1
|
Mitra M, Das A, Ghorbanpour M, Malik S, Mandal N. High-frequency shoot regeneration, assessment of genetic fidelity, and histochemical analysis of forskolin production in Coleus forskohlii Briq. PROTOPLASMA 2024:10.1007/s00709-024-02004-2. [PMID: 39549044 DOI: 10.1007/s00709-024-02004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
Forskolin, a diterpenoid found in the roots of Coleus forskohlii, has generated significant interest in the medical field due to its various therapeutic uses. This study aimed to establish an effective system for regenerating C. forskohlii plants, ensuring a year-round supply of plant material and forskolin production. We tested different concentrations of cytokinins, either alone or combined with auxin, to see their impact on shoot multiplication and growth. We found that a medium supplemented with 1.5 mg L-1 of meta-topolin (mT) resulted in the highest number of shoots (~ 12.66) and leaves (~ 20) within about 5 days. When mT (1 mg L-1) was combined with a low amount of auxin (0.05 mg L-1 NAA), we obtained an even greater number of leaves (~ 23). The shoot regeneration capacity was consistent over five subculture passages, showing minimal variation in mean shoot length and number. During acclimatization, around 91% of the plantlets grown in vermiculite + sand survived. The photosynthetic pigment concentration in the plantlets modestly increased in the first 10 days and reached its highest level after 30 days. Genetic fidelity assays using inter simple sequence repeats (ISSRs) confirmed the similarity between the in vitro derived plantlets and the mother plant. Micro-morphological features of in vitro and ex-vitro acclimated plantlets also matched those of the mother plant, further confirming genetic accuracy. Histochemical staining with vanillin confirmed the presence of forskolin in the in vitro roots, indicated by the violet coloration in the cells. Forskolin quantification was also validated by HPLC where in vitro derived roots were documented to undergo an almost ~ 1.8-fold in comparison to that of the mother plant. This established protocol can effectively address resource scarcity for commercial-scale forskolin production and sustainable conservation techniques.
Collapse
Affiliation(s)
- Monisha Mitra
- Department of Agricultural Biotechnology, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Mohanpur, West Bengal, 741252, India.
- Department of Agriculture Science, University of Helsinki, Helsinki, Finland.
| | - Anamika Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Mohanpur, West Bengal, 741252, India
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Sonia Malik
- Physiology, Ecology and Environment (P2E) Laboratory, University of Orleans, INRAE, USC1328, 45067, Orleans, France.
- Department of Biotechnology, Baba Farid College, Bathinda, 151001, India.
| | - Nirmal Mandal
- Department of Agricultural Biotechnology, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Mohanpur, West Bengal, 741252, India
| |
Collapse
|
2
|
Rezghiyan A, Esmaeili H, Farzaneh M, Rezadoost H. The interaction effect of water deficit stress and nanosilicon on phytochemical and physiological characteristics of hemp (Cannabis sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109298. [PMID: 39561683 DOI: 10.1016/j.plaphy.2024.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Different practical approaches have been employed to attenuate the destructive impacts of water deficit stress on plants, such as utilization of humic acid, salicylic acid, algae extract, mulching, and microorganisms, as well as silicon application. Nanosilicon significantly moderates the ruinous effects of abiotic and biotic stress in plants through some physiological processes. In this study, the interaction effect of drought stress and nanosilicon on phytochemical and physiological characteristics of hemp (Cannabis sativa L.) was investigated, wherein the four-week-old seedlings were subjected to irrigation treatments at four levels, including 100% (control), 80% (mild stress), 60% (moderate stress), and 40% (severe stress) of field capacity and nanosilicon at three concentrations (0, 0.5, and 1.5 mM) was foliar applied every 10 days in a factorial completely randomized design experiment with three replications for 30 days. Phytochemical and physiological analyses such as photosynthetic pigments, total phenolic and flavonoid content, and antioxidant enzyme activities were conducted. The results indicated that the highest content of Cannabidiol and Tetrahydrocannabinol was achieved using 1.5 mM (1.89%) and 0.5 mM (0.63%) nanosilicon treatments, respectively, under moderate stress. The plants subjected to severe drought stress without nanosilicon application displayed the lowest values of chlorophyll a (0.50 mg/g FW) and b (0.20 mg/g FW). The use of nanosilicon excited the activation of antioxidant enzymes, wherein the plants treated with nanosilicon and drought stress exhibited significantly higher SOD, POD, and APX activities compared to the control. Under all drought stress levels, foliar application of nanosilicon at the highest concentration decreased proline content. The results proposed that the application of 1.5 mM nanosilicon, as a more efficient concentration, improved drought tolerance in hemp plants.
Collapse
Affiliation(s)
- Ayyub Rezghiyan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Hassan Esmaeili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran.
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran.
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
3
|
Timoteo Junior AA, Oswald IWH. Optimized guidelines for feminized seed production in high-THC Cannabis cultivars. FRONTIERS IN PLANT SCIENCE 2024; 15:1384286. [PMID: 39539297 PMCID: PMC11557428 DOI: 10.3389/fpls.2024.1384286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
With the partial legalization of high-THC Cannabis sativa across 23 states for recreational use and 38 states for medical purposes in the United States, the Cannabis industry is poised for significant growth. Projected to reach a sales volume of $50.7 billion by 2028, this growth is driven by the trend of lifting Cannabis prohibition. High-THC C. sativa cultivars, containing more than 0.3% delta-9 tetrahydrocannabinol (Δ9-THC) as defined by the 2018 US Farm Bill, are used for both medicinal and recreational purposes. Cannabis sativa is a short day, dioecious, annual plant, where female plants are favored for THC production, which requires seed feminization techniques to ensure an accurate female plant population. This involves using an ethylene inhibitor to induce sex reversal, leading to male flower development on female plants, allowing for self-pollination and the production of feminized seeds. However, challenges such as seed viability and the occurrence of male flowers in progeny have been noted. This review provides guidelines to enhance the production of viable feminized seeds in high-THC Cannabis cultivars. Literature findings indicate that Silver Thiosulfate (STS) is the most effective ethylene inhibitor for sex reversal and seed feminization in high-THC Cannabis cultivars. Specifically, a single dose of 3 mM STS should be applied during the vegetative stage via foliar spraying until runoff, followed by exposure to a short photoperiod of up to 12 hours to induce flowering and seed production. Progeny plants should be assessed for seed germination rate and compared for growth performance with the original parent plant to assess the declining effects of inbreeding. Adhering to these guidelines can improve the quality and viability of feminized seeds, meeting commercial market standards and industry demands for high-THC Cannabis cultivars.
Collapse
Affiliation(s)
- Antonio A. Timoteo Junior
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Iain W. H. Oswald
- Department of Research and Development, Abstrax Tech, Tustin, CA, United States
| |
Collapse
|
4
|
Ahsan S, Injamum-Ul-Hoque M, Shaffique S, Ayoobi A, Rahman MA, Rahman MM, Choi HW. Illuminating Cannabis sativa L.: The Power of Light in Enhancing C. sativa Growth and Secondary Metabolite Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2774. [PMID: 39409645 PMCID: PMC11479007 DOI: 10.3390/plants13192774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Light is crucial for higher plants, driving photosynthesis and serving as a powerful sensory signal that profoundly modulates growth, development, physiological functions, hormone activation, and biochemical pathways. Various light parameters-quality, intensity, composition, and photoperiod-exert a tremendous influence on plant growth and development, particularly in industrial hemp (Cannabis sativa L.). C. sativa, a crop of historical significance and unparalleled versatility, holds immense value in the food, fiber, and medicinal industries. The cultivation of medicinal cannabis is burgeoning in controlled environments due to evolving healthcare regulations. Optimal light conditions significantly enhance both yield and harvest quality, notably increasing the density of apical inflorescences and the ratio of inflorescence to total aboveground biomass. C. sativa metabolites, especially phenolic and terpene compounds and Phytocannabinoids like CBD (cannabidiol), THC (tetrahydrocannabinol), and CBG (cannabigerol), possess immense medicinal value. Secondary metabolites in C. sativa predominantly accumulate in the trichomes of female flowers and surrounding sugar leaves, underscoring the critical need to boost inflorescence weight and metabolite concentrations while ensuring product consistency. Different light parameters distinctly impact C. sativa's metabolic profile, providing a robust foundation for understanding the optimal conditions for synthesizing specific secondary metabolites. While the effects of light measurement on various crops are well-established, scientific evidence specifically relating to light quality effects on C. sativa morphology and secondary metabolite accumulation remains scarce. In this review, we critically summarized how different light properties can alter cannabis growth (vegetative and reproductive), physiology and metabolism. Furthermore, the mechanisms by which specific wavelengths influence growth, development, and secondary metabolite biosynthesis in C. sativa are not fully elucidated, which could be a prospective task for future researchers. Our review paves the way for a profound understanding of light's influence on C. sativa growth and advancements in greenhouse settings to maximize metabolite production for commercial use.
Collapse
Affiliation(s)
- S.M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Akhtar Ayoobi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | | | - Md. Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Hyong Woo Choi
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
5
|
Ajdanian L, Arouiee H, Phineas Jones AM, Hesami M, Nemati H, Pepe M. Investigating the impact of paclobutrazol and tannic acid on floral development of in vitro -grown cannabis plantlets. Heliyon 2024; 10:e36768. [PMID: 39263128 PMCID: PMC11387330 DOI: 10.1016/j.heliyon.2024.e36768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Gibberellic acid (GA3) is inhibitory to floral development of in vitro cannabis plants and inhibiting GA3 biosynthesis promotes floral development. As such, paclobutrazol (PBZ), a potent GA3 biosynthesis inhibitor may be useful for increasing floral biomass and expediting development, but due to health concerns, its use is prohibited in cannabis production. The present study was conducted to compare the use of PBZ with tannic acid (TA), a natural compound with potential GA3 inhibiting characteristics. Results confirmed that PBZ significantly affected the number of flowers, percentage of flowering plantlet, and flower appearance time. Treatment using PBZ at a concentration of 10 μM resulted in the greatest number of flowers (7.95) compared to other treatments. Moreover, this compound at concentrations of 5 and 10 μM yielded the highest percentage of flowering plantlets, at 75 % and 70 %, respectively. Flowers also appeared 7-15 days sooner than other treatments. Additionally, the energy transfer efficiency in the photosynthetic system and chlorophyll concentration in plants treated with PBZ were considerably higher than those under other treatments. Under the PBZ treatment, the length of internode was significantly reduced. In contrast, TA generally had the opposite effect of PBZ, suggesting that it does not act as a GA3 inhibitor in this context. Furthermore, positive effects of TA at a concentration of 10 μM were observed on total leaf area (840.08 mm2) and stem length (40.09 mm). The highest number of leaves (12.5) was found in the presence of TA at a concentration of 100 μM. TA at its highest concentration (1000 μM) had an inverse effect on cannabis growth and flowering but was likely due to toxicity rather than any inhibitory effects. Consequently, the obtained results confirm the importance of growth regulators and natural compounds on plant growth and can broaden our understanding for future research and achievement of objectives.
Collapse
Affiliation(s)
- Ladan Ajdanian
- Department of Horticultural Sciences and Landscape Architecture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Département de phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec City, QC, Canada
| | - Hossein Arouiee
- Department of Horticultural Sciences and Landscape Architecture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Hossein Nemati
- Department of Horticultural Sciences and Landscape Architecture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Lavie O, Buxdorf K, Eshed Williams L. Optimizing cannabis cultivation: an efficient in vitro system for flowering induction. PLANT METHODS 2024; 20:141. [PMID: 39267047 PMCID: PMC11397071 DOI: 10.1186/s13007-024-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cannabis sativa L. is a versatile medicinal plant known for its therapeutic properties, derived from its diverse array of secondary metabolites synthesized primarily in female flower organs. Breeding cannabis is challenging due to its dioecious nature, strict regulatory requirements, and the need for photoperiod control to trigger flowering, coupled with highly dispersible pollen that can easily contaminate nearby female flowers. This study aimed to develop a protocol for in vitro flowering in cannabis, investigate factors affecting in vitro flower production, and generate viable in vitro seeds, potentially offering a method for producing sterile cannabinoids or advancing breeding techniques. RESULTS We show that the life cycle of cannabis can be fully completed in tissue culture; plantlets readily produce inflorescences and viable seeds in vitro. Our findings highlight the superior performance of DKW medium with 2% sucrose in a filtered vessel and emphasize the need for low light intensity during flower induction to optimize production. The improved performance in filtered vessels suggests that plants conduct photosynthesis in vitro, highlighting the need for future investigations into the effects of forced ventilation to refine this system. All tested lines readily developed inflorescences upon induction, with a 100% occurrence rate, including male flowering. We revealed the non-dehiscent trait of in vitro anthers, which is advantageous as it allows for multiple crosses to be conducted in vitro without concerns about cross-contamination. CONCLUSION The current work developed and optimized an effective protocol for in vitro flowering and seed production in cannabis, potentially providing a platform for sterile cannabinoid production and an efficient tool for breeding programs. This system allows for the full and consistent control of plant growth conditions year-round, potentially offering the reliable production of sterile molecules suitable for pharmacological use. As a breeding strategy, this method overcomes the complex challenges of breeding cannabis, such as the need for large facilities, by enabling the production of hundreds of lines in a small facility. By offering precise control over factors such as plant growth regulators, light intensity, photoperiod, and temperature, this system also serves as a valuable tool for studying flowering aspects in cannabis.
Collapse
Affiliation(s)
- Orly Lavie
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Kobi Buxdorf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
7
|
Das R, Kretzschmar T, Mieog JC. Importance of Media Composition and Explant Type in Cannabis sativa Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:2544. [PMID: 39339519 PMCID: PMC11434680 DOI: 10.3390/plants13182544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Producing uniform Cannabis sativa (Cannabis) for medicinal/recreational flower production through sexual propagation has been problematic, leading to dominance of clonal propagation from "mother plants" in the cannabinoid industry, which also faces significant limitations. Cannabis tissue culture (TC) methods have been developed to overcome these challenges, but the long-term health and maintenance of Cannabis explants in TC have been largely overlooked in previous studies. The current study focused on the development of an efficient and optimized micropropagation protocol covering the entire process, with a specific focus on the health and performance in the multiplication stage. Multiplication media were formulated hormone-free to avoid longer-term vitrification issues, resulting in single-main-shoot cultures rather than multiple-shoot cultures. This instigated the use of stage II explant types different from the standard shoot tips previously used for multiple shoot cultures. Multiplication media were further improved from the basal salt composition via nitrogen and calcium additives. The optimized protocol was used on eight diverse Cannabis cultivars to test its applicability across various genetic backgrounds. Results indicated that the protocol was effective for conservation purposes across all cultivars and achieved good long-term multiplication rates for some but not all. The outcomes of this study mark a significant stride towards an efficient Cannabis TC methodology ready for more comprehensive industrial applications.
Collapse
Affiliation(s)
- Rekhamani Das
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (T.K.); (J.C.M.)
| | | | | |
Collapse
|
8
|
Monthony AS, de Ronne M, Torkamaneh D. Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity. PLANT REPRODUCTION 2024; 37:321-339. [PMID: 38218931 DOI: 10.1007/s00497-023-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
KEY MESSAGE Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
Collapse
Affiliation(s)
- Adrian S Monthony
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada.
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
9
|
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:1910. [PMID: 39065436 PMCID: PMC11279941 DOI: 10.3390/plants13141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Advancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures. Using genotyping-by-sequencing, we identified 9405 polymorphic variants across 70 clones. The analysis revealed a correlation between the number of subcultures and the frequency of these mutations, revealing that genetic changes accumulate over successive subcultures despite clones sharing the same chronological age. Furthermore, we evaluated the functional impacts of accumulated mutations, with particular attention to implications on gene function and overall plant health. While rare, 14 high-impact variants were identified in genes that are important for plant development. Notably, six variants were also found in genes related to cannabinoid and terpene synthesis pathways, potentially affecting the plant's biochemical composition. These findings highlight the need for genetic assessments in micropropagation protocols, impacting plant breeding and conservation. Understanding genetic variations in clonally propagated plants optimizes practices for stability. Crucial for cannabis and horticultural plants, it emphasizes techniques to prevent genetic decay and ensure viability.
Collapse
Affiliation(s)
- Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.A.); (A.M.P.J.)
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Berida TI, Adekunle YA, Dada-Adegbola H, Kdimy A, Roy S, Sarker SD. Plant antibacterials: The challenges and opportunities. Heliyon 2024; 10:e31145. [PMID: 38803958 PMCID: PMC11128932 DOI: 10.1016/j.heliyon.2024.e31145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Nature possesses an inexhaustible reservoir of agents that could serve as alternatives to combat the growing threat of antimicrobial resistance (AMR). While some of the most effective drugs for treating bacterial infections originate from natural sources, they have predominantly been derived from fungal and bacterial species. However, a substantial body of literature is available on the promising antibacterial properties of plant-derived compounds. In this comprehensive review, we address the major challenges associated with the discovery and development of plant-derived antimicrobial compounds, which have acted as obstacles preventing their clinical use. These challenges encompass limited sourcing, the risk of agent rediscovery, suboptimal drug metabolism, and pharmacokinetics (DMPK) properties, as well as a lack of knowledge regarding molecular targets and mechanisms of action, among other pertinent issues. Our review underscores the significance of these challenges and their implications in the quest for the discovery and development of effective plant-derived antimicrobial agents. Through a critical examination of the current state of research, we give valuable insights that will advance our understanding of these classes of compounds, offering potential solutions to the global crisis of AMR. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Tomayo I. Berida
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Yemi A. Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayoub Kdimy
- LS3MN2E, CERNE2D, Faculty of Science, Mohammed V University in Rabat, Rabat, 10056, Morocco
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| |
Collapse
|
11
|
Boissinot J, Adamek K, Jones AMP, Normandeau E, Boyle B, Torkamaneh D. Comparative restriction enzyme analysis of methylation (CREAM) reveals methylome variability within a clonal in vitro cannabis population. FRONTIERS IN PLANT SCIENCE 2024; 15:1381154. [PMID: 38872884 PMCID: PMC11169872 DOI: 10.3389/fpls.2024.1381154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The primary focus of medicinal cannabis research is to ensure the stability of cannabis lines for consistent administration of chemically uniform products to patients. In recent years, tissue culture has emerged as a valuable technique for genetic preservation and rapid multiplication of cannabis clones. However, there is concern that the physical and chemical conditions of the growing media can induce somaclonal variation, potentially impacting the viability and uniformity of clones. To address this concern, we developed Comparative Restriction Enzyme Analysis of Methylation (CREAM), a novel method to assess DNA methylation patterns and used it to study a population of 78 cannabis clones maintained in tissue culture. Through bioinformatics analysis of the methylome, we successfully detected 2,272 polymorphic methylated regions among the clones. Remarkably, our results demonstrated that DNA methylation patterns were preserved across subcultures within the clonal population, allowing us to distinguish between two subsets of clonal lines used in this study. These findings significantly contribute to our understanding of the epigenetic variability within clonal lines in medicinal cannabis produced through tissue culture techniques. This knowledge is crucial for understanding the effects of tissue culture on DNA methylation and ensuring the consistency and reliability of medicinal cannabis products with therapeutic properties. Additionally, the CREAM method is a fast and affordable technology to get a first glimpse at methylation in a biological system. It offers a valuable tool for studying epigenetic variation in other plant species, thereby facilitating broader applications in plant biotechnology and crop improvement.
Collapse
Affiliation(s)
- Justin Boissinot
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec, QC, Canada
- Institut intelligence et données (IID), Université Laval, Québec, QC, Canada
| | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Davoud Torkamaneh
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec, QC, Canada
- Institut intelligence et données (IID), Université Laval, Québec, QC, Canada
| |
Collapse
|
12
|
Weingarten M, Mattson N, Grab H. Evaluating Propagation Techniques for Cannabis sativa L. Cultivation: A Comparative Analysis of Soilless Methods and Aeroponic Parameters. PLANTS (BASEL, SWITZERLAND) 2024; 13:1256. [PMID: 38732471 PMCID: PMC11085668 DOI: 10.3390/plants13091256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Given the rapid growth of the Cannabis industry, developing practices for producing young plants with limited genetic variation and efficient growth is crucial to achieving reliable and successful cultivation results. This study presents a multi-faceted experiment series analyzing propagation techniques for evaluating proficiency in the growth and development of Cannabis vegetative cuttings. This research encompasses various (1) soilless propagation methods including aeroponics, horticultural (phenolic) foam, and rockwool; (2) transplant timings; (3) aeroponic spray intervals; and (4) aeroponic reservoir nutrient concentrations, to elucidate their impact on rooting and growth parameters amongst two Cannabis cultivars. Aeroponics was as effective as, and in some cases more effective than, soilless propagation media for root development and plant growth. In aeroponic systems, continuous spray intervals, compared to intermittent, result in a better promotion of root initiation and plant growth. Moreover, raised nutrient concentrations in aeroponic propagation demonstrated greater rooting and growth. The effects of experimental treatment were dependent on the cultivar and sampling day. These findings offer valuable insights into how various propagation techniques and growth parameters can be tailored to enhance the production of vegetative cuttings. These results hold critical implications for cultivators intending to achieve premium harvests through efficient propagule methods and optimization strategies in the competitive Cannabis industry. Ultimately, our findings suggest that aeroponic propagation, compared to alternative soilless methods, is a rapid and efficient process for cultivating vegetative cuttings of Cannabis and offers sustainable advantages in resource conservation and preservation.
Collapse
Affiliation(s)
- Matthew Weingarten
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (N.M.); (H.G.)
| | | | | |
Collapse
|
13
|
Aasim M, Yıldırım B, Say A, Ali SA, Aytaç S, Nadeem MA. Artificial intelligence models for validating and predicting the impact of chemical priming of hydrogen peroxide (H 2O 2) and light emitting diodes on in vitro grown industrial hemp (Cannabis sativa L.). PLANT MOLECULAR BIOLOGY 2024; 114:33. [PMID: 38526768 DOI: 10.1007/s11103-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Industrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H2O2) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H2O2 × Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H2O2 × 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H2O2 and grown under different LED lights.
Collapse
Affiliation(s)
- Muhammad Aasim
- Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, Sivas, Turkey.
| | - Buşra Yıldırım
- Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, Sivas, Turkey
| | - Ahmet Say
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Seyid Amjad Ali
- Department of Information Systems and Technologies, Bilkent University, Ankara, Turkey
| | - Selim Aytaç
- Institute of Hemp Researches, Ondokuz Mayis University, Samsun, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
14
|
Buirs L, Punja ZK. Integrated Management of Pathogens and Microbes in Cannabis sativa L. (Cannabis) under Greenhouse Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:786. [PMID: 38592798 PMCID: PMC10974757 DOI: 10.3390/plants13060786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The increased cultivation of high THC-containing Cannabis sativa L. (cannabis), particularly in greenhouses, has resulted in a greater incidence of diseases and molds that can negatively affect the growth and quality of the crop. Among them, the most important diseases are root rots (Fusarium and Pythium spp.), bud rot (Botrytis cinerea), powdery mildew (Golovinomyces ambrosiae), cannabis stunt disease (caused by hop latent viroid), and a range of microbes that reduce post-harvest quality. An integrated management approach to reduce the impact of these diseases/microbes requires combining different approaches that target the reproduction, spread, and survival of the associated pathogens, many of which can occur on the same plant simultaneously. These approaches will be discussed in the context of developing an integrated plan to manage the important pathogens of greenhouse-grown cannabis at different stages of plant development. These stages include the maintenance of stock plants, propagation through cuttings, vegetative growth of plants, and flowering. The cultivation of cannabis genotypes with tolerance or resistance to various pathogens is a very important approach, as well as the maintenance of pathogen-free stock plants. When combined with cultural approaches (sanitation, management of irrigation, and monitoring for diseases) and environmental approaches (greenhouse climate modification), a significant reduction in pathogen development and spread can be achieved. The use of preventive applications of microbial biological control agents and reduced-risk biorational products can also reduce disease development at all stages of production in jurisdictions where they are registered for use. The combined use of promising strategies for integrated disease management in cannabis plants during greenhouse production will be reviewed. Future areas for research are identified.
Collapse
Affiliation(s)
- Liam Buirs
- Pure Sunfarms Corp., Delta, BC V4K 3N3, Canada;
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
15
|
Rodríguez-Deméneghi MV. Use of Temporary Immersion Systems in the Establishment of Biofactories. Methods Mol Biol 2024; 2759:25-41. [PMID: 38285136 DOI: 10.1007/978-1-0716-3654-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Companies dedicated to the large-scale propagation of plant species are known as biofactories or agricultural biotechnology companies. Globally, there are a large number of biofactories (large-scale production) or plant tissue culture laboratories (small-scale production) in charge of supplying commercial propagules of plants of economic interest. Each biofactory implements technological developments such as temporary immersion (TIS) systems that allow them to reduce costs. This chapter analyzes some of the biofactories established globally, the main plant species propagated, and whether or not they implement the use of TIS.
Collapse
|
16
|
Lapierre É, de Ronne M, Boulanger R, Torkamaneh D. Comprehensive Phenotypic Characterization of Diverse Drug-Type Cannabis Varieties from the Canadian Legal Market. PLANTS (BASEL, SWITZERLAND) 2023; 12:3756. [PMID: 37960111 PMCID: PMC10648736 DOI: 10.3390/plants12213756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Cannabis (Cannabis sativa L.) stands as a historically significant and culturally important plant, embodying economic, social, and medicinal relevance for human societies. However, years of prohibition and stigmatization have hindered the cannabis research community, which is hugely undersized and suffers from a scarcity of understanding of cannabis genetics and how key traits are expressed or inherited. In this study, we conducted a comprehensive phenotypic characterization of 176 drug-type cannabis accessions, representative of Canada's legal market. We assessed germination methods, evaluated various traits including agronomic, morphological, and cannabinoid profiles, and uncovered significant variation within this population. Notably, the yield displayed a negative correlation with maturity-related traits but a positive correlation with the fresh biomass. Additionally, the potential THC content showed a positive correlation with maturity-related traits but a negative correlation with the yield. Significant differences were observed between the plants derived from regular female seeds and feminized seeds, as well as between the plants derived from cuttings and seeds for different traits. This study advances our understanding of cannabis cultivation, offering insights into germination practices, agronomic traits, morphological characteristics, and biochemical diversity. These findings establish a foundation for precise breeding and cultivar development, enhancing cannabis's potential in the legal market.
Collapse
Affiliation(s)
- Éliana Lapierre
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| | - Rosemarie Boulanger
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Hesami M, Pepe M, de Ronne M, Yoosefzadeh-Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Transcriptomic Profiling of Embryogenic and Non-Embryogenic Callus Provides New Insight into the Nature of Recalcitrance in Cannabis. Int J Mol Sci 2023; 24:14625. [PMID: 37834075 PMCID: PMC10572465 DOI: 10.3390/ijms241914625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
| | | | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec, QC G1V 0A6, Canada
| | | |
Collapse
|
18
|
Xie Z, Mi Y, Kong L, Gao M, Chen S, Chen W, Meng X, Sun W, Chen S, Xu Z. Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad150. [PMID: 37691962 PMCID: PMC10485653 DOI: 10.1093/hr/uhad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Is Cannabis a boon or bane? Cannabis sativa has long been a versatile crop for fiber extraction (industrial hemp), traditional Chinese medicine (hemp seeds), and recreational drugs (marijuana). Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of ∆9-tetrahydrocannabinol; however, recently, the perspective has changed with the recognition of additional therapeutic values, particularly the pharmacological potential of cannabidiol. A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources. Here, we comprehensively review the historical usage of Cannabis, biosynthesis of trichome-specific cannabinoids, regulatory network of trichome development, and synthetic biology of cannabinoids. This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids, and the development and utilization of novel Cannabis varieties.
Collapse
Affiliation(s)
- Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaolei Mi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Maolun Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
19
|
Ingvardsen CR, Brinch-Pedersen H. Challenges and potentials of new breeding techniques in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1154332. [PMID: 37360738 PMCID: PMC10285108 DOI: 10.3389/fpls.2023.1154332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Cannabis sativa L. is an ancient crop used for fiber and seed production and not least for its content of cannabinoids used for medicine and as an intoxicant drug. Due to the psychedelic effect of one of the compounds, tetrahydrocannabinol (THC), many countries had regulations or bands on Cannabis growing, also as fiber or seed crop. Recently, as many of these regulations are getting less tight, the interest for the many uses of this crop is increasing. Cannabis is dioecious and highly heterogenic, making traditional breeding costly and time consuming. Further, it might be difficult to introduce new traits without changing the cannabinoid profile. Genome editing using new breeding techniques might solve these problems. The successful use of genome editing requires sequence information on suitable target genes, a genome editing tool to be introduced into plant tissue and the ability to regenerate plants from transformed cells. This review summarizes the current status of Cannabis breeding, uncovers potentials and challenges of Cannabis in an era of new breeding techniques and finally suggests future focus areas that may help to improve our overall understanding of Cannabis and realize the potentials of the plant.
Collapse
|
20
|
Bellocchio L, Patano A, Inchingolo AD, Inchingolo F, Dipalma G, Isacco CG, de Ruvo E, Rapone B, Mancini A, Lorusso F, Scarano A, Malcangi G, Inchingolo AM. Cannabidiol for Oral Health: A New Promising Therapeutical Tool in Dentistry. Int J Mol Sci 2023; 24:ijms24119693. [PMID: 37298644 DOI: 10.3390/ijms24119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The medical use of cannabis has a very long history. Although many substances called cannabinoids are present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN) are the three main cannabinoids that are most present and described. CBD itself is not responsible for the psychotropic effects of cannabis, since it does not produce the typical behavioral effects associated with the consumption of this drug. CBD has recently gained growing attention in modern society and seems to be increasingly explored in dentistry. Several subjective findings suggest some therapeutic effects of CBD that are strongly supported by research evidence. However, there is a plethora of data regarding CBD's mechanism of action and therapeutic potential, which are in many cases contradictory. We will first provide an overview of the scientific evidence on the molecular mechanism of CBD's action. Furthermore, we will map the recent developments regarding the possible oral benefits of CBD. In summary, we will highlight CBD's promising biological features for its application in dentistry, despite exiting patents that suggest the current compositions for oral care as the main interest of the industry.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | |
Collapse
|
21
|
Šenkyřík JB, Křivánková T, Kaczorová D, Štefelová N. Investigation of the Effect of the Auxin Antagonist PEO-IAA on Cannabinoid Gene Expression and Content in Cannabis sativa L. Plants under In Vitro Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1664. [PMID: 37111886 PMCID: PMC10142887 DOI: 10.3390/plants12081664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The in vitro shoot propagation of Cannabis sativa L. is an emerging research area for large-scale plant material production. However, how in vitro conditions influence the genetic stability of maintained material, as well as whether changes in the concentration and composition of secondary metabolites can be expected are aspects that need to be better understood. These features are essential for the standardised production of medicinal cannabis. This work aimed to find out whether the presence of the auxin antagonist α-(2-oxo-2-phenylethyl)-1H-indole-3-acetic acid (PEO-IAA) in the culture media influenced the relative gene expression (RGE) of the genes of interest (OAC, CBCA, CBDA, THCA) and the concentrations of studied cannabinoids (CBCA, CBDA, CBC, ∆9-THCA, and ∆9-THC). Two C. sativa cultivars, 'USO-31' and 'Tatanka Pure CBD', were cultivated by in vitro conditions with PEO-IAA presence and then analysed. The RT-qPCR results indicated that even though some changes in the RGE profiles could be observed, no differences were statistically significant compared with the control variant. The results of the phytochemical analyses demonstrate that although there were some differences from the control variant, only the cultivar 'Tatanka Pure CBD' showed a statistically significant increase (at a statistical significance level α = 0.05) in the concentration of the cannabinoid CBDA. In conclusion, it would appear that using PEO-IAA in the culture medium is a suitable approach to improve in vitro cannabis multiplication.
Collapse
Affiliation(s)
- Josef Baltazar Šenkyřík
- Department of Botany, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Tereza Křivánková
- Department of Botany, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Dominika Kaczorová
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, 78371 Olomouc, Czech Republic
- Department of Biochemistry, Faculty of Science, Palacký University, 78371 Olomouc, Czech Republic
| | - Nikola Štefelová
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| |
Collapse
|
22
|
Effect of Explant Source on Phenotypic Changes of In Vitro Grown Cannabis Plantlets over Multiple Subcultures. BIOLOGY 2023; 12:biology12030443. [PMID: 36979133 PMCID: PMC10044989 DOI: 10.3390/biology12030443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Drug-type cannabis is often multiplied using micropropagation methods to produce genetically uniform and disease/insect-free crops. However, micropropagated plantlets often exhibit phenotypic variation, leading to culture decline over time. In cannabis, the source of these changes remains unknown, though several factors (e.g., explant’s sources and prolonged in vitro culture) can result in such phenotypical variations. The study presented herein evaluates the effects of explant sources (i.e., nodal segments derived from the basal, near-basal, middle, and apical parts of the greenhouse-grown mother plant) over multiple subcultures (4 subcultures during 235 days) on multiplication parameters and leaf morphological traits of in vitro cannabis plantlets. While initial in vitro responses were similar among explants sourced from different regions of the plant, there were significant differences in performance over the course of multiple subcultures. Specifically, explant source and/or the number of subcultures significantly impacted plantlet height, number of nodes, and canopy surface area. The explants derived from the basal and near-basal parts of the plant resulted in the tallest shoots with the greatest number of nodes, while the explants derived from the middle and apical regions led to shorter shoots with fewer nodes. Moreover, the basal-derived explants produced cannabis plantlets with shorter but wider leaves which demonstrated the potential of such explants for in vitro rejuvenation practices with minimal culture decline. This study provides new evidence into the long-term impacts of explant source in cannabis micropropagation.
Collapse
|
23
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
24
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
25
|
Saleem Y, Ali A, Naz S, Jamil M, Naveed NH. Amelioration of lead toxicity by ascorbic acid in sugarcane (Saccharum officinarum L.) under in vitro condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85160-85171. [PMID: 35793025 DOI: 10.1007/s11356-022-21882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Agricultural sites are polluted with various metal ions worldwide. Ascorbic acid (AA) plays diverse roles in plant growth, development, and the regulation of cellular mechanisms against environmental stress. This study provides the relationship between morphological and biochemical parameters involved in the amelioration of Pb toxicity in three sugarcane (Saccharum officinarum L.) genotypes (YT-53, CP-77-400, NSG-59) by using six concentrations of Pb(NO3)2 under in vitro conditions. Morphological and biochemical parameters of ascorbic acid pretreated and non-pretreated calli were compared at each Pb(NO3)2 concentration. Ascorbic acid-pretreated calli have better callus growth and regeneration potential than non-treated calli under increased Pb concentration. Biochemical parameters such as antioxidant enzyme activity (peroxidase (POD), superoxide dismutase (SOD), catalase (CAT)) increased under increased Pb concentration. Ascorbic acid pretreatment further enhanced the POD and SOD activity, while CAT activity and total soluble protein contents of pretreated calli did not change significantly. Ascorbic acid ameliorated the Pb toxicity morphologically but showed uneven behavior towards biochemical parameters. Different genotypic behaviors versus different treatments were also observed. In the future, information from this study can be used to develop the metal-resistant sugarcane genotype against metal stress under in vitro conditions.
Collapse
Affiliation(s)
- Yasmeen Saleem
- Department of Botany, University of Sargodha, Sargodha, Pakistan.
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Shagufta Naz
- Department of Biotechnology, Lahore College for Women University Lahore, Punjab, Pakistan
| | | | | |
Collapse
|
26
|
Zarei A, Feyissa BA, Davis B, Tavakouli Dinani E. Cannabis Synthetic Seeds: An Alternative Approach for Commercial Scale of Clonal Propagation and Germplasm Conservation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3186. [PMID: 36501226 PMCID: PMC9738115 DOI: 10.3390/plants11233186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Indoor cannabis (Cannabis sativa) cultivation has been rapidly increasing in many countries after legalization. Besides conventional propagation through cuttings, synthetic seed production provides a competent system for mass propagation, germplasm conservation and international exchange of genetic materials. The present study developed a reliable protocol for cannabis synthetic seed production using encapsulation of nodal segments derived from in vitro or in vivo sources. Synthetic seeds were produced in 3% sodium alginate and 75 mM calcium chloride in Murashige and Skoog (MS) medium and stored under various environmental conditions for up to 150 days. The plantlets regrowth efficiency was monitored on culture media up to 30 days after the storage period. Regrowth rates of 70% and 90% were observed in synthetic seeds from in vitro and in vivo-derived sources, respectively, when stored in 6 °C under 50 μmol s-1 m-2 light for 150 days. Furthermore, addition of acetylsalicylic acid (ASA) to the encapsulation matrix not only postponed precocious germination of synthetic seeds at 22 °C, but also improved the regrowth rate of in vivo-derived synthetic seeds to 100% when they were stored in 6 °C under light. Exposure to light during storage significantly increased shoot length of regrown synseeds when compared to those stored in darkness. This difference in shoot growth disappeared when synseeds were treated with 25 µM ASA. All regenerated plantlets were rooted and acclimatized in sterile rockwool plugs without morphological changes.
Collapse
|
27
|
Pepe M, Marie TRJG, Leonardos ED, Hesami M, Rana N, Jones AMP, Grodzinski B. Tissue culture coupled with a gas exchange system offers new perspectives on phenotyping the developmental biology of Solanum lycopersicum L. cv. 'MicroTom'. FRONTIERS IN PLANT SCIENCE 2022; 13:1025477. [PMID: 36438083 PMCID: PMC9691339 DOI: 10.3389/fpls.2022.1025477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 05/26/2023]
Abstract
Solanum lycopersicum L. cv. 'Microtom' (MicroTom) is a model organism with a relatively rapid life cycle, and wide library of genetic mutants available to study different aspects of plant development. Despite its small stature, conventional MicroTom research often requires expensive growth cabinets and/or expansive greenhouse space, limiting the number of experimental and control replications needed for experiments, and can render plants susceptible to pests and disease. Thus, alternative experimental approaches must be devised to reduce the footprint of experimental units and limit the occurrence problematic confounding variables. Here, tissue culture is presented as a powerful option for MicroTom research that can quell the complications associated with conventional MicroTom research methods. A previously established, non-invasive, analytical tissue culture system is used to compare in vitro and conventionally produced MicroTom by assessing photosynthesis, respiration, diurnal carbon gain, and fruit pigments. To our knowledge, this is the first publication that measures in vitro MicroTom fruit pigments and compares diurnal photosynthetic/respiration responses to abiotic factors between in vitro and ex vitro MicroTom. Comparable trends would validate tissue culture as a new benchmark method in MicroTom research, as it is like Arabidopsis, allowing replicable, statistically valid, high throughput genotyping and selective phenotyping experiments. Combining the model plant MicroTom with advanced tissue culture methods makes it possible to study bonsai-style MicroTom responses to light, temperature, and atmospheric stimuli in the absence of confounding abiotic stress factors that would otherwise be unachievable using conventional methods.
Collapse
|
28
|
Ioannidis K, Tomprou I, Mitsis V, Koropouli P. Genetic Evaluation of In Vitro Micropropagated and Regenerated Plants of Cannabis sativa L. Using SSR Molecular Markers. PLANTS (BASEL, SWITZERLAND) 2022; 11:2569. [PMID: 36235433 PMCID: PMC9573407 DOI: 10.3390/plants11192569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
Abstract
Simple sequence repeat (SSR) markers were used to evaluate the genetic stability of the acclimatized micropropagated and regenerated plants of a high cannabidiol (H-CBD) and a high cannabigerol (H-CBG) variety of Cannabis sativa L. Shoot regeneration and proliferation were achieved by culturing calli in Murashige and Skoog basal medium (MS) supplemented with several concentrations of 6-benzyladenine (BA) or thidiazuron (TDZ). Calli derived mostly from stem explants, rather than leaves, cultured on MS supplemented with 2,4-Dichlorophenoxyacetic acid (2,4-D) or combination of kinetin (KIN) with 1-Naphthaleneacetic acid (NAA) or 2,4-D. Rooting of the regenerated plantlets accomplished on half-strength MS medium supplemented with indole-3-butyric acid (IBA). Previous studies performed have developed an efficient in vitro micropropagation protocol for mass production. Both in vitro methodologies can be employed in genetic breeding via molecular techniques. The genetic stability of micropropagated and regenerated plants was accomplished using twelve SSR primer pairs that produced reproducible and clear bands, ranging from 90 to 330 bp in size, and resulted in amplification of one or two alleles, corresponding to homozygous or heterozygous individuals. The SSR amplification products were monomorphic across all the micropropagated and regenerated plants and comparable to mother plants. The monomorphic banding pattern confirmed the genetic homogeneity of the in vitro cultured acclimatized and mother plants as no somaclonal variation was detected in clones for these specific SSRs. Our results evidently suggest that the developed culture protocols for in vitro multiplication is appropriate and applicable for clonal mass propagation of the C. sativa varieties and demonstrate the reliability of this in vitro propagation system.
Collapse
Affiliation(s)
- Kostas Ioannidis
- Laboratory of Sylviculture, Forest Genetics and Biotechnology, Institute of Mediterranean and Forest Ecosystems, Hellenic Agricultural Organization “Demeter”, 11528 Athens, Greece
| | | | | | | |
Collapse
|
29
|
Hesami M, Pepe M, Baiton A, Salami SA, Jones AMP. New Insight into Ornamental Applications of Cannabis: Perspectives and Challenges. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182383. [PMID: 36145783 PMCID: PMC9505140 DOI: 10.3390/plants11182383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 05/05/2023]
Abstract
The characteristic growth habit, abundant green foliage, and aromatic inflorescences of cannabis provide the plant with an ideal profile as an ornamental plant. However, due to legal barriers, the horticulture industry has yet to consider the ornamental relevance of cannabis. To evaluate its suitability for introduction as a new ornamental species, multifaceted commercial criteria were analyzed. Results indicate that ornamental cannabis would be of high value as a potted-plant or in landscaping. However, the readiness timescale for ornamental cannabis completely depends on its legal status. Then, the potential of cannabis chemotype Ⅴ, which is nearly devoid of phytocannabinoids and psychoactive properties, as the foundation for breeding ornamental traits through mutagenesis, somaclonal variation, and genome editing approaches has been highlighted. Ultimately, legalization and breeding for ornamental utility offers boundless opportunities related to economics and executive business branding.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
- Industrial and Medical Cannabis Research Institute (IMCRI), Tehran 14176-14411, Iran
| | | |
Collapse
|
30
|
Dumigan CR, Deyholos MK. Cannabis Seedlings Inherit Seed-Borne Bioactive and Anti-Fungal Endophytic Bacilli. PLANTS (BASEL, SWITZERLAND) 2022; 11:2127. [PMID: 36015430 PMCID: PMC9415172 DOI: 10.3390/plants11162127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Throughout the hundreds of millions of years of co-evolution, plants and microorganisms have established intricate symbiotic and pathogenic relationships. Microbial communities associated with plants are in constant flux and can ultimately determine whether a plant will successfully reproduce or be destroyed by their environment. Inheritance of beneficial microorganisms is an adaptation plants can use to protect germinating seeds against biotic and abiotic stresses as seedlings develop. The interest in Cannabis as a modern crop requires research into effective biocontrol of common fungal pathogens, an area that has seen little research. This study examines the seed-borne endophytes present across 15 accessions of Cannabis grown to seed across Western Canada. Both hemp and marijuana seedlings inherited a closely related group of bioactive endophytic Bacilli. All Cannabis accessions possessed seed-inherited Paenibacillus mobilis with the capacity to solubilize mineral phosphate. Additionally, seeds were found to carry genera of fungal isolates known to be Cannabis pathogens and post-harvest molds: Alternaria, Penicillium, Cladosporium, Chaetomium, Aspergillus, Rhizopus, and Fusarium. Thirteen seed-borne endophytes showed antibiotic activity against Alternaria, Aspergillus, Penicillium, and Fusarium. This study suggests both fungal pathogens and bacterial endophytes that antagonize them are vectored across generations in Cannabis as they compete over this shared niche.
Collapse
|
31
|
Akgur O, Aasim M. Deciphering the iPBS retrotransposons based genetic diversity of nanoparticles induced in Vitro seedlings of industrial hemp (Cannabis sativa L.). Mol Biol Rep 2022; 49:7135-7143. [PMID: 35717478 DOI: 10.1007/s11033-022-07596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The phytochemicals contained in hemp are highly significant and can be modified or altered by employing in vitro elicitors like nanoparticles (NPs). Application of NPs type, concentration, and treatment time regulate the germination, growth, and phytohemicals. METHODS AND RESULTS In vitro sterilized seeds of cannabis were augmented on Murashige and Skoog (MS) medium supplemented with silver (Ag) and titanium dioxide (TiO2) nanoparticles at different concentrations (0, 200, 400, 800, 1200 and 1600 mg/L) for one month. Results revealed that supplementation of NPs resulted in reduced germination (%), root length and longer shoots and seedling fresh wt compared to control. CONCLUSIONS Maximum germination was recorded on MS medium supplemented with 1600 mg/L TiO2NPs (92.50%) followed by 1600 mg/L AgNPs (80.00%). Supplementation of 800 mg/L AgNPs yielded longer shoots, roots, seedlings fresh weight, and chlorophyll-b contents compared to all other treatments. Whereas, maximum chlorophyll-a, carotenoids, and MDA contents were attributed to 1200 mg/L TiO2NPs. PCR results using eight iPBS-retrotransposons primers yielded a total of 101 bands with 98 polymorphic bands. Whereas, minimum (0.28) and maximum (0.42) gene diversity was associated with 2095 and 2228 primers.
Collapse
Affiliation(s)
- Ozlem Akgur
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Aasim
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey.
| |
Collapse
|
32
|
Understanding Cannabis sativa L.: Current Status of Propagation, Use, Legalization, and Haploid-Inducer-Mediated Genetic Engineering. PLANTS 2022; 11:plants11091236. [PMID: 35567237 PMCID: PMC9104644 DOI: 10.3390/plants11091236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022]
Abstract
Cannabis sativa L. is an illegal plant in many countries. The worldwide criminalization of the plant has for many years limited its research. Consequently, understanding the full scope of its benefits and harm became limited too. However, in recent years the world has witnessed an increased pace in legalization and decriminalization of C. sativa. This has prompted an increase in scientific studies on various aspects of the plant’s growth, development, and use. This review brings together the historical and current information about the plant’s relationship with mankind. We highlight the important aspects of C. sativa classification and identification, carefully analyzing the supporting arguments for both monotypic (single species) and polytypic (multiple species) perspectives. The review also identifies recent studies on suitable conditions and methods for C. sativa propagation as well as highlighting the diverse uses of the plant. Specifically, we describe the beneficial and harmful effects of the prominent phytocannabinoids and provide status of the studies on heterologous synthesis of phytocannabinoids in different biological systems. With a historical view on C. sativa legality, the review also provides an up-to-date worldwide standpoint on its regulation. Finally, we present a summary of the studies on genome editing and suggest areas for future research.
Collapse
|
33
|
Rico S, Garrido J, Sánchez C, Ferreiro-Vera C, Codesido V, Vidal N. A Temporary Immersion System to Improve Cannabis sativa Micropropagation. FRONTIERS IN PLANT SCIENCE 2022; 13:895971. [PMID: 35812929 PMCID: PMC9262383 DOI: 10.3389/fpls.2022.895971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 05/08/2023]
Abstract
The aim of this study was to propagate axillary shoots of Cannabis sativa L. using liquid medium in temporary immersion bioreactors. The effect of immersion frequency (3 or 6 immersions per day), explant type (apical or basal sections), explant number (8, 10, and 16 explants), mineral medium (Murashige and Skoog half-strength nitrates, β-A and β-H, all supplemented with 2-μM metatopoline), sucrose supplementation (2, 0.5, and 0% sucrose), culture duration (4 and 6 weeks), and bioreactor type (RITA® and Plantform™) were investigated. As a result, we propose a protocol for the proliferation of cannabis apical segments in RITA® or Plantform™ bioreactors. The explants (8 per RITA® and 24 per Plantform™) are immersed for 1 min, 3 times per day in β-A medium supplemented with 2-μM metatopoline and 0.5% of sucrose and subcultured every 4 weeks. This is the first study using temporary immersion systems in C. sativa production, and our results provide new opportunities for the mass propagation of this species.
Collapse
Affiliation(s)
- Saleta Rico
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
| | - José Garrido
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Conchi Sánchez
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
| | - Carlos Ferreiro-Vera
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Verónica Codesido
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Nieves Vidal
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
- *Correspondence: Nieves Vidal
| |
Collapse
|
34
|
Datta S, Ramamurthy PC, Anand U, Singh S, Singh A, Dhanjal DS, Dhaka V, Kumar S, Kapoor D, Nandy S, Kumar M, Koshy EP, Dey A, Proćków J, Singh J. Wonder or evil?: Multifaceted health hazards and health benefits of Cannabis sativa and its phytochemicals. Saudi J Biol Sci 2021; 28:7290-7313. [PMID: 34867033 PMCID: PMC8626265 DOI: 10.1016/j.sjbs.2021.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa, widely known as 'Marijuana' poses a dilemma for being a blend of both good and bad medicinal effects. The historical use of Cannabis for both medicinal and recreational purposes suggests it to be a friendly plant. However, whether the misuse of Cannabis and the cannabinoids derived from it can hamper normal body physiology is a focus of ongoing research. On the one hand, there is enough evidence to suggest that misuse of marijuana can cause deleterious effects on various organs like the lungs, immune system, cardiovascular system, etc. and also influence fertility and cause teratogenic effects. However, on the other hand, marijuana has been found to offer a magical cure for anorexia, chronic pain, muscle spasticity, nausea, and disturbed sleep. Indeed, most recently, the United Nations has given its verdict in favour of Cannabis declaring it as a non-dangerous narcotic. This review provides insights into the various health effects of Cannabis and its specialized metabolites and indicates how wise steps can be taken to promote good use and prevent misuse of the metabolites derived from this plant.
Collapse
Affiliation(s)
- Shivika Datta
- Department of Zoology, Doaba College, Jalandhar, Punjab 144001, India
| | - Praveen C. Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore 560012, Karnataka, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore 560012, Karnataka, India
| | - Amritpal Singh
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Government Dental College and Hospital, Amphala, Jammu 180012, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vaishali Dhaka
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sanjay Kumar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Manoj Kumar
- Department of Life Sciences, School of Natural Science, Central University of Jharkhand, Brambe, Ratu-Lohardaga Road Ranchi, Jharkhand 835205, India
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Joginder Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
35
|
Adams TK, Masondo NA, Malatsi P, Makunga NP. Cannabis sativa: From Therapeutic Uses to Micropropagation and Beyond. PLANTS (BASEL, SWITZERLAND) 2021; 10:2078. [PMID: 34685890 PMCID: PMC8537884 DOI: 10.3390/plants10102078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
The development of a protocol for the large-scale production of Cannabis and its variants with little to no somaclonal variation or disease for pharmaceutical and for other industrial use has been an emerging area of research. A limited number of protocols have been developed around the world, obtained through a detailed literature search using web-based database searches, e.g., Scopus, Web of Science (WoS) and Google Scholar. This article reviews the advances made in relation to Cannabis tissue culture and micropropagation, such as explant choice and decontamination of explants, direct and indirect organogenesis, rooting, acclimatisation and a few aspects of genetic engineering. Since Cannabis micropropagation systems are fairly new fields, combinations of plant growth regulator experiments are needed to gain insight into the development of direct and indirect organogenesis protocols that are able to undergo the acclimation stage and maintain healthy plants desirable to the Cannabis industry. A post-culture analysis of Cannabis phytochemistry after the acclimatisation stage is lacking in a majority of the reviewed studies, and for in vitro propagation protocols to be accepted by the pharmaceutical industries, phytochemical and possibly pharmacological research need to be undertaken in order to ascertain the integrity of the generated plant material. It is rather difficult to obtain industrially acceptable micropropagation regimes as recalcitrance to the regeneration of in vitro cultured plants remains a major concern and this impedes progress in the application of genetic modification technologies and gene editing tools to be used routinely for the improvement of Cannabis genotypes that are used in various industries globally. In the future, with more reliable plant tissue culture-based propagation that generates true-to-type plants that have known genetic and metabolomic integrity, the use of genetic engineering systems including "omics" technologies such as next-generation sequencing and fast-evolving gene editing tools could be implemented to speed up the identification of novel genes and mechanisms involved in the biosynthesis of Cannabis phytochemicals for large-scale production.
Collapse
Affiliation(s)
- Tristan K. Adams
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, Matieland 7600, South Africa; (T.K.A.); (N.A.M.)
| | - Nqobile A. Masondo
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, Matieland 7600, South Africa; (T.K.A.); (N.A.M.)
| | - Pholoso Malatsi
- Cannsun Medicinals (Pty.) Ltd., Cape Farms, Atlantis, Cape Town 7349, South Africa;
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, Matieland 7600, South Africa; (T.K.A.); (N.A.M.)
| |
Collapse
|
36
|
Holmes JE, Lung S, Collyer D, Punja ZK. Variables Affecting Shoot Growth and Plantlet Recovery in Tissue Cultures of Drug-Type Cannabis sativa L. FRONTIERS IN PLANT SCIENCE 2021; 12:732344. [PMID: 34621286 PMCID: PMC8491305 DOI: 10.3389/fpls.2021.732344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Tissue culture approaches are widely used in crop plants for the purposes of micropropagation, regeneration of plants through organogenesis, obtaining pathogen-free plantlets from meristem culture, and developing genetically modified plants. In this research, we evaluated variables that can influence the success of shoot growth and plantlet production in tissue cultures of drug-type Cannabis sativa L. (marijuana). Various sterilization methods were tested to ensure shoot development from nodal explants by limiting the frequency of contaminating endophytes, which otherwise caused the death of explants. Seven commercially grown tetrahydrocannabinol (THC)-containing cannabis genotypes (strains) showed significant differences in response to shoot growth from meristems and nodal explants on Murashige and Skoog (MS) medium containing thidiazuron (1 μM) and naphthaleneacetic acid (0.5 μM) plus 1% activated charcoal. The effect of Driver and Kuniyuki Walnut (DKW) or MS basal salts in media on shoot length and leaf numbers from nodal explants was compared and showed genotype dependency with regard to the growth response. To obtain rooted plantlets, shoots from meristems and nodal explants of genotype Moby Dick were evaluated for rooting, following the addition of sodium metasilicate, silver nitrate, indole-3-butyric acid (IBA), kinetin, or 2,4-D. Sodium metasilicate improved the visual appearance of the foliage and improved the rate of rooting. Silver nitrate also promoted rooting. Following acclimatization, plantlet survival in hydroponic culture, peat plugs, and rockwool substrate was 57, 76, and 83%, respectively. The development of plantlets from meristems is described for the first time in C. sativa and has potential for obtaining pathogen-free plants. The callogenesis response of leaf explants of 11 genotypes on MS medium without activated charcoal was 35% to 100%, depending on the genotype; organogenesis was not observed. The success in recovery of plantlets from meristems and nodal explants is influenced by cannabis genotype, degree of endophytic contamination of the explants, and frequency of rooting. The procedures described here have potential applications for research and commercial utility to obtain plantlets in stage 1 tissue cultures of C. sativa.
Collapse
|
37
|
Reichel P, Munz S, Hartung J, Präger A, Kotiranta S, Burgel L, Schober T, Graeff-Hönninger S. Impact of Three Different Light Spectra on the Yield, Morphology and Growth Trajectory of Three Different Cannabis sativa L. Strains. PLANTS (BASEL, SWITZERLAND) 2021; 10:1866. [PMID: 34579399 PMCID: PMC8472666 DOI: 10.3390/plants10091866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
Cannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country specific regulations. Plant growth, morphology and metabolism can be manipulated by changing light quality and intensity. Three morphologically different strains were grown under three different light spectra with three real light repetitions. Light dispersion was included into the statistical evaluation. The light spectra considered had an influence on the morphology of the plant, especially the height. Here, the shade avoidance induced by the lower R:FR ratio under the ceramic metal halide lamp (CHD) was of particular interest. The sugar leaves seemed to be of elementary importance in the last growth phase for yield composition. Furthermore, the last four weeks of flowering were crucial to influence the yield composition of Cannabis sativa L. through light spectra. The dry flower yield was significantly higher under both LED treatments compared to the conventional CHD light source. Our results indicate that the plant morphology can be artificially manipulated by the choice of light treatment to create shorter plants with more lateral branches which seem to be beneficial for yield development. Furthermore, the choice of cultivar has to be taken into account when interpreting results of light studies, as Cannabis sativa L. subspecies and thus bred strains highly differ in their phenotypic characteristics.
Collapse
Affiliation(s)
- Philipp Reichel
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Sebastian Munz
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Jens Hartung
- Biostatistics, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Achim Präger
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Stiina Kotiranta
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;
| | - Lisa Burgel
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Torsten Schober
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Simone Graeff-Hönninger
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| |
Collapse
|
38
|
Downey CD, Golenia G, Boudko EA, Jones AMP. Cryopreservation of 13 Commercial Cannabis sativa Genotypes Using In Vitro Nodal Explants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1794. [PMID: 34579326 PMCID: PMC8470898 DOI: 10.3390/plants10091794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
Cannabis has developed into a multi-billion-dollar industry that relies on clonal propagation of elite genetics with desirable agronomic and chemical phenotypes. While the goal of clonal propagation is to produce genetically uniform plants, somatic mutations can accumulate during growth and compromise long-term genetic fidelity. Cryopreservation is a process in which tissues are stored at cryogenic temperatures, halting cell division and metabolic processes to facilitate high fidelity germplasm preservation. In this study, a series of experiments were conducted to optimize various stages of cryopreservation and develop a protocol for long-term germplasm storage of Cannabis sativa. The resulting protocol uses a standard vitrification procedure to cryopreserve nodal explants from in vitro shoots as follows: nodes were cultured for 17 h in a pre-culture solution (PCS), followed by a 20-min treatment in a loading solution (LS), and a 60 min incubation in plant vitrification solution 2 (PVS2). The nodes were then flash frozen in liquid nitrogen, re-warmed in an unloading solution at 40 °C, and cultured on basal MS culture medium in the dark for 5 days followed by transfer to standard culture conditions. This protocol was tested across 13 genotypes to assess the genotypic variability. The protocol was successful across all 13 genotypes, but significant variation was observed in tissue survival (43.3-80%) and regrowth of shoots (26.7-66.7%). Plants grown from cryopreserved samples were morphologically and chemically similar to control plants for most major traits, but some differences were observed in the minor cannabinoid and terpene profiles. While further improvements are likely possible, this study provides a functional cryopreservation system that works across multiple commercial genotypes for long-term germplasm preservation.
Collapse
Affiliation(s)
- Cassandra D. Downey
- Canopy Growth Corporation, Smiths Falls, ON K7A 0A8, Canada; (C.D.D.); (G.G.); (E.A.B.)
| | - Gregory Golenia
- Canopy Growth Corporation, Smiths Falls, ON K7A 0A8, Canada; (C.D.D.); (G.G.); (E.A.B.)
| | - Ekaterina A. Boudko
- Canopy Growth Corporation, Smiths Falls, ON K7A 0A8, Canada; (C.D.D.); (G.G.); (E.A.B.)
| | - Andrew Maxwell P. Jones
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
39
|
Monthony AS, Kyne ST, Grainger CM, Jones AMP. Recalcitrance of Cannabis sativa to de novo regeneration; a multi-genotype replication study. PLoS One 2021; 16:e0235525. [PMID: 34388148 PMCID: PMC8363012 DOI: 10.1371/journal.pone.0235525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Cannabis sativa is relatively recalcitrant to de novo regeneration, but several studies have reported shoot organogenesis or somatic embryogenesis from non-meristematic tissues. Most report infrequent regeneration rates from these tissues, but a landmark publication from 2010 achieved regeneration from leaf explants with a 96% response rate, producing an average of 12.3 shoots per explant in a single drug-type accession. Despite the importance regeneration plays in plant biotechnology and the renewed interest in this crop the aforementioned protocol has not been used in subsequent papers in the decade since it was published, raising concerns over its reproducibility. Here we attempted to replicate this important Cannabis regeneration study and expand the original scope of the study by testing it across 10 drug-type C. sativa genotypes to assess genotypic variation. In our study, callus was induced in all 10 genotypes but callus growth and appearance substantially differed among cultivars, with the most responsive genotype producing 6-fold more callus than the least responsive. The shoot induction medium failed to induce shoot organogenesis in any of the 10 cultivars tested, instead resulting in necrosis of the calli. The findings of this replication study raise concerns about the replicability of existing methods. However, some details of the protocol could not be replicated due to missing details in the original paper and regulatory issues, which could have impacted the outcome. These results highlight the importance of using multiple genotypes in such studies and providing detailed methods to facilitate replication.
Collapse
Affiliation(s)
- Adrian S. Monthony
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Sean T. Kyne
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
40
|
Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm. Appl Microbiol Biotechnol 2021; 105:5201-5212. [PMID: 34086118 DOI: 10.1007/s00253-021-11375-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 01/24/2023]
Abstract
Plant callus is generally considered to be a mass of undifferentiated cells and can be used for secondary metabolite production, physiological studies, and plant transformation/regeneration. However, there are several types of callus with different morphological and developmental characteristics and not all are suitable for all applications. Callogenesis is a multivariable developmental process affected by several intrinsic and extrinsic factors, but the most important driver is plant growth regulator (PGRs) levels and type. Since callogenesis is a non-linear process influenced by many different factors, robust computational methods such as machine learning algorithms have great potential to model, predict, and optimize callus growth and development. The current study was conducted to evaluate the effect of PGRs on callus morphology in drug-type Cannabis sativa to maximize callus growth and promote embryogenic callus production. For this aim, random forest (RF) and support vector machine (SVM) were applied in conjunction with image processing to model and predict callus morphological and physical traits. The results showed that SVM was more accurate than RF. In order to find the optimal level of PGRs for optimizing callus growth and development, the SVM was linked to a genetic algorithm (GA). To confirm the reliability of SVM-GA, the optimized-predicted outcomes were tested in a validation experiment that revealed SVM-GA was able to accurately model and optimize the system. Moreover, our results showed that there is a significant correlation between embryogenic callus production and the true density of callus. KEY POINTS: • The effect of PGRs on callus growth and development of cannabis was studied. • The predictive accuracy of SVM and RF was evaluated and compared. • GA was linked to the SVM for optimizing the callus growth and development.
Collapse
|
41
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
42
|
Hesami M, Yoosefzadeh Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Synergizing Off-Target Predictions for In Silico Insights of CENH3 Knockout in Cannabis through CRISPR/Cas. Molecules 2021; 26:molecules26072053. [PMID: 33916717 PMCID: PMC8038328 DOI: 10.3390/molecules26072053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing system has recently been used for haploid production in plants. Haploid induction using the CRISPR/Cas system represents an attractive approach in cannabis, an economically important industrial, recreational, and medicinal plant. However, the CRISPR system requires the design of precise (on-target) single-guide RNA (sgRNA). Therefore, it is essential to predict off-target activity of the designed sgRNAs to avoid unexpected outcomes. The current study is aimed to assess the predictive ability of three machine learning (ML) algorithms (radial basis function (RBF), support vector machine (SVM), and random forest (RF)) alongside the ensemble-bagging (E-B) strategy by synergizing MIT and cutting frequency determination (CFD) scores to predict sgRNA off-target activity through in silico targeting a histone H3-like centromeric protein, HTR12, in cannabis. The RF algorithm exhibited the highest precision, recall, and F-measure compared to all the tested individual algorithms with values of 0.61, 0.64, and 0.62, respectively. We then used the RF algorithm as a meta-classifier for the E-B method, which led to an increased precision with an F-measure of 0.62 and 0.66, respectively. The E-B algorithm had the highest area under the precision recall curves (AUC-PRC; 0.74) and area under the receiver operating characteristic (ROC) curves (AUC-ROC; 0.71), displaying the success of using E-B as one of the common ensemble strategies. This study constitutes a foundational resource of utilizing ML models to predict gRNA off-target activities in cannabis.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (M.Y.N.); (K.A.); (D.T.)
| | | | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (M.Y.N.); (K.A.); (D.T.)
| | - Davoud Torkamaneh
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (M.Y.N.); (K.A.); (D.T.)
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Andrew Maxwell Phineas Jones
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (M.Y.N.); (K.A.); (D.T.)
- Correspondence:
| |
Collapse
|