In Situ Monitoring of In Vivo Drug Delivery. BIOSENSORS 2023; 13:1017. [PMID: 38131776 PMCID: PMC10741677 DOI: 10.3390/bios13121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Nanomaterials have gained huge attention worldwide owing to their unique physicochemical characteristics which enable their applications in the field of biomedicine and drug delivery systems. Although nanodrug delivery systems (NDDSs) have better target specificity and bioavailability than traditional drug delivery systems, their behavior and clearance mechanisms in living subjects remain unclear. In this regard, the importance of bioimaging methods has come to the forefront for investigating the biodistribution of nanocarriers and discovering drug release mechanisms in vivo. In this review, we introduce several examples of biohybrid nanoparticles and their clinical applications, focusing on their advantages and limitations. The various bioimaging methods for monitoring the fate of nanodrugs in biological systems and the future perspectives of NDDSs have also been discussed.
Collapse
Affiliation(s)
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea;
| |
Collapse
|
19
|
Choi C, Yun E, Cha C. Emerging Technology of Nanofiber-Composite Hydrogels for Biomedical Applications. Macromol Biosci 2023; 23:e2300222. [PMID: 37530431 DOI: 10.1002/mabi.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Hydrogels and nanofibers have been firmly established as go-to materials for various biomedical applications. They have been mostly utilized separately, rarely together, because of their distinctive attributes and shortcomings. However, the potential benefits of integrating nanofibers with hydrogels to synergistically combine their functionalities while attenuating their drawbacks are increasingly recognized. Compared to other nanocomposite materials, incorporating nanofibers into hydrogel has the distinct advantage of emulating the hierarchical structure of natural extracellular environment needed for cell and tissue culture. The most important technological aspect of developing "nanofiber-composite hydrogel" is generating nanofibers made of various polymers that are cross-linked and short enough to maintain stable dispersion in hydrated environment. In this review, recent research efforts to develop nanofiber-composite hydrogels are presented, with added emphasis on nanofiber processing techniques. Several notable examples of implementing nanofiber-composite hydrogels for biomedical applications are also introduced.
Collapse
Affiliation(s)
- Cholong Choi
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eunhye Yun
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
20
|
Tang J, Sun Q, Xie Y, Zheng Q, Ding Y. Virus-like Iron-Gold Heterogeneous Nanoparticles for Drug Target Screening. Anal Chem 2023; 95:17187-17192. [PMID: 37962582 DOI: 10.1021/acs.analchem.3c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Drug-target recognition has great impacts on revealing mechanisms of pharmacological activities, especially drug resistance and off-target effects. In recent years, chemoproteomics has been widely used for drug target screening and discovery due to its high-throughput, high accuracy, and sensitivity. However, there still remain challenges on how to efficiently and unambiguously track target proteins from complex biological matrices. Herein, we report a drug target screening method based on virus-like iron-gold heterogeneous nanoparticles (Au@Fe3O4 NPs). The unique structure of Au@Fe3O4 NPs not only maintains the magnetism of Fe3O4 NPs to facilitate protein enrichment and purification, but also increases drug modification by introducing more active sites on the surface of Au NPs. After coincubating the drug modified NPs with the cell lysate, the high loading of drug on the surface of Au@Fe3O4 NPs was beneficial for capturing target proteins with low abundance. This well-designed heterogeneous nanomaterial provides a novel strategy for improving the efficiency and accuracy of affinity-based proteomics.
Collapse
Affiliation(s)
- Jiayue Tang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Xie
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuling Zheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Lima ES, dos Santos D, Souza AL, Macedo ME, Bandeira ME, Junior SSS, Fiuza BSD, Rocha VPC, dos Santos Fonseca LM, Nunes DDG, Hodel KVS, Machado BAS. RNA Combined with Nanoformulation to Advance Therapeutic Technologies. Pharmaceuticals (Basel) 2023; 16:1634. [PMID: 38139761 PMCID: PMC10745936 DOI: 10.3390/ph16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Nucleic acid-based therapies have the potential to address numerous diseases that pose significant challenges to more traditional methods. RNA-based therapies have emerged as a promising avenue, utilizing nanoformulation treatments to target a range of pathologies. Nanoformulation offers several advantages compared to other treatment modalities, including targeted delivery, low toxicity, and bioactivity suitable for drug loading. At present, various types of nanoformulations are available, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanoshells, and solid lipid nanoparticles (SLNs). RNA-based therapy utilizes intracellular gene nanoparticles with messenger RNA (mRNA) emerging prominently in cancer therapy and immunotechnology against infectious diseases. The approval of mRNA-based technology opens doors for future technological advancements, particularly self-amplifying replicon RNA (repRNA). RepRNA is a novel platform in gene therapy, comprising viral RNA with a unique molecular property that enables the amplification of all encoded genetic information countless times. As a result, repRNA-based therapies have achieved significant levels of gene expression. In this context, the primary objective of this study is to furnish a comprehensive review of repRNA and its applications in nanoformulation treatments, with a specific focus on encapsulated nanoparticles. The overarching goal is to provide an extensive overview of the use of repRNA in conjunction with nanoformulations across a range of treatments and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC (Integrated Manufacturing and Technology Campus), Salvador 41650-010, Brazil; (E.S.L.); (D.d.S.); (A.L.S.); (M.E.M.); (M.E.B.); (S.S.S.J.); (B.S.D.F.); (V.P.C.R.); (L.M.d.S.F.); (D.D.G.N.); (K.V.S.H.)
| |
Collapse
|
22
|
Venkataramanachar B, Li J, Islam TU, Wang Y, den Toonder JMJ. Nanomagnetic Elastomers for Realizing Highly Responsive Micro- and Nanosystems. NANO LETTERS 2023; 23:9203-9211. [PMID: 37467140 PMCID: PMC10603798 DOI: 10.1021/acs.nanolett.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Evolution has produced natural systems that generate motion and sense external stimuli at the micro- and nanoscales. At extremely small scales, the intricate motions and large deformations shown by these biosystems are due to a tipping balance between their structural compliance and the actuating force generated in them. Artificially mimicking such ingenious systems for scientific and engineering applications has been approached through the development and use of different smart materials mostly limited to microscale dimensions. To push the application range down to the nanoscale, we developed a material preparation process that yields a library of nanomagnetic elastomers with high magnetic particle concentrations. Through this process, we have realized a material with the highest magnetic-to-elastic force ratio, as is shown by an extensive mechanical and magnetic characterization of the materials. Furthermore, we have fabricated and actuated micro- and nanostructures mimicking cilia, demonstrating the extreme compliance and responsiveness of the developed materials.
Collapse
Affiliation(s)
- Bhavana
B. Venkataramanachar
- Microsystems
Section, Mechanical Engineering, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Jianing Li
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Tanveer ul Islam
- Microsystems
Section, Mechanical Engineering, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Ye Wang
- Microsystems
Section, Mechanical Engineering, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Jaap M. J. den Toonder
- Microsystems
Section, Mechanical Engineering, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
23
|
Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine 2023; 18:5607-5623. [PMID: 37814664 PMCID: PMC10560484 DOI: 10.2147/ijn.s404394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 10/11/2023] Open
Abstract
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Collapse
Affiliation(s)
- Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tin Van Hyun
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University – Shuang Ho Hospital, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
25
|
Wang S, Chen Y, Chen R, Ma X, Kang X. Steerable artificial magnetic bacteria with target delivery ability of calcium carbonate for soil improvement. Appl Microbiol Biotechnol 2023; 107:5687-5700. [PMID: 37480371 DOI: 10.1007/s00253-023-12665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/24/2023]
Abstract
The microbial-induced carbonate precipitation (MICP) has acquired significant attention due to its immense potential in sustainable engineering applications, particularly in soil improvement. However, the precise control of microbial-induced calcium carbonate precipitation remains a formidable challenge in engineering practices, owing to the uncertain movement paths of bacteria and the nonuniform distribution of soil pores. Taking inspiration from targeted therapy in medicine, this paper presents novel research on the development and validation of magnetically responsive bacteria. These bacteria demonstrate the ability to target calcium carbonate precipitation in a microfluidic chip, thereby promoting an environmentally friendly and ecologically sustainable biomineralization paradigm. The study focuses on investigating the migration of magnetite nanoparticles (MNPs) in aqueous solutions and enhancing the stability of MNP culture liquids. A specially designed microfluidic chip is utilized to simulate natural sand particles and their pores, while an external magnetic field is applied to precisely control the movement path of the artificial magnetic bacteria, enabling targeted precipitation of calcium carbonate at the micron-scale. Verification of the engineered artificial magnetic bacteria and their ability to induce calcium carbonate precipitation is conducted through SEM-EDS analysis, microfluidic chip observations, and the application of the K-means algorithm and ImageJ software to analyze calcium carbonate formation. The influence of the concentration of magnetic nanoparticles on the calcium carbonate production rate was also studied. The results confirm the potential of the artificial magnetic bacteria for future engineering applications. KEY POINTS: • Sporosarcina pasteurii is first time successfully engineered into artificial magnetic bacteria. • The artificial magnetic bacteria show excellent performance of targeted transportation and directional deposition of CaCO3 in microfluidic chip. • The emergence of artificial magnetic bacteria promotes paradigm shift of next generation environmentally friendly biomineralization.
Collapse
Affiliation(s)
- Shiqing Wang
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha, 410082, China
- Research Center for Advanced Underground, Space Technologies of Hunan University, Changsha, 410082, China
- College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Yongqing Chen
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha, 410082, China
- Research Center for Advanced Underground, Space Technologies of Hunan University, Changsha, 410082, China
- College of Civil Engineering, Hunan University, Changsha, 410082, China
- A School of Transportation Engineering, East China Jiaotong University, Nanchang Jiangxi 330013, China
| | - Renpeng Chen
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha, 410082, China
- Research Center for Advanced Underground, Space Technologies of Hunan University, Changsha, 410082, China
- College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Xiongying Ma
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha, 410082, China
- Research Center for Advanced Underground, Space Technologies of Hunan University, Changsha, 410082, China
- College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Xin Kang
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha, 410082, China.
- Research Center for Advanced Underground, Space Technologies of Hunan University, Changsha, 410082, China.
- College of Civil Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
26
|
Eivazzadeh-Keihan R, Sadat Z, Mohammadi A, Aghamirza Moghim Aliabadi H, Kashtiaray A, Maleki A, Mahdavi M. Fabrication and biological investigation of a novel star polymer based on magnetic cyclic aromatic polyimide chains. Sci Rep 2023; 13:9598. [PMID: 37311979 DOI: 10.1038/s41598-023-36619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Herein, a novel nanostructure based on cyclic aromatic polyimide with statistical star polymer structure was synthesized via the functionalization of the CuFe2O4 MNPs surface. The polymerization process on the functionalized surface of CuFe2O4 MNPs was performed with pyromellitic dianhydride and phenylenediamine derivatives. All analytical methods such as Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, X-ray diffraction (XRD) pattern, energy-dispersive X-ray (EDX), field-emission scanning electron microscope (FE-SEM), vibrating-sample magnetometer (VSM) were performed to characterize the structure of CuFe2O4@SiO2-polymer nanomagnetic. The cytotoxicity of CuFe2O4@SiO2-Polymer was investigated for biomedical application by MTT test. The results proved that this nanocmposite was biocompatible with HEK293T healthy cells. Also, the evaluation antibacterial property of CuFe2O4@SiO2-Polymer showed that its MIC in Gram-negative and Gram-positive bacteria were 500-1000 µg/mL, so it had antibacterial activity.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Poles M, Meggiolaro A, Cremaschini S, Marinello F, Filippi D, Pierno M, Mistura G, Ferraro D. Shaking Device for Homogeneous Dispersion of Magnetic Beads in Droplet Microfluidics. SENSORS (BASEL, SWITZERLAND) 2023; 23:5399. [PMID: 37420565 PMCID: PMC10304097 DOI: 10.3390/s23125399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Magnetic beads (or particles) having a size between 1 and 5 µm are largely used in many biochemical assays devoted to both purification and quantification of cells, nucleic acids, or proteins. Unfortunately, the use of these beads within microfluidic devices suffers from natural precipitation because of their size and density. The strategies applied thus far to cells or polymeric particles cannot be extended to magnetic beads, mainly due to their magnetization and their higher densities. We report an effective shaking device capable of preventing the sedimentation of beads that are stored in a custom PCR tube. After the characterization of the operating principle, the device is validated for magnetic beads in droplets, leading to an equal distribution between the droplets, barely affecting their generation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| |
Collapse
|
28
|
Feng S, Tan J, Ma Y, Chang LY. Research on the catalytic activity of MNP-[Dop-OH]-CuBr 2 nanocomposites: novel and stable reusable nanocatalysts for the synthesis of 1,3,5-triazine derivatives. RSC Adv 2023; 13:16078-16090. [PMID: 37260717 PMCID: PMC10227843 DOI: 10.1039/d3ra02261g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
In recent years, magnetic nanocatalysts have been recommended as one of the best catalysts by chemists. Among magnetic nanoparticles, Fe3O4 nanoparticles are highly suitable due to their magnetic properties, chemical stability and low toxicity. These catalysts can be separated via magnetic separation after the chemical process is over and reused after regeneration. Owing to the importance of 1,3,5-triazine derivatives in pharmaceutical and medicinal chemistry, the synthesis of these compounds is always one of the important goals of organic chemists. In this research work, we first successfully synthesized CuBr2 immobilized on magnetic Fe3O4 nanoparticles functionalized with Dop-OH (prepared via the reaction of MNP-dopamine with 2-phenyloxirane) nanocomposites and then investigated their catalytic application in the synthesis of 1,3,5-triazine derivatives via an oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Recycling experiments clearly revealed that MNP-[Dop-OH]-CuBr2 nanocatalysts could be reused for at least 8 times without much loss of catalytic activity.
Collapse
Affiliation(s)
- Shouchun Feng
- Department of Chemical Engineering Tianjin Renai Coll Tianjin 301636 PR China
| | - Jinwang Tan
- Department of Chemical Engineering Tianjin Renai Coll Tianjin 301636 PR China
| | - Yufan Ma
- Department of Chemical Engineering Tianjin Renai Coll Tianjin 301636 PR China
| | - Li-Yuan Chang
- Chemical Nanotechnology Research Institute Shanghai China
| |
Collapse
|
29
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
30
|
Fung KLB, Colson C, Bryan J, Saayujya C, Mokkarala-Lopez J, Hartley A, Yousuf K, Kuo R, Lu Y, Fellows BD, Chandrasekharan P, Conolly SM. First Superferromagnetic Remanence Characterization and Scan Optimization for Super-Resolution Magnetic Particle Imaging. NANO LETTERS 2023; 23:1717-1725. [PMID: 36821385 PMCID: PMC10790312 DOI: 10.1021/acs.nanolett.2c04404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic particle imaging (MPI) is a sensitive, high-contrast tracer modality that images superparamagnetic iron oxide nanoparticles, enabling radiation-free theranostic imaging. MPI resolution is currently limited by scanner and particle constraints. Recent tracers have experimentally shown 10× resolution and signal improvements with dramatically sharper M-H curves. Experiments show a dependence on interparticle interactions, conforming to literature definitions of superferromagnetism. We thus call our tracers superferromagnetic iron oxide nanoparticles (SFMIOs). While SFMIOs provide excellent signal and resolution, they exhibit hysteresis with non-negligible remanence and coercivity. We provide the first quantitative measurements of SFMIO remanence decay and reformation using a novel multiecho pulse sequence. We characterize MPI scanning with remanence decay and coercivity and describe an SNR-optimized pulse sequence for SFMIOs under human electromagnetic safety limitations. The resolution from SFMIOs could enable clinical MPI with 10× reduced scanner selection fields, reducing hardware costs by up to 100×.
Collapse
Affiliation(s)
- K L Barry Fung
- UC Berkeley-UCSF Graduate Group in Bioengineering, University of California Berkeley and University of California San Francisco, https://bioegrad.berkeley.edu/
| | - Caylin Colson
- UC Berkeley-UCSF Graduate Group in Bioengineering, University of California Berkeley and University of California San Francisco, https://bioegrad.berkeley.edu/
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Javier Mokkarala-Lopez
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Allison Hartley
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Khadija Yousuf
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Benjamin D Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Steven M Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
32
|
Gupta J, Quadros M, Momin M. Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization for controlled drug delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
33
|
Kulpa-Greszta M, Tomaszewska A, Dziedzic A, Pązik R. Temperature effects induced by NIR photo-stimulation within I st and II nd optical biological windows of seed-mediated multi-shell nanoferrites. Dalton Trans 2023; 52:2580-2591. [PMID: 36756813 DOI: 10.1039/d2dt04178b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Different types of ferrite core-shell structures, namely CoFe2O4@CoFe2O4, CoFe2O4@Fe3O4, CoFe2O4@MnFe2O4, and CoFe2O4@MnFe2O4@ZnFe2O4, were prepared by the seed-mediated approach. We show that this synthetic methodology offers great and important flexibility in the engineering of multi-shell ferrite nanoparticles which can be further used in various advanced applications. This impressive tool can be used for particle size tuning of homo- and heterostructures through convenient control of the concentration of metal acetylacetonates without the necessity of changing synthetic parameters, i.e., temperature, time, and solvent. The contactless conversion of laser light within Ist (808 nm) and IInd (1122 nm) biological optical windows was studied on the fabricated ferrite core-shell materials which showed promising heating effects that can be a basis of their practical exploitation in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Kulpa-Greszta
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Andrzej Dziedzic
- Department of Spectroscopy and Materials, Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
34
|
Popova V, Poletaeva Y, Chubarov A, Dmitrienko E. pH-Responsible Doxorubicin-Loaded Fe3O4@CaCO3 Nanocomposites for Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15030771. [PMID: 36986632 PMCID: PMC10053241 DOI: 10.3390/pharmaceutics15030771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
A magnetic nanocomposite (MNC) is an integrated nanoplatform that combines a set of functions of two types of materials. A successful combination can give rise to a completely new material with unique physical, chemical, and biological properties. The magnetic core of MNC provides the possibility of magnetic resonance or magnetic particle imaging, magnetic field-influenced targeted delivery, hyperthermia, and other outstanding applications. Recently, MNC gained attention for external magnetic field-guided specific delivery to cancer tissue. Further, drug loading enhancement, construction stability, and biocompatibility improvement may lead to high progress in the area. Herein, the novel method for nanoscale Fe3O4@CaCO3 composites synthesis was proposed. For the procedure, oleic acid-modified Fe3O4 nanoparticles were coated with porous CaCO3 using an ion coprecipitation technique. PEG-2000, Tween 20, and DMEM cell media was successfully used as a stabilization agent and template for Fe3O4@CaCO3 synthesis. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) data were used for the Fe3O4@CaCO3 MNC’s characterization. To improve the nanocomposite properties, the concentration of the magnetic core was varied, yielding optimal size, polydispersity, and aggregation ability. The resulting Fe3O4@CaCO3 had a size of 135 nm with narrow size distributions, which is suitable for biomedical applications. The stability experiment in various pH, cell media, and fetal bovine serum was also evaluated. The material showed low cytotoxicity and high biocompatibility. An excellent anticancer drug doxorubicin (DOX) loading of up to 1900 µg/mg (DOX/MNC) was demonstrated. The Fe3O4@CaCO3/DOX displayed high stability at neutral pH and efficient acid-responsive drug release. The series of DOX-loaded Fe3O4@CaCO3 MNCs indicated effective inhibition of Hela and MCF-7 cell lines, and the IC 50 values were calculated. Moreover, 1.5 μg of the DOX-loaded Fe3O4@CaCO3 nanocomposite is sufficient to inhibit 50% of Hela cells, which shows a high prospect for cancer treatment. The stability experiments for DOX-loaded Fe3O4@CaCO3 in human serum albumin solution indicated the drug release due to the formation of a protein corona. The presented experiment showed the “pitfalls” of DOX-loaded nanocomposites and provided step-by-step guidance on efficient, smart, anticancer nanoconstruction fabrication. Thus, the Fe3O4@CaCO3 nanoplatform exhibits good performance in the cancer treatment area.
Collapse
Affiliation(s)
| | | | - Alexey Chubarov
- Correspondence: or (A.C.); (E.D.); Tel.: +7-913-763-1420 (A.C.); +7-913-904-1742 (E.D.)
| | - Elena Dmitrienko
- Correspondence: or (A.C.); (E.D.); Tel.: +7-913-763-1420 (A.C.); +7-913-904-1742 (E.D.)
| |
Collapse
|
35
|
Akl MA, Kamel AM, El-Ghaffar MAA. Biodegradable functionalized magnetite nanoparticles as binary-targeting carrier for breast carcinoma. BMC Chem 2023; 17:3. [PMID: 36782310 PMCID: PMC9926567 DOI: 10.1186/s13065-023-00915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
In this study, Superparamagnetic magnetite nanoparticles (SPMNPs) are used in a new way as direct nanocarrier for Doxorubicin hydrochloride (DOX) via the functionalization of their surface with tri-sodium citrate through ligand exchange to conjugate DOX with imine bond to form tri-sodium citrate functionalized magnetite loaded DOX nanoparticles (DOX/Cit-MNPs). The DOX/Cit-MNPs were coated with chitosan to form chitosan coated citrate functionalized magnetite loaded DOX nanoparticles (Cs/DOX/Cit-MNPs) to offer biodegradability and pH-sensitive drug release features. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed functionalization of SPMNPs, DOX-conjugation, and chitosan coating. The trans electron microscopy (TEM) show spherical nanostructures with average size 40 nm for coated nanocarriers. The saturation magnetization value of carrier was 59 emu/g.The in-vitro release of DOX from the chitosan coated tri-sodium citrate functionalized magnetite loaded DOX nanoparticles (Cs/DOX/Cit-MNPs) was studied to be 75% at pH 5.5 and 28.6% at pH 7.4 which proves the pH sensitivity of encapsulated Cs/DOX/Cit-MNPs. The effect of Cs/DOX/Cit-MNPs toward Human Breast Cancer Cell lines (MCF7) was studied and found to be 76% without magnet and 98% with external magnet after 72 h. With increasing DOX concentration and treatment time, the cell inhibition (IR%) of DOX solution and Cs/DOX-Cit-MNPs suspension to all cells is increased. Cs/DOX/Cit-MNPs showed sustained release and good inhibition to cancer cells and offer a protective mode for normal cells (WISH) compared to the free DOX.
Collapse
Affiliation(s)
- Magda Ali Akl
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Amira Mostafa Kamel
- grid.419725.c0000 0001 2151 8157Polymers and Pigments Department, National Research Centre, 33-El-Bohouth St. Dokki, Cairo, Egypt
| | - Mahmoud Ahmed Abd El-Ghaffar
- grid.419725.c0000 0001 2151 8157Polymers and Pigments Department, National Research Centre, 33-El-Bohouth St. Dokki, Cairo, Egypt
| |
Collapse
|
36
|
Safari M, Naseri M, Esmaeili E, Naderi E. Green synthesis by celery seed extract and improvement of the anticancer activity of Quercetin-loaded rGO/Ca1-xMnxFe2O4 nanocarriers using UV light in Breast Cancer Cells. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Gogoi L, Gao W, Ajayan PM, Deb P. Quantum magnetic phenomena in engineered heterointerface of low-dimensional van der Waals and non-van der Waals materials. Phys Chem Chem Phys 2023; 25:1430-1456. [PMID: 36601788 DOI: 10.1039/d2cp05228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Investigating magnetic phenomena at the microscopic level has emerged as an indispensable research domain in the field of low-dimensional magnetic materials. Understanding quantum phenomena that mediate the magnetic interactions in dimensionally confined materials is crucial from the perspective of designing cheaper, compact, and energy-efficient next-generation spintronic devices. The infrequent occurrence of intrinsic long-range magnetic order in dimensionally confined materials hinders the advancement of this domain. Hence, introducing and controlling the ferromagnetic character in two-dimensional materials is important for further prospective studies. The interface in a heterostructure significantly contributes to modulating its collective magnetic properties. Quantum phenomena occurring at the interface of engineered heterostructures can enhance or suppress magnetization of the system and introduce magnetic character to a native non-magnetic system. Considering most 2D magnetic materials are used as stacks with other materials in nanoscale devices, the methods to control the magnetism in a heterostructure and understanding the corresponding mechanism are crucial for promising spintronic and other functional applications. This review highlights the effect of electric polarization of the adjacent layer, changed structural configuration at the vicinity of the interface, natural strain induced by lattice mismatch, and exchange interaction in the interfacial region in modulating the magnetism of heterostructures of van der Waals and non-van der Waals materials. Further, prospects of interface-engineered magnetism in spin-dependent device applications are also discussed.
Collapse
Affiliation(s)
- Liyenda Gogoi
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Pulickel M Ajayan
- Benjamin M. and Mary Greenwood Anderson Professor of Engineering, Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA.
| | - Pritam Deb
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| |
Collapse
|
38
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
39
|
Bitonto V, Garello F, Scherberich A, Filippi M. Prussian Blue Staining to Visualize Iron Oxide Nanoparticles. Methods Mol Biol 2023; 2566:321-332. [PMID: 36152263 DOI: 10.1007/978-1-0716-2675-7_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Iron deposits in cells and tissues can be detected by ex vivo histological examination through the Prussian blue (PB) staining. This practical, inexpensive, and highly sensitive technique involves the treatment of fixed tissue sections and cells with acid solutions of ferrocyanides that combine with ferric ion forming a bright blue pigment (i.e., ferric ferrocyanide). The staining can be applied to visualize iron oxide nanoparticles (IONPs), versatile magnetic nanosystems that are used in various biomedical applications and whose localization is usually required at a higher resolution than that enabled by in vivo tracking techniques.
Collapse
Affiliation(s)
- Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Arnaud Scherberich
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland.
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| | - Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Vedarethinam V, Jeevanandam J, Acquah C, Danquah MK. Magnetic Nanoparticles for Protein Separation and Purification. Methods Mol Biol 2023; 2699:125-159. [PMID: 37646997 DOI: 10.1007/978-1-0716-3362-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.
Collapse
Affiliation(s)
- Vadanasundari Vedarethinam
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA.
| |
Collapse
|
41
|
Drozdov AS, Komarova KS, Mochalova EN, Komedchikova EN, Shipunova VO, Nikitin MP. Fluorescent Magnetic Nanoparticles for Bioimaging through Biomimetic Surface Modification. Int J Mol Sci 2022; 24:ijms24010134. [PMID: 36613578 PMCID: PMC9820170 DOI: 10.3390/ijms24010134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nanostructured materials and systems find various applications in biomedical fields. Hybrid organo-inorganic nanomaterials are intensively studied in a wide range of areas, from visualization to drug delivery or tissue engineering. One of the recent trends in material science is biomimetic approaches toward the synthesis or modification of functional nanosystems. Here, we describe an approach toward multifunctional nanomaterials through the biomimetic polymerization of dopamine derivatives. Magnetite nanoparticles were modified with a combination of dopamine conjugates to give multifunctional magneto-fluorescent nanocomposites in one synthetic step. The obtained material showed excellent biocompatibility at concentrations up to 200 μg/mL and an in vivo biodistribution profile typical for nanosized formulations. The synthesized systems were conjugated with antibodies against HER2 to improve their selectivity toward HER2-positive cancer cells. The produced material can be used for dual magneto-optical in vivo studies or targeted drug delivery. The applied synthetic strategy can be used for the creation of various multifunctional hybrid nanomaterials in mild conditions.
Collapse
Affiliation(s)
- Andrey S Drozdov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Kristina S Komarova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta N Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Elena N Komedchikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Victoria O Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
42
|
Hansapaiboon S, Bulatao BP, Sorasitthiyanukarn FN, Jantaratana P, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Fabrication of Curcumin Diethyl γ-Aminobutyrate-Loaded Chitosan-Coated Magnetic Nanocarriers for Improvement of Cytotoxicity against Breast Cancer Cells. Polymers (Basel) 2022; 14:5563. [PMID: 36559930 PMCID: PMC9785553 DOI: 10.3390/polym14245563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
This study shows the effectiveness of magnetic-guide targeting in the delivery of curcumin diethyl γ-aminobutyrate (CUR-2GE), a prodrug of curcumin (CUR) previously synthesized to overcome unfavorable physicochemical properties of CUR. In this study, chitosan (Ch)-coated iron oxide nanoparticles (Ch-IONPs) were fabricated and optimized using Box-Behnken design-based response surface methodology for delivery of CUR-2GE. Ch was used as a coating material on the nanoparticle surface to avoid aggregation. The optimized condition for preparing Ch-IONPs consisted of using 4 mg Ch fabricated at pH 11 under a reaction temperature of 85 °C. The optimized Ch-IONPs were successfully loaded with CUR-2GE with sufficient loading capacity (1.72 ± 0.01%) and encapsulation efficiency (94.9 ± 0.8%). The obtained CUR-2GE-loaded Ch-IONPs (CUR-2GE-Ch-IONPs) exhibited desirable characteristics including a particle size of less than 50 nm based on TEM images, superparamagnetic property, highly crystalline IONP core, sufficient stability, and sustained-release profile. In the presence of permanent magnets, CUR-2GE-Ch-IONPs significantly increased cellular uptake and cytotoxicity toward MDA-MB-231 with a 12-fold increase in potency compared to free CUR-2GE, indicating the potential of magnetic-field assisted delivery of CUR-2GE-Ch-IONPs for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Supakarn Hansapaiboon
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul Bulatao
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Philippines
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Jantaratana
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
43
|
Alginate-Derivative Encapsulated Carbon Coated Manganese-Ferrite Nanodots for Multimodal Medical Imaging. Pharmaceutics 2022; 14:pharmaceutics14122550. [PMID: 36559045 PMCID: PMC9782169 DOI: 10.3390/pharmaceutics14122550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Carbon-decorated ferrite nanodots (MNF@Cs) have been enhanced with superparamagnetism and higher fluorescence quantum yield by encapsulation with an alginate derivative to create a cost-effective and less toxic multimodal contrast agent for replacing the conventional heavy metal Gd-containing contrast agent used in MR imaging. The novel surface-engineered particles (MNF@C-OSAs), devoid of labels, can simultaneously provide both longitudinal and transverse relaxation-based magnetic resonance imaging (MRI) and fluorescence emission. According to the findings of in vitro studies, the calculated molar relaxivities and the molar radiant efficiencies are indicative of the multimodal efficacy of MNF@C-OSA as compared with MNF@C particles and conventional contrast agents used in medical imaging. MNF@C-OSAs were shown to be significantly biocompatible and negligibly toxic when assessed against A549 cells and zebrafish embryos, indicating their potential for use as theranostic agents.
Collapse
|
44
|
Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes (Basel) 2022. [DOI: 10.3390/pr10112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. They are solving a large portion of problems in several industries, including cosmetics, pharmaceuticals, diagnostics, water remediation, photoelectronics, and information storage, to name a few. As a result, more MNPs are put into contact with biological organisms, including humans, via interacting with their cellular structures. This situation will require a deeper understanding of these particles’ full impact in interacting with complex biological systems, and even though extensive studies have been carried out on different biological systems discussing toxicology aspects of MNP systems used in biomedical applications, they give mixed and inconclusive results. Chemical agencies, such as the Registration, Evaluation, Authorization, and Restriction of Chemical substances (REACH) legislation for registration, evaluation, and authorization of substances and materials from the European Chemical Agency (ECHA), have held meetings to discuss the issue. However, nanomaterials (NMs) are being categorized by composition alone, ignoring the physicochemical properties and possible risks that their size, stability, crystallinity, and morphology could bring to health. Although several initiatives are being discussed around the world for the correct management and disposal of these materials, thanks to the extensive work of researchers everywhere addressing the issue of related biological impacts and concerns, and a new nanoethics and nanosafety branch to help clarify and bring together information about the impact of nanoparticles, more questions than answers have arisen regarding the behavior of MNPs with a wide range of effects in the same tissue. The generation of a consolidative framework of these biological behaviors is necessary to allow future applications to be manageable.
Collapse
|
45
|
Fragal EH, Fragal VH, Silva EP, Paulino AT, da Silva Filho EC, Mauricio MR, Silva R, Rubira AF, Muniz EC. Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications. Carbohydr Polym 2022; 292:119665. [PMID: 35725166 DOI: 10.1016/j.carbpol.2022.119665] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
This review reports recent advances in polysaccharide-based magnetic hydrogels as smart platforms for different biomedical applications. These hydrogels have proved to be excellent, viable, eco-friendly alternative materials for the biomedical field due to their biocompatibility, biodegradability, and possibility of controlling delivery processes via modulation of the remote magnetic field. We first present their main synthesis methods and compare their advantages and disadvantages. Next, the synergic properties of hydrogels prepared with polysaccharides and magnetic nanoparticles (MNPs) are discussed. Finally, we describe the main contributions of polysaccharide-based magnetic hydrogels in the targeted drug delivery, tissue regeneration, and hyperthermia therapy fields. Overall, this review aims to motivate the synthesis of novel composite biomaterials, based on the combination of magnetic nanoparticles and natural polysaccharides, to overcome challenges that still exist in the treatment of several diseases.
Collapse
Affiliation(s)
- Elizângela H Fragal
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Vanessa H Fragal
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil.
| | - Elisangela P Silva
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Alexandre T Paulino
- Santa Catarina State University, Department of Chemistry, Rua Paulo Malschitzki, 200, Zona Industrial Norte, 89.219-710 Joinville, SC, Brazil
| | - Edson C da Silva Filho
- Federal University of Piauí, Department of Chemistry, Campus Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Marcos R Mauricio
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Rafael Silva
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Adley F Rubira
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Edvani C Muniz
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil; Federal University of Piauí, Department of Chemistry, Campus Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil; Federal Technological University of Paraná, Estrada dos Pioneiros, 3131, Jardim Morumbi, 86036-370 Londrina, PR, Brazil.
| |
Collapse
|
46
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
47
|
Riaz T, Munnwar A, Shahzadi T, Zaib M, Shahid S, Javed M, Iqbal S, Rizwan K, Waqas M, Khalid B, Awwad NS, Ibrahium HA, Bajaber MA. Phyto-mediated synthesis of nickel oxide (NiO) nanoparticles using leaves’ extract of Syzygium cumini for antioxidant and dyes removal studies from wastewater. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Krasitskaya VV, Kudryavtsev AN, Yaroslavtsev RN, Velikanov DA, Bayukov OA, Gerasimova YV, Stolyar SV, Frank LA. Starch-Coated Magnetic Iron Oxide Nanoparticles for Affinity Purification of Recombinant Proteins. Int J Mol Sci 2022; 23:ijms23105410. [PMID: 35628220 PMCID: PMC9140719 DOI: 10.3390/ijms23105410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Starch-coated magnetic iron oxide nanoparticles have been synthesized by a simple, fast, and cost-effective co-precipitation method with cornstarch as a stabilizing agent. The structural and magnetic characteristics of the synthesized material have been studied by transmission electron microscopy, Mössbauer spectroscopy, and vibrating sample magnetometry. The nature of bonds between ferrihydrite nanoparticles and a starch shell has been examined by Fourier transform infrared spectroscopy. The data on the magnetic response of the prepared composite particles have been obtained by magnetic measurements. The determined magnetic characteristics make the synthesized material a good candidate for use in magnetic separation. Starch-coated magnetic iron oxide nanoparticles have been tested as an affinity sorbent for one-step purification of several recombinant proteins (cardiac troponin I, survivin, and melanoma inhibitory activity protein) bearing the maltose-binding protein as an auxiliary fragment. It has been shown that, due to the highly specific binding of this fragment to the starch shell, the target fusion protein is selectively immobilized on magnetic nanoparticles and eluted with the maltose solution. The excellent efficiency of column-free purification, high binding capacity of the sorbent (100–500 µg of a recombinant protein per milligram of starch-coated magnetic iron oxide nanoparticles), and reusability of the obtained material have been demonstrated.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (A.N.K.)
| | - Alexander N. Kudryavtsev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (A.N.K.)
| | - Roman N. Yaroslavtsev
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Dmitry A. Velikanov
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
| | - Oleg A. Bayukov
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
| | - Yulia V. Gerasimova
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Sergey V. Stolyar
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (A.N.K.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Correspondence:
| |
Collapse
|
49
|
The convergence of in silico approach and nanomedicine for efficient cancer treatment; in vitro investigations on curcumin loaded multifunctional graphene oxide nanocomposite structure. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Kheilkordi Z, Mohammadi Ziarani G, Mohajer F, Badiei A, Sillanpää M. Recent advances in the application of magnetic bio-polymers as catalysts in multicomponent reactions. RSC Adv 2022; 12:12672-12701. [PMID: 35480367 PMCID: PMC9039991 DOI: 10.1039/d2ra01294d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic nanoparticles have attracted significant attention due to their high surface area and superparamagnetic properties. Bio-polymers composed of polysaccharides including alginate, cellulose, glucose, dextrin, chitosan, and starch can be immobilized on magnetic nanoparticles. Bio-polymers can be obtained from natural sources, such as plants, tunicates, algae, and bacteria. Bio-polymers obtained from natural sources have attracted attention due to their various properties including efficient functional groups, non-toxicity, low cost, availability, and biocompatibility. According to the targets of "green chemistry", the application of bio-polymers is effective in reducing pollution. Furthermore, they are excellent agents for the functionalization of magnetic nanoparticles to yield nanomagnetic bio-polymers, which can be applied as recoverable and eco-friendly catalysts in multicomponent reactions.
Collapse
Affiliation(s)
- Zohreh Kheilkordi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran 1993893979 +98 2188613937 +98 2188613937
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran 1993893979 +98 2188613937 +98 2188613937
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran 1993893979 +98 2188613937 +98 2188613937
| | - Alireaza Badiei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg P. O. Box 17011 Doornfontein 2028 South Africa .,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Malaysia.,International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University Solan 173212 Himachal Pradesh India
| |
Collapse
|