1
|
Gholami F, Amerian MR, Asghari HR, Ebrahimi A. Assessing the effects of 24-epibrassinolide and yeast extract at various levels on cowpea's morphophysiological and biochemical responses under water deficit stress. BMC PLANT BIOLOGY 2023; 23:593. [PMID: 38008746 PMCID: PMC10680335 DOI: 10.1186/s12870-023-04548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Due to the factor of water deficit, which has placed human food security at risk by causing a 20% annual reduction in agricultural products, addressing this growing peril necessitates the adoption of inventive strategies aimed at enhancing plant tolerance. One such promising approach is employing elicitors such as 24-epibrassinolide (EBR) and yeast extract, which are potent agents capable of triggering robust defense responses in plants. By employing these elicitors, crops can develop enhanced adaptive mechanisms to combat water deficit and improve their ability to withstand drought condition. This study investigates the impact of different levels of EBR (0, 5, 10 µm) and yeast extract (0 and 12 g/l) on enhancing the tolerance of cowpea to water deficit stress over two growing seasons. RESULTS The findings of this study demonstrate that, the combined application of EBR (especially 10 µm) and yeast extract (12 g/l) can increase seed yield (18%), 20-pod weight (16%), the number of pods per plant (18%), total chlorophyll content (90%), and decrease malondialdehyde content (45%) in cowpea, compared to plants grown under water deficit stress without these treatments. Upon implementing these treatments, impressive results were obtained, with the highest recorded values observed for the seed yield (1867.55 kg/ha), 20-pod weight (16.29 g), pods number per plant (9), and total chlorophyll content (19.88 mg g-1 FW). The correlation analysis indicated a significant relationship between the seed yield, and total chlorophyll (0.74**), carotenoids (0.82**), weight of 20 seeds (0.67**), and number of pods (0.90**). These traits should be prioritized in cowpea breeding programs focusing on water deficit stress. CONCLUSIONS The comprehensive exploration of the effects of EBR and yeast extract across various levels on cowpea plants facing water deficit stress presents a pivotal contribution to the agricultural domain. This research illuminates a promising trajectory for future agricultural practices and users seeking sustainable solutions to enhance crops tolerance. Overall, the implications drawn from this study contribute significantly towards advancing our understanding of plant responses to water deficit stress while providing actionable recommendations for optimizing crop production under challenging environmental conditions.
Collapse
Affiliation(s)
- Faride Gholami
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Hamid Reza Asghari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
2
|
Seleiman MF, Ahmad A, Tola E, Alhammad BA, Almutairi KF, Madugundu R, Al-Gaadi KA. Exogenous Application of 24-Epibrassinolide Confers Saline Stress and Improves Photosynthetic Capacity, Antioxidant Defense, Mineral Uptake, and Yield in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:3559. [PMID: 37896022 PMCID: PMC10609825 DOI: 10.3390/plants12203559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Salinity is one of the major environmental stresses threatening crop production, the natural ecosystem, global food security, and the socioeconomic health of humans. Thus, the development of eco-friendly strategies to mitigate saline stress and/or enhance crop tolerance is an important issue worldwide. Therefore, this study was conducted during the summer of 2022 to investigate the potential of 24-Epibrassinolide (EBL) for mitigating saline stress and improving photosynthetic capacity, antioxidant defense systems, mineral uptake, and yield in maize (Zea mays L.) grown under a controlled hydroponic system. Three saline stress levels-S1 (control/no added NaCl), S2 (60 mM NaCl), and S3 (120 mM NaCl)-were continuously applied with nutrient solution, whereas exogenous EBL (i.e., control, 0.1 µM and 0.2 µM) was applied as exogenous application three times (i.e., 40, 55, 70 days after sowing). The experiment was designed as a split-plot in a randomized complete block design (RCBD) in which saline stress was the main factor and EBL treatment was the sub-factor. Results showed that saline stress significantly affected plant growth, physiological performance, biochemistry, antioxidant activity, and yield attributes. However, the exogenous application of EBL at 0.2 µM significantly mitigated the salt stress and thus improved plant performance even under 120 mM NaCl saline stress. For instance, as compared to untreated plants (control), 0.2 µM EBL application improved plant height (+18%), biomass (+19%), SPAD (+32%), Fv/Fm (+28%), rate of photosynthesis (+11%), carboxylation efficiency (+6%), superoxide dismutase (SOD +14%), catalase (CAT +18%), ascorbate peroxidase (APX +20%), K+ (+24%), 100-grain weight (+11%), and grain yield (+47%) of maize grown under salt stress. Additionally, it resulted in a 23% reduction in Na+ accumulation in leaves and a 25% reduction in for Na+/K+ ratio under saline stress as compared to control. Furthermore, the Pearson's correlation and principal component analysis (PCA) highlighted the significance of exogenous EBL as saline stress mitigator in maize. Overall, our results indicated the protective effects of EBL application to the alleviation of saline stress in crop plants. However, further exploration of its mechanism of action and crop-specific response is suggested prior to commercial use in agriculture.
Collapse
Affiliation(s)
- Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Awais Ahmad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - ElKamil Tola
- Precision Agriculture Research Chair, Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Khalid F. Almutairi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Rangaswamy Madugundu
- Precision Agriculture Research Chair, Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid A. Al-Gaadi
- Precision Agriculture Research Chair, Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Belal HEE, Abdelpary MAM, Desoky ESM, Ali EF, Al Kashgry NAT, Rady MM, Semida WM, Mahmoud AEM, Sayed AAS. Effect of Eco-Friendly Application of Bee Honey Solution on Yield, Physio-Chemical, Antioxidants, and Enzyme Gene Expressions in Excessive Nitrogen-Stressed Common Bean ( Phaseolus vulgaris L.) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3435. [PMID: 37836175 PMCID: PMC10575117 DOI: 10.3390/plants12193435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Excessive use of nitrogen (N) pollutes the environment and causes greenhouse gas emissions; however, the application of eco-friendly plant biostimulators (BSs) can overcome these issues. Therefore, this paper aimed to explore the role of diluted bee honey solution (DHS) in attenuating the adverse impacts of N toxicity on Phaseolus vulgaris growth, yield quality, physio-chemical properties, and defense systems. For this purpose, the soil was fertilized with 100, 125, and 150% of the recommended N dose (RND), and the plants were sprayed with 1.5% DHS. Trials were arranged in a two-factor split-plot design (N levels occupied main plots × DH- occupied subplots). Excess N (150% RND) caused a significant decline in plant growth, yield quality, photosynthesis, and antioxidants, while significantly increasing oxidants and oxidative damage [hydrogen peroxide (H2O2), superoxide (O2•-), nitrate, electrolyte leakage (EL), and malondialdehyde (MDA) levels]. However, DHS significantly improved antioxidant activities (glutathione and nitrate reductases, catalase, ascorbate peroxidase, superoxide dismutase, proline, ascorbate, α-tocopherol, and glutathione) and osmoregulatory levels (soluble protein, glycine betaine, and soluble sugars). Enzyme gene expressions showed the same trend as enzyme activities. Additionally, H2O2, O2•-, EL, MDA, and nitrate levels were significantly declined, reflecting enhanced growth, yield, fruit quality, and photosynthetic efficiency. The results demonstrate that DHS can be used as an eco-friendly approach to overcome the harmful impacts of N toxicity on P. vulgaris plants.
Collapse
Affiliation(s)
- Hussein E. E. Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.A.M.A.)
| | - Mostafa A. M. Abdelpary
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.A.M.A.)
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Esmat F. Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.F.A.); (N.A.T.A.K.)
| | - Najla Amin T. Al Kashgry
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.F.A.); (N.A.T.A.K.)
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.A.M.A.)
| | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Amr E. M. Mahmoud
- Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Ali A. S. Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.A.M.A.)
| |
Collapse
|
4
|
Zhang B, Du H, Yang S, Wu X, Liu W, Guo J, Xiao Y, Peng F. Physiological and Transcriptomic Analyses of the Effects of Exogenous Lauric Acid on Drought Resistance in Peach ( Prunus persica (L.) Batsch). PLANTS (BASEL, SWITZERLAND) 2023; 12:1492. [PMID: 37050118 PMCID: PMC10097042 DOI: 10.3390/plants12071492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Peach (Prunus persica (L.) Batsch) is a fruit tree of economic and nutritional importance, but it is very sensitive to drought stress, which affects its growth to a great extent. Lauric acid (LA) is a fatty acid produced in plants and associated with the response to abiotic stress, but the underlying mechanism remains unclear. In this study, physiological analysis showed that 50 ppm LA pretreatment under drought stress could alleviate the growth of peach seedlings. LA inhibits the degradation of photosynthetic pigments and the closing of pores under drought stress, increasing the photosynthetic rate. LA also reduces the content of O2-, H2O2, and MDA under drought stress; our results were confirmed by Evans Blue, nitroblue tetrazolium (NBT), and DAB(3,3-diaminobenzidine) staining experiments. It may be that, by directly removing reactive oxygen species (ROS) and improving enzyme activity, i.e., catalase (CAT) activity, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and ascorbate peroxidase (APX) activity, the damage caused by reactive oxygen species to peach seedlings is reduced. Peach seedlings treated with LA showed a significant increase in osmoregulatory substances compared with those subjected to drought stress, thereby regulating osmoregulatory balance and reducing damage. RNA-Seq analysis identified 1876 DEGs (differentially expressed genes) in untreated and LA-pretreated plants under drought stress. In-depth analysis of these DEGs showed that, under drought stress, LA regulates the expression of genes related to plant-pathogen interaction, phenylpropanoid biosynthesis, the MAPK signaling pathway, cyanoamino acid metabolism, and sesquiterpenoid and triterpenoid biosynthesis. In addition, LA may activate the Ca2+ signaling pathway by increasing the expressions of CNGC, CAM/CML, and CPDK family genes, thereby improving the drought resistance of peaches. In summary, via physiological and transcriptome analyses, the mechanism of action of LA in drought resistance has been revealed. Our research results provide new insights into the molecular regulatory mechanism of the LA-mediated drought resistance of peach trees.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuansong Xiao
- Correspondence: (Y.X.); (F.P.); Tel.: +86-151-6387-3786 (Y.X.); +86-135-6382-1651 (F.P.)
| | - Futian Peng
- Correspondence: (Y.X.); (F.P.); Tel.: +86-151-6387-3786 (Y.X.); +86-135-6382-1651 (F.P.)
| |
Collapse
|
5
|
Morsi NAA, Hashem OSM, El-Hady MAA, Abd-Elkrem YM, El-temsah ME, Galal EG, Gad KI, Boudiar R, Silvar C, El-Hendawy S, Mansour E, Abdelkader MA. Assessing Drought Tolerance of Newly Developed Tissue-Cultured Canola Genotypes under Varying Irrigation Regimes. AGRONOMY 2023; 13:836. [DOI: 10.3390/agronomy13030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Drought is a major abiotic stress that greatly affects canola growth, production, and quality. Moreover, water scarcity is projected to be more severe and frequent as a result of climate change, in particular in arid environments. Thereupon, developing drought-tolerant and high-yielding canola genotypes has become more critical to sustaining its production and ensuring global food security with the continuing population growth. In the present study, ten canola genotypes comprising six developed tissue-cultured canola genotypes, two exotic genotypes, and two commercial cultivars were evaluated under four irrigation regimes. The applied irrigation regimes were well-watered (100% crop evapotranspiration, ETc), mild drought (80% ETc), moderate drought (60% ETc), and severe drought (40% ETc) conditions. Drought-stress treatments (80, 60, and 40% ETc) gradually reduced the chlorophyll content, relative water content, flowering time, days to maturity, plant height, number of pods, number of branches, seed yield, and oil percentage, and increased proline, phenolic, anthocyanin, and glycine betaine contents. The evaluated genotypes exhibited varied responses to drought-stress conditions. The developed tissue-cultured genotypes T2, T3, and T1, as well as exotic genotype Torpe, possessed the highest performance in all evaluated parameters and surpassed the other tested genotypes under water-deficit conditions. Overall, our findings elicited the superiority of certain newly developed tissue-cultured genotypes and exotic ones compared with commercial cultivars, which could be exploited in canola breeding under water-deficit conditions.
Collapse
Affiliation(s)
- Nahid A. A. Morsi
- Cell Research Department (CRD), Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Omnia S. M. Hashem
- Crop Physiology Research Department, Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Mohamed A. Abd El-Hady
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo 11241, Egypt
| | - Yasser M. Abd-Elkrem
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo 11241, Egypt
| | - Mohamed E. El-temsah
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo 11241, Egypt
| | - Elhussin G. Galal
- Wheat Research Department, Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Khaled I. Gad
- Wheat Research Department, Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ridha Boudiar
- Biotechnology Research Center—C.R.Bt Constantine, UV 03, P.O. Box E73, Nouvelle Ville Ali Mendjeli, Constantine 25016, Algeria
| | - Cristina Silvar
- Grupo de Investigación en Bioloxía Evolutiva, CICA—Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, 15071 A Coruña, Spain
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Abdelkader
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo 11241, Egypt
| |
Collapse
|
6
|
AL-Kahtani SN, Kamara MM, Taha EKA, El-Wakeil N, Aljabr A, Mousa KM. Combining Ability and Inheritance Nature of Agronomic Traits and Resistance to Pink Stem ( Sesamia cretica) and Purple-Lined ( Chilo agamemnon) Borers in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1105. [PMID: 36903963 PMCID: PMC10005691 DOI: 10.3390/plants12051105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The pink stem borer (PSB), Sesamia cretica (Lepidoptera: Noctuidae) purple-lined borer (PLB), Chilo agamemnon (Lepidoptera: Crambidae) and European corn borer Ostrinia nubilalis, (Lepidoptera: Crambidae) are considered the most devastating insect pests of maize production in the Mediterranean region. The frequent use of chemical insecticides has resulted in the evolution of resistance to various insect pests as well as the pernicious impact on natural enemies and environmental hazardousness. Therefore, developing resistant and high-yielding hybrids is the best economic and environmental approach to cope with these destructive insects. Accordingly, the objective of the study was to estimate the combining ability of maize inbred lines (ILs), identify promising hybrids, determine gene action controlling agronomic traits and resistance to PSB and PLB, and investigate inter-relationships among evaluated traits. A half-diallel mating design was employed to cross seven diverse maize inbreds to generate 21 F1 hybrids. The developed F1 hybrids, alongside high-yielding commercial check hybrid (SC-132), were assessed in field trials for two years under natural infestation. Substantial variations were obtained among the evaluated hybrids for all recorded characteristics. The non-additive gene action was major for grain yield and its contributing traits, while the additive gene action was more important in controlling the inheritance of PSB and PLB resistance. The inbred line IL1 was identified to be a good combiner for earliness and developing short-stature genotypes. Additionally, IL6 and IL7 were recognized as excellent combiners to enhance resistance to PSB, PLB and grain yield. The hybrid combinations IL1×IL6, IL3×IL6, and IL3×IL7 were determined to be excellent specific combiners for resistance to PSB, PLB and grain yield. Strong positive associations were identified among grain yield, its related traits, and resistance to PSB and PLB. This implies their importance as useful traits for indirect selection for improving grain yield. Otherwise, the resistance against PSB and PLB was negatively associated with the silking date, indicating that earliness would be favorable for escaping from the borer's attack. It could be concluded that the inheritance of PSB and PLB resistance can be governed by the additive gene effects, and the IL1×IL6, IL3×IL6, and IL3×IL7 hybrid combinations can be recommended as excellent combiners for resistance to PSB and PLB and good yield.
Collapse
Affiliation(s)
- Saad N. AL-Kahtani
- Arid Land Agriculture Department, College of Agricultural Sciences & Foods, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed M. Kamara
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - El-Kazafy A. Taha
- Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Nabil El-Wakeil
- Arid Land Agriculture Department, College of Agricultural Sciences & Foods, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed Aljabr
- Arid Land Agriculture Department, College of Agricultural Sciences & Foods, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Kareem M. Mousa
- Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
7
|
Alghamdi SA, Alharby HF, Bamagoos AA, Zaki SNS, Abu El-Hassan AMA, Desoky ESM, Mohamed IAA, Rady MM. Rebalancing Nutrients, Reinforcing Antioxidant and Osmoregulatory Capacity, and Improving Yield Quality in Drought-Stressed Phaseolus vulgaris by Foliar Application of a Bee-Honey Solution. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010063. [PMID: 36616192 PMCID: PMC9823359 DOI: 10.3390/plants12010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/12/2023]
Abstract
Bee-honey solution (BHS) is considered a plant growth multi-biostimulator because it is rich in osmoprotectants, antioxidants, vitamins, and mineral nutrients that can promote drought stress (DtS) resistance in common bean plants. As a novel strategy, BHS has been used in a few studies, which shows that the application of BHS can overcome the stress effects on plant productivity and can contribute significantly to bridging the gap between agricultural production and the steady increase in population under climate changes. Under sufficient watering (SW (100% of crop evapotranspiration; ETc) and DtS (60% of ETc)), the enhancing impacts of foliar application with BHS (0%, 0.5%, 1.0%, and 1.5%) on growth, productivity, yield quality, physiological-biochemical indices, antioxidative defense ingredients, and nutrient status were examined in common bean plants (cultivar Bronco). DtS considerably decreased growth and yield traits, green pod quality, and water use efficiency (WUE); however, application of BHS at all concentrations significantly increased all of these parameters under normal or DtS conditions. Membrane stability index, relative water content, nutrient contents, SPAD (chlorophyll content), and PSII efficiency (Fv/Fm, photochemical activity, and performance index) were markedly reduced under DtS; however, they increased significantly under normal or DtS conditions by foliar spraying of BHS at all concentrations. The negative impacts of DtS were due to increased oxidants [hydrogen peroxide (H2O2) and superoxide (O2•-)], electrolyte leakage (EL), and malondialdehyde (MDA). As a result, the activity of the antioxidant system (ascorbate peroxidase, glutathione reductase, catalase, superoxide dismutase, α-tocopherol, glutathione, and ascorbate) and levels of osmoprotectants (soluble protein, soluble sugars, glycine betaine, and proline) were increased. However, all BHS concentrations further increased osmoprotectant and antioxidant capacity, along with decreased MDA and EL under DtS. What is interesting in this study was that a BHS concentration of 1.0% gave the best results under SW, while a BHS concentration of 1.5% gave the best results under DtS. Therefore, a BHS concentration of 1.5% could be a viable strategy to mitigate the DtS impairment in common beans to achieve satisfactory growth, productivity, and green pod quality under DtS.
Collapse
Affiliation(s)
- Sameera A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Safi-naz S. Zaki
- Department of Water Relations and Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | | | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
8
|
Todorova D, Katerova Z, Shopova E, Brankova L, Sergiev I, Jankauskienė J, Jurkonienė S. The Physiological Responses of Wheat and Maize Seedlings Grown under Water Deficit Are Modulated by Pre-Application of Auxin-Type Plant Growth Regulators. PLANTS (BASEL, SWITZERLAND) 2022; 11:3251. [PMID: 36501291 PMCID: PMC9736119 DOI: 10.3390/plants11233251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The physiological responses of wheat and maize seedlings to exogenous auxin-type compounds 1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxicarbonylmethyl]naphthalene chlormethylate (TA-14) application prior to polyethyleneglycol-6000 (PEG) treatment were studied. PEG treatment inhibited seedlings growth and caused alterations in their antioxidant defence which was crop-specific. PEG increased the non-enzymatic antioxidants along with inhibition of enzymatic antioxidant activity in wheat, while in maize the opposite effects were found. The TA-12 and TA-14 applied alone increased most of the growth parameters measured in both crops, as well as the catalase activity and protein content of wheat. The growth of PEG-treated wheat and maize plants was improved by foliar spray with TA-compounds (TAs). Application of TAs before PEG treatment maintained low-molecular weight thiol-containing compounds and protein contents, and catalase and peroxidase activities close to the control levels. This was better expressed in maize than in wheat seedlings. The results showed that the preliminary application of TA-12 and TA-14 can reduce the adverse effects of moderate water deficit by crop-specific adjustment of the antioxidant defence to counteract stress.
Collapse
Affiliation(s)
- Dessislava Todorova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Zornitsa Katerova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Elena Shopova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Liliana Brankova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Iskren Sergiev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Jurga Jankauskienė
- Nature Research Centre, Laboratory of Plant Physiology, Institute of Botany, 2 Akademijos Str., 08412 Vilnius, Lithuania
| | - Sigita Jurkonienė
- Nature Research Centre, Laboratory of Plant Physiology, Institute of Botany, 2 Akademijos Str., 08412 Vilnius, Lithuania
| |
Collapse
|
9
|
Patanè C, Cosentino SL, Romano D, Toscano S. Relative Water Content, Proline, and Antioxidant Enzymes in Leaves of Long Shelf-Life Tomatoes under Drought Stress and Rewatering. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223045. [PMID: 36432775 PMCID: PMC9699019 DOI: 10.3390/plants11223045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 05/31/2023]
Abstract
Some physiological, oxidative, and antioxidant enzymatic patterns were assessed in plants of three local Sicilian landraces of long shelf-life tomatoes ('Custonaci', 'Salina', and 'Vulcano'), as compared to the commercial tomato hybrid 'Faino' (control). Three water treatments were considered in open-field: DRY (no irrigation); IRR (long-season full irrigation); REW (drought/rewatering cycles). During the growing season, soil water deficit (SWD) was estimated, and relative water content (RWC), specific leaf area (SLA), proline and malondialdehyde (MDA) content, and glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) activities were measured in leaves. Differently from control, RWC in local landraces exhibited a similar pattern in REW and DRY, indicating a low capacity to re-hydrate after rewatering. Positive correlation of proline content vs. SWD in all local landraces highlights an osmotic adjustment occurring in these tomatoes in response to limited soil water content. Long shelf-life tomatoes suffered minor oxidative stress due to severe soil water deficit, as revealed by the lower levels of MDA with respect to the control. Significant correlation of CAT vs. SWD for all tomatoes indicates that this antioxidant enzyme, among those analyzed, may be considered as a biomarker for a water stress condition more than for oxidative stress due to water deficit.
Collapse
Affiliation(s)
- Cristina Patanè
- CNR-Istituto per la BioEconomia (IBE), Sede Secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Salvatore L. Cosentino
- CNR-Istituto per la BioEconomia (IBE), Sede Secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - Daniela Romano
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - Stefania Toscano
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, via Valdisavoia 5, 95123 Catania, Italy
| |
Collapse
|
10
|
Impact of 24-epibrassinolide, spermine, and silicon on plant growth, antioxidant defense systems, and osmolyte accumulation of maize under water stress. Sci Rep 2022; 12:14648. [PMID: 36030324 PMCID: PMC9420132 DOI: 10.1038/s41598-022-18229-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
The effect of triad application of the phytohormone 24-epibrassinolide (EBL), the polyamine spermine (Spm), and the element silicon (Si) has not yet been considered on plant growth and behavior in water-stressed conditions. We aimed to evaluate the impact of single/dual/triad application of 24-epibrassinolide (EBL), spermine (Spm), and silicon (Si) on the growth, photosynthetic metabolites, and antioxidant enzymes in the maize plant exposed to water stress. This study was conducted as a potential drought resistance system and plants' maintenance against oxidative damage. In this regard, one maize hybrid (Paya) was grown under well-watered and water-deficit conditions (interrupted irrigation at the flowering and the filling seed stages) with and without foliar spraying of EBL, Spm, and/or Si. Drought conditions remarkably reduced growth, productivity, water-related content (RWC), and chlorophyll content. However, the dual and triad applications of EBL (0.1 mg L-1), Spm (25 mg L-1), and Si (7 mg L-1) significantly improved the above parameters. Water stress considerably augmented the levels of H2O2 and MDA. Their content in stress-subjected plants was significantly reduced by triad application. In water-stressed circumstances and after foliar treatments, the activities of superoxide dismutase, catalase, and peroxidase as well as the amounts of total soluble proteins, phenolic compounds, proline, and glycine betaine all improved. Overall, triad application increased the plant's drought resistance and diminished ROS accumulation by raising the scavenging via the enhanced activity of the antioxidant enzymes.
Collapse
|
11
|
Abd El-hady MA, Abd-Elkrem YM, Rady MOA, Mansour E, El-Tarabily KA, AbuQamar SF, El-temsah ME. Impact on plant productivity under low-fertility sandy soil in arid environment by revitalization of lentil roots. FRONTIERS IN PLANT SCIENCE 2022; 13:937073. [PMID: 35991439 PMCID: PMC9386484 DOI: 10.3389/fpls.2022.937073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Lentil is one of the essential legume crops, which provides protein for humans and animals. This legume can improve soil fertility through nitrogen fixation, which is imperative in low-fertility soils. The growth and productivity of lentil could be enhanced through improving nutrition and root revitalization. Therefore, the objective of this study was to assess the impact of root activator (RA) and phosphorus (P) application on morphological, physiological, agronomic, and quality traits of lentil under newly reclaimed low-fertility sandy soil in an arid environment. The RA was applied at four levels of 0 (RA0-untreated control), 1.25 (RA1), 2.5 (RA2), and 3.75 (RA3) l ha-1. RA contained 9% potassium humate, 1,600 ppm indole butyric acid, 200 ppm gibberellic acid, and 200 ppm naphthalene acetic acid. The recommended rate of phosphorus (P) fertilization in the newly reclaimed low-fertility sandy soil (75 kg P2O5 ha-1) was applied, and its amount was increased and decreased by 25 kg P2O5 ha-1 vs. non-added control. Thus, P rates were applied at four rates 0 (P0; control), 50 (P1), 75 (P2), and 100 (P3) kg phosphorus pentoxide (P2O5) ha-1. Our results revealed that treated lentil plants with the high levels of both treatments (RA3 and P3) exhibited superiority in root measurements (root length, total number of nodules plant-1, number of active nodules plant-1, dry weights of active nodules, and total root), nitrogenase activity, chlorophyll a and b, carotenoids, yield traits, and seed proteins and carbohydrates. However, the recommended P level (75 kg P2O5 ha-1, P2) under the high level of RA (3.75 l ha-1, RA3) displayed non-significant differences in yield traits (plant height, 1,000-seed weight, seed yield ha-1) and quality traits (protein and carbohydrate) with the high P level (100 kg P2O5 ha-1, P3). Accordingly, its recommended economically and environmentally to use this coapplication of RA3 and P3 in low-fertility soil for better lentil growth, and seed yield and quality.
Collapse
Affiliation(s)
| | | | - Mohamed O. A. Rady
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Elsayed Mansour
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
12
|
Association of saponin concentration, molecular markers, and biochemical factors with enhancing resistance to alfalfa seedling damping-off. Saudi J Biol Sci 2022; 29:2148-2162. [PMID: 35531163 PMCID: PMC9072927 DOI: 10.1016/j.sjbs.2021.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Fifteen alfalfa populations were tested for resistance to the seedling damping-off disease sourced by Rhizoctonia solani, Fusarium solani, and Macrophomina phaseolina. In a laboratory experiment, saponin treatment significantly diminished the mycelial growth of the causal fungi of alfalfa damping-off disease. Roots of the fifteen alfalfa populations varied in saponin and lignin content. Selection for the considerably resistant plants leads to the best growth performance, desirable yield, and high nutritive values such as crude protein (CP), crude fier (CF), nitrogen free extract (NFE), ash, and ether extract (EE) contents. For the PCR reaction, 10 SSR pairs of the JESPR series primers and the cDNA-SCoT technique with seven primers were used. SSR and SCoT revealed some unique markers that could be linked to resistance to damping-off disease in alfalfa that appeared in the considerably resistant alfalfa population (the promised pop.). SSR and SCoT markers can be an excellent molecular method for judging genetic diversity and germplasm classification in tetraploid alfalfa. We recommend breeding for saponin concentration in the alfalfa plant may affect resistance to some diseases like root rot and damping-off because saponin might improve plant growth, yield, and nutritional values.
Collapse
|
13
|
Omar M, Rabie HA, Mowafi SA, Othman HT, El-Moneim DA, Alharbi K, Mansour E, Ali MMA. Multivariate Analysis of Agronomic Traits in Newly Developed Maize Hybrids Grown under Different Agro-Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:1187. [PMID: 35567188 PMCID: PMC9102415 DOI: 10.3390/plants11091187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 05/12/2023]
Abstract
Developing high-yielding maize hybrids is essential under the fast-growing global population and abrupt global climate change. Planting density is one of the imperative components for enhancing maize productivity. This study assessed newly developed maize hybrids under three planting densities on two sowing dates. The evaluated hybrids were 40 maize genotypes comprised of 36 F1-developed hybrids and 4 commercial high-yielding check hybrids. The developed hybrids were generated from selected maize inbred lines according to their adaptive traits to high planting density, such as prolificacy, erect leaves, short plants, early silking, anthesis-silking interval, and small tassel size. The applied planting densities were high, intermediate, and low, with 95,000, 75,000, and 55,000 plants/ha, respectively, under timely and late sowing. The high planting density displayed the uppermost grain yield compared with the intermediate and low densities at both sowing dates. The developed hybrid G36 exhibited the highest agronomic performance under high planting density at timely and late sowing. Additionally, G38, G16, G37, G23, G5, G31, G18, G7, G2, G20, G29, and G17 displayed high agronomic traits at both sowing dates. Joint regression and AMMI analyses revealed significant genotype, agro-environment, and genotype × agro-environment interaction effects for grain yield. The AMMI biplot displayed that G39 was closest to the ideal stable hybrid, and the hybrids G36, G18, G38, G17, G2, and G37 were considered desirable stable hybrids. Moreover, the GGE biplot indicated that a high planting density at an optimal sowing date could be considered a representative environment for discriminating high-yielding maize hybrids. The designated promising hybrids are recommended for further inclusion in maize breeding due to their stability and high yields.
Collapse
Affiliation(s)
| | - Hassan A. Rabie
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (H.A.R.); (S.A.M.)
| | - Saber A. Mowafi
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (H.A.R.); (S.A.M.)
| | | | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (H.A.R.); (S.A.M.)
| | - Mohamed M. A. Ali
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (H.A.R.); (S.A.M.)
| |
Collapse
|
14
|
Kamara MM, Rehan M, Mohamed AM, El Mantawy RF, Kheir AMS, Abd El-Moneim D, Safhi FA, ALshamrani SM, Hafez EM, Behiry SI, Ali MMA, Mansour E. Genetic Potential and Inheritance Patterns of Physiological, Agronomic and Quality Traits in Bread Wheat under Normal and Water Deficit Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070952. [PMID: 35406932 PMCID: PMC9002629 DOI: 10.3390/plants11070952] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 05/26/2023]
Abstract
Water scarcity is a major environmental stress that adversatively impacts wheat growth, production, and quality. Furthermore, drought is predicted to be more frequent and severe as a result of climate change, particularly in arid regions. Hence, breeding for drought-tolerant and high-yielding wheat genotypes has become more decisive to sustain its production and ensure global food security with continuing population growth. The present study aimed at evaluating different parental bread wheat genotypes (exotic and local) and their hybrids under normal and drought stress conditions. Gene action controlling physiological, agronomic, and quality traits through half-diallel analysis was applied. The results showed that water-deficit stress substantially decreased chlorophyll content, photosynthetic efficiency (FV/Fm), relative water content, grain yield, and yield attributes. On the other hand, proline content, antioxidant enzyme activities (CAT, POD, and SOD), grain protein content, wet gluten content, and dry gluten content were significantly increased compared to well-watered conditions. The 36 evaluated genotypes were classified based on drought tolerance indices into 5 groups varying from highly drought-tolerant (group A) to highly drought-sensitive genotypes (group E). The parental genotypes P3 and P8 were identified as good combiners to increase chlorophyll b, total chlorophyll content, relative water content, grain yield, and yield components under water deficit conditions. Additionally, the cross combinations P2 × P4, P3 × P5, P3 × P8, and P6 × P7 were the most promising combinations to increase yield traits and multiple physiological parameters under water deficit conditions. Furthermore, P1, P2, and P5 were recognized as promising parents to improve grain protein content and wet and dry gluten contents under drought stress. In addition, the crosses P1 × P4, P2 × P3, P2 × P5, P2 × P6, P4 × P7, P5 × P7, P5 × P8, P6 × P8, and P7 × P8 were the best combinations to improve grain protein content under water-stressed and non-stressed conditions. Certain physiological traits displayed highly positive associations with grain yield and its contributing traits under drought stress such as chlorophyll a, chlorophyll b, total chlorophyll content, photosynthetic efficiency (Fv/Fm), proline content, and relative water content, which suggest their importance for indirect selection under water deficit conditions. Otherwise, grain protein content was negatively correlated with grain yield, indicating that selection for higher grain yield could reduce grain protein content under drought stress conditions.
Collapse
Affiliation(s)
- Mohamed M. Kamara
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.M.K.); (E.M.H.)
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Amany M. Mohamed
- Seed Technology Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Rania F. El Mantawy
- Crop Physiology Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Ahmed M. S. Kheir
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
- International Center for Biosaline Agriculture, Directorate of Programs, Dubai 14660, United Arab Emirates
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Salha M. ALshamrani
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.M.K.); (E.M.H.)
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Mohamed M. A. Ali
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (M.M.A.A.); (E.M.)
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (M.M.A.A.); (E.M.)
| |
Collapse
|
15
|
Eid MAM, El-hady MAA, Abdelkader MA, Abd-Elkrem YM, El-Gabry YA, El-temsah ME, El-Areed SRM, Rady MM, Alamer KH, Alqubaie AI, Ali EF. Response in Physiological Traits and Antioxidant Capacity of Two Cotton Cultivars under Water Limitations. AGRONOMY 2022; 12:803. [DOI: 10.3390/agronomy12040803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Deficit irrigation water (DW) is one of the main stress factors that negatively affect cotton cultivation. Hence, the identification of cotton cultivars tolerant to DW and sandy soil conditions is particularly needed. Understanding the response of cultivars to DW is essential for estimating water needs. Besides, by understanding the physiological and antioxidant status, reflecting distinct growth, yield, and fiber quality traits under DW, the cultivar tolerant to DW can be identified in the early stage of plant growth. Therefore, two cotton cultivars (Giza 86 and Giza 92, selected for their suitability to the climatic conditions of the study area) were evaluated in this study under two DW regimes (80% or 60% of crop evapotranspiration; ETc) vs. complete irrigation water (CW; 100% of ETc as a control). These regimes amounted to 1228 or 922 vs. 1536 mm season−1, respectively, for field trials conducted during the 2019 and 2020 summer seasons. DW (80% or 60% of ETc) significantly decreased relative water content, membrane stability index, chlorophyll content, plant height, yield components, and fiber quality traits. Otherwise, phenolic compounds, proline contents, as well as antioxidant enzyme activities increased in concomitance with an increase in electrolyte leakage and malondialdehyde content. The harmful effects of the higher DW (60% of ETc) were more pronounced in both cultivars. However, compared to Giza 86, Giza 92 showed higher performance under both CW and DW regimes, accounting for higher values for all studied traits in the blooming stage. The correlation coefficient showed that most of the physiological traits and antioxidants under study were effective criteria in identifying a high-yielding cultivar under DW in the cotton blooming stage and therefore can be used to select the cotton cultivar more suitable for the conditions of the study area. Biplot analysis was used to study the relationship between DW and all evaluated traits, as it was found that the most prominent traits were elongation (%) with Giza 92 + 100% ETc, yellowness degree with Giza 86 + 100% ETc, and SOD with Giza 92 + 60% ETc.
Collapse
|
16
|
Sakran RM, Ghazy MI, Rehan M, Alsohim AS, Mansour E. Molecular Genetic Diversity and Combining Ability for Some Physiological and Agronomic Traits in Rice under Well-Watered and Water-Deficit Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:702. [PMID: 35270172 PMCID: PMC8912379 DOI: 10.3390/plants11050702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 05/09/2023]
Abstract
Water deficit is a pivotal abiotic stress that detrimentally constrains rice growth and production. Thereupon, the development of high-yielding and drought-tolerant rice genotypes is imperative in order to sustain rice production and ensure global food security. The present study aimed to evaluate diverse exotic and local parental rice genotypes and their corresponding cross combinations under water-deficit versus well-watered conditions, determining general and specific combining ability effects, heterosis, and the gene action controlling important traits through half-diallel analysis. In addition, the research aimed to assess parental genetic distance (GD) employing simple sequence repeat (SSR) markers, and to determine its association with hybrid performance, heterosis, and specific combining ability (SCA) effects. Six diverse rice genotypes (exotic and local) and their 15 F1 hybrids were assessed for two years under water-deficit and well-watered conditions. The results revealed that water-deficit stress substantially declined days to heading, plant height, chlorophyll content, relative water content, grain yield, and yield attributes. Contrarily, leaf rolling and the sterility percentage were considerably increased compared to well-watered conditions. Genotypes differed significantly for all the studied characteristics under water-deficit and well-watered conditions. Both additive and non-additive gene actions were involved in governing the inheritance of all the studied traits; however, additive gene action was predominant for most traits. The parental genotypes P1 and P2 were identified as excellent combiners for earliness and the breeding of short stature genotypes. Moreover, P3, P4, and P6 were identified as excellent combiners to increase grain yield and its attributes under water-deficit conditions. The hybrid combinations; P1 × P4, P2 × P5, P3 × P4, and P4 × P6 were found to be good specific combiners for grain yield and its contributed traits under water-deficit conditions. The parental genetic distance (GD) ranged from 0.38 to 0.89, with an average of 0.70. It showed lower association with hybrid performance, heterosis, and combining ability effects for all the studied traits. Nevertheless, SCA revealed a significant association with hybrid performance and heterosis, which suggests that SCA is a good predictor for hybrid performance and heterosis under water-deficit conditions. Strong positive relationships were identified between grain yield and each of relative water content, chlorophyll content, number of panicles/plant, number of filled grains/panicle, and 1000-grain weight. This suggests that these traits could be exploited as important indirect selection criteria for improving rice grain yield under water-deficit conditions.
Collapse
Affiliation(s)
- Raghda M. Sakran
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt; (R.M.S.); (M.I.G.)
| | - Mohamed I. Ghazy
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt; (R.M.S.); (M.I.G.)
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia;
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Abdullah S. Alsohim
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia;
| | - Elsayed Mansour
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
17
|
Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci Rep 2021; 11:24142. [PMID: 34921154 PMCID: PMC8683512 DOI: 10.1038/s41598-021-02847-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Water deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield‐related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.
Collapse
|
18
|
Abdelsalam NR, Grad WE, Ghura NS, Khalid AE, Ghareeb RY, Desoky ESM, Rady MM, Al-Yasi HM, Ali EF. Callus induction and regeneration in sugarcane under drought stress. Saudi J Biol Sci 2021; 28:7432-7442. [PMID: 34867047 PMCID: PMC8626329 DOI: 10.1016/j.sjbs.2021.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 01/25/2023] Open
Abstract
Tissue culture methods are useful in assessing the tolerance of various stresses due to the ease of controlling stress under in vitro conditions. This study aimed to investigate the response of sugarcane genotyps to drought stress using calli as a model system. For inducing sugarcane callus, the medium of Murashige and Skoog (MS) was used with different mannitol concentrations (100, 200, and 300 mM) to measure their effects on callus frequency, the day of callus initiation, embryogenic potential, relative growth rate (RGR), water and proline contents, K+ and Na+ contents, as well as the formation of shoot and roots for three sugarcane genotypes (e.g., GT 54-9, G 84-47, and pH 8013). The RAPD-PCR analysis was carried out using five oligonucleotide primers to identify the genetic variation among sugarcane genotypes. The results indicated that the degree of callus proliferation varied from 70 - 86%. The highest value of callus proliferation, PGR, shoot formation was recorded for the genotype GT 54-9 compared to the other two genotypes (G 84-47 and pH 8013). Calli treated with 100 mM mannitol showed the highest RGR, proline and waer contents for the genotype GT 54-9, while, those treated with 300 mM recorded the lowest values of these parameters for the genotype pH 8013. The genotype G 84-47 collected highest Na+ content, while the genotype pH 8013 collected highest K+ content. The results of this study recommend preference for GT 54-9 genotype, which is considered the most promising genotype, showing more tolerance to drought stress based on all studied traits.
Collapse
Affiliation(s)
- Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Wafaa E. Grad
- Breeding and Genetics Department, Sugar Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Nabawya S.A. Ghura
- Breeding and Genetics Department, Sugar Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ahmed E. Khalid
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Hatim M. Al-Yasi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Esmat F. Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
19
|
Zhao C, Yang M, Wu X, Wang Y, Zhang R. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:128-142. [PMID: 34628174 DOI: 10.1016/j.plaphy.2021.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 05/27/2023]
Abstract
Water deficit inhibits maize (Zea mays L.) seedling growth and yield. Application of exogenous melatonin can improve drought tolerance of corn, but little is known regarding the transcriptional mechanisms of melatonin-mediated drought tolerance in maize. Increased understanding of the effects of melatonin on maize plants under drought stress is vital to alleviate the adverse effects of drought on food production in the future. The aim of this investigation was to use physiological and transcriptome analyses for exploring the possible mechanisms of exogenous melatonin against drought stress in maize. In this study, maize seedlings were subjected to drought stress and some were treated with exogenous melatonin. The physiological results showed that melatonin inhibited H2O2 accumulation and promoted the scavenging of excessive reactive oxygen species to reduce oxidative damage in maize leaves. Transcriptomic analysis identified 957 differentially expressed genes between melatonin and non-melatonin treatment groups. Further detailed analyses suggested that melatonin-regulated genes are mainly related to glutathione metabolism, calcium signaling transduction, and jasmonic acid biosynthesis. Some transcription factor families, such as WRKY, AP2/ERF-ERF, MYB, NAC, and bZIP, were also activated by exogenous melatonin. Moreover, crosstalk between melatonin and other hormones that mediate drought tolerance was observed. In conclusion, the combination of physiological and transcriptome analyses revealed some mechanisms underlying the role of melatonin in alleviating drought; knowledge of these mechanisms may assist in successful maize cultivation under drought stress.
Collapse
Affiliation(s)
- Chengfeng Zhao
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Mei Yang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Xi Wu
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China.
| |
Collapse
|
20
|
Habibullah M, Sarkar S, Islam MM, Ahmed KU, Rahman MZ, Awad MF, ElSayed AI, Mansour E, Hossain MS. Assessing the Response of Diverse Sesame Genotypes to Waterlogging Durations at Different Plant Growth Stages. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112294. [PMID: 34834656 PMCID: PMC8618815 DOI: 10.3390/plants10112294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 05/15/2023]
Abstract
Sesame is sensitive to waterlogging, and its growth is devastatingly impacted under excess moisture conditions. Thus, waterlogging tolerance is crucial to alleviate yield constraints, particularly under expected climate change. In this study, 119 diverse sesame genotypes were screened for their tolerance to 12, 24, 48, and 72 h of waterlogging relative to non-waterlogged conditions. All plants died under 72 h of waterlogging, while 13.45%, 31.93%, and 45.38% of genotypes survived at 48, 24, and 12 h, respectively. Based on the seedling parameters and waterlogging tolerance coefficients, genotypes BD-7008 and BD-6985 exhibited the highest tolerance to waterlogging, while BD-6996 and JP-01811 were the most sensitive ones. The responses of these four genotypes to waterlogged conditions were assessed at different plant growth stages-30, 40, and 50 days after sowing (DAS)-versus normal conditions. Waterlogging, particularly when it occurred within 30 DAS, destructively affected the physiological and morphological characteristics, which was reflected in the growth and yield attributes. Genotype BD-7008, followed by BD-6985, exhibited the highest chlorophyll and proline contents as well as enzymatic antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). These biochemical and physiological adjustments ameliorated the adverse effects of waterlogging, resulting in higher yields for both genotypes. Conversely, JP-01811 presented the lowest chlorophyll and proline contents as well as enzymatic antioxidant activities, resulting in the poorest growth and seed yield.
Collapse
Affiliation(s)
- Mohammad Habibullah
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (M.H.); (S.S.); (M.M.I.); (K.U.A.)
- Syngenta Bangladesh Limited, Green Rowshan Ara Tower (5th & 6th Floor), 55 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Shahnaz Sarkar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (M.H.); (S.S.); (M.M.I.); (K.U.A.)
| | - Mohammad Mahbub Islam
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (M.H.); (S.S.); (M.M.I.); (K.U.A.)
| | - Kamal Uddin Ahmed
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (M.H.); (S.S.); (M.M.I.); (K.U.A.)
| | - Md. Zillur Rahman
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Abdelaleim I. ElSayed
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (A.I.E.); (E.M.); (M.S.H.)
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.I.E.); (E.M.); (M.S.H.)
| | - Md. Sazzad Hossain
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
- Correspondence: (A.I.E.); (E.M.); (M.S.H.)
| |
Collapse
|
21
|
Haddoudi L, Hdira S, Hanana M, Romero I, Haddoudi I, Mahjoub A, Ben Jouira H, Djébali N, Ludidi N, Sanchez-Ballesta MT, Abdelly C, Badri M. Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2114. [PMID: 34685923 PMCID: PMC8537959 DOI: 10.3390/plants10102114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022]
Abstract
Medicago truncatula is a forage crop of choice for farmers, and it is a model species for molecular research. The growth and development and subsequent yields are limited by water availability mainly in arid and semi-arid regions. Our study aims to evaluate the morpho-physiological, biochemical and molecular responses to water deficit stress in four lines (TN6.18, JA17, TN1.11 and A10) of M. truncatula. The results showed that the treatment factor explained the majority of the variation for the measured traits. It appeared that the line A10 was the most sensitive and therefore adversely affected by water deficit stress, which reduced its growth and yield parameters, whereas the tolerant line TN6.18 exhibited the highest root biomass production, a significantly higher increase in its total protein and soluble sugar contents, and lower levels of lipid peroxidation with greater cell membrane integrity. The expression analysis of the DREB1B gene using RT-qPCR revealed a tissue-differential expression in the four lines under osmotic stress, with a higher induction rate in roots of TN6.18 and JA17 than in A10 roots, suggesting a key role for DREB1B in water deficit tolerance in M. truncatula.
Collapse
Affiliation(s)
- Loua Haddoudi
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, Campus Universitaire El-Manar, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Sabrine Hdira
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, Campus Universitaire El-Manar, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Mohsen Hanana
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| | - Irene Romero
- Laboratory of Biotechnology and Postharvest Quality, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.R.); (M.T.S.-B.)
| | - Imen Haddoudi
- Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic;
| | - Asma Mahjoub
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| | - Hatem Ben Jouira
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| | - Naceur Djébali
- Centre of Biotechnology of Borj Cedria, Laboratory of Bioactive Substances, B.P. 901, Hammam-Lif 2050, Tunisia;
| | - Ndiko Ludidi
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa;
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Maria Teresa Sanchez-Ballesta
- Laboratory of Biotechnology and Postharvest Quality, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.R.); (M.T.S.-B.)
| | - Chedly Abdelly
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| | - Mounawer Badri
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| |
Collapse
|
22
|
Abdelfattah MA, Rady MM, Belal HEE, Belal EE, Al-Qthanin R, Al-Yasi HM, Ali EF. Revitalizing Fertility of Nutrient-Deficient Virgin Sandy Soil Using Leguminous Biocompost Boosts Phaseolus vulgaris Performance. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081637. [PMID: 34451682 PMCID: PMC8398608 DOI: 10.3390/plants10081637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
During the 2019 and 2020 seasons, nutrient-deficient virgin sandy soil was examined along with the investigation of the response of Phaseolus vulgaris plants to soil application with biocompost in integration with chemical fertilizers applied to soil and plants. Four treatments (100% of the recommended NPK fertilizer dose (control), 75% NPK applied to soil + 25% foliar spray, 75% NPK applied to soil + 25% foliar spray + leguminous compost (CL), and 75% NPK applied to soil + 25% foliar spray + CL containing Bacillus subtilis (biocompost; CLB)) were applied in a randomized complete block design. The 75% NPK applied to soil + 25% foliar spray + CLB was the best treatment, which exceeded other treatments in improving soil fertility and plant performance. It noticeably improved soil physicochemical properties, including available nutrients, activities of various soil enzymes (cellulase, invertase, urease, and catalase), soil cation exchange capacity, organic carbon content, and pH, as well as plant growth and productivity, and plant physiobiochemistry, including nutrients and water contents, and various antioxidant activities. The results of the 2020 season significantly outperformed those of the 2019 season, indicating the positive effects of biofertilizers as a strategy to combine soil supplementation with NPK fertilizers and allocate a portion of NPK fertilizers for foliar spraying of plants in nutrient-deficient sandy soils.
Collapse
Affiliation(s)
- Mahmoud A Abdelfattah
- Soils and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
- Food and Agriculture Organization of the United Nations (FAO), Cairo 11668, Egypt
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Hussein E E Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Eman E Belal
- Soils and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Rahmah Al-Qthanin
- Prince Sultan Bin-Abdul-Aziz Center for Environment and Tourism Studies and Researches, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
- School of Biological Sciences, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Hatim M Al-Yasi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
23
|
Seed Halo-Priming Improves Seedling Vigor, Grain Yield, and Water Use Efficiency of Maize under Varying Irrigation Regimes. WATER 2021. [DOI: 10.3390/w13152115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Water-deficit stress poses tremendous constraints to sustainable agriculture, particularly under abrupt climate change. Hence, it is crucial to find eco-friendly approaches to ameliorate drought tolerance, especially for sensitive crops such as maize. This study aimed at assessing the impact of seed halo-priming on seedling vigor, grain yield, and water use efficiency of maize under various irrigation regimes. Laboratory trials evaluated the influence of seed halo-priming using two concentrations of sodium chloride solution, 4000 and 8000 ppm NaCl, versus unprimed seeds on seed germination and seedling vigor parameters. Field trials investigated the impact of halo-priming treatments on maize yield and water use efficiency (WUE) under four irrigation regimes comprising excessive (120% of estimated crop evapotranspiration, ETc), normal (100% ETc), and deficit (80 and 60% ETc) irrigation regimes. Over-irrigation by 20% did not produce significantly more grain yield but considerably reduced WUE. Deficit irrigation (80 and 60%ETc) gradually reduced grain yield and its attributes. Halo-priming treatments, particularly 4000 ppm NaCl, improved uniformity and germination speed, increased germination percentage and germination index, and produced more vigorous seedlings with heavier dry weight compared with unprimed seeds. Under field conditions, the plants originated from halo-primed seeds, especially with 4000 ppm NaCl, had higher grain yield and WUE compared with unprimed seeds under deficit irrigation regimes. The long-lasting stress memory induced by seed halo-priming, particularly with 4000 ppm NaCl, promoted maize seedling establishment, grain yield, and WUE and consequently mitigated the devastating impacts of drought stress.
Collapse
|
24
|
Foliar Nourishment with Nano-Selenium Dioxide Promotes Physiology, Biochemistry, Antioxidant Defenses, and Salt Tolerance in Phaseolus vulgaris. PLANTS 2021; 10:plants10061189. [PMID: 34207988 PMCID: PMC8230738 DOI: 10.3390/plants10061189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023]
Abstract
Novel strategic green approaches are urgently needed to raise the performance of plants subjected to stress. Two field-level experimental attempts were implemented during two (2019 and 2020) growing seasons to study the possible effects of exogenous nourishment with selenium dioxide nanoparticles (Se-NPs) on growth, physio-biochemical ingredients, antioxidant defenses, and yield of Phaseolus vulgaris (L.) plant growing on a salt-affected soil (EC = 7.55–7.61 dS m−1). At 20, 30, and 40 days from seeding, three foliar sprays were applied to plants with Se-NPs at a rate of 0.5, 1.0, or 1.5 mM. The experimental design was accomplished in randomized complete plots. The data indicate noteworthy elevations in indicators related to growth and yield; pigments related to effective photosynthesis, osmoprotectant (free proline and soluble sugars), nutrient and Se contents, K+/Na+ ratio, cell integrity (water content and stability of membranes), all enzyme activities; and all features related to leaf anatomy induced by Se-NPs foliar spray. Conversely, marked lowering in markers of Na+ content-induced oxidative stress (superoxide radical and hydrogen peroxide) and their outcomes in terms of ionic leakage and malondialdehyde were reported by foliar nourishment with Se-NPS compared to spraying leaves with water as an implemented control. The best results were recorded with Se-NPs applied at 1.0 mM, which mitigated the negative effects of soil salinity (control results). Therefore, the outcomes of this successful study recommend the use of Se-NPs at a rate of 1.0 mM as a foliar spray to grow common beans on saline soils with EC up to 7.55–7.61 dS m−1.
Collapse
|
25
|
Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones. PLANTS 2021; 10:plants10040748. [PMID: 33920494 PMCID: PMC8068922 DOI: 10.3390/plants10040748] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/24/2023]
Abstract
The use of growth regulators such as gibberellic acid (GA3) and biostimulants, including diluted bee honey (Db-H) can improve drought tolerance in many crops, including the faba bean (Vicia faba L.). Db-H contains high values of osmoprotectants, mineral nutrients, vitamins, and many antioxidants making it an effective growth regulator against environmental stress effects. Therefore, the present study was planned to investigate the potential improvement in the faba bean plant performance (growth and productivity) under full watering (100% of crop evapotranspiration (ETc)) and drought stress (60% of ETc) by foliar application of GA3 (20 mg L−1) or Db-H (20 g L−1). The ameliorative impacts of these growth regulators on growth, productivity, physio-biochemical attributes, nutrient status, antioxidant defense system, and phytohormones were evaluated. GA3 or Db-H attenuated the negative influences of drought stress on cell membrane stability, ion leakage, relative water content, nutrient status, leaf pigments related to photosynthesis (chlorophylls and carotenoids), and efficiency of the photosystem II (PSII in terms of Fv/Fm and performance index), thus improving faba bean growth, green pod yield, and water use efficiency. Drought stress caused an abnormal state of nutrients and photosynthetic machinery due to increased indicators of oxidative stress (malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide (O2•−)), associated with increased osmoprotectants (proline, glycine betaine, soluble sugars, and soluble protein), non-enzymatic antioxidants (ascorbic acid, glutathione, and α-tocopherol), and enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase). However, foliar-applied GA3 or Db-H mediated further increases in osmoprotectants, antioxidant capacity, GA3, indole-3-acetic acid, and cytokinins, along with decreased levels of MDA and abscisic acid. These results suggest the use of GA3 or Db-H at the tested concentrations to mitigate drought-induced damage in bean plants to obtain satisfactory growth and productivity under a water deficit of up to 40%.
Collapse
|
26
|
Alharby HF, Al-Zahrani HS, Hakeem KR, Alsamadany H, Desoky ESM, Rady MM. Silymarin-Enriched Biostimulant Foliar Application Minimizes the Toxicity of Cadmium in Maize by Suppressing Oxidative Stress and Elevating Antioxidant Gene Expression. Biomolecules 2021; 11:biom11030465. [PMID: 33801090 PMCID: PMC8004092 DOI: 10.3390/biom11030465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/18/2023] Open
Abstract
For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•− and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•−, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L−1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.
Collapse
Affiliation(s)
- Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; (H.F.A.); (H.S.A.-Z.); (K.R.H.); (H.A.)
| | - Hassan S. Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; (H.F.A.); (H.S.A.-Z.); (K.R.H.); (H.A.)
| | - Khalid R. Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; (H.F.A.); (H.S.A.-Z.); (K.R.H.); (H.A.)
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; (H.F.A.); (H.S.A.-Z.); (K.R.H.); (H.A.)
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
- Correspondence:
| |
Collapse
|