1
|
Karl TA, Johnson M, Scott FI. Unanticipated Findings With Upadacitinib Therapy. Gastroenterology 2025; 168:e1-e4. [PMID: 39168168 DOI: 10.1053/j.gastro.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Taylor A Karl
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - McKinzie Johnson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Frank I Scott
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Politano D, Tonduti D, Battini R, Fazzi E, Orcesi S. Exploring emerging JAK inhibitors in the treatment of Aicardi-Goutières syndrome. Expert Opin Emerg Drugs 2024:1-19. [PMID: 39704072 DOI: 10.1080/14728214.2024.2445508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Aicardi-Goutières syndrome (AGS) is a genetically heterogeneous monogenic autoinflammatory disorder classified as an 'interferonopathy'. Nine genes have been implicated in AGS, encoding proteins involved in nucleic acid clearance, repair, sensing, or histone pre-mRNA processing. Dysregulation in these pathways leads to excessive type I interferon production, the primary driver of the disease. AGS typically presents with early-life neurological regression, followed by stabilization with varying degrees of neurological impairment and common extra-neurological features, such as chilblains. Advances in understanding AGS pathogenesis have enabled the development of new therapies, with JAK inhibitors emerging as the most studied option for reducing interferon-mediated effects. AREAS COVERED This review discusses the clinical features, genetic basis, and molecular pathways of AGS while tracing the evolution of its therapeutic strategies. Particular emphasis is placed on JAK inhibitors, which target proteins activated by type I interferons, providing a novel direction in treatment. EXPERT OPINION Inhibitors effectively reduce extra-neurological symptoms in AGS, though their impact on neurological outcomes remains unclear. The unknown natural history of AGS limits treatment evaluation. Despite growing insights, key aspects of pathogenesis and treatment optimization - including timing, administration, and long-term effects - remain unresolved, highlighting the need for further research.
Collapse
Affiliation(s)
- Davide Politano
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Gao Y, Lan L, Wang C, Wang Y, Shi L, Sun L. Selective JAK1 inhibitors and the therapeutic applications thereof: a patent review (2016-2023). Expert Opin Ther Pat 2024:1-15. [PMID: 39716925 DOI: 10.1080/13543776.2024.2446223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION The family of Janus kinases (JAKs) consists of four intracellular non-receptor tyrosine kinases: JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2). Among these four subtypes, JAK1 is the only isoform that can form heterodimers with all three JAKs, and JAK1 dysfunction can lead to inflammation and severe autoimmune diseases. Interest in JAK1 inhibitors has grown tremendously, and the number of inhibitors targeting JAK1 continues to rise annually. AREAS COVERED This paper reviews JAK1 small molecule inhibitors that were reported in patent literature from January 2016 to December 2023. Web of Science, SciFinder, PubMed, WIPO, EPO, USPTO, and CNIPA databases were used for searching the literature and patents for JAK1 inhibitors. EXPERT OPINION JAK1 inhibitors show great promise in treating cytokine dysregulated disorders; nevertheless, nonselective JAK1 inhibitors have more severe side effects, which restricts the therapy's safety and use. Therefore, developing highly selective JAK1 inhibitors can mitigate potential risks and lead to next-generation therapies with improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Yuhui Gao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Li Lan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Cheng Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Yuwei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Liping Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
4
|
Gubernatorova EO, Samsonov MY, Drutskaya MS, Lebedeva S, Bukhanova D, Materenchuk M, Mutig K. Targeting inerleukin-6 for renoprotection. Front Immunol 2024; 15:1502299. [PMID: 39723211 PMCID: PMC11668664 DOI: 10.3389/fimmu.2024.1502299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Sterile inflammation has been increasingly recognized as a hallmark of non-infectious kidney diseases. Induction of pro-inflammatory cytokines in injured kidney tissue promotes infiltration of immune cells serving to clear cell debris and facilitate tissue repair. However, excessive or prolonged inflammatory response has been associated with immune-mediated tissue damage, nephron loss, and development of renal fibrosis. Interleukin 6 (IL-6) is a cytokine with pleiotropic effects including a major role in inflammation. IL-6 signals either via membrane-bound (classic signaling) or soluble receptor forms (trans-signaling) thus affecting distinct cell types and eliciting various metabolic, cytoprotective, or pro-inflammatory reactions. Antibodies neutralizing IL-6 or its receptor have been developed for therapy of autoimmune and chronic non-renal inflammatory diseases. Small molecule inhibitors of Janus kinases acting downstream of the IL-6 receptor, as well as recombinant soluble glycoprotein 130 variants suppressing the IL-6 trans-signaling add to the available therapeutic options. Animal data and accumulating clinical experience strongly suggest that suppression of IL-6 signaling pathways bears therapeutic potential in acute and chronic kidney diseases. The present work analyses the renoprotective potential of clinically relevant IL-6 signaling inhibitors in acute kidney injury, chronic kidney disease, and kidney transplantation with focus on current achievements and future prospects.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Maria Materenchuk
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
5
|
Caputo L, Stamenkovic C, Tierney MT, Falzarano MS, Bassel-Duby R, Ferlini A, Olson EN, Puri PL, Sacco A. Modulation of the JAK2-STAT3 pathway promotes expansion and maturation of human iPSCs-derived myogenic progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.624203. [PMID: 39713478 PMCID: PMC11661153 DOI: 10.1101/2024.12.09.624203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Generation of in vitro induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation in vivo as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation. Here we demonstrate that modulation of the JAK2/STAT3 signaling pathway during an in vitro skeletal muscle differentiation protocol, increases the yield of PAX7+ and CD54+ SMPCs and drive them to a postnatal maturation stage, in both human ES and patient-derived iPSCs. Importantly, upon removal of the inhibition from the cultures, the obtained SMPCs are able to differentiate into multinucleated myotubes in vitro. These findings reveal that modulation of the JAK2/STAT3 signaling pathway is a potential therapeutic avenue to generate SMPCs in vitro with increase potential for cell-therapy approaches.
Collapse
Affiliation(s)
- Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew T. Tierney
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Ong Ming San E, Sharif K, Rosiou K, Rennie M, Selinger CP. Recent Advances in the Management of Acute Severe Ulcerative Colitis. J Clin Med 2024; 13:7446. [PMID: 39685904 DOI: 10.3390/jcm13237446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Acute severe ulcerative colitis is a medical emergency requiring inpatient treatment with intravenous steroids. Approximately one-third of patients do not respond to steroids sufficiently and require medical rescue therapy. Infliximab and cyclosporine are equally effective rescue agents, though infliximab is often preferred by clinicians for ease of use and greater familiarity. The use of cyclosporine is becoming more frequent, however, in patients previously exposed to infliximab. Those patients not exhibiting an adequate response to rescue therapy require colectomy. There is increasing interest in modified medical treatment to rescue the need for surgery. Janus kinase inhibitors may provide benefits when used alongside steroids from admission or as a rescue agent, but further randomised trials are needed to clearly establish their role. Intensified dosing of infliximab when used as a rescue therapy has shown mixed results but seems sensible in patients with low albumin and high disease burden. In this review, we describe the current established treatment pathways and report newer developments and evolving concepts that may in the future improve the care of patients with acute severe ulcerative colitis.
Collapse
Affiliation(s)
- Elaine Ong Ming San
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Bexley Wing, Beckett Street, Leeds LS9 7TF, UK
| | - Kassem Sharif
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Bexley Wing, Beckett Street, Leeds LS9 7TF, UK
- Department of Gastroenterology, Sheba Medical Centre, Ramat Gan 5262000, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Konstantina Rosiou
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Bexley Wing, Beckett Street, Leeds LS9 7TF, UK
| | - Michael Rennie
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Bexley Wing, Beckett Street, Leeds LS9 7TF, UK
- Department of Gastroenterology and Hepatology, Western Sydney Local Health District, Blacktown, NSW 2747, Australia
| | - Christian Philipp Selinger
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Bexley Wing, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
7
|
Wen T, Liu T, Chen H, Liu Q, Shen X, Hu Q. Demethylzeylasteral alleviates inflammation and colitis via dual suppression of NF-κB and STAT3/5 by targeting IKKα/β and JAK2. Int Immunopharmacol 2024; 142:113260. [PMID: 39340986 DOI: 10.1016/j.intimp.2024.113260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a common inflammatory bowel disease and a risk factor of colorectal cancer. Demethylzeylasteral (DZT), a bioactive component mainly isolated from Tripterygium wilfordii, has been shown to inhibit inflammation and cancer. However, its anti-UC function and molecular mechanisms have not been well characterized. This study aims to explore the therapeutic effect and functional targets of demethylzeylasteral against UC. METHODS RT-qPCR, Western blot and ELISA were used to detect the generation of pro-inflammatory cytokines and chemokines in murine macrophage cells. Luciferase reporter gene, Western blot, pull-down, CETSA, DARTS, and virtual docking were employed to detect the anti-inflammatory targets and molecular mechanisms of demethylzeylasteral. The anti-inflammatory and anti-colitis effects of demethylzeylasteral were further determined in DSS-challenged mice. RESULTS In vitro, demethylzeylasteral inhibited NO and PGE2 production by suppressing the mRNA and protein expression of iNOS and COX-2, and suppressed the mRNA expression of TNF-α, IL-1β, IL-6, MCP-1, CXCL9, and CXCL10 in RAW264.7 macrophages stimulated by LPS/IFNγ. Furthermore, demethylzeylasteral was not only capable of inhibiting IKKα/β-NF-κB activation, but also able to block JAKs-STAT3/5 activation in LPS/INFγ-incubated RAW264.7 cells or DSS-exposed colon tissues of mice. Mechanistically, demethylzeylasteral was found to directly bind to IKKα/β and JAK2 kinases, leading to inactivation of pro-inflammatory signaling cascades and reduced generation of cytokines and chemokines. In vivo, oral administration of demethylzeylasteral significantly attenuated DSS-induced colitis, which was mainly manifested as mitigated symptoms of colitis, colonic mucosal barrier damage, and colonic inflammation. CONCLUSION We demonstrated that demethylzeylasteral alleviated UC pathology by blocking NF-κB and STAT3/5 pathways via targeting IKKα/β and JAK2 kinases, raising the possibility that demethylzeylasteral could act as a candidate for the treatment of UC.
Collapse
Affiliation(s)
- Tian Wen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Ting Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Hongqing Chen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
8
|
Millar JE, Reddy K, Bos LDJ. Future Directions in Therapies for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:943-951. [PMID: 39443010 DOI: 10.1016/j.ccm.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is caused by a complex interplay among hyperinflammation, endothelial dysfunction, and alveolar epithelial injury. Targeted treatments toward the underlying pathways have been unsuccessful in unselected patient populations. The first reliable biological subphenotypes reflective of these biological disease states have been identified in the past decade. Subphenotype targeted intervention studies are needed to advance the pharmacologic treatment of ARDS.
Collapse
Affiliation(s)
- Jonathan E Millar
- Baillie-Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, The Roslin Institute, Easter Bush Campus, Midlothian, Edinburgh EH25 9RG, UK; Department of Critical Care, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kiran Reddy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, University Road, Belfast BT7 1NN, UK
| | - Lieuwe D J Bos
- Intensive Care Department, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
9
|
Twomey RE, Perper SJ, Westmoreland SV, Srinivasan S, Mathieu SL, Frank KE, Karman J, Long AJ, Housley WJ, Clarke SH. Therapeutic JAK1 Inhibition Reverses Lupus Nephritis in a Mouse Model and Demonstrates Transcriptional Changes Consistent With Human Disease. ACR Open Rheumatol 2024; 6:900-911. [PMID: 39364807 PMCID: PMC11638135 DOI: 10.1002/acr2.11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Janus kinase family members are essential for signaling by multiple cytokines, including many implicated in systemic lupus erythematosus (SLE) pathogenesis. To test whether inhibition of JAK1 signaling can be efficacious in SLE, we used a JAK1-selective inhibitor (ABT-317) and evaluated its ability to ameliorate disease in murine SLE. METHODS Efficacy of ABT-317 was evaluated using NZB/W-F1 mice treated prophylactically and therapeutically. Primary endpoints were proteinuria, survival, and saliva production. Other endpoints included histological analysis of kidneys and salivary glands, flow cytometric analysis of splenic cell populations, and gene expression analysis by RNA sequencing in the kidneys, salivary glands, and blood. Publicly available human kidney gene transcription data were used to assess the translatability of the mouse findings. RESULTS ABT-317 was efficacious when dosed prophylactically and prevented disease for up to two months after treatment cessation. When dosed therapeutically, ABT-317 quickly reversed severe proteinuria and restored saliva production, as well as diminished kidney and salivary gland inflammation. ABT-317-induced changes in glomerular morphology coincided with normalization of a human nephrotic gene signature, suggesting translatability to human lupus nephritis (LN). CONCLUSION JAK1 inhibition prevented and reversed kidney and salivary gland manifestations of murine lupus with long-lasting effects after treatment cessation. These data, along with the presence of JAK1 and nephrotic gene signatures in human LN glomeruli, suggest that a JAK1-selective inhibitor may be an effective therapeutic in the treatment of human SLE and LN.
Collapse
|
10
|
Maji L, Sengupta S, Purawarga Matada GS, Teli G, Biswas G, Das PK, Panduranga Mudgal M. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Mol Divers 2024; 28:4467-4513. [PMID: 38236444 DOI: 10.1007/s11030-023-10794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
JAK-STAT signalling pathway was discovered more than quarter century ago. The JAK-STAT pathway protein is considered as one of the crucial hubs for cytokine secretion which mediates activation of different inflammatory, cellular responses and hence involved in different etiological factors. The various etiological factors involved are haematopoiesis, immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis. The presence of the active mutation V617K plays a significant role in the progression of the JAK-STAT pathway-related disease. Consequently, targeting the JAK-STAT pathway could be a promising therapeutic approach for addressing a range of causative factors. In this current review, we provided a comprehensive discussion for the in-detail study of anatomy and physiology of the JAK-STAT pathway which contributes structural domain rearrangement, activation, and negative regulation associated with the downstream signaling pathway, relationship between different cytokines and diseases. This review also discussed the recent development of clinical trial entities. Additionally, this review also provides updates on FDA-approved drugs. In the current investigation, we have classified recently developed small molecule inhibitors of JAK-STAT pathway according to different chemical classes and we emphasized their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Gourab Biswas
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
11
|
Chen BL, Huang S, Dong XW, Wu DD, Bai YP, Chen YY. Janus kinase inhibitors and adverse events of acne in dermatologic indications: a systematic review and network meta-analysis. J DERMATOL TREAT 2024; 35:2397477. [PMID: 39218446 DOI: 10.1080/09546634.2024.2397477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Background: The occurrence of acne in patients treated with Janus kinase (JAK) inhibitors for skin diseases is a potential issue, which may reduce treatment adherence. Purpose: To systematically analyzes randomized clinical trials (RCTs) of JAK inhibitors in dermatological indications for the risk of acne as an adverse event. Methods: A meta-analysis of odds ratios (ORs) for acne incidence was conducted. Data were quantitatively synthesized using random-effects meta-analysis. Surface under the cumulative ranking curve (SUCRA) values representing the relative ranking probabilities of treatments were obtained. Analyses were performed using R statistical software version 4.4.0. Results: A total of 11,396 patients were included from 24 studies. The incidence of acne for JAK inhibitors was ranked according to the SUCRA as follows: JAK1 inhibitors > TYK2 inhibitors > combined JAK1 and JAK2 inhibitors > combined JAK1 and TYK2 inhibitors > JAK3 + TEC inhibitors > pan-JAK inhibitors. ORs were higher for longer durations of drug use and larger dosages. Subgroup analyses by disease indication revealed increased ORs for psoriasis (5.52 [95% CI, 1.39-21.88]), vitiligo (4.15 [95% CI, 1.27-13.58]), alopecia areata (3.86 [95% CI, 1.58-9.42]), and atopic dermatitis (2.82 [95% CI, 1.75-4.54]). The use of JAK inhibitors in patients with systemic lupus erythematosus (SLE) may not significantly increase the incidence of acne. Conclusions: There are higher rates of acne following treatment with JAK inhibitors for dermatologic indications, particularly with longer durations and larger dosages. Pan-JAK inhibitors exhibit the lowest incidence of acne.
Collapse
Affiliation(s)
- Bai-Lin Chen
- Beijing University of Chinese Medicine, Beijing, China
- National Center for Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shan Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Wan Dong
- Beijing University of Chinese Medicine, Beijing, China
- National Center for Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dou-Dou Wu
- Beijing University of Chinese Medicine, Beijing, China
- National Center for Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan-Ping Bai
- National Center for Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan-Yuan Chen
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| |
Collapse
|
12
|
DeFilipp Z. Can JAK inhibition prevent GVHD? Blood 2024; 144:2273-2274. [PMID: 39607712 DOI: 10.1182/blood.2024026193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
|
13
|
Martinez de la Torre A, Clausen AB, Burden AM, Weiler S. Fracture-Related Safety Reporting of JAK Inhibitors: An Analysis from the WHO Global VigiBase. Drug Saf 2024:10.1007/s40264-024-01490-w. [PMID: 39604587 DOI: 10.1007/s40264-024-01490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION The Janus kinase (JAK) inhibitors are treatment options for autoimmune diseases. Numerous safety concerns have been raised. The European Medicines Agency updated the product information of tofacitinib to include the risk of fractures-but not for other JAK inhibitors. We conducted a global pharmacovigilance analysis of previously investigated JAK inhibitors to investigate a potential class effect. METHODS Individual case safety reports (ICSRs) for all licensed JAK inhibitors were identified from the global WHO pharmacovigilance database. The primary outcome of interest was a bone fracture. Disproportionality analyses using reporting odds ratios (RORs) were conducted. RESULTS We identified 122,037 ICSRs for tofacitinib, 27,786 ICSRs for upadacitinib, 14,616 ICSRs for baricitinib, 830 for filgotinib, and 350 for abrocitinib. Among the ICSRs, we identified 2198 (1.8%), 634 (2.3%), and 144 (1.0%) reports, where a bone fracture was reported for tofacitinib, upadacitinib, and baricitinib, respectively. Few reports were available for the newest drugs filgotinib (10) and abrocitinib (1). JAK inhibitors were associated with increased reporting for fracture: tofacitinib (ROR 3.34, 95% confidence interval [CI] 3.20-3.48), upadacitinib (ROR 4.23, 95% CI 3.80-4.48), baricitinib (ROR 1.80, 95% CI 1.52-2.11) and filgotinib (ROR 2.24, 95% CI 1.11-3.94). Patients with bone fractures were more often female, older and had a higher number of co-reported medications. They were more likely to use glucocorticoids, opioids, and bisphosphonates. CONCLUSION The results from this pharmacovigilance analysis, based on a spontaneous reporting database associated with inherent limitations, suggest a potential risk of fractures with JAK inhibitors, indicating that a class effect cannot be ruled out.
Collapse
Affiliation(s)
- Adrian Martinez de la Torre
- Pharmacoepidemiology Group, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich ETH Zürich, HCI H 407 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Andreas Bech Clausen
- Pharmacoepidemiology Group, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich ETH Zürich, HCI H 407 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea M Burden
- Pharmacoepidemiology Group, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich ETH Zürich, HCI H 407 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Stefan Weiler
- Pharmacoepidemiology Group, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich ETH Zürich, HCI H 407 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
- Institute of Primary Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Costaguta A, Costaguta G, Álvarez F. Autoimmune hepatitis: Towards a personalized treatment. World J Hepatol 2024; 16:1225-1242. [PMID: 39606175 PMCID: PMC11586748 DOI: 10.4254/wjh.v16.i11.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Autoimmune hepatitis is an uncommon condition that affects both adults and children and is characterized by chronic and recurrent inflammatory activity in the liver. This inflammation is accompanied by elevated IgG and autoantibody levels. Historically, treatment consists of steroids with the addition of azathioprine, which results in remission in approximately 80% of patients. Despite significant advancements in our understanding of the immune system over the past two decades, few modifications have been made to treatment algorithms, which have remained largely unchanged since they were first proposed more than 40 years ago. This review summarized the various treatment options currently available as well as our experiences using them. Although steroids are the standard treatment for induction therapy, other medications may be considered. Cyclosporin A, a calcineurin inhibitor that decreases T cell activation, has proven effective for induction of remission, but its long-term side effects limit its appeal for maintenance. Tacrolimus, a drug belonging to the same family, has been used in patients with refractory diseases with fewer side effects. Sirolimus and everolimus have interesting effects on regulatory T cell populations and may become viable options in the future. Mycophenolate mofetil is not effective for induction but is a valid alternative for patients who are intolerant to azathioprine. B cell-depleting drugs, such as rituximab and belimumab, have been successfully used in refractory cases and are useful in both the short and long term. Other promising treatments include anti-tumor necrosis factors, Janus kinases inhibitors, and chimeric antigen receptor T cell therapy. This growing armamentarium allows us to imagine a more tailored approach to the treatment of autoimmune hepatitis in the near future.
Collapse
Affiliation(s)
- Alejandro Costaguta
- Department of Hepatology and Liver Transplant Unit, Sanatorio de Niños de Rosario, Rosario 2000, Santa Fe, Argentina.
| | - Guillermo Costaguta
- Department of Gastroenterology, Hepatology, and Nutrition, CHU Sainte-Justine, Montreal H3T 1C5, Quebec, Canada
| | - Fernando Álvarez
- Department of Pediatrics, CHU Sainte-Justine, Montreal H3T 1C5, Quebec, Canada
| |
Collapse
|
15
|
Mammoliti O, Menet C, Cottereaux C, Blanc J, De Blieck A, Coti G, Geney R, Oste L, Ostyn K, Palisse A, Quinton E, Schmitt B, Borgonovi M, Parent I, Jagerschmidt C, De Vos S, Vayssiere B, López-Ramos M, Shoji K, Brys R, Amantini D, Galien R, Joannesse C. Design of a potent and selective dual JAK1/TYK2 inhibitor. Bioorg Med Chem 2024; 114:117932. [PMID: 39447537 DOI: 10.1016/j.bmc.2024.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Janus kinase (JAK) inhibitors have gathered interest as treatments for several inflammatory and autoimmune diseases. The four first marketed inhibitors target JAK1, with varying selectivity towards other JAK family members, but none inhibit tyrosine kinase-2 (TYK2) at clinically relevant doses. TYK2 is required for the signaling of the interleukin (IL)-12 and IL-23 cytokines, which are key to the polarization of TH1 and TH17 cells, respectively; two cell subtypes that play major roles in inflammatory diseases. Herein, we report our effort towards the optimization of a potent and selective dual JAK1/TYK2 inhibitor series starting from a HTS hit. Structural information revealed vectors required to improve both JAK1 and TYK2 potency as well as selectivity towards JAK2. The potent inhibition of both JAK1 (3.5 nM) and TYK2 (5.7 nM) in biochemical assays by our optimized lead compound, as well as its notable selectivity against JAK2, were confirmed in cellular and whole blood assays. Inhibition of TYK2 by the lead compound was demonstrated by dose-dependent efficacy in an IL-23-induced psoriasis-like inflammation mouse model.
Collapse
Affiliation(s)
- Oscar Mammoliti
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Christel Menet
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Céline Cottereaux
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Javier Blanc
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Ann De Blieck
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Ghjuvanni Coti
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Raphaël Geney
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Line Oste
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Koen Ostyn
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Adeline Palisse
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Evelyne Quinton
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Benoit Schmitt
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Monica Borgonovi
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Isabelle Parent
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Steve De Vos
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | | | | | - Kenji Shoji
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - David Amantini
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - René Galien
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | |
Collapse
|
16
|
Chikhoune L, Poggi C, Moreau J, Dubucquoi S, Hachulla E, Collet A, Launay D. JAK inhibitors (JAKi): Mechanisms of action and perspectives in systemic and autoimmune diseases. Rev Med Interne 2024:S0248-8663(24)01251-7. [PMID: 39550233 DOI: 10.1016/j.revmed.2024.10.452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/07/2024] [Accepted: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Janus kinase (JAK) molecules are involved in important cellular activation pathways. Over the past decade, many targeted therapies have emerged, including the increasingly promising role of JAK inhibitors (JAKi) in the treatment of inflammatory and autoimmune diseases. The spectrum of use of these small molecules is increasingly broader. JAKi have been approved in several autoimmune diseases. Currently, four molecules (tofacitinib, baricitinib, upadacitinib and filgotinib) have been labeled for moderate to severe rheumatoid arthritis (RA) with failure or poor tolerance of one or more conventional disease-modifying antirheumatic drug (csDMARDS), or biologics (bDMARDS). JAKi are now also commonly used in other diseases such as psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis. They have also shown promising results in clinical trials for the treatment of other autoimmune conditions. We present here their mechanisms of action, and the main data about JAKi use on systemic and autoimmune diseases.
Collapse
Affiliation(s)
- Liticia Chikhoune
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Claire Poggi
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Julie Moreau
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Sylvain Dubucquoi
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique Médicale, CHU de Lille, 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France
| | - Eric Hachulla
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France; Inserm, 59000 Lille, France
| | - Aurore Collet
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique Médicale, CHU de Lille, 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France
| | - David Launay
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France; Inserm, 59000 Lille, France.
| |
Collapse
|
17
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
18
|
Smith SC, Diaz-Perez JA, Mochel MC, Billings SD, Fernandez L, Poklepovic AS. A High-grade PML::JAK1 Fusion Sarcoma. Am J Surg Pathol 2024:00000478-990000000-00436. [PMID: 39494835 DOI: 10.1097/pas.0000000000002326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Affiliation(s)
- Steven Christopher Smith
- Department of Pathology, VCU School of Medicine, Richmond, VA
- Department of Surgery, VCU School of Medicine, Richmond, VA
- VCU Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| | | | | | | | - Leopoldo Fernandez
- Department of Surgery, VCU School of Medicine, Richmond, VA
- VCU Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| | - Andrew S Poklepovic
- Division of Hematology, Oncology, and Palliative Care, Department of Medicine, VCU School of Medicine Richmond, VA
- VCU Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| |
Collapse
|
19
|
Pal R, Matada GSP, Teli G, Saha M, Patel R. Therapeutic potential of anticancer activity of nitrogen-containing heterocyclic scaffolds as Janus kinase (JAK) inhibitor: Biological activity, selectivity, and structure-activity relationship. Bioorg Chem 2024; 152:107696. [PMID: 39167870 DOI: 10.1016/j.bioorg.2024.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
The JAK-STAT signalling pathway is primarily involved in cytokine signalling and induces various factors namely, erythropoietin, thrombopoietin, interferons, interleukins, and granulocyte colony-stimulating factors. These factors tremendously influenced understanding human health and illness, specifically cancer. Inhibiting the JAK/STAT pathway offers enormous therapeutic promises against cancer. Many JAK inhibitors are now being studied due to their efficacy in various cancer treatments. Further, the Nitrogen-heterocyclic (N-heterocyclic) scaffold has always shown to be a powerful tool for designing and discovering synthetic compounds with diverse pharmacological characteristics. The review focuses on several FDA-approved JAK inhibitors and their systematic categorization. The medicinal chemistry perspective is highlighted and classified review on the basis of N-heterocyclic molecules. Several examples of designing strategies of N-heterocyclic rings including pyrrolo-azepine, purine, 1H-pyrazolo[3,4-d]pyrimidine, 1H-pyrrolo[2,3-b]pyridine, pyrazole, thieno[3,2-d] pyrimidine, and, pyrimidine-based derivatives and their structure-activity relationships (SAR) are discussed. Among the various N-heterocyclic-based JAK inhibitors pyrimidine-containing compound 1 exhibited excellent inhibition activity against JAK2WT and mutated-JAK2V617F with IC50 of 2.01 and 18.84 nM respectively. Amino pyrimidine-containing compound 6 and thiopheno[3,2-d]pyrimidine-containing compound 13 expressed admirable JAK3 inhibition activity with IC50 of 1.7 nM and 1.38 nM respectively. Our review will support the medicinal chemists in refining and directing the development of novel N-heterocyclic-based JAK inhibitors.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Moumita Saha
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India; Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, MAHE, Karnataka
| | - Rajiv Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| |
Collapse
|
20
|
Noor NM, Bourke A, Subramanian S. Review article: Novel therapies in inflammatory bowel disease - An update for clinicians. Aliment Pharmacol Ther 2024; 60:1244-1260. [PMID: 39403052 DOI: 10.1111/apt.18294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Several new treatments including small molecules and biologics have been approved for the treatment of inflammatory bowel diseases in recent years. Clinicians and patients now have a wide variety of therapeutic options to choose from and these novel therapies provide several advantages including oral administration, lower immunogenicity, better selectivity and arguably better safety profiles. An increase in treatment options has increased the complexity of decision-making. Both patients and clinicians have had to become rapidly familiar with efficacy of new medications balanced against a range of pre-initiation requirements, dosing schedules and adverse event profiles. AIMS To provide a simple guide to practising clinicians on recently approved and emerging therapies and address key challenges around treatment strategies such as optimal sequencing and timing of treatment. METHODS We comprehensively searched the published literature and major conference abstracts to identify phase III placebo-controlled and active comparator trials for Crohn's disease and ulcerative colitis. RESULTS Data for recently approved therapies including selective Janus kinase inhibitors, sphingosine-1 receptor modulators and p19 interleukin (IL)-23 inhibitors have demonstrated improved patient outcomes in both Crohn's disease and ulcerative colitis. Further comparative head-to-head studies have improved our understanding of when and how to optimally use newer therapies, specifically for IL-23 inhibitors. Data for emerging treatment options and novel treatment strategies such as early effective treatment, combinations of treatments and implications for sequencing are continuing to transform IBD care continually. CONCLUSIONS Recently approved novel therapies have expanded the range of medical options available to treat IBD. However, further data from long-term extension studies, real-world studies and head-to-head trials are warranted to better inform the long-term safety and optimal sequencing of treatments for patients living with IBD.
Collapse
Affiliation(s)
- Nurulamin M. Noor
- Department of Gastroenterology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Aoibh Bourke
- Department of Gastroenterology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Sreedhar Subramanian
- Department of Gastroenterology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
21
|
Rachubinski AL, Wallace E, Gurnee E, Estrada BAE, Worek KR, Smith KP, Araya P, Waugh KA, Granrath RE, Britton E, Lyford HR, Donovan MG, Eduthan NP, Hill AA, Martin B, Sullivan KD, Patel L, Fidler DJ, Galbraith MD, Dunnick CA, Norris DA, Espinosa JM. JAK inhibition decreases the autoimmune burden in Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.13.24308783. [PMID: 38946973 PMCID: PMC11213071 DOI: 10.1101/2024.06.13.24308783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmune disorders and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined. Here, we report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS. We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. We then report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints. Analysis of the first 10 participants to complete the 16-week study shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS. ClinicalTrials.gov identifier: NCT04246372.
Collapse
Affiliation(s)
- Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Wallace
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Gurnee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kayleigh R. Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P. Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Current address: Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ross E. Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor Britton
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah R. Lyford
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Micah G. Donovan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda A. Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Barry Martin
- Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lina Patel
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Psychiatry, Child and Adolescent Division, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah J. Fidler
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, 23 USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cory A. Dunnick
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A. Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
22
|
Chen Z, Jiang P, Su D, Zhao Y, Zhang M. Therapeutic inhibition of the JAK-STAT pathway in the treatment of inflammatory bowel disease. Cytokine Growth Factor Rev 2024; 79:1-15. [PMID: 39179485 DOI: 10.1016/j.cytogfr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.
Collapse
Affiliation(s)
- Zihan Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, 02472, MA, United States
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, 60637
| | - Mingming Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| |
Collapse
|
23
|
Juan HY, Sheu SJ, Hwang DK. Review of Janus Kinase Inhibitors as Therapies for Noninfectious Uveitis. J Ocul Pharmacol Ther 2024. [PMID: 39315932 DOI: 10.1089/jop.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Uveitis remains one of the leading causes of blindness worldwide, with different etiologies requiring separate approaches to treatment. For over a decade, oral, topical, and local injection of corticosteroids as well as systemic conventional disease-modifying antirheumatic drugs (DMARDs) have remained the most effective treatment for noninfectious uveitis (NIU). Systemic administration of antitumor necrosis factor-α and other biological DMARDs have been used for treating cases that responded inadequately to conventional treatments. Unfortunately, some refractory patients still suffer from frequent attacks despite the combination of multiple treatments. Recently, there has been promising evidence for Janus kinase (JAK) inhibitors as the next-generation therapy for NIU. The JAK/signal transducers and activators of the transcription (STAT) signaling pathway mediate the downstream events involved in immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis by binding various ligands, such as cytokines, growth hormones, and growth factors. The mutation or loss of JAK/STAT components is implicated in autoimmune diseases, thus inhibition of such pathways has been an important area of research in therapeutic development.1 In this review, we provide a comprehensive overview of the efficacy and safety of JAK inhibitors for the management of NIU, with evidence from current trials and case reports.
Collapse
Affiliation(s)
- Hui Yu Juan
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
24
|
Ahmed EA, Abdelsalam SA. Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach. Curr Issues Mol Biol 2024; 46:10635-10650. [PMID: 39329982 PMCID: PMC11430628 DOI: 10.3390/cimb46090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
A treasure trove of naturally occurring biomolecules can be obtained from sea living organisms to be used as potential antioxidant and anti-inflammatory agents. These bioactive molecules can target signaling molecules involved in the severity of chronic autoimmune diseases such as rheumatoid arthritis (RA). The intracellular tyrosine kinases family, Janus kinases (JAKs, includes JAK1, JAK2, and JAK3), is implicated in the pathogenesis of RA through regulating several cytokines and inflammatory processes. In the present study, we conducted molecular docking and structural analysis investigations to explore the role of a set of bioactive molecules from marine sources that can be used as JAKs' specific inhibitors. Around 200 antioxidants and anti-inflammatory molecules out of thousands of marine molecules found at the Comprehensive Marine Natural Products Database (CMNPD) website, were used in that analysis. The details of the interacting residues were compared to the recent FDA approved inhibitors tofacitinib and baricitinib for data validation. The shortlisted critical amino acids residues of our pharmacophore-based virtual screening were LYS905, GLU957, LEU959, and ASP1003 at JAK1, GLU930 and LEU932 at JAK2, and GLU905 and CYS909 of JAK3. Interestingly, marine biomolecules such as Sargachromanol G, Isopseudopterosin E, Seco-Pseudopterosin, and CID 10071610 showed specific binding and significantly higher binding energy to JAK1 active/potential sites when being compared with the approved inhibitors. In addition, Zoanthoxanthin and Fuscoside E bind to JAK2's critical residues, GLU930 and LEU932. Moreover, Phorbaketal and Fuscoside E appear to be potential candidates that can inhibit JAK3 activity. These results were validated using molecular dynamics simulation for the docked complexes, JAK1(6sm8)/SG, JAK2 (3jy9)/ZAX, and JAK3 (6pjc)/Fuscoside E, where stable and lower binding energy were found based on analyzing set of parameters, discussed below (videos are attached). A promising role of these marine bioactive molecules can be confirmed in prospective preclinical/clinical investigations using rheumatoid arthritis models.
Collapse
Affiliation(s)
- Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Hofouf 31982, Saudi Arabia
- Lab of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Salah A. Abdelsalam
- Lab of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
- Zoology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
25
|
Geoffroy K, Mullins-Dansereau V, Leclerc-Desaulniers K, Viens M, Bourgeois-Daigneault MC. Oncolytic vesicular stomatitis virus alone or in combination with JAK inhibitors is effective against ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200826. [PMID: 39006945 PMCID: PMC11246050 DOI: 10.1016/j.omton.2024.200826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Therapy-resistant ovarian cancers have a poor prognosis and novel effective treatment options are urgently needed. In this study, we evaluated the therapeutic efficacy of the oncolytic vesicular stomatitis virus (VSV) against a panel of patient-derived ovarian cancer cell lines of all epithelial subtypes. Notably, we found that most of the cell lines were sensitive to VSV virotherapy. With the objective of improving treatment efficacy for the oncolytic virus-resistant cell lines, we tested various combinations with ovarian cancer standard of care drugs: olaparib, carboplatin, paclitaxel, doxorubicin, cyclophosphamide, and gemcitabine. While none of these combinations revealed to be beneficial, further experiments demonstrated that the antiviral interferon pathway was functional in VSV-resistant cell lines. Given that interferons signal through Janus kinase (JAK)-STAT to mediate their antiviral function, we tested combinations of oncolytic VSV with clinically relevant JAK inhibitors. Our results show that combining VSV with various JAK inhibitors, including ruxolitinib, enhances VSV virotherapy and treatment efficacy. Altogether, we show that VSV, either as a stand-alone treatment or in combination with JAK inhibitors provides an effective therapeutic option for ovarian cancer patients.
Collapse
Affiliation(s)
- Karen Geoffroy
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Victor Mullins-Dansereau
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Kim Leclerc-Desaulniers
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mélissa Viens
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
26
|
Sun T, Guo Y, Su Y, Shan S, Qian W, Zhang F, Li M, Zhang Z. Molecular mechanisms of diabetic nephropathy: A narrative review. Cell Biol Int 2024; 48:1240-1253. [PMID: 38946126 DOI: 10.1002/cbin.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Diabetic nephropathy (DN) is the predominant secondary nephropathy resulting in global end-stage renal disease. It is attracting significant attention in both domestic and international research due to its widespread occurrence, fast advancement, and limited choices for prevention and treatment. The pathophysiology of this condition is intricate and involves multiple molecular and cellular pathways at various levels. This article provides a concise overview of the molecular processes involved in the development of DN. It discusses various factors, such as signaling pathways, cytokines, inflammatory responses, oxidative stress, cellular damage, autophagy, and epigenetics. The aim is to offer clinicians a valuable reference for DN's diagnosis, treatment, and intervention.
Collapse
Affiliation(s)
- Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yina Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Shigang Shan
- School of Public Health and Nursing, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feixue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
27
|
Alqahtani S, Khalil S, Bakhamees BH, Almutairi LM, Alyahya MA, Alghuyaythat WKZ, Alabdulqader FK, Aldossary D, Asiri STB, Alsulami TA, Hussain AA, Alaamer MA. Assessment of the Safety of Tofacitinib Among Patients With Psoriasis: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e70196. [PMID: 39463512 PMCID: PMC11508819 DOI: 10.7759/cureus.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Psoriasis is a clinically heterogeneous, lifelong skin condition. Novel medications such as Janus kinase (JAK) inhibitors have emerged as a promising class of agents that modulate the immune response. Tofacitinib could reduce skin lesions and boost patient-reported clinical outcomes, but its immunosuppressive effects might also increase patients' risk of infections and other adverse effects. To assess the safety outcomes of using Tofacitinib in comparison to placebo in terms of the incidence of serious infections, herpes zoster infection (HZ), upper respiratory tract infections (URTI), nasopharyngitis, and serious adverse events (SAE), this systematic review and meta-analysis followed the Cochrane Handbook for Systematic Reviews and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search strategy involved five databases. Two authors independently screened and selected studies. Only randomized controlled trials (RCTs) were eligible for inclusion. Data on baseline patient characteristics and outcomes such as serious infections, HZ infections, nasopharyngitis, and URTIs were extracted. The risk of bias was assessed using the revised version of the Cochrane risk of bias (ROB2) tool, and meta-analysis was conducted using Cochrane's Revman web. The OR was employed to estimate outcomes. A probability value of less than 0.05 was considered statistically significant. The search strategy initially identified 998 studies; of these, six RCTs were included with a total of 2516 participants having moderate-to-severe psoriasis and treated with either Tofacitinib or placebo. The meta-analysis results revealed increases in the risks of HZ, URTIs, serious infections, nasopharyngitis, and SAE, but no significant difference was found between the intervention and placebo groups. The risk of bias was assessed using the ROB2 tool, revealing low bias across most domains, with some concerns in certain studies related to deviations from intended interventions and missing outcome data. In conclusion, while Tofacitinib is effective against moderate-to-severe psoriasis with non-significant risks, there are some safety concerns regarding the measured outcomes. Future research is needed concerning the assessment of safety outcomes with long-term use of Tofacitinib among larger populations.
Collapse
Affiliation(s)
- Saad Alqahtani
- Family Medicine, King Salman Armed Forces Hospital, Tabuk, SAU
| | - Samia Khalil
- Medicine and Surgery, Ibn Sina National College for Medical Studies, Jeddah, SAU
| | | | - Layan M Almutairi
- College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, SAU
| | | | | | | | - Dana Aldossary
- Medicine and Surgery, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | | | | | - Abdulrahman A Hussain
- General Practice, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Mohammed A Alaamer
- Collage of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| |
Collapse
|
28
|
Favaron A, Abdalla Y, McCoubrey LE, Nandiraju LP, Shorthouse D, Gaisford S, Basit AW, Orlu M. Exploring the interactions of JAK inhibitor and S1P receptor modulator drugs with the human gut microbiome: Implications for colonic drug delivery and inflammatory bowel disease. Eur J Pharm Sci 2024; 200:106845. [PMID: 38971433 DOI: 10.1016/j.ejps.2024.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The gut microbiota is a complex ecosystem, home to hundreds of bacterial species and a vast repository of enzymes capable of metabolising a wide range of pharmaceuticals. Several drugs have been shown to affect negatively the composition and function of the gut microbial ecosystem. Janus Kinase (JAK) inhibitors and Sphingosine-1-phosphate (S1P) receptor modulators are drugs recently approved for inflammatory bowel disease through an immediate release formulation and would potentially benefit from colonic targeted delivery to enhance the local drug concentration at the diseased site. However, their impact on the human gut microbiota and susceptibility to bacterial metabolism remain unexplored. With the use of calorimetric, optical density measurements, and metagenomics next-generation sequencing, we show that JAK inhibitors (tofacitinib citrate, baricitinib, filgotinib) have a minor impact on the composition of the human gut microbiota, while ozanimod exerts a significant antimicrobial effect, leading to a prevalence of the Enterococcus genus and a markedly different metabolic landscape when compared to the untreated microbiota. Moreover, ozanimod, unlike the JAK inhibitors, is the only drug subject to enzymatic degradation by the human gut microbiota sourced from six healthy donors. Overall, given the crucial role of the gut microbiome in health, screening assays to investigate the interaction of drugs with the microbiota should be encouraged for the pharmaceutical industry as a standard in the drug discovery and development process.
Collapse
Affiliation(s)
- Alessia Favaron
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Youssef Abdalla
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | | | - David Shorthouse
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Simon Gaisford
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| | - Mine Orlu
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
29
|
Capaccia C, Ciancabilla F, Porcellato I, Brachelente C, Zerani M, Maranesi M, Guelfi G. The Molecular Signature Related to Local Inflammatory and Immune Response in Canine Cutaneous Hypersensitivity Reactions: A Preliminary Study. Curr Issues Mol Biol 2024; 46:9162-9178. [PMID: 39194759 DOI: 10.3390/cimb46080542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Cutaneous hypersensitivity reactions (CHRs) are complex inflammatory skin disorders that affect humans and dogs. This study examined the inflammatory and immune responses leading to skin damage, inflammation, and irritation by investigating gene expression through quantitative PCR (qPCR) and protein localization through the immunohistochemistry (IHC) of specific receptors and molecules involved in CHRs. Formalin-fixed paraffin-embedded (FFPE) samples from canine CHR skin (n = 20) and healthy dog skin (n = 3) were analyzed for expression levels of eight genes, including members of the pattern recognition receptor (PRR) family, CD209 and CLEC4G, the Regakine-1-like chemokine, and acute phase proteins (APPs), LBP-like and Hp-like genes. Additionally, we examined the local involvement of IL-6, Janus Kinase 1 (JAK1), and the signal transducer activator of transcription 3 (STAT3) in the CHR cases. The study demonstrated statistically significant increases in the expression levels of CD209, Hp-like (p < 0.01), LBP-like, Regakine-1-like, and CLEC4G (p < 0.05) genes in CHRs compared to healthy controls. Conversely, IL-6, JAK1, and STAT3 showed no significant difference between the two groups (p > 0.05). Protein analysis revealed JAK1 and STAT3 expression in CHR hyperplastic epithelial cells, dermal fibroblasts, and endothelial cells of small capillaries, indicating a possible involvement in the JAK/STAT pathway in local inflammatory response regulation. Our findings suggest that the skin plays a role in the development of CHRs.
Collapse
Affiliation(s)
- Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
30
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
31
|
Wu JW, Gao W, Shen LP, Chen YL, Du SQ, Du ZY, Zhao XD, Lu XJ. Leonurus japonicus Houtt. modulates neuronal apoptosis in intracerebral hemorrhage: Insights from network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118223. [PMID: 38642624 DOI: 10.1016/j.jep.2024.118223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurus japonicus Houtt. (Labiatae), commonly known as Chinese motherwort, is a herbaceous flowering plant that is native to Asia. It is widely acknowledged in traditional medicine for its diuretic, hypoglycemic, antiepileptic properties and neuroprotection. Currently, Leonurus japonicus (Leo) is included in the Pharmacopoeia of the People's Republic of China. Traditional Chinese Medicine (TCM) recognizes Leo for its myriad pharmacological attributes, but its efficacy against ICH-induced neuronal apoptosis is unclear. AIMS OF THE STUDY This study aimed to identify the potential targets and regulatory mechanisms of Leo in alleviating neuronal apoptosis after ICH. MATERIALS AND METHODS The study employed network pharmacology, UPLC-Q-TOF-MS technique, molecular docking, pharmacodynamic studies, western blotting, and immunofluorescence techniques to explore its potential mechanisms. RESULTS Leo was found to assist hematoma absorption, thus improving the neurological outlook in an ICH mouse model. Importantly, molecular docking highlighted JAK as Leo's potential therapeutic target in ICH scenarios. Further experimental evidence demonstrated that Leo adjusts JAK1 and STAT1 phosphorylation, curbing Bax while augmenting Bcl-2 expression. CONCLUSION Leo showcases potential in mitigating neuronal apoptosis post-ICH, predominantly via the JAK/STAT mechanism.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Wei Gao
- Department of Neurology, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu Province, 214122, PR China
| | - Li-Ping Shen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yong-Lin Chen
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Shi-Qing Du
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Zhi-Yong Du
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Xu-Dong Zhao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| | - Xiao-Jie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
32
|
Strigáč A, Caban M, Małecka-Wojciesko E, Talar-Wojnarowska R. Safety and Effectiveness of Thiopurines and Small Molecules in Elderly Patients with Inflammatory Bowel Diseases. J Clin Med 2024; 13:4678. [PMID: 39200823 PMCID: PMC11355586 DOI: 10.3390/jcm13164678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
The management of inflammatory bowel diseases (IBD) requires weighing an individual patient's therapeutic benefits and therapy-related complication risks. The immunomodulators that have been commonly used so far in IBD therapy are thiopurines, including 6-mercaptopurine and azathioprine. As our understanding of the IBD pathomechanisms is widening, new therapeutic approaches are being introduced, including the Janus kinase (JAK) inhibitors and Sphingosine 1-phosphate receptor (S1PR) modulators' development. Non-selective JAK inhibitors are represented by tofacitinib, while selective JAK inhibitors comprise filgotinib and upadacitinib. As for the S1PR modulators, ozanimod and etrasimod are approved for UC therapy. The number of elderly patients with IBD is growing; therefore, this review aimed to evaluate the effectiveness and safety of the oral immunomodulators among the subjects aged ≥60. Possible complications limit the use of thiopurines in senior patients. Likewise, the promising effectiveness of new drugs in IBD therapy in those with additional risk factors might be confined by the risk of serious adverse events. However, the data regarding this issue are limited.
Collapse
Affiliation(s)
- Aleksandra Strigáč
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland; (M.C.); (E.M.-W.); (R.T.-W.)
| | - Miłosz Caban
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland; (M.C.); (E.M.-W.); (R.T.-W.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland; (M.C.); (E.M.-W.); (R.T.-W.)
| | - Renata Talar-Wojnarowska
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland; (M.C.); (E.M.-W.); (R.T.-W.)
| |
Collapse
|
33
|
Utama A, Wijesinghe R, Thng S. Janus kinase inhibitors and the changing landscape of vitiligo management: a scoping review. Int J Dermatol 2024; 63:1020-1035. [PMID: 38610078 DOI: 10.1111/ijd.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Vitiligo is a chronic skin condition caused by an autoimmune response that results in the progressive loss of melanocytes and recent studies have suggested that Janus kinase inhibitors (JAKi) are emerging as a promising new treatment modality. Therefore, to assess and understand the extent of knowledge in the emerging field of JAKi use in vitiligo, a scoping review of the literature was undertaken. The reviewed articles explored a wide variety of JAKi administered either orally or topically for vitiligo. There were no injectable JAKi studied. Tofacitinib was the most commonly studied oral JAKi in 16 of the 35 studies selected for review, followed by baricitinib (n = 3), and one study each with ritlecitinib, ruxolitinib, and upadacitinib. Ruxolitinib (n = 6) and tofacitinib (n = 6) were the most often studied topical JAKi, followed by delgocitinib (n = 1). Potential benefits may vary between JAKi based on their receptor selectivity profile and coexistent autoimmune diseases. A topical JAKi would be advantageous in limited body area involvement and in adolescents. Concurrent use of JAKi with phototherapy or sun exposure appears beneficial. Most studies permitted the use of other topical agents. Acne-related events, though frequent yet mild, were reported with both oral and topical JAKi. Nasopharyngitis, upper respiratory tract infections, and headaches were the most common adverse effects seen in the larger trials with JAKi. No serious or clinically meaningful hematology or thromboembolic events were detected. Treatment of vitiligo with oral or topical JAKi seems to be promising and the growing evidence shows a favorable risk-benefit profile.
Collapse
Affiliation(s)
- Amelia Utama
- Department of Pharmacy, National Skin Centre, Singapore, Singapore
| | - Ruki Wijesinghe
- Department of Pharmacy, National Skin Centre, Singapore, Singapore
| | - Steven Thng
- Department of Dermatology, National Skin Centre, Singapore, Singapore
| |
Collapse
|
34
|
He L, Zhang J, Ling Z, Zeng X, Yao H, Tang M, Huang H, Xie X, Qin T, Feng X, Chen Z, Deng F, Yue X. Structural optimizations on the 7H-pyrrolo[2,3-d]pyrimidine scaffold to develop highly selective, safe and potent JAK3 inhibitors for the treatment of Rheumatoid arthritis. Bioorg Chem 2024; 149:107499. [PMID: 38815476 DOI: 10.1016/j.bioorg.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Janus Kinase 3 (JAK3) is important for the signaling transduction of cytokines in immune cells and is identified as potential target for treatment of rheumatoid arthritis (RA). Recently, we designed and synthesized two JAK3 inhibitors J1b and J1f, which featured with high selectivity but mild bioactivity. Therefore, in present study the structure was optimized to increase the potency. As shown in the results, most of the compounds synthesized showed stronger inhibitory activities against JAK3 in contrast to the lead compounds, among which 9a was the most promising candidate because it had the most potent effect in ameliorating carrageenan-induced inflammation of mice and exhibited low acute in vivo toxicity (MTD > 2 g/kg). Further analysis revealed that 9a was highly selective to JAK3 (IC50 = 0.29 nM) with only minimal effect on other JAK members (>3300-fold) and those kinases bearing a thiol in a position analogous to that of Cys909 in JAK3 (>150-fold). Meanwhile, the selectivity of JAK3 was also confirmed by PBMC stimulation assay, in which 9a irreversibly bound to JAK3 and robustly inhibited the signaling transduction with mild suppression on other JAKs. Moreover, it was showed that 9a could remarkably inhibited the proliferation of lymphocytes in response to concanavalin A and significantly mitigate disease severity in collagen induced arthritis. Therefore, present data indicate that compound 9a is a selective JAK3 inhibitor and could be a promising candidate for clinical treatment of RA.
Collapse
Affiliation(s)
- Linhong He
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Zhang
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Ling
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Xianxia Zeng
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Hualiang Yao
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huaizheng Huang
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Xie
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Tinsheng Qin
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Xianjing Feng
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiquan Chen
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, China
| | - Fengyuan Deng
- College of Basic Medical Science, Key Laboratory of Basic Research on Regional Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Guangxi, China.
| | - Xiaoyang Yue
- College of Basic Medical Science, Key Laboratory of Basic Research on Regional Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Guangxi, China.
| |
Collapse
|
35
|
Tham HL, Davis JL. Pharmacology of drugs used in autoimmune dermatopathies in cats and dogs: A narrative review. Vet Dermatol 2024; 35:453-476. [PMID: 38708551 DOI: 10.1111/vde.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Immunosuppressive drugs are the mainstay of treatment for many feline and canine autoimmune skin diseases, either as monotherapy or in combination with other drugs. Treatment with these drugs is often lifelong and may have long-term consequences on the affected animal's overall quality-of-life. Clinicians need to understand the pharmacology of immunosuppressants in planning and executing the treatment regimen for the best possible clinical outcome, as well as reducing the risk of adverse effects. This review paper will focus on the mechanism of action, pharmacokinetics and pharmacodynamics, clinical uses and adverse effects of immunosuppressive drugs used to treat autoimmune dermatoses in cats and dogs. These include glucocorticoids, ciclosporin A, azathioprine, chlorambucil, mycophenolate mofetil, oclacitinib and Bruton's tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Heng L Tham
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Jennifer L Davis
- Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
36
|
Shan M, Zhao X, Sun P, Qu X, Cheng G, Qin LP. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorg Chem 2024; 149:107506. [PMID: 38833989 DOI: 10.1016/j.bioorg.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.
Collapse
Affiliation(s)
- Mengyi Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xuan Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Peng Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xinhao Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
37
|
Baquet-Walscheid K, Heinz C, Heiligenhaus A. Beneficial Effect of Upadacitinib in a Refractory Course of Scleritis: A Case Report. Ocul Immunol Inflamm 2024; 32:1076-1078. [PMID: 36442052 DOI: 10.1080/09273948.2022.2145488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
Noninfectious scleritis typically takes a chronic course, and systemic corticosteroids or disease-modifying anti-rheumatic drug (DMARD) treatment may be inevitable for a prolonged period. Janus kinase (JAK) inhibitors are a relatively new therapeutic option for inflammatory diseases, and three cases of successful treatment of scleritis with tofacitinib, a substance targeting JAK-1 and -3, have been published up to now. We here describe the case of a 51-years-old female patient with bilateral anterior and posterior scleritis who, after treatment failure of multiple DMARDs, finally achieved clinical quiescence of disease under treatment with upadacitinib, a selective JAK-1 inhibitor.
Collapse
Affiliation(s)
- Karoline Baquet-Walscheid
- Department of Ophthalmology, St. Franziskus Hospital, Muenster, Germany
- Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Carsten Heinz
- Department of Ophthalmology, St. Franziskus Hospital, Muenster, Germany
- Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology, St. Franziskus Hospital, Muenster, Germany
- Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Hakobyan K, Acob T, Aleksanyan M, Kakhktsyan T, Jumaah O, Prabhakaran S. Evaluating the Usage of Janus Kinase Inhibitors in Rheumatology and Its Impact on Cardiovascular Risk. Cureus 2024; 16:e65591. [PMID: 39192918 PMCID: PMC11349240 DOI: 10.7759/cureus.65591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Background/purpose Janus kinase (JAK) inhibitors have been widely used in treating rheumatological conditions like rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Despite their efficacy, there are concerns regarding major adverse cardiovascular events (MACE) and venous thromboembolism (VTE) associated with JAK inhibitors. This study aimed to evaluate the risk of MACE, VTE, and the impact on lipid profiles in patients being treated with JAK inhibitors. Methods We retrospectively reviewed electronic medical records of patients aged 45-65 years old treated with Tofacitinib, Baricitinib, or Upadacitinib in a rheumatology clinic. We collected data on demographics, comorbidities, medication use, laboratory results, and cardiac complications potentially related to JAK inhibitors. Results Among 100 patients prescribed JAK inhibitors, 71 were included in the study (with an average treatment duration of 2.5 years). The majority of patients were white (72%), followed by Hispanic (6%), Indian (11%), African American (10%), and Asian (1%). Patients were being treated primarily for RA (57%), followed by PsA (17%), colitis (20%), and alopecia areata (6%). There were no significant cases of VTE reported, with one patient developing a pulmonary embolism (PE) during treatment while also having COVID-19, making it difficult to attribute it solely to the medication. Similarly, only one case of atrial fibrillation occurred. However, 43% (31 patients) experienced worsening of their lipid profile, with increased cholesterol (18%), LDL (12.5%), both LDL and cholesterol (11%) or triglycerides (1.5%). In relation to diabetes mellitus (DM), 24 patients who experienced worsening of their lipid panel did not have a history of DM. Conclusion The study findings suggest that patients on Tofacitinib, Baricitinib, and Upadacitinib did not exhibit a high risk for MACE or DVT. However, there was a notable incidence of lipid panel worsening among patients, where 24 patients out of 31 did not have diabetes. Further research and monitoring may be needed to better understand the long-term effects of JAK inhibitors on cardiovascular health and lipid profiles in these patient populations. This real-world data reflects the current evidence that JAK inhibitors do not significantly raise the risk of MACE in patients with RA but do increase cholesterol levels in these patients that should be monitored closely.
Collapse
Affiliation(s)
- Knkush Hakobyan
- Internal Medicine, Capital Health Regional Medical Center, Trenton, USA
| | - Talar Acob
- Internal Medicine, Capital Health Regional Medical Center, Trenton, USA
| | - Mesrop Aleksanyan
- Oncology, Yerevan State Medical University, Yerevan, ARM
- Internal Medicine, Capital Health Regional Medical Center, Trenton, USA
| | - Tigran Kakhktsyan
- Internal Medicine, Capital Health Regional Medical Center, Trenton, USA
| | - Omar Jumaah
- Internal Medicine, Capital Health Regional Medical Center, Trenton, USA
| | | |
Collapse
|
39
|
Chandrashekara S. Pharmacokinetic review of janus kinase inhibitors and its clinical implications for the management of rheumatoid arthritis. Expert Opin Drug Metab Toxicol 2024:1-8. [PMID: 38916236 DOI: 10.1080/17425255.2024.2373092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION In the realm of autoimmune rheumatic diseases, understanding JAK inhibitors (JAKi) nuances is vital. Baricitinib, tofacitinib, upaacitinib, filgotinib, and peficitinib exhibit subtle yet impactful pharmacokinetic (PK) and pharmacodynamic (PD) variations. AREAS COVERED This narrative review critically assesses PK and PD distinctions among globally approved JAKi for rheumatoid arthritis, which primarily guide clinical decisions in autoimmune diseases, particularly rheumatoid arthritis. It explores the intricate JAK-STAT signaling pathway, offering insights into JAKs' roles in inflammation, hematopoiesis, and immune homeostasis. Emphasis on PK parameters, including absorption, distribution, metabolism, and excretion, along with CYP3A4 drug interactions, is highlighted. The review underscores integrating PK and PD properties, considering patient-specific factors like hepatic and renal clearance, for judicious JAKi selection in RA and related autoimmune conditions. The literature has been collected from all available databases based on the review question. EXPERT OPINION Integrating PK and PD properties with patient-specific factors is pivotal for judicious JAKi selection. Recognizing disparities in PK and PD across diseases, ethnicities, and environmental factors is crucial for personalized JAKi choices. This expert opinion underscores the significance of a second compartment analysis, elucidating the interplay between PK and PD and its impact on JAKi efficacy.
Collapse
Affiliation(s)
- S Chandrashekara
- Department of Clinical Immunology and Rheumatology, ChanRe Rheumatology and Immunology Center and Research, Bengaluru, India
| |
Collapse
|
40
|
Cugudda A, La Manna S, Marasco D. Are peptidomimetics the compounds of choice for developing new modulators of the JAK-STAT pathway? Front Immunol 2024; 15:1406886. [PMID: 38983855 PMCID: PMC11232365 DOI: 10.3389/fimmu.2024.1406886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Protein-protein interactions (PPIs) play critical roles in a wide range of biological processes including the dysregulation of cellular pathways leading to the loss of cell function, which in turn leads to diseases. The dysfunction of several signaling pathways is linked to the insurgence of pathological processes such as inflammation, cancer development and neurodegeneration. Thus, there is an urgent need for novel chemical modulators of dysregulated PPIs to drive progress in targeted therapies. Several PPIs have been targeted by bioactive compounds, and, often, to properly cover interacting protein regions and improve the biological activities of modulators, a particular focus concerns the employment of macrocycles as proteomimetics. Indeed, for their physicochemical properties, they occupy an intermediate space between small organic molecules and macromolecular proteins and are prominent in the drug discovery process. Peptide macrocycles can modulate fundamental biological mechanisms and here we will focus on peptidomimetics active on the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways.
Collapse
Affiliation(s)
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
41
|
Ishihara R, Watanabe R, Shiomi M, Katsushima M, Fukumoto K, Yamada S, Okano T, Hashimoto M. Exploring the Link between Varicella-Zoster Virus, Autoimmune Diseases, and the Role of Recombinant Zoster Vaccine. Biomolecules 2024; 14:739. [PMID: 39062454 PMCID: PMC11274381 DOI: 10.3390/biom14070739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The varicella-zoster virus (VZV) is a human neurotropic herpes virus responsible for varicella and herpes zoster (HZ). Following primary infection in childhood, VZV manifests as varicella (chickenpox) and enters a period of latency within the dorsal root ganglion. A compromised cellular immune response due to aging or immunosuppression triggers viral reactivation and the development of HZ (shingles). Patients with autoimmune diseases have a higher risk of developing HZ owing to the immunodeficiency associated with the disease itself and/or the use of immunosuppressive agents. The introduction of new immunosuppressive agents with unique mechanisms has expanded the treatment options for autoimmune diseases but has also increased the risk of HZ. Specifically, Janus kinase (JAK) inhibitors and anifrolumab have raised concerns regarding HZ. Despite treatment advances, a substantial number of patients suffer from complications such as postherpetic neuralgia for prolonged periods. The adjuvanted recombinant zoster vaccine (RZV) is considered safe and effective even in immunocompromised patients. The widespread adoption of RZV may reduce the health and socioeconomic burdens of HZ patients. This review covers the link between VZV and autoimmune diseases, assesses the risk of HZ associated with immunosuppressant use, and discusses the benefits and risks of using RZV in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Ryuhei Ishihara
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Mayu Shiomi
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masao Katsushima
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kazuo Fukumoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shinsuke Yamada
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tadashi Okano
- Center for Senile Degenerative Disorders (CSDD), Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
42
|
Ziętara KJ, Wróblewska K, Zajączkowska M, Taczała J, Lejman M. The Role of the JAK-STAT Pathway in Childhood B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:6844. [PMID: 38999955 PMCID: PMC11241568 DOI: 10.3390/ijms25136844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
B-cell lymphoblastic leukemia is a hematologic neoplasm that poses a serious health concern in childhood. Genetic aberrations, such as mutations in the genes IL-7, IL7R, JAK1, JAK2, TLSP, CRLF2, and KTM2A or gene fusions involving BCR::ABL1, ETV6::RUNX1, and PAX5::JAK2, often correlate with the onset of this disease. These aberrations can lead to malfunction of the JAK-STAT signaling pathway, which is implicated in various important biological processes, including those related to immunology. Understanding the mechanisms underlying the malfunction of the JAK-STAT pathway holds potential for research on drugs targeting its components. Available drugs that interfere with the JAK-STAT pathway include fludarabine, ruxolitinib, and fedratinib.
Collapse
Affiliation(s)
- Karolina Joanna Ziętara
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (K.J.Z.); (K.W.); (M.Z.)
| | - Kinga Wróblewska
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (K.J.Z.); (K.W.); (M.Z.)
| | - Monika Zajączkowska
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (K.J.Z.); (K.W.); (M.Z.)
| | - Joanna Taczała
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warszawa, Poland;
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
43
|
Bidgood GM, Keating N, Doggett K, Nicholson SE. SOCS1 is a critical checkpoint in immune homeostasis, inflammation and tumor immunity. Front Immunol 2024; 15:1419951. [PMID: 38947335 PMCID: PMC11211259 DOI: 10.3389/fimmu.2024.1419951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
The Suppressor of Cytokine Signaling (SOCS) family proteins are important negative regulators of cytokine signaling. SOCS1 is the prototypical member of the SOCS family and functions in a classic negative-feedback loop to inhibit signaling in response to interferon, interleukin-12 and interleukin-2 family cytokines. These cytokines have a critical role in orchestrating our immune defence against viral pathogens and cancer. The ability of SOCS1 to limit cytokine signaling positions it as an important immune checkpoint, as evidenced by the detection of detrimental SOCS1 variants in patients with cytokine-driven inflammatory and autoimmune disease. SOCS1 has also emerged as a key checkpoint that restricts anti-tumor immunity, playing both a tumor intrinsic role and impacting the ability of various immune cells to mount an effective anti-tumor response. In this review, we describe the mechanism of SOCS1 action, focusing on the role of SOCS1 in autoimmunity and cancer, and discuss the potential for new SOCS1-directed cancer therapies that could be used to enhance adoptive immunotherapy and immune checkpoint blockade.
Collapse
Affiliation(s)
- Grace M. Bidgood
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Narelle Keating
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Karen Doggett
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Sandra E. Nicholson
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Chandrasekhar B, Gor R, Ramalingam S, Thiagarajan A, Sohn H, Madhavan T. Repurposing FDA-approved compounds to target JAK2 for colon cancer treatment. Discov Oncol 2024; 15:226. [PMID: 38869738 DOI: 10.1007/s12672-024-01050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Colorectal cancer is one of the common cancers worldwide and the second leading cause of cancer-related death. The current treatment has the inherent drawbacks and there is a need of developing a new treatment. Interleukin-6 a pleiotropic cytokine involved in immune regulation and activation of JAK2/STAT3 pathway in colorectal cancer. JAK2/STAT3 signaling pathway functions as a critical regulator of cell growth, differentiation, and immune expression. The abnormality in the JAK2/STAT3 pathway is involved in the tumorigenesis of colon cancer including apoptosis. In this study, we identified novel inhibitors for JAK2 protein by performing virtual screening against FDA-approved compounds. To address the selectivity issue, we implemented cross-docking method followed by DFT calculations to understand the chemical reactivity of the identified compounds. Additionally, molecular dynamics (MD) simulations were performed for the top FDA compounds against JAK2 to understand the molecular interactions and structural stability of the complex over a period of 200 ns. Our results indicated that ergotamine, entrectinib, exatecan, dihydroergotamine, and paritaprevir can be used as alternative drugs for colon cancer. In addition, ergotamine was found to efficiently lower the cell viability with IC50 values of 100 µM on colon cancer cell lines. The long-term inhibitory effect of the ergotamine led to a decrease in colony size, and the toxicity properties were studied using hemolysis assay. Our study shows the potential of targeting JAK2 as a novel approach to colon cancer treatment, and demonstrate that ergotamine as a promising effects as an anti-cancer drug.
Collapse
Affiliation(s)
- Bavya Chandrasekhar
- Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Potheri, Chengalpattu District, Kattankulathur, 603203, Tamilnadu, India
| | - Ravi Gor
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Potheri, Chengalpattu District, Kattankulathur, 603203, Tamilnadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Potheri, Chengalpattu District, Kattankulathur, 603203, Tamilnadu, India
| | - Anuradha Thiagarajan
- Deparment of Physics with Computer Application, Agurchand Manmull Jain College, Meenambakam, Chennai, Tamilnadu, India
| | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, South Korea.
| | - Thirumurthy Madhavan
- Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Potheri, Chengalpattu District, Kattankulathur, 603203, Tamilnadu, India.
| |
Collapse
|
45
|
Mammoliti O, Martina S, Claes P, Coti G, Blanque R, Jagerschmidt C, Shoji K, Borgonovi M, De Vos S, Marsais F, Oste L, Quinton E, López-Ramos M, Amantini D, Brys R, Jimenez JM, Galien R, van der Plas S. Discovery of GLPG3667, a Selective ATP Competitive Tyrosine Kinase 2 Inhibitor for the Treatment of Autoimmune Diseases. J Med Chem 2024; 67:8545-8568. [PMID: 38805213 PMCID: PMC11181332 DOI: 10.1021/acs.jmedchem.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Tyrosine kinase 2 (TYK2) mediates cytokine signaling through type 1 interferon, interleukin (IL)-12/IL-23, and the IL-10 family. There appears to be an association between TYK2 genetic variants and inflammatory conditions, and clinical evidence suggests that selective inhibition of TYK2 could produce a unique therapeutic profile. Here, we describe the discovery of compound 9 (GLPG3667), a reversible and selective TYK2 adenosine triphosphate competitive inhibitor in development for the treatment of inflammatory and autoimmune diseases. The preclinical pharmacokinetic profile was favorable, and TYK2 selectivity was confirmed in peripheral blood mononuclear cells and whole blood assays. Dermal ear inflammation was reduced in an IL-23-induced in vivo mouse model of psoriasis. GLPG3667 also completed a phase 1b study (NCT04594928) in patients with moderate-to-severe psoriasis where clinical effect was shown within the 4 weeks of treatment and it is now in phase 2 trials for the treatment of dermatomyositis (NCT05695950) and systemic lupus erythematosus (NCT05856448).
Collapse
Affiliation(s)
- Oscar Mammoliti
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | | | - Pieter Claes
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Ghjuvanni Coti
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Roland Blanque
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Kenji Shoji
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Monica Borgonovi
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Steve De Vos
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Florence Marsais
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Line Oste
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Evelyne Quinton
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - David Amantini
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Reginald Brys
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | | | - René Galien
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | |
Collapse
|
46
|
Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampfl T, Rhandawa M, Trifinopoulos J, Maurer B, Grausenburger R, Betram CA, Moriggl R, Rülicke T, Mullighan CG, Witalisz-Siepracka A, Walter W, Hoermann G, Sexl V, Gotthardt D. A lineage-specific STAT5BN642H mouse model to study NK-cell leukemia. Blood 2024; 143:2474-2489. [PMID: 38498036 PMCID: PMC11208297 DOI: 10.1182/blood.2023022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Collapse
Affiliation(s)
- Klara Klein
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Hiesinger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia List
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thorsten Klampfl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mehak Rhandawa
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof A. Betram
- Department for Biological Sciences and Pathobiology, Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, Unit for Functional Cancer Genomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department for Biological Sciences and Pathobiology and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charles G. Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Agnieszka Witalisz-Siepracka
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | - Veronika Sexl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Dagmar Gotthardt
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
47
|
Rodman EPB, Emch MJ, Hou X, Bajaj A, Pearson NA, John AJ, Ortiz Y, Bass AD, Singh S, Baldassarre G, Kaufmann SH, Weroha SJ, Hawse JR. Lestaurtinib's antineoplastic activity converges on JAK/STAT signaling to inhibit advanced forms of therapy resistant ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597753. [PMID: 38895264 PMCID: PMC11185641 DOI: 10.1101/2024.06.06.597753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Ovarian cancer is the deadliest gynecological malignancy, owing to its late-stage diagnosis and high rates of recurrence and resistance following standard-of-care treatment, highlighting the need for novel treatment approaches. Through an unbiased drug screen, we identified the kinase inhibitor, lestaurtinib, as a potent antineoplastic agent for chemotherapy- and PARP-inhibitor (PARPi)-sensitive and -resistant ovarian cancer cells and patient derived xenografts (PDXs). RNA-sequencing revealed that lestaurtinib potently suppressed JAK/STAT signaling and lestaurtinib efficacy was shown to be directly related to JAK/STAT pathway activity in cell lines and PDX models. Most ovarian cancer cells exhibited constitutive JAK/STAT pathway activation and genetic loss of STAT1 and STAT3 resulted in growth inhibition. Lestaurtinib also displayed synergy when combined with cisplatin and olaparib, including in a model of PARPi resistance. In contrast, the most well-known JAK/STAT inhibitor, ruxolitinib, lacked antineoplastic activity against all ovarian cancer cell lines and PDX models tested. This divergent behavior was reflected in the ability of lestaurtinib to block both Y701/705 and S727 phosphorylation of STAT1 and STAT3, whereas ruxolitinib failed to block S727. Consistent with these findings, lestaurtinib additionally inhibited JNK and ERK activity, leading to more complete suppression of STAT phosphorylation. Concordantly, combinatorial treatment with ruxolitinib and a JNK or ERK inhibitor resulted in synergistic antineoplastic effects at dose levels where single agents were ineffective. Taken together, these findings indicate that lestaurtinib, and other treatments that converge on JAK/STAT signaling, are worthy of further pre-clinical and clinical exploration for the treatment of highly aggressive and advanced forms of ovarian cancer. Statement of significance Lestaurtinib is a novel inhibitor of ovarian cancer, including chemotherapy- and PARPi-resistant models, that acts through robust inhibition of the JAK/STAT pathway and synergizes with standard-of-care agents at clinically relevant concentrations.
Collapse
|
48
|
Martínez-Pérez J, Torrado C, Domínguez-Cejudo MA, Valladares-Ayerbes M. Targeted Treatment against Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:6220. [PMID: 38892410 PMCID: PMC11172446 DOI: 10.3390/ijms25116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The cancer stem cell (SC) theory proposes that a population of SCs serves as the driving force behind fundamental tumor processes, including metastasis, recurrence, and resistance to therapy. The standard of care for patients with stage III and high-risk stage II colorectal cancer (CRC) includes surgery and adjuvant chemotherapy. Fluoropyrimidines and their combination with oxaliplatin increased the cure rates, being able to eradicate the occult metastatic SC in a fraction of patients. The treatment for unresectable metastatic CRC is based on chemotherapy, antibodies to VEGF and EGFR, and tyrosine-kinase inhibitors. Immunotherapy is used in MSI-H tumors. Currently used drugs target dividing cells and, while often effective at debulking tumor mass, these agents have largely failed to cure metastatic disease. SCs are generated either due to genetic and epigenetic alterations in stem/progenitor cells or to the dedifferentiation of somatic cells where diverse signaling pathways such as Wnt/β-catenin, Hedgehog, Notch, TGF-β/SMAD, PI3K/Akt/mTOR, NF-κB, JAK/STAT, DNA damage response, and Hippo-YAP play a key role. Anti-neoplastic treatments could be improved by elimination of SCs, becoming an attractive target for the design of novel agents. Here, we present a review of clinical trials assessing the efficacy of targeted treatment focusing on these pathways in CRC.
Collapse
Affiliation(s)
- Julia Martínez-Pérez
- Medical Oncology Department, Hospital Universitario Virgen del Rocio (HUVR), Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - María A. Domínguez-Cejudo
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| | - Manuel Valladares-Ayerbes
- Medical Oncology Department, Hospital Universitario Virgen del Rocio (HUVR), Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| |
Collapse
|
49
|
Deligeorgakis D, Skouvaklidou E, Adamichou C. Interferon Inhibition in SLE: From Bench to Bedside. Mediterr J Rheumatol 2024; 35:354-364. [PMID: 39193183 PMCID: PMC11345605 DOI: 10.31138/mjr.010324.iis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 08/29/2024] Open
Abstract
Despite advances in the management of systemic lupus erythematosus (SLE), it remains a chronic disease with frequent flares, requiring constant medical care, laboratory exams, hospitalisations, and the use of immunosuppressive drugs and corticosteroids, increasing the morbidity and mortality of these patients. The past decade of research has brought to light multiple observations on the role of interferons (IFNs) in the pathogenesis of SLE, which paved the way for the development of potential novel therapies targeting the interferon pathway. Following two phase III trials, anifrolumab, a monoclonal antibody which binds to the type I IFN receptor, blocking the activity of type I IFNs, was approved for active SLE. This review summarises the latest research on the role and mechanisms of type I IFNs in SLE and the development and advances on new therapeutic drugs based on IFN inhibition for SLE.
Collapse
Affiliation(s)
- Dimitrios Deligeorgakis
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Elpida Skouvaklidou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Christina Adamichou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
50
|
Lv Y, Mi P, Babon JJ, Fan G, Qi J, Cao L, Lang J, Zhang J, Wang F, Kobe B. Small molecule drug discovery targeting the JAK-STAT pathway. Pharmacol Res 2024; 204:107217. [PMID: 38777110 DOI: 10.1016/j.phrs.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway functions as a central hub for transmitting signals from more than 50 cytokines, playing a pivotal role in maintaining hematopoiesis, immune balance, and tissue homeostasis. Dysregulation of this pathway has been implicated in various diseases, including immunodeficiency, autoimmune conditions, hematological disorders, and certain cancers. Proteins within this pathway have emerged as effective therapeutic targets for managing these conditions, with various approaches developed to modulate key nodes in the signaling process, spanning from receptor engagement to transcription factor activation. Following the success of JAK inhibitors such as tofacitinib for RA treatment and ruxolitinib for managing primary myelofibrosis, the pharmaceutical industry has obtained approvals for over 10 small molecule drugs targeting the JAK-STAT pathway and many more are at various stages of clinical trials. In this review, we consolidate key strategies employed in drug discovery efforts targeting this pathway, with the aim of contributing to the collective understanding of small molecule interventions in the context of JAK-STAT signaling. We aspire that our endeavors will contribute to advancing the development of innovative and efficacious treatments for a range of diseases linked to this pathway dysregulation.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Faming Wang
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|