1
|
Park J, Lee SH, Lee J, Wi SH, Seo TC, Moon JH, Jang S. Growing vegetables in a warming world - a review of crop response to drought stress, and strategies to mitigate adverse effects in vegetable production. FRONTIERS IN PLANT SCIENCE 2025; 16:1561100. [PMID: 40256598 PMCID: PMC12006132 DOI: 10.3389/fpls.2025.1561100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Drought stress caused by climate change is increasingly affecting the productivity and quality of vegetable crops worldwide. This review comprehensively analyzes the physiological, biochemical, and molecular mechanisms that vegetable crops employ to cope with drought stress. In particular, it highlights the significance of key hormonal regulation pathways, such as abscisic acid (ABA), jasmonic acid (JA), and ethylene (ET), which play crucial roles in mediating stress responses. Additionally, the role of antioxidant defense systems in mitigating oxidative damage caused by reactive oxygen species (ROS) is discussed. Advances in agricultural technologies, such as the use of smart irrigation systems and biostimulants, have shown promising results in enhancing drought resistance and optimizing crop yields. Integrating these strategies with the development of drought resistant varieties through gene editing and traditional breeding techniques will ensure sustainable agricultural production in drought stressed environments. This review aims to support future research into sustainable agricultural development to enhance drought tolerance in vegetable production and secure global food supply.
Collapse
Affiliation(s)
- Jongwon Park
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Se-Hyoung Lee
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Joowon Lee
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Seung Hwan Wi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Tae Cheol Seo
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Ji Hye Moon
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| |
Collapse
|
2
|
Parvin K, Hasanuzzaman M, Mohsin SM, Nahar K, Fujita M. Vanillic Acid Modulates Antioxidant Defense and Methylglyoxal Detoxification Systems to Combat Drought Stress in Tomato Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:3114. [PMID: 39599323 PMCID: PMC11597367 DOI: 10.3390/plants13223114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Vanillic acid (VA) regulates various plant physiological and biochemical processes upon different environmental stresses to enhance their tolerance. This study aimed to evaluate the protective effect of VA on growth and physiology, including osmoprotection, and antioxidant defense systems for enhancing higher tolerance by lowering oxidative damage against water deficit stress in tomatoes (Solanum lycopersicum L. cv. BARI Tomato-16). Hydroponically grown tomato seedlings (8 d old) were pretreated with 50 µM VA for 2 days followed by water deficit stress (imposed by water withdrawal and 12% polyethylene glycol; PEG-6000) for 4 d. Drought stress inhibited the seedlings' growth by reducing water content and photosynthetic pigments contents, alleviating oxidative stress induced by a reactive oxygen species and methylglyoxal. A significant enhancement in growth, biomass accumulation, and photosynthetic pigment content was observed in VA-pretreated stress conditions. In addition, there was an improvement in the water status and proline content, along with modulated activities of the antioxidant responses, including both non-enzymatic and enzymatic components in leaves of VA-pretreated seedlings upon the water deficit. Vanillic acid significantly reduced the reactive oxygen species generation and decreased cellular membrane damage in drought-affected tomato seedlings. Methylglyoxal detoxification was ensured to a great extent in VA-pretreated stressed tomato seedlings by strengthening the glyoxalase enzymes' activities. Therefore, VA can be effective for protecting tomato seedlings by inducing a plant antioxidant defense and the methylglyoxal detoxification system and osmoregulation under drought stress.
Collapse
Affiliation(s)
- Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sayed Mohammad Mohsin
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
3
|
Vultaggio L, Ciriello M, Campana E, Bellitto P, Consentino BB, Rouphael Y, Colla G, Mancuso F, La Bella S, Napoli S, Sabatino L. Single or Blended Application of Non-Microbial Plant-Based Biostimulants and Trichoderma atroviride as a New Strategy to Enhance Greenhouse Cherry Tomato Performance. PLANTS (BASEL, SWITZERLAND) 2024; 13:3048. [PMID: 39519966 PMCID: PMC11548452 DOI: 10.3390/plants13213048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The need to increase yield and enhance the sustainability of crop production systems has led to the development and employment of natural products, such as plant biostimulants. In recent years, a number of reports have researched the effects of biostimulants on plant performance; however, few studies have focused on the mutual application of microbial and/or non-microbial biostimulants. This research, conducted in the framework of the SO.MI.PR.O.N regional project, aimed to investigate the single or mutual application of three biostimulants, a tropical plant extract (PE), a vegetal protein hydrolysate (PH), and Trichoderma atroviride, on 'Creativo' F1 cherry tomato plants cultivated during two growing cycles (2022-2023 and 2023-2024). Our results showed that plants treated with the combination Tricho + PE + PH had statistically significant higher fresh shoot biomass (+64.2%, 1647.0 g plant-1), total fruit production (+37.9%, 1902.5 g plant-1), marketable fruit production (+52.9%, 1778.5 g plant-1), and average weight of marketable fruits (+53.1%, 17.0 g) compared to control plants (untreated plants). Furthermore, biostimulant treatments, especially T. atroviride, variably enhanced cherry tomato fruits' qualitative traits, such as firmness, total soluble solids, ascorbic acid, lycopene, and total polyphenols compared to control plants. Overall, the best combinations to increase tomato fruit qualitative features were PE + PH, Tricho + PE, and Tricho + PH. From an economic point of view, the best treatment for achieving the highest net return was PE. This study underlines that biostimulant features (yield, qualitative aspects, and economic profitability) can be supported through the application of specific biostimulant combinations.
Collapse
Affiliation(s)
- Lorena Vultaggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Emanuela Campana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Pietro Bellitto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Beppe Benedetto Consentino
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Fabiana Mancuso
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Salvatore La Bella
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
- Research Consortium for the Development of Innovative Agro-Environmental Systems (Corissia), Via della Libertà 203, 90143 Palermo, Italy
| | - Simona Napoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Leo Sabatino
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| |
Collapse
|
4
|
Zulfiqar F, Moosa A, Ali HM, Bermejo NF, Munné-Bosch S. Biostimulants: A sufficiently effective tool for sustainable agriculture in the era of climate change? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108699. [PMID: 38749375 DOI: 10.1016/j.plaphy.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Climate change is currently considered as one of the main concerns of the agriculture sector, as it limits crop production and quality. Furthermore, the current context of global crisis with international political instability and war conflicts over the world is pushing the agriculture sector even more to urgently boost productivity and yield and doing so in a sustainable way in the current frame of climate change. Biostimulants can be an effective tool in alleviating the negative effects of environmental stresses to which plants are exposed, such as drought, salinity, heavy metals and extreme temperatures etc. Biostimulants act through multiple mechanisms, modifying gene expression, metabolism and phytohormone production, promoting the accumulation of compatible solutes and antioxidants and mitigating oxidative stress. However, it is important to keep in mind that the use and effect of biostimulants has limitations and must be accompanied by other techniques to ensure crop yield and quality in the current frame of climate change, such as proper crop management and the use of other sustainable resources. Here, we will not only highlight the potential use of biostimulants to face future agricultural challenges, but also take a critical look at their limitations, underlining the importance of a broad vision of sustainable agriculture in the context of climate change.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Núria F Bermejo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety (INSA), University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety (INSA), University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Disciglio G, Tarantino A, Frabboni L. Yield and Fruit Characteristics of Tomato Crops Grown with Mineral Macronutrients: Impact of Organo-Mineral Fertilizers through Foliar or Soil Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:1458. [PMID: 38891267 PMCID: PMC11174471 DOI: 10.3390/plants13111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
The utilization of plant biostimulants has gained importance as a strategy by which to improve plant productivity and soil health. Two independent trials were conducted across two seasons (2021 and 2023) to evaluate the effects of foliar or soil applications of various commercial organo-mineral fertilizers (Futuroot®, Radicon® Amifort®) with biostimulant action that is exerted on yield and fruit characteristics of processing tomato crops (cv Taylor F1) that have been exposed to mineral macronutrients. These treatments were administered three times during the season: at the transplanting, pre-flowering and berry development stages. In the first trial, conducted in two fields characterized respectively by low and high fertility, foliar applications of Radicon®, which is based on humic acid and amino acids, increased the leaf greenness index SPAD compared with the control. Furthermore, the leaf green colour intensity (SPAD index), measured during the reproductive phases of the tomato exhibited a positive correlation (R2 = 0.726) with the marketable yield obtained. This increase in marketable yield was significant in the biostimulant treatment compared with the control in both soils, especially in the soil characterized by lower fertility (16.1%), when compared with the more fertile soil (6.8%). In the second trial, conducted in the low-fertility field mentioned above, soil applications of all biostimulants (Futuroot®, Radicon® and the combinations [Radicon® + Amifort-Plus®]) significantly increased the marketable yield by 27.8%, 13.5% and 27.7%, respectively, compared with the control. The most significant beneficial effects of both Futuroot® and [Radicon® + Amifort®] could be attributed to the combination of humic acids and auxins, cytokinins or microelements (Zn, Mn, MgO) present in the formulation of these products. Furthermore, the increase in marketable yield obtained when Radicon® was applied to leaves was higher (16.1%) than that observed with soil application (13.5%). In both trials, no relevant effects of biostimulant products were observed on most of the physicochemical characteristics of tomato fruits. In conclusion, the biostimulants based on humic acid and amino acids combined with chemical fertilizers tested in the present study and applied by fertigation were more effective in improving tomato yield, and therefore they can be recommended for efficient agricultural production.
Collapse
Affiliation(s)
- Grazia Disciglio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (A.T.); (L.F.)
| | | | | |
Collapse
|
6
|
Lahbouki S, Hashem A, Kumar A, Abd_Allah EF, Meddich A. Integration of Horse Manure Vermicompost Doses and Arbuscular Mycorrhizal Fungi to Improve Fruit Quality, and Soil Fertility in Tomato Field Facing Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1449. [PMID: 38891258 PMCID: PMC11174961 DOI: 10.3390/plants13111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Climate change poses major challenges for agriculture in arid and semi-arid regions, with drought conditions severely affecting water-intensive crops such as tomatoes. This study evaluates the efficacy of organic amendments, derived from horse manure, and arbuscular mycorrhizal fungi (AMF) on enhancing tomato (Solanum lycopersicum L.) fruit quality and soil health under semi-arid field conditions. The experimental design included two irrigation regimes (well-watered and drought stress) and two levels of vermicompost application (C1 5 t ha-1 and C2 10 t ha-1), applied individually or in combination with AMF. The results indicate that drought stress reduced tomato fruit growth and yield, while osmoprotectant accumulation, antioxidant enzyme activity, and bioactive compound levels increased, and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of tomato fruit also increased. Notably, the biostimulants application, especially (C1+AMF), counteracted the adverse effects of drought, compared to the control, by significantly enhancing fruit yields (60%), as well as increasing ascorbic acid levels (59%) and free amino acids content (90%). These treatments also improved the activity of bioactive compounds and nutrient uptake in the fruit. Furthermore, biostimulant application positively affected the physicochemical properties of soil. The results obtained confirm that the application of biostimulants can be suitable for improving crop sustainability and adaptability under conditions of water stress in semi-arid field regions.
Collapse
Affiliation(s)
- Soufiane Lahbouki
- “Physiology of Abiotic Stresses” Team, Research Unit Labeled CNRST (Centre AgroBiotech-URL-CNRST-05), Center of Agrobiotechnology and Bioengineering, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida 201313, Uttar Pradesh, India;
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Abdelilah Meddich
- “Physiology of Abiotic Stresses” Team, Research Unit Labeled CNRST (Centre AgroBiotech-URL-CNRST-05), Center of Agrobiotechnology and Bioengineering, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| |
Collapse
|
7
|
Leporino M, Rouphael Y, Bonini P, Colla G, Cardarelli M. Protein hydrolysates enhance recovery from drought stress in tomato plants: phenomic and metabolomic insights. FRONTIERS IN PLANT SCIENCE 2024; 15:1357316. [PMID: 38533405 PMCID: PMC10963501 DOI: 10.3389/fpls.2024.1357316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Introduction High-throughput phenotyping technologies together with metabolomics analysis can speed up the development of highly efficient and effective biostimulants for enhancing crop tolerance to drought stress. The aim of this study was to examine the morphophysiological and metabolic changes in tomato plants foliarly treated with two protein hydrolysates obtained by enzymatic hydrolysis of vegetal proteins from Malvaceae (PH1) or Fabaceae (PH2) in comparison with a control treatment, as well as to investigate the mechanisms involved in the enhancement of plant resistance to repeated drought stress cycles. Methods A phenotyping device was used for daily monitoring morphophysiological traits while untargeted metabolomics analysis was carried out in leaves of the best performing treatment based on phenotypic results.Results: PH1 treatment was the most effective in enhancing plant resistance to water stress due to the better recovery of digital biomass and 3D leaf area after each water stress event while PH2 was effective in mitigating water stress only during the recovery period after the first drought stress event. Metabolomics data indicated that PH1 modified primary metabolism by increasing the concentration of dipeptides and fatty acids in comparison with untreated control, as well as secondary metabolism by regulating several compounds like phenols. In contrast, hormones and compounds involved in detoxification or signal molecules against reactive oxygen species were downregulated in comparison with untreated control. Conclusion The above findings demonstrated the advantages of a combined phenomics-metabolomics approach for elucidating the relationship between metabolic and morphophysiological changes associated with a biostimulant-mediated increase of crop resistance to repeated water stress events.
Collapse
Affiliation(s)
- Marzia Leporino
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences at the University of Naples, Portici, Italy
| | - Paolo Bonini
- oloBion SL, Barcelona, Spain
- Arcadia s.r.l., Rivoli Veronese, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
- Arcadia s.r.l., Rivoli Veronese, Italy
| | | |
Collapse
|
8
|
Ofori-Agyemang F, Waterlot C, Manu J, Laloge R, Francin R, Papazoglou EG, Alexopoulou E, Sahraoui ALH, Tisserant B, Mench M, Burges A, Oustrière N. Plant testing with hemp and miscanthus to assess phytomanagement options including biostimulants and mycorrhizae on a metal-contaminated soil to provide biomass for sustainable biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169527. [PMID: 38135075 DOI: 10.1016/j.scitotenv.2023.169527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The need of biofuels from biomass, including sustainable aviation fuel, without using agricultural land dedicated to food crops, is in constant demand. Strategies to intensify biomass production using mycorrhizal fungi, biostimulants and their combinations could be solutions for improving the cultivation of lignocellulosic plants but still lack well-established validation on metal-contaminated soils. This study aimed to assess the yield of Miscanthus x giganteus J.M. Greef & Deuter and Cannabis sativa L. grown on a metal-contaminated agricultural soil (11 mg Cd, 536 mg Pb and 955 mg Zn kg-1) amended with biostimulants and/or arbuscular mycorrhizal fungi, and the shoot Cd, Pb and Zn uptake. A pot trial was carried out with soil collected from a field near a former Pb/Zn smelter in France and six treatments: control (C), protein hydrolysate (a mixture of peptides and amino acids, PH), humic/fulvic acids (HFA), arbuscular mycorrhizae fungi (AMF), PH combined with AMF (PHxAMF), and HFA combined with AMF (HFAxAMF). Metal concentrations in the soil pore water (SPW), pH and electrical conductivity were measured over time. Miscanthus and hemp shoots were harvested on day 90. Both PH and PHxAMF treatments increased SPW Cd, Pb, and Zn concentrations (e.g. by 26, 1.9, and 22.9 times for miscanthus and 9.7, 4.7, and 19.3 times for hemp in the PH and PHxAMF treatments as compared to the control one, respectively). This led to phytotoxicity and reduced shoot yield for miscanthus. Conversely, HFA and HFAxAMF treatments decreased SPW Cd and Zn concentrations, increasing shoot yields for hemp and miscanthus. Shoot Cd, Pb, and Zn uptakes peaked for PH and PHxAMF hemp plants (in μg plant-1, Cd: 310-334, Pb: 34-38, and Zn: 232-309 for PHxAMF and PH, respectively), while lowest values occurred for PH miscanthus plants mainly due to low shoot yield. Overall, this study suggested that humic/fulvic acids can be an effective biostimulant for increasing shoot biomass production in a metal-contaminated soil. These results warrant further investigations of the HFAxAMF in field trials.
Collapse
Affiliation(s)
- Felix Ofori-Agyemang
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Christophe Waterlot
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - James Manu
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Roman Laloge
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Romain Francin
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Eleni G Papazoglou
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Efthymia Alexopoulou
- Center for Renewable Energy Sources and Saving, Biomass Department, Pikermi Attikis, Greece.
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Benoît Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac cedex, France.
| | - Aritz Burges
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Nadège Oustrière
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| |
Collapse
|
9
|
Sun W, Shahrajabian MH, Kuang Y, Wang N. Amino Acids Biostimulants and Protein Hydrolysates in Agricultural Sciences. PLANTS (BASEL, SWITZERLAND) 2024; 13:210. [PMID: 38256763 PMCID: PMC10819947 DOI: 10.3390/plants13020210] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The effects of different types of biostimulants on crops include improving the visual quality of the final products, stimulating the immune systems of plants, inducing the biosynthesis of plant defensive biomolecules, removing heavy metals from contaminated soil, improving crop performance, reducing leaching, improving root development and seed germination, inducing tolerance to abiotic and biotic stressors, promoting crop establishment and increasing nutrient-use efficiency. Protein hydrolysates are mixtures of polypeptides and free amino acids resulting from enzymatic and chemical hydrolysis of agro-industrial protein by-products obtained from animal or plant origins, and they are able to alleviate environmental stress effects, improve growth, and promote crop productivity. Amino acids involve various advantages such as increased yield and yield components, increased nutrient assimilation and stress tolerance, and improved yield components and quality characteristics. They are generally achieved through chemical or enzymatic protein hydrolysis, with significant capabilities to influence the synthesis and activity of some enzymes, gene expression, and redox-homeostasis. Increased yield, yield components, and crop quality; improved and regulated oxidation-reduction process, photosynthesis, and physiological activities; decreased negative effects of toxic components; and improved anti-fungal activities of plants are just some of the more important benefits of the application of phenols and phenolic biostimulants. The aim of this manuscript is to survey the impacts of amino acids, different types of protein hydrolysates, phenols, and phenolic biostimulants on different plants by presenting case studies and successful paradigms in several horticultural and agricultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | | | | | |
Collapse
|
10
|
Luta G, Balan D, Stanca M, Jerca O, Jurcoane S, Niculescu M, Gaidau C, Stanculescu IR. Innovative Protein Gel Treatments to Improve the Quality of Tomato Fruit. Gels 2023; 10:10. [PMID: 38275848 PMCID: PMC10815011 DOI: 10.3390/gels10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This study aims to establish the effect of biostimulatory protein gels on the quality of tomato. One of the most consumed vegetables, tomato (Lycopersicon esculentum Mill.) is a rich source of healthy constituents. Two variants of protein gels based on bovine gelatin and keratin hydrolysates obtained from leather industry byproducts were used for periodical application on the tomato plant roots in the early stage of vegetation. The gels were characterized by classical physicochemical methods and protein secondary structure was obtained by FTIR band deconvolution. After ripening, tomato was analyzed regarding its content of quality indicators (sugars and organic acids) and antioxidants (lycopene, β-carotene, vitamin C, polyphenols). The results emphasized the positive effects of the protein gels on the quality parameters of tomato fruit. An increase of 10% of dry matter and of 30% (in average) in the total soluble sugars was noted after biostimulant application. Also, lycopene and vitamin C recorded higher values (by 1.44 and 1.29 times, respectively), while β-carotene showed no significant changes. The biostimulant activity of protein gels was correlated with their amino acid composition. Plant biostimulants are considered an ecological alternative to conventional treatments for improving plant growth, and also contributing to reduce the intake of chemical fertilizers.
Collapse
Affiliation(s)
- Gabriela Luta
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăsti Blvd, 011464 Bucharest, Romania; (G.L.); (S.J.)
| | - Daniela Balan
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăsti Blvd, 011464 Bucharest, Romania; (G.L.); (S.J.)
| | - Maria Stanca
- Leather Research Department, Division Leather and Footwear Research Institute, Research and Development National Institute for Textiles and Leather, 93, Ion Minulescu Str., 031215 Bucharest, Romania (C.G.)
| | - Ovidiu Jerca
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăsti Blvd, 011464 Bucharest, Romania; (G.L.); (S.J.)
| | - Stefana Jurcoane
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăsti Blvd, 011464 Bucharest, Romania; (G.L.); (S.J.)
| | - Mihaela Niculescu
- Leather Research Department, Division Leather and Footwear Research Institute, Research and Development National Institute for Textiles and Leather, 93, Ion Minulescu Str., 031215 Bucharest, Romania (C.G.)
| | - Carmen Gaidau
- Leather Research Department, Division Leather and Footwear Research Institute, Research and Development National Institute for Textiles and Leather, 93, Ion Minulescu Str., 031215 Bucharest, Romania (C.G.)
| | - Ioana Rodica Stanculescu
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania;
- “Horia Hulubei” National Institute of Research and Development for Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Magurele, Romania
| |
Collapse
|
11
|
Asif A, Ali M, Qadir M, Karthikeyan R, Singh Z, Khangura R, Di Gioia F, Ahmed ZFR. Enhancing crop resilience by harnessing the synergistic effects of biostimulants against abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1276117. [PMID: 38173926 PMCID: PMC10764035 DOI: 10.3389/fpls.2023.1276117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Plants experience constant exposed to diverse abiotic stresses throughout their growth and development stages. Given the burgeoning world population, abiotic stresses pose significant challenges to food and nutritional security. These stresses are complex and influenced by both genetic networks and environmental factors, often resulting in significant crop losses, which can reach as high as fifty percent. To mitigate the effects of abiotic stresses on crops, various strategies rooted in crop improvement and genomics are being explored. In particular, the utilization of biostimulants, including bio-based compounds derived from plants and beneficial microbes, has garnered considerable attention. Biostimulants offer the potential to reduce reliance on artificial chemical agents while enhancing nutritional efficiency and promoting plant growth under abiotic stress condition. Commonly used biostimulants, which are friendly to ecology and human health, encompass inorganic substances (e.g., zinc oxide and silicon) and natural substances (e.g., seaweed extracts, humic substances, chitosan, exudates, and microbes). Notably, prioritizing environmentally friendly biostimulants is crucial to prevent issues such as soil degradation, air and water pollution. In recent years, several studies have explored the biological role of biostimulants in plant production, focusing particularly on their mechanisms of effectiveness in horticulture. In this context, we conducted a comprehensive review of the existing scientific literature to analyze the current status and future research directions concerning the use of various biostimulants, such as plant-based zinc oxide, silicon, selenium and aminobutyric acid, seaweed extracts, humic acids, and chitosan for enhancing abiotic stress tolerance in crop plants. Furthermore, we correlated the molecular modifications induced by these biostimulants with different physiological pathways and assessed their impact on plant performance in response to abiotic stresses, which can provide valuable insights.
Collapse
Affiliation(s)
- Anam Asif
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Muslim Qadir
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Balochistan, Pakistan
| | - Rajmohan Karthikeyan
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Zora Singh
- Horticulture, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Ravjit Khangura
- Department of Primary Industries and Regional Development, Government of Western Australia, Kensington, WA, Australia
| | - Francesco Di Gioia
- Department of Plant Science, College of Agricultural Sciences, The Pennsylvania State University, College State, PA, United States
| | - Zienab F. R. Ahmed
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Ofoe R, Thomas RH, Abbey L. Coordinated Regulation of Central Carbon Metabolism in Pyroligneous Acid-Treated Tomato Plants under Aluminum Stress. Metabolites 2023; 13:770. [PMID: 37367927 DOI: 10.3390/metabo13060770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Aluminum (Al) toxicity is a major threat to global crop production in acidic soils, which can be mitigated by natural substances such as pyroligneous acid (PA). However, the effect of PA in regulating plant central carbon metabolism (CCM) under Al stress is unknown. In this study, we investigated the effects of varying PA concentrations (0, 0.25 and 1% PA/ddH2O (v/v)) on intermediate metabolites involved in CCM in tomato (Solanum lycopersicum L., 'Scotia') seedlings under varying Al concentrations (0, 1 and 4 mM AlCl3). A total of 48 differentially expressed metabolites of CCM were identified in the leaves of both control and PA-treated plants under Al stress. Calvin-Benson cycle (CBC) and pentose phosphate pathway (PPP) metabolites were considerably reduced under 4 mM Al stress, irrespective of the PA treatment. Conversely, the PA treatment markedly increased glycolysis and tricarboxylic acid cycle (TCA) metabolites compared to the control. Although glycolysis metabolites in the 0.25% PA-treated plants under Al stress were comparable to the control, the 1% PA-treated plants exhibited the highest accumulation of glycolysis metabolites. Furthermore, all PA treatments increased TCA metabolites under Al stress. Electron transport chain (ETC) metabolites were higher in PA-treated plants alone and under 1 mM, Al but were reduced under a higher Al treatment of 4 mM. Pearson correlation analysis revealed that CBC metabolites had a significantly strong positive (r = 0.99; p < 0.001) association with PPP metabolites. Additionally, glycolysis metabolites showed a significantly moderate positive association (r = 0.76; p < 0.05) with TCA metabolites, while ETC metabolites exhibited no association with any of the determined pathways. The coordinated association between CCM pathway metabolites suggests that PA can stimulate changes in plant metabolism to modulate energy production and biosynthesis of organic acids under Al stress conditions.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Raymond H Thomas
- Department of Biology, Faculty of Science, Western University 2025E Biological & Geological Sciences Building, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| |
Collapse
|
13
|
Malécange M, Sergheraert R, Teulat B, Mounier E, Lothier J, Sakr S. Biostimulant Properties of Protein Hydrolysates: Recent Advances and Future Challenges. Int J Mol Sci 2023; 24:ijms24119714. [PMID: 37298664 DOI: 10.3390/ijms24119714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past decade, plant biostimulants have been increasingly used in agriculture as environment-friendly tools that improve the sustainability and resilience of crop production systems under environmental stresses. Protein hydrolysates (PHs) are a main category of biostimulants produced by chemical or enzymatic hydrolysis of proteins from animal or plant sources. Mostly composed of amino acids and peptides, PHs have a beneficial effect on multiple physiological processes, including photosynthetic activity, nutrient assimilation and translocation, and also quality parameters. They also seem to have hormone-like activities. Moreover, PHs enhance tolerance to abiotic stresses, notably through the stimulation of protective processes such as cell antioxidant activity and osmotic adjustment. Knowledge on their mode of action, however, is still piecemeal. The aims of this review are as follows: (i) Giving a comprehensive overview of current findings about the hypothetical mechanisms of action of PHs; (ii) Emphasizing the knowledge gaps that deserve to be urgently addressed with a view to efficiently improve the benefits of biostimulants for different plant crops in the context of climate change.
Collapse
Affiliation(s)
- Marthe Malécange
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| | | | - Béatrice Teulat
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | | | - Jérémy Lothier
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| |
Collapse
|
14
|
Tallarita AV, Vecchietti L, Golubkina NA, Sekara A, Cozzolino E, Mirabella M, Cuciniello A, Maiello R, Cenvinzo V, Lombardi P, Caruso G. Effects of Plant Biostimulation Time Span and Soil Electrical Conductivity on Greenhouse Tomato 'Miniplum' Yield and Quality in Diverse Crop Seasons. PLANTS (BASEL, SWITZERLAND) 2023; 12:1423. [PMID: 37050049 PMCID: PMC10097048 DOI: 10.3390/plants12071423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Biostimulants help plants cope with environmental stresses and improve vegetable yield and quality. This study was conducted to determine the protein hydrolysate (PH) effect of three different durations (weekly applications: three, six, or nine times plus an untreated control) in factorial combination with four soil electrical conductivities (EC: 1.5, 3.0, 4.5, or 6.0 mS·cm-1) on yield, fruit quality, and elemental composition of tomato 'miniplum' grown in a greenhouse. Fruit yield was best affected, during the summer, by six and nine biostimulant applications at EC 3.0 mS·cm-1, and in the same season, the six treatments led to the highest fruit number with no difference compared to nine applications; during the winter, the three and six treatments improved the mentioned variables at each EC level. Fruits' dry residue and Brixo were positively affected by biostimulation both in summer and winter. In summer, the 6.0 mS·cm-1 EC led to the highest dry residue and Brixo values, though the latter did not show any significant difference compared to 4.5 mS·cm-1; in winter, the best results corresponded to 4.5 and 6.0 mS·cm-1. A higher beneficial effect of PH on fruit antioxidant status, i.e., lycopene, polyphenols, ascorbic acid levels, and lipophilic (LAA) and hydrophilic (HAA) activity, was recorded in winter compared with summer. Positive correlations between polyphenols and LAA, as well as ascorbic acid content and HAA were found for all EC and PH treatments. Most of the mineral elements tested demonstrated concentration stability, whereas the highest EC decreased P, Mg, Cu, and Se accumulation. The opposite effect was shown by PH application on Se and Mn levels, with P tending to increase. The concentrations of Fe, Zn, and Cu were the lowest under the longest duration of PH supply. These results further confirm the essential role of plant biostimulation in enhancing tomato yield and quality, with a particular focus on the treatment duration.
Collapse
Affiliation(s)
- Alessio V. Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | | | - Nadezhda A. Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, Odintsovo District, Vniissok, Selectsionnaya 14, Moscow 143072, Russia
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Eugenio Cozzolino
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy
| | - Massimo Mirabella
- Centro Studi Isvam, Association for Innovation and Development of Sustainable Mediterranean Agriculture, 90121 Palermo, Italy
| | - Antonio Cuciniello
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy
| | - Roberto Maiello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Vincenzo Cenvinzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Pasquale Lombardi
- Research Center for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
15
|
Mutlu-Durak H, Arikan Y, Kutman BY. Willow ( Salix babylonica) Extracts Can Act as Biostimulants for Enhancing Salinity Tolerance of Maize Grown in Soilless Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:856. [PMID: 36840205 PMCID: PMC9959057 DOI: 10.3390/plants12040856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Salinity negatively affects agricultural production by reducing crop growth and yield. Botanical biostimulants can be used as innovative and sustainable tools to cope with abiotic stress. In this study, salicylic acid (SA) (25 µM) and willow leaf (WL) (0.1 and 0.2%) and bark (WB) (0.1 and 0.2%) extracts were applied as plant-based biostimulants to hydroponically grown maize in the absence and presence of salinity stress (60 mM NaCl). The hormone-like activity and mineral composition of willow extracts were analyzed, and the effects of willow extracts on growth parameters, chlorophyll content, antioxidative enzyme activities, protein levels and mineral nutrient concentrations of maize plants were measured. Within the tested biostimulant applications, 0.2% WB, 0.1% WL and 0.2% WL gave the most promising results, considering the stress alleviating effects. The shoot biomass was increased up to 50% with 0.1% WL treatment and Na+ uptake was reduced with biostimulant applications under saline conditions. Under stress, the protein concentrations of maize leaves were enhanced by 50% and 80% with high doses of WB and WL applications, respectively. Results indicate that willow tree prunings can be valuable bio-economy resources, and aqueous extracts prepared from their leaves and barks can be used as effective and eco-friendly biostimulants.
Collapse
Affiliation(s)
- Hande Mutlu-Durak
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Turkey
| | - Yagmur Arikan
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Turkey
| | - Bahar Yildiz Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Turkey
- Original Bio-Economy Resources Center of Excellence (OBEK), Gebze 41400, Turkey
| |
Collapse
|
16
|
Wang W, Zhang C, Zheng W, Lv H, Li J, Liang B, Zhou W. Seed priming with protein hydrolysate promotes seed germination via reserve mobilization, osmolyte accumulation and antioxidant systems under PEG-induced drought stress. PLANT CELL REPORTS 2022; 41:2173-2186. [PMID: 35974188 DOI: 10.1007/s00299-022-02914-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Seed priming with pig blood protein hydrolysate improves tomato seed germination and seedling growth via regulation of reserve mobilization, osmotic adjustment, and antioxidant mechanism under drought conditions. Protein hydrolysates obtained from agro-industrial byproducts are widely recognized because of their positive roles in regulating plant responses to environmental stresses. However, little is known regarding the roles of animal protein hydrolysates in mediating seed drought tolerance and its underlying mechanisms. This study investigated the potential effects of seed priming on tomato seed germination and seedling growth under PEG-induced drought stress using protein hydrolysates derived from pig blood (PP). PP priming effectively alleviated the drought-induced reduction in seed germination traits, resulting in improved tomato seedling growth. PP priming enhanced the gene expressions and activities of amylase and sucrose synthase and soluble sugar, soluble protein, and free amino acid levels, thereby promoting reserve mobilization in seeds. PP priming also reduced osmotic toxicity through increased accumulations of proline, soluble protein, and soluble sugar. Drought stress substantially enhanced reactive oxygen species production and the subsequent increases in malondialdehyde levels and Evans blue solution uptake, which were substantially alleviated after PP priming via the improved activities of enzymatic and non-enzymatic antioxidants. Moreover, the increased DPPH free radical scavenging capacity and ferric reducing antioxidant power indicated that PP-treated tomato seedings had high antioxidant activities under drought stress. Therefore, PP priming is a novel, promising, and practicable method for improving tomato seed germination and seedling growth under drought stress.
Collapse
Affiliation(s)
- Weixuan Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Chenglong Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Wenlong Zheng
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Haofeng Lv
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Junliang Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China.
| | - Bin Liang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Weiwei Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China.
| |
Collapse
|
17
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022. [PMID: 36235491 DOI: 10.1007/s44187-022-00009-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
18
|
Effect of the Application of Hydrolysate of Chlorella vulgaris Extracted by Different Techniques on the Growth of Pelargonium × hortorum. PLANTS 2022; 11:plants11172308. [PMID: 36079690 PMCID: PMC9460244 DOI: 10.3390/plants11172308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
The extraction method used to obtain biologically active compounds from microalgal biomass may affect the biostimulant capacity of the microalgae. The objective of this assay was to determine the most efficient extraction method to release the active components of the biomass of Chlorella vulgaris (C. vulgaris). Plantlets of Pelargonium × hortorum were grown in a greenhouse and five treatments were applied: C-application with water; M-application with untreated C. vulgaris microalgae; M-US-application with C. vulgaris microalgae treated with ultrasound; M-USHY-application with C. vulgaris microalgae treated with ultrasound and enzymatic hydrolysis; and M-USHYAU-application with C. vulgaris microalgae treated with ultrasound, enzymatic hydrolysis, and autoclaving. All microalgae treatments increased shoot number and stem and plant diameter. The US-treated biomass increased the inflorescence of the plant significantly compared to the control. To extract bioactive compounds from eukaryotic microalgae for plant biostimulating purposes, the US-treatment (or any other method damaging the plasma membrane) of microalgae cell is, or seems to be, suitable.. Macronutrient content in leaves was not affected by the microalgae treatment, except for K.
Collapse
|
19
|
Francesca S, Najai S, Zhou R, Decros G, Cassan C, Delmas F, Ottosen CO, Barone A, Rigano MM. Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:32-43. [PMID: 35306328 DOI: 10.1016/j.plaphy.2022.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Drought and heat stresses are the main constrains to agricultural crop production worldwide. Precise and efficient phenotyping is essential to understand the complexity of plant responses to abiotic stresses and to identify the best management strategies to increase plant tolerance. In the present study, two phenotyping platforms were used to investigate the effects of a protein hydrolysate-based biostimulant on the physiological response of two tomato genotypes ('E42' and 'LA3120') subjected to heat, drought, or combined stress. The free amino acids in the biostimulant, or other molecules, stimulated growth in treated plants subjected to combined stress, probably promoting endogenous phytohormonal biosynthesis. Moreover, biostimulant application increased the net photosynthetic rate and maximal efficiency of PSII photochemistry under drought, possibly related to the presence of glycine betaine and aspartic acid in the protein hydrolysate. Increased antioxidant content and a decreased accumulation of hydrogen peroxide, proline, and soluble sugars in treated plants under drought and combined stress further demonstrated that the biostimulant application mitigated the negative effects of abiotic stresses. Generally, the response to biostimulant in plants had a genotype-dependent effect, with 'E42' showing a stronger response to protein hydrolysate application than 'LA3120'. Altogether, in this study a fine and multilevel phenotyping revealed increased plant performances under water-limited conditions and elevated temperatures induced by a protein hydrolysate, thus highlighting the great potential biostimulants have in improving plant resilience to abiotic stresses.
Collapse
Affiliation(s)
- Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - Sabri Najai
- University of Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Guillaume Decros
- University of Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Cedric Cassan
- University of Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33882, Villenave d'Ornon, France
| | - Frederic Delmas
- University of Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | | | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy.
| |
Collapse
|
20
|
Abstract
Biostimulants are agronomic tools that have been gaining importance in the reduction of fertilizer applications. They can improve the yield of cropping systems or preventing crop yield losses under abiotic stresses. Biostimulants can be composed of organic and inorganic materials and most of the components are still unknown. The characterization of the molecular mechanism of action of biostimulants can be obtained using the omics approach, which includes the determination of transcriptomic, proteomic, and metabolomic changes in treated plants. This review reports an overview of the biostimulants, taking stock on the recent molecular studies that are contributing to clarify their action mechanisms. The omics studies can provide an overall evaluation of a crop’s response, connecting the molecular changes with the physiological pathways activated and the performance with or without stress conditions. The multiple responses of plants treated with biostimulants must be correlated with the phenotype changes. In this context, it is also crucial to design an adequate experimental plan and statistical data analysis, in order to find robust correlations between biostimulant treatments and crop performance.
Collapse
|
21
|
Rane J, Singh AK, Tiwari M, Prasad PVV, Jagadish SVK. Effective Use of Water in Crop Plants in Dryland Agriculture: Implications of Reactive Oxygen Species and Antioxidative System. FRONTIERS IN PLANT SCIENCE 2022; 12:778270. [PMID: 35082809 PMCID: PMC8784697 DOI: 10.3389/fpls.2021.778270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 05/03/2023]
Abstract
Under dryland conditions, annual and perennial food crops are exposed to dry spells, severely affecting crop productivity by limiting available soil moisture at critical and sensitive growth stages. Climate variability continues to be the primary cause of uncertainty, often making timing rather than quantity of precipitation the foremost concern. Therefore, mitigation and management of stress experienced by plants due to limited soil moisture are crucial for sustaining crop productivity under current and future harsher environments. Hence, the information generated so far through multiple investigations on mechanisms inducing drought tolerance in plants needs to be translated into tools and techniques for stress management. Scope to accomplish this exists in the inherent capacity of plants to manage stress at the cellular level through various mechanisms. One of the most extensively studied but not conclusive physiological phenomena is the balance between reactive oxygen species (ROS) production and scavenging them through an antioxidative system (AOS), which determines a wide range of damage to the cell, organ, and the plant. In this context, this review aims to examine the possible roles of the ROS-AOS balance in enhancing the effective use of water (EUW) by crops under water-limited dryland conditions. We refer to EUW as biomass produced by plants with available water under soil moisture stress rather than per unit of water (WUE). We hypothesize that EUW can be enhanced by an appropriate balance between water-saving and growth promotion at the whole-plant level during stress and post-stress recovery periods. The ROS-AOS interactions play a crucial role in water-saving mechanisms and biomass accumulation, resulting from growth processes that include cell division, cell expansion, photosynthesis, and translocation of assimilates. Hence, appropriate strategies for manipulating these processes through genetic improvement and/or application of exogenous compounds can provide practical solutions for improving EUW through the optimized ROS-AOS balance under water-limited dryland conditions. This review deals with the role of ROS-AOS in two major EUW determining processes, namely water use and plant growth. It describes implications of the ROS level or content, ROS-producing, and ROS-scavenging enzymes based on plant water status, which ultimately affects photosynthetic efficiency and growth of plants.
Collapse
Affiliation(s)
- Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
22
|
Kocira S, Szparaga A, Krawczuk A, Bartoš P, Zaguła G, Plawgo M, Černý P. Plant Material as a Novel Tool in Designing and Formulating Modern Biostimulants-Analysis of Botanical Extract from Linum usitatissimum L. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6661. [PMID: 34772188 PMCID: PMC8588437 DOI: 10.3390/ma14216661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, researchers are looking into next-generation biostimulants that can be designed as a dedicated agronomic tool based on plant materials. The aim of the present study was to develop a novel biostimulating product, based on plant material in the form of linseed aqueous extracts. The scope of the research included the physicochemical characterization of the product and identification of its biostimulating potential. The study has confirmed that the plant biostimulant derived from L. usitatissimum can be used as a viable agronomic tool for growing soybean. The designed and produced biostimulant is rich in bioactive compounds, including amino acids, free fatty acids, carbohydrates, and micro- and macroelements. The tested biostimulant showed significantly lower values of surface tension in relation to water and a commercial biostimulant. The soybean crops responded to the application of the preparation by improvements in agronomic and morphological levels. The linseed macerates were effective in terms of soybean yields and profitability. Our findings serve as preliminary evidence for the viability of designing and developing novel biostimulants derived from plant materials. This comprehensive approach to designing and formulating novel bioproducts necessitates more extensive and targeted research to fully explain the mechanisms behind the improvements observed in the soybean cultivation.
Collapse
Affiliation(s)
- Sławomir Kocira
- Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Agnieszka Szparaga
- Department of Agrobiotechnology, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland;
- Faculty of Agriculture, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (P.B.); (P.Č)
| | - Anna Krawczuk
- Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Petr Bartoš
- Faculty of Agriculture, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (P.B.); (P.Č)
| | - Grzegorz Zaguła
- Department of Bioenergetics and Food Analysis, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Michał Plawgo
- ImProvia Sp. z o.o., Strefowa 13, 64-920 Piła, Poland;
| | - Pavel Černý
- Faculty of Agriculture, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (P.B.); (P.Č)
- Faculty of Education, University of South Bohemia, Jeronymova 10, 371 15 Ceske Budejovice, Czech Republic
| |
Collapse
|
23
|
Cristofano F, El-Nakhel C, Rouphael Y. Biostimulant Substances for Sustainable Agriculture: Origin, Operating Mechanisms and Effects on Cucurbits, Leafy Greens, and Nightshade Vegetables Species. Biomolecules 2021; 11:1103. [PMID: 34439770 PMCID: PMC8392623 DOI: 10.3390/biom11081103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Climate change is a pressing matter of anthropogenic nature to which agriculture contributes by abusing production inputs such as inorganic fertilizers and fertigation water, thus degrading land and water sources. Moreover, as the increase in the demand of food in 2050 is estimated to be 25 to 70% more than what is currently produced today, a sustainable intensification of agriculture is needed. Biostimulant substances are products that the EU states work by promoting growth, resistance to plant abiotic stress, and increasing produce quality, and may be a valid strategy to enhance sustainable agricultural practice. Presented in this review is a comprehensive look at the scientific literature regarding the widely used and EU-sanctioned biostimulant substances categories of silicon, seaweed extracts, protein hydrolysates, and humic substances. Starting from their origin, the modulation of plants' hormonal networks, physiology, and stress defense systems, their in vivo effects are discussed on some of the most prominent vegetable species of the popular plant groupings of cucurbits, leafy greens, and nightshades. The review concludes by identifying several research areas relevant to biostimulant substances to exploit and enhance the biostimulant action of these substances and signaling molecules in horticulture.
Collapse
Affiliation(s)
| | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.C.); (C.E.-N.)
| |
Collapse
|
24
|
Della Lucia MC, Baghdadi A, Mangione F, Borella M, Zegada-Lizarazu W, Ravi S, Deb S, Broccanello C, Concheri G, Monti A, Stevanato P, Nardi S. Transcriptional and Physiological Analyses to Assess the Effects of a Novel Biostimulant in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:781993. [PMID: 35087552 PMCID: PMC8787302 DOI: 10.3389/fpls.2021.781993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/07/2021] [Indexed: 05/08/2023]
Abstract
This work aimed to study the effects in tomato (Solanum lycopersicum L.) of foliar applications of a novel calcium-based biostimulant (SOB01) using an omics approach involving transcriptomics and physiological profiling. A calcium-chloride fertilizer (SOB02) was used as a product reference standard. Plants were grown under well-watered (WW) and water stress (WS) conditions in a growth chamber. We firstly compared the transcriptome profile of treated and untreated tomato plants using the software RStudio. Totally, 968 and 1,657 differentially expressed genes (DEGs) (adj-p-value < 0.1 and |log2(fold change)| ≥ 1) were identified after SOB01 and SOB02 leaf treatments, respectively. Expression patterns of 9 DEGs involved in nutrient metabolism and osmotic stress tolerance were validated by real-time quantitative reverse transcription PCR (RT-qPCR) analysis. Principal component analysis (PCA) on RT-qPCR results highlighted that the gene expression profiles after SOB01 treatment in different water regimes were clustering together, suggesting that the expression pattern of the analyzed genes in well water and water stress plants was similar in the presence of SOB01 treatment. Physiological analyses demonstrated that the biostimulant application increased the photosynthetic rate and the chlorophyll content under water deficiency compared to the standard fertilizer and led to a higher yield in terms of fruit dry matter and a reduction in the number of cracked fruits. In conclusion, transcriptome and physiological profiling provided comprehensive information on the biostimulant effects highlighting that SOB01 applications improved the ability of the tomato plants to mitigate the negative effects of water stress.
Collapse
Affiliation(s)
- Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Ali Baghdadi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Francesca Mangione
- Sipcam Italia S.p.A. Belonging Together With Sofbey SA to the Sipcam Oxon S.p.A. Group, Pero, Italy
| | - Matteo Borella
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | | | - Samathmika Ravi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Saptarathi Deb
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Andrea Monti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
- *Correspondence: Piergiorgio Stevanato,
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| |
Collapse
|