1
|
Luo M, Wang L, Liu L, Song L, Lu X, Sheng M. PhytOC sequestration characteristics and phytolith carbon sink capacity of the karst grasslands in southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176949. [PMID: 39426549 DOI: 10.1016/j.scitotenv.2024.176949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Grassland is an important component of terrestrial ecosystems and plays a crucial role in the global carbon cycle. PhytOC (phytolith-occluded organic carbon) is an extremely important long-term and stable carbon pool in terrestrial ecosystems. Southwest China karst soil exhibits obvious characteristics of alkalinity, high silicon content, and rich calcium, which can significantly influence the characteristics and mechanisms of PhytOC sequestration in vegetation. To elucidate the sequestration characteristics and mechanisms of PhytOC in the karst grasslands, three typical karst grasslands of tropical shrub tussock (TST), warm-temperate shrub tussock (WST), and mountain meadow (MM) from Guizhou province of southwest China were studied. The following results and conclusions were obtained that: 1) the range of PhytOC content of aboveground plant parts, underground roots, and soil in the karst grasslands was 4.03-16.54 g·kg-1, 10.67-33.92 g·kg-1, and 0.63-1.89 g·kg-1, respectively. The underground roots are an important site for phytolith carbon sequestration in grassland ecosystems, and the PhytOC content of underground roots may be higher than that of the aboveground parts. 2) The PhytOC sequestration rate of vegetation was 7.34-15.93 kg·ha-1·yr-1, and the annual sequestration amount of PhytOC of the whole grasslands in southwest China could reach 0.48 × 103-1.48 × 103 t CO2. Compared to grasslands in non-karst regions of China, karst grasslands in southwest China have a higher sequestration rate of PhytOC in vegetation and a greater capacity for phytolith carbon sequestration. 3) Soil available silicon, pH, and stoichiometric characteristics of C, N and P nutrients significantly affected the phytolith carbon sequestration of vegetation and the soil accumulation of PhytOC in the karst grasslands. The research results are of great significance for estimating the phytolith carbon sequestration capacity of grassland ecosystems and for grassland construction and management based on enhancing carbon sequestration.
Collapse
Affiliation(s)
- Mengxia Luo
- Institute of Karst Research, Guizhou Normal University, Guiyang 550001, China
| | - Linjiao Wang
- Institute of Karst Research, Guizhou Normal University, Guiyang 550001, China; National Engineering Research Center for Karst Rocky Desertification Control, Guiyang 550001, China
| | - Li Liu
- Institute of Karst Research, Guizhou Normal University, Guiyang 550001, China
| | - Lukang Song
- Institute of Karst Research, Guizhou Normal University, Guiyang 550001, China
| | - Xiaxia Lu
- Institute of Karst Research, Guizhou Normal University, Guiyang 550001, China
| | - Maoyin Sheng
- Institute of Karst Research, Guizhou Normal University, Guiyang 550001, China; National Engineering Research Center for Karst Rocky Desertification Control, Guiyang 550001, China.
| |
Collapse
|
2
|
Pandey R, Singh C, Mishra S, Abdulraheem MI, Vyas D. Silicon uptake and transport mechanisms in plants: processes, applications and challenges in sustainable plant management. Biol Futur 2024:10.1007/s42977-024-00247-x. [PMID: 39587007 DOI: 10.1007/s42977-024-00247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Silicon (Si) is an abundant element in the earth's crust essential for plant growth and development. Recent studies silicon's potential for improving plant resilience to numerous biotic stressors, notably fungal diseases. This review seeks to offer a comprehensive understanding of the processes and advantages of silicon-induced systemic resistance in plants, with a special focus on its interactions with fungal pathogens. Furthermore, we investigate the effect of silicon on plant physiological and biochemical changes, such as enhanced lignification, strengthening of physical barriers, and activation of antioxidant systems. Additionally, we examine the influence of silicon on microbial populations within the rhizosphere and its effects on mycorrhizal associations. Lastly, we discuss the potential applications and challenges of integrating silicon-based strategies in sustainable plant disease management. This review provides valuable insights into using silicon as a novel approach to enhance plant systemic resistance against fungal pathogens, offering prospects for developing eco-friendly and efficient agricultural practices.
Collapse
Affiliation(s)
- Raghvendra Pandey
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Chandan Singh
- Lab of Microbial Technology and Plant Pathology, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India.
| | - Smita Mishra
- Lab of Microbial Technology and Plant Pathology, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | | | - Deepak Vyas
- Lab of Microbial Technology and Plant Pathology, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
3
|
Liu Z, Yan J, Wang D, Ahmad P, Qin M, Li R, Ali B, Sonah H, Deshmukh R, Yadav KK, El-Sheikh MA, Zhang L, Liu P. Silicon improves salt resistance by enhancing ABA biosynthesis and aquaporin expression in Nicotiana tabacum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108977. [PMID: 39084167 DOI: 10.1016/j.plaphy.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Silicon (Si) can significantly improve the salt tolerance of plants, but its mechanism remains unclear. In this study, role of abscisic acid (ABA) in Si derived salt resistance in tobacco seedling was investigated. Under salt stress, the photosynthetic rate, stomatal conductance, and transpiration rate of tobacco seedlings were reduced by 86.17%, 80.63%, and 67.54% respectively, resulting in a decrease in biomass. The application of Si found to mitigate these stress-induced markers. However, positive role of Si was mainly attributed to the enhanced expression of aquaporin genes, which helped in enhancing root hydraulic conductance (Lpr) and ultimately maintaining the leaf relative water content (RWC). Moreover, sodium tungstate, an ABA biosynthesis inhibitor, was used to test the role of ABA on Si-regulating Lpr. The results indicated that the improvement of Lpr by Si was diminished in the presence of ABA inhibitor. In addition, it was observed that the ABA content was increased due to the Si-upregulated of ABA biosynthesis genes, namely NtNCED1 and NtNCED5. Conversely, the expression of ABA metabolism gene NtCYP7O7A was found to be reduced by Si. Together, this study suggested that Si increased ABA content, leading to enhanced efficiency of water uptake by the roots, ultimately facilitating an adequate water supply to maintain leaf water balance. As a result, there was an improvement in salt resistance in tobacco seedling.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Dan Wang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim yar Khan, 64200, Pakistan
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University Ratibad, Bhopal, 462044, MP, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh,11451, Saudi Arabia
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
4
|
Payá J, Escalera A, Borrachero MV, Roselló J, Monzó J, Soriano L. Auto-Combustion of Corn Straw: Production and Characterization of Corn Straw Ash (CSA) for Its Use in Portland Cement Mortars. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4374. [PMID: 39274763 PMCID: PMC11396094 DOI: 10.3390/ma17174374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
Agricultural waste availability implies the possibility of recovering energy as biomass. The collateral effect is the production of ashes that, in some cases, have the potential to be reused in the manufacture of cement, mortar, and concrete. This article presents the study of the auto-combustion (unlike all previous studies) of corn (maize) straw (stems and leaves). The auto-combustion temperature was monitored, and the obtained corn straw ash (CSA) was characterized by means of X-ray fluorescence, X-ray diffraction, thermogravimetry, and scanning electron microscopy. Finally, the behavior of ground CSA was analyzed in both the fresh state by measurement of workability on the spreading table and the hardened state by compressive strength measurement on mortars in which 10% of ordinary Portland cement (OPC) was replaced with CSA. These values were compared to both a control mortar (OPC) and a mortar in which OPC was partially replaced with 10% limestone filler. Ashes showed adequate pozzolanic reactivity because, at 90 curing days, the compressive strength of the mortars with 10% replacement of OPC with CSA was practically equal (98% of the strength) to the control mortar without pozzolan replacement. The auto-combustion of biomass is a process that can be easily available, and the results on pozzolanic reactivity of CSA are satisfactory. The auto-combustion could be used by low-income communities to reduce Portland cement clinker use and to recover waste.
Collapse
Affiliation(s)
- Jordi Payá
- ICITECH-Institute of Concrete Science and Technology, Universitat Politècnica de València, Av. dels Tarongers, 4N, 46022 València, Spain
| | - Alejandro Escalera
- ICITECH-Institute of Concrete Science and Technology, Universitat Politècnica de València, Av. dels Tarongers, 4N, 46022 València, Spain
| | - María Victoria Borrachero
- ICITECH-Institute of Concrete Science and Technology, Universitat Politècnica de València, Av. dels Tarongers, 4N, 46022 València, Spain
| | - Josefa Roselló
- Department of Agroforestry Ecosystems, Universitat Politècnica de València (UPV), 46022 València, Spain
| | - José Monzó
- ICITECH-Institute of Concrete Science and Technology, Universitat Politècnica de València, Av. dels Tarongers, 4N, 46022 València, Spain
| | - Lourdes Soriano
- ICITECH-Institute of Concrete Science and Technology, Universitat Politècnica de València, Av. dels Tarongers, 4N, 46022 València, Spain
| |
Collapse
|
5
|
Khan AL. Silicon: A valuable soil element for improving plant growth and CO 2 sequestration. J Adv Res 2024:S2090-1232(24)00217-0. [PMID: 38806098 DOI: 10.1016/j.jare.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Silicon (Si), the second most abundant and quasi-essential soil element, is locked as a recalcitrant silicate mineral in the Earth's crust. The physical abundance of silicates can play an essential role in increasing plant productivity. Plants store Si as biogenic silica (phytoliths), which is mobilized through a chemical weathering process in the soil. AIM OF REVIEW Although Si is a critical element for plant growth, there is still a considerable need to understand its dissolution, uptake, and translocation in agroecosystems. Here, we show recent progress in understanding the interactome of Si, CO2, the microbiome, and soil chemistry, which can sustainably govern silicate dissolution and cycling in agriculture. KEY SCIENTIFIC CONCEPTS OF THIS REVIEW Si cycling is directly related to carbon cycling, and the resulting climate stability can be enhanced by negative feedback between atmospheric CO2 and the silicate uptake process. Improved Si mobilization in the rhizosphere by the presence of reactive elements (for example, Ca, Na, Al, Zn, and Fe) and Si uptake through genetic transporters in plants are crucial to achieving the dual objectives of (i) enhancing crop productivity and (ii) abiotic stress tolerance. Furthermore, the microbiome is a symbiotic partner of plants. Bacterial and fungal microbiomes can solubilize silicate minerals through intriguingly complex bioweathering mechanisms by producing beneficial metabolites and enzymes. However, the interaction of Si with CO2 and the microbiome's function in mobilization have been understudied. This review shows that enhancing our understanding of Si, CO2, the microbiome, and soil chemistry can help in sustainable crop production during climatic stress events.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston TX, USA.
| |
Collapse
|
6
|
Zhao E, Pang Z, Li W, Tan L, Peng H, Luo J, Ma Q, Liang Y. Spatial variation in stability of wheat (Triticum aestivum L.) straw phytolith-occluded carbon in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170909. [PMID: 38350562 DOI: 10.1016/j.scitotenv.2024.170909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Global climate warming, driven by human activities emitting greenhouse gases like CO2, results in adverse effects, posing significant challenges to human health and food security. In response to this challenge, it is imperative to enhance long-term carbon sequestration, including phytolith-occluded carbon (PhytOC). Currently, there is a dearth of research on the assessment and distribution of the stability of PhytOC. Additionally, the intricate relationships and effects between the stability and environmental factors such as climate and soil remain insufficiently elucidated. Our study provided a composite assessment index for PhytOC stability based on a rapid solubility assay and principal component analysis. The machine learning models that we developed in this study, utilize experimentally and publicly accessible environmental data on large spatial scales, facilitating the prediction and spatial distribution mapping of the PhytOC stability using simple kriging interpolation in wheat ecosystems across China. We compared and evaluated 10 common classification machine learning models at 10-fold cross-validation. Based on the overall performance, the Stochastic Gradient Boosting model (GBM) was selected as predictive model. The stability is influenced by dynamic and complex environments with climate having a more significant impact. It was evident that light and temperature had a significant positive direct relationship with the stability, while the other factors showed indirect effects on the stability. PhytOC stability exhibited obvious zonal difference and spatial heterogeneity, with the distribution trend gradually decreasing from the southeast to the northwest in China. Overall, our research contributed to reducing greenhouse gas emissions and achieving global climate targets, working towards a more sustainable and climate-resilient future.
Collapse
Affiliation(s)
- Enqiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou, Zhejiang 310058, China.
| | - Zhihao Pang
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou, Zhejiang 310058, China.
| | - Wenjuan Li
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou, Zhejiang 310058, China.
| | - Li Tan
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou, Zhejiang 310058, China
| | - Hongyun Peng
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou, Zhejiang 310058, China.
| | - Jipeng Luo
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou, Zhejiang 310058, China.
| | - Qingxu Ma
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou, Zhejiang 310058, China.
| | - Yongchao Liang
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Pokrovsky OS, Akerman A, Fraysse F, Olonova MV, Kuznetzov AA, Loiko SV, Meunier JD. Elemental composition of grass phytoliths: Environmental control and effect on dissolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169764. [PMID: 38176565 DOI: 10.1016/j.scitotenv.2023.169764] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Plant phytoliths, which represent the main pool of silica (Si) in the form of hydrous Si oxide, are capable of providing valuable information on different aspect of environmental issues including paleo-environmental reconstruction and agricultural sustainability. Phytoliths may have different chemical composition, which, in turn, affects their preservation in soils ad impacts terrestrial cycle of the occluded elements including micro-nutrients and environmental toxicants. Yet, in contrast to sizable work devoted to phytoliths formation, dissolution and physico-chemical properties, the mechanisms that control total (major and trace) elemental composition and the impact that various elements exert on phytolith reactivity and preservation in soils remains poorly known. In order to fil this gap in knowledge, here we combined two different approaches - analytical trace element geochemistry and experimental physical chemistry. First, we assessed full elemental composition of phytoliths from different plants via measuring major and trace elements in 9 samples of grasses collected in northern Eurasia during different seasons, 18 grasses from Siberian regions, and 4 typical Si-concentrating plants (horsetail, larch, elm and tree fern). We further assessed the dissolution rates of phytoliths exhibiting drastically different concentrations of trace metals. In the European grasses, the variations of phytolith chemical composition among species were highly superior to the variations across vegetative season. Compared to European samples, Siberian grass phytoliths were impoverished in Ca and Sr, exhibited similar concentrations of Li, B, Na, Mg, K, V, Zn, Ni, Mo, As, Ba, and U, and were strongly enriched (x 100-1000) in lithogenic elements (trivalent and tetravalent hydrolysates), P, Mn, Fe and divalent metals. Overall, the variations in elemental composition between different species of the same region were lower compared to variations of the same species from distant regions. The main factors controlling phytoliths elemental composition are the far-range atmospheric (dust) transfer, climatic conditions (humidity), and, in a lesser degree, local lithology and anthropogenic pollution. Despite significant, up to 3 orders of magnitude, difference in TE composition of grass and other plant phytoliths, the dissolution rates of grass phytoliths measured in this study were similar, within the experimental uncertainty, to those of other plants studied in former works. Therefore, elemental composition of phytoliths has relatively minor impact on their preservation in soils.
Collapse
Affiliation(s)
- Oleg S Pokrovsky
- Geoscience and Environment Toulouse, UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France; BIO-GEO-CLIM Laboratory, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia.
| | - Alisson Akerman
- Geoscience and Environment Toulouse, UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Fabrice Fraysse
- Université de Lorraine, LIEC-Ecole Nationale Supérieure de Géologie, 15 Avenue du Charmois, 54500 Vandœuvre-lès-Nancy, France
| | - Marina V Olonova
- BIO-GEO-CLIM Laboratory, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
| | - Alexander A Kuznetzov
- BIO-GEO-CLIM Laboratory, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
| | - Sergey V Loiko
- BIO-GEO-CLIM Laboratory, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
| | | |
Collapse
|
8
|
Yip LX, Wang J, Xue Y, Xing K, Sevencan C, Ariga K, Leong DT. Cell-derived nanomaterials for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2315013. [PMID: 38476511 PMCID: PMC10930141 DOI: 10.1080/14686996.2024.2315013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
The ever-growing use of nature-derived materials creates exciting opportunities for novel development in various therapeutic biomedical applications. Living cells, serving as the foundation of nanoarchitectonics, exhibit remarkable capabilities that enable the development of bioinspired and biomimetic systems, which will be explored in this review. To understand the foundation of this development, we first revisited the anatomy of cells to explore the characteristics of the building blocks of life that is relevant. Interestingly, animal cells have amazing capabilities due to the inherent functionalities in each specialized cell type. Notably, the versatility of cell membranes allows red blood cells and neutrophils' membranes to cloak inorganic nanoparticles that would naturally be eliminated by the immune system. This underscores how cell membranes facilitate interactions with the surroundings through recognition, targeting, signalling, exchange, and cargo attachment. The functionality of cell membrane-coated nanoparticles can be tailored and improved by strategically engineering the membrane, selecting from a variety of cell membranes with known distinct inherent properties. On the other hand, plant cells exhibit remarkable capabilities for synthesizing various nanoparticles. They play a role in the synthesis of metal, carbon-based, and polymer nanoparticles, used for applications such as antimicrobials or antioxidants. One of the versatile components in plant cells is found in the photosynthetic system, particularly the thylakoid, and the pigment chlorophyll. While there are challenges in consistently synthesizing these remarkable nanoparticles derived from nature, this exploration begins to unveil the endless possibilities in nanoarchitectonics research.
Collapse
Affiliation(s)
- Li Xian Yip
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Jinping Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences & Engineering Programme, National University of Singapore, Singapore
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, Japan
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences & Engineering Programme, National University of Singapore, Singapore
| |
Collapse
|
9
|
Xu R, Huang J, Guo H, Wang C, Zhan H. Functions of silicon and phytolith in higher plants. PLANT SIGNALING & BEHAVIOR 2023; 18:2198848. [PMID: 37031433 PMCID: PMC10085572 DOI: 10.1080/15592324.2023.2198848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Silicon (Si) is abundant in the lithosphere, and previous studies have confirmed that silicon plays an important role in plant growth. Higher plants absorb soluble silicon from soil through roots which is deposited in plant tissues mainly in the form of phytoliths. Based on previous studies, the research progress in silicon and phytoliths in the structural protection, enhancement on photosynthesis and transpiration of plants and plant growth and stress resistance was reviewed. Meanwhile, gaps in phytolith research, including phytolith morphology and function, impact of diverse environmental factors coupling with phytoliths, phytolith characteristics at different stages of plant development and phytoliths in regional vegetation are identified. The paper intends to promote the wider application of phytolith research findings and provides reference for further research on phytoliths.
Collapse
Affiliation(s)
- Rui Xu
- Key Laboratory for Sympodial Bamboo Research, Southwest Forestry University, Kunming, China
- Science and Technology Innovation Team of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Jianfeng Huang
- Yunnan Academy of Biodiversity/College of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Huijun Guo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Changming Wang
- Key Laboratory for Sympodial Bamboo Research, Southwest Forestry University, Kunming, China
- Science and Technology Innovation Team of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
- Changming Wang Key Laboratory for Sympodial Bamboo Research, Southwest Forestry University, Kunming, China
| | - Hui Zhan
- Key Laboratory for Sympodial Bamboo Research, Southwest Forestry University, Kunming, China
- Science and Technology Innovation Team of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
- CONTACT Hui Zhan
| |
Collapse
|
10
|
Schoelynck J, De Block P, Van Dyck E, Cooke J. Is there silicon in flowers and what does it tell us? Ecol Evol 2023; 13:e10630. [PMID: 37854315 PMCID: PMC10580012 DOI: 10.1002/ece3.10630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
The emergence of flowers marked an important development in plant evolution. Flowers in many species evolved to attract animal pollinators to increase fertilisation chances. In leaves, silicon (Si) discourages herbivores, for example by wearing down mouthparts. Flowers are essentially modified leaves and hence may also have the capacity to accumulate Si. If Si in flowers discourages animal visitors as it does in leaves, Si accumulation may be disadvantageous for pollination. Whether flowers accumulate Si, and what the implications may be, was not known for many species. We analysed leaves and flowers of different taxa, separated into their different anatomical parts. Flowers mostly have low Si concentrations in all parts (mean ± SE of BSi in mg g-1 was 0.22 ± 0.04 in petals, 0.59 ± 0.24 in sepals, 0.14 ± 0.03 in stamens, 0.15 ± 0.04 in styles and stigmas and 0.37 ± 0.19 in ovaries for a subset of 56 species). In most cases, less Si was accumulated in flowers than in leaves (mean ± SE of BSi in mg g-1 was 1.51 ± 0.55 in whole flowers vs. 2.97 ± 0.57 in leaves in 104 species) though intriguing exceptions are found, with some species accumulating more Si in flowers than leaves. The large variation in concentration among flowers across the taxa examined, with a particularly high concentration in grass inflorescences, tantalisingly suggests differences in the use of Si for flowers across plant groups. We conclude that the study of the functions of Si for flowers warrants more attention, with pollination strategy a potential contributing factor.
Collapse
Affiliation(s)
- Jonas Schoelynck
- Department of Biology, ECOSPHERE Research GroupUniversity of AntwerpWilrijkBelgium
| | | | - Eva Van Dyck
- Department of Biology, ECOSPHERE Research GroupUniversity of AntwerpWilrijkBelgium
| | - Julia Cooke
- Earth, Environment and Ecosystem SciencesThe Open UniversityMilton KeynesUK
| |
Collapse
|
11
|
de Faria Melo CC, Silva Amaral D, de Mello Prado R, de Moura Zanine A, de Jesus Ferreira D, de Cássia Piccolo M. Nanosilica modulates C:N:P stoichiometry attenuating phosphorus toxicity more than deficiency in Megathyrsus maximus cultivated in an Oxisol and Entisol. Sci Rep 2023; 13:10284. [PMID: 37355676 PMCID: PMC10290668 DOI: 10.1038/s41598-023-37504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Silicon (Si) nanoparticles can attenuate nutritional disorders caused by phosphorus in forages through nutritional homeostasis. This paper aims to evaluate the effects of P deficiency and toxicity in Megathyrsus maximus cultivated in two types of soils and to verify whether Si application via fertigation can mitigate these imbalances. The following two experiments were carried out: cultivation of forage plants in pots with Entisol and Oxisol, in a 3 × 2 factorial design, with three nutritional levels of phosphorus (deficient, adequate, and excessive) and two Si concentrations in the irrigation water (0 and 1.5 mmol L-1). Height, number of tillers, rate of leaf senescence, dry matter production, C:N, C:Si, C:P, and N:P ratios; and C, P, and N use efficiencies were evaluated in two growth cycles. P imbalances hampered carbon assimilation, C:N:P homeostasis, and dry matter production. Nanosilica fertigation promoted silicon uptake, improving C:N:P homeostasis and nutritional efficiency in plants under P deficiency and toxicity. Leaf senescence was reduced with addition of Si in plants grown in Oxisol in the three nutritional states of P. Silicon attenuated the stress caused by P toxicity in Entisol and Oxisol, improving production in plants without nutritional stress in Oxisol. The supply of Si nanoparticles in the cultivation of M. maximus can contribute to a more efficient and sustainable use of phosphorus in pastures.
Collapse
Affiliation(s)
- Cíntia Cármen de Faria Melo
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil.
| | - Danilo Silva Amaral
- Department of Engineering and Exact Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Anderson de Moura Zanine
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 Km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Daniele de Jesus Ferreira
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 Km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo (USP), 303 Centenário Avenue, Piracicaba, SP, 13400970, Brazil
| |
Collapse
|
12
|
Mulaudzi T, Sias G, Nkuna M, Ndou N, Hendricks K, Ikebudu V, Koo AJ, Ajayi RF, Iwuoha E. Seed Priming with MeJa Prevents Salt-Induced Growth Inhibition and Oxidative Damage in Sorghum bicolor by Inducing the Expression of Jasmonic Acid Biosynthesis Genes. Int J Mol Sci 2023; 24:10368. [PMID: 37373514 DOI: 10.3390/ijms241210368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop "Sorghum bicolor" remains elusive. To investigate this, S. bicolor seeds primed with methyl jasmonate (0; 10 and 15 μM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of H2O2 production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na+/K+ ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; linoleate 92-lipoxygenase 3, allene oxide synthase 1, allene oxide cyclase, and 12-oxophytodienoate reductase 1. In MeJa-primed plants, their expression was reduced, except for the 12-oxophytodienoate reductase 1 transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to S. bicolor through osmoregulation and synthesis of JA-related metabolites.
Collapse
Affiliation(s)
- Takalani Mulaudzi
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Gershwin Sias
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mulisa Nkuna
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Nzumbululo Ndou
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Kaylin Hendricks
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vivian Ikebudu
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rachel F Ajayi
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
13
|
Whalen NS, Hunt TC, Erickson GM. Evapotranspiration-linked silica deposition in a basal tracheophyte plant (Lycopodiaceae: Lycopodiella alopecuroides): implications for the evolutionary origins of phytoliths. THE NEW PHYTOLOGIST 2023; 238:2224-2235. [PMID: 36869439 DOI: 10.1111/nph.18861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
Phytoliths, microscopic deposits of hydrated silica within plants, play a myriad of functional roles in extant tracheophytes - yet their evolutionary origins and the original selective pressures leading to their deposition remain poorly understood. To gain new insights into the ancestral condition of tracheophyte phytolith production and function, phytolith content was intensively assayed in a basal, morphologically conserved tracheophyte: the foxtail clubmoss Lycopodiella alopecuroides. Wet ashing was employed to perform phytolith extractions from every major anatomical region of L. alopecuroides. Phytolith occurrence was recorded, alongside abundance, morphometric information, and morphological descriptions. Phytoliths were recovered exclusively from the microphylls, which were apicodistally silicified into multiphytolith aggregates. Phytolith aggregates were larger and more numerous in anatomical regions engaging in greater evapotranspirational activity. The tissue distribution of L. alopecuroides phytoliths is inconsistent with the expectations of proposed adaptive hypotheses of phytolith evolutionary origin. Instead, it is hypothesized that phytoliths may have arisen incidentally in the L. alopecuroides-like ancestral plant, polymerizing from intraplant silicon accumulations arising via bulk flow and 'leaky' cellular micronutrient channels. This basal, nonadaptive phytolith formation model would provide the evolutionary 'raw material' for later modification into the useful, adaptative, phytolith deposits seen in later-diverging plant clades.
Collapse
Affiliation(s)
- Niall S Whalen
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Tyler C Hunt
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Gregory M Erickson
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| |
Collapse
|
14
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan/silica: A hybrid formulation to mitigate phytopathogens. Int J Biol Macromol 2023; 239:124192. [PMID: 36996949 DOI: 10.1016/j.ijbiomac.2023.124192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Long-term and indiscriminate use of synthetic pesticides to mitigate plant pathogens have created serious issues of water health, soil contamination, non-target organisms, resistant species, and unpredictable environmental and human health hazards. These constraints have forced scientists to develop alternative plant disease management strategies to reduce synthetic chemical' dependency. During the last 20 years, biological agents and resistance elicitors have been the most important used alternatives. Silica-based materials/chitosan with a dual mode of action have been proposed as promising alternatives to prevent plant diseases through direct and indirect mechanisms. Moreover, the combined application of nano-silica and chitosan, due to their controllable morphology, high loading capacity, low toxicity, and efficient encapsulation, act as suitable carriers for biological agents, pesticides, and essential oils, making them proper candidates for mitigation of phytopathogens. Based on this potential, this literature study reviewed the silica and chitosan properties and their function in the plant. It also assessed their role in the fighting against soil and aerial phytopathogens, directly and indirectly, as novel hybrid formulations in future managing platforms.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
15
|
Herburger K, Głazowska S, Mravec J. Bricks out of the wall: polysaccharide extramural functions. TRENDS IN PLANT SCIENCE 2022; 27:1231-1241. [PMID: 35989161 DOI: 10.1016/j.tplants.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Plant polysaccharides are components of plant cell walls and/or store energy. However, this oversimplified classification neglects the fact that some cell wall polysaccharides and glycoproteins can localize outside the relatively sharp boundaries of the apoplastic moiety, where they adopt functions not directly related to the cell wall. Such polysaccharide multifunctionality (or 'moonlighting') is overlooked in current research, and in most cases the underlying mechanisms that give rise to unconventional ex muro trafficking, targeting, and functions of polysaccharides and glycoproteins remain elusive. This review highlights major examples of the extramural occurrence of various glycan cell wall components, discusses the possible significance and implications of these phenomena for plant physiology, and lists exciting open questions to be addressed by future research.
Collapse
Affiliation(s)
- Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
16
|
Merdy P, Meunier JD, Ziarelli F, Lucas Y. Evidence of humic acid-aluminium‑silicon complexes under controlled conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154601. [PMID: 35307449 DOI: 10.1016/j.scitotenv.2022.154601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The chemistry of silicon (Si), the second most abundant element in soil after oxygen, is not yet fully understood in the soil-water-plant continuum. Although Si is widely accepted as an element that has little or no interaction with natural organic matter, some data seems to show the opposite. To identify a potential interaction between natural organic matter and Si, batch experiments were achieved at various pH and Si concentrations, involving also Al3+ as a common ion in soil and using humic acid (HA) as a typical model for natural organic matter. Several complementary techniques were used to characterize the possible complexes formed in the dissolved or solid phases: molecular fluorescence spectroscopy, 29Si solid-state NMR, Fourier transform infrared spectroscopy, quantification of Si, Al and organic carbon, and nanoparticle size distribution. These tools revealed that humic acid indeed interacts, but weakly, with Si alone. In the presence of Al, however, a ternary complex HA-Al-Si forms, likely with Al as the bridging atom. The presence of Si promotes the maintenance of both Al and dissolved organic matter (DOM) in solution, which is likely to modify the result or the kinetics of pedogenesis. Such complexes can also play a role in the control of Al toxicity towards plants and probably also exists with other metals, such as Fe or Mn, and other metalloids such as As.
Collapse
Affiliation(s)
- Patricia Merdy
- Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, 83041 Toulon CEDEX 9, France.
| | | | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, FR1739, 13013 Marseille, France
| | - Yves Lucas
- Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, 83041 Toulon CEDEX 9, France
| |
Collapse
|
17
|
Kovács S, Kutasy E, Csajbók J. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1223. [PMID: 35567224 PMCID: PMC9104186 DOI: 10.3390/plants11091223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research.
Collapse
|
18
|
Understanding the Relationship between Water Availability and Biosilica Accumulation in Selected C4 Crop Leaves: An Experimental Approach. PLANTS 2022; 11:plants11081019. [PMID: 35448747 PMCID: PMC9031050 DOI: 10.3390/plants11081019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Biosilica accumulation in plant tissues is related to the transpiration stream, which in turn depends on water availability. Nevertheless, the debate on whether genetically and environmentally controlled mechanisms of biosilica deposition are directly connected to water availability is still open. We aim at clarifying the system which leads to the deposition of biosilica in Sorghum bicolor, Pennisetum glaucum, and Eleusine coracana, expanding our understanding of the physiological role of silicon in crops well-adapted to arid environments, and simultaneously advancing the research in archaeological and paleoenvironmental studies. We cultivated ten traditional landraces for each crop in lysimeters, simulating irrigated and rain-fed scenarios in arid contexts. The percentage of biosilica accumulated in leaves indicates that both well-watered millet species deposited more biosilica than the water-stressed ones. By contrast, sorghum accumulated more biosilica with respect to the other two species, and biosilica accumulation was independent of the water regime. The water treatment alone did not explain either the variability of the assemblage or the differences in the biosilica accumulation. Hence, we hypothesize that genetics influence the variability substantially. These results demonstrate that biosilica accumulation differs among and within C4 species and that water availability is not the only driver in this process.
Collapse
|
19
|
Liu L, Song Z, Li Q, Ellam RM, Tang J, Wang Y, Sarkar B, Wang H. Accumulation and partitioning of toxic trace metal(loid)s in phytoliths of wheat grown in a multi-element contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118645. [PMID: 34883150 DOI: 10.1016/j.envpol.2021.118645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Cropland contamination by toxic trace metal (loid)s (TTMs) has attracted increasing attention due to the serious consequential threat to crop quality and human health. Mitigation of plant TTM stress by silica amendment has been proposed recently. However, the relationship between the siliceous structure of phytoliths and TTMs in plants, and the environmental implications of phytolith-occluded trace metal (loid)s (PhytTMs) remain unclear. This study assessed the accumulation of five metal (loid)s, including lead (Pb), zinc (Zn), cadmium (Cd), copper (Cu) and arsenic (As), in the organic tissues and phytoliths of wheat grown in a mixed-TTM contaminated soil under both lightly and heavily contaminated conditions. The results show that the concentrations of plant TTMs and PhytTMs were significantly (p < 0.05) positively correlated, and higher in heavily contaminated wheats than those in lightly contaminated ones. The bio-enrichment factors between phytoliths and organic tissues were higher for As (1.83), Pb (0.27) and Zn (0.30) than for Cd (0.03) and Cu (0.14), implying that As, Pb and Zn were more readily co-precipitated with silicon (Si) in phytolith structures than Cd and Cu. Network analysis of the relationship between soil and plant elements with PhytTMs showed that severe contamination could impact the homeostasis of elements in plants by altering the translocation of TTMs between soils, plants, and phytoliths. The accumulation of TTMs in phytoliths was affected by the capacity of Si deposition in tissues and chelation of TTMs with silica, which could impact the role of PhytTMs in global biogeochemical TTM cycles.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Rob M Ellam
- Scottish Universities Environmental Research Centre, East Kilbride, G750QF, Scotland, United Kingdom
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
20
|
Davamani V, Sangeetha Piriya R, Rakesh SS, Parameswari E, Paul Sebastian S, Kalaiselvi P, Maheswari M, Santhi R. Phytolith-Occluded Carbon Sequestration Potential of Oil Palm Plantation in Tamil Nadu. ACS OMEGA 2022; 7:2809-2820. [PMID: 35097277 PMCID: PMC8792923 DOI: 10.1021/acsomega.1c05592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Oil palm (Elaeis guineensis) has proven to be a phytolith-occluded carbon (PhytOC)-rich species that plays a vital role in acting as a carbon sink for reducing atmospheric carbon dioxide (CO2) concentration. The present research estimated the silicon, phytolith, and PhytOC contents in four (OP4), eight (OP8), and fifteen (OP15)-year-old oil palm plantations. Qualitative analysis using a scanning electron microscope (SEM) revealed the presence of abundant globular echinate phytoliths with varied diameter (8.484-10.18 μm) in fronds, empty fruit bunches, and roots. Furthermore, a wide band (400-490 cm-1) underlined a higher relative abundance of Si-OH groups in empty fruit bunches, fronds, and roots, which emphasized the amorphous nature of silica. Quantitative analysis revealed that the phytolith (phytolith/dry biomass), PhytOC (PhytOC/phytolith), and PhytOC (PhytOC/dry biomass) contents in all oil palms differed significantly (p < 0.05) and increased with age. The PhytOC stock showed significant variation, with the trend of OP15 > OP8 > OP4. The belowground biomass of OP4 (16.43 g kg-1) and OP8 (17.13 g kg-1) had a maximum PhytOC concentration compared to the aboveground biomass, and the belowground proportion varied from 20.62 to 20.65%. The study demonstrated a positive correlation between the phytolith and PhytOC contents of oil palm; thereby, oil palm should be cultivated for enhanced long-term sequestration as a phytolith accumulator.
Collapse
Affiliation(s)
- Veeraswamy Davamani
- Department
of Environmental Sciences, Tamil Nadu Agricultural
University, Coimbatore 641 003, Tamil Nadu, India
| | - Ramasamy Sangeetha Piriya
- Department
of Environmental Sciences, Tamil Nadu Agricultural
University, Coimbatore 641 003, Tamil Nadu, India
| | | | - Ettiyagounder Parameswari
- Department
of Environmental Sciences, Tamil Nadu Agricultural
University, Coimbatore 641 003, Tamil Nadu, India
| | | | - Periasamy Kalaiselvi
- Horticultural
College and Research Institute, Tamil Nadu
Agricultural University, Periyakulam 625 604, Tamil Nadu, India
| | - Muthunalliappan Maheswari
- Department
of Environmental Sciences, Tamil Nadu Agricultural
University, Coimbatore 641 003, Tamil Nadu, India
| | - Rangasamy Santhi
- Department
of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| |
Collapse
|
21
|
Mondragón M, Elizalde LE, Rejón V. Biominerals in the leaves of Agave karwinskii Zucc. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Ensikat HJ, Weigend M. Distribution of Biominerals and Mineral-Organic Composites in Plant Trichomes. Front Bioeng Biotechnol 2021; 9:763690. [PMID: 34869274 PMCID: PMC8640136 DOI: 10.3389/fbioe.2021.763690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Biomineralization is a common phenomenon in plants and has been shown to be chemically, functionally and topologically diverse. Silica and calcium carbonate have long been known as structural plant biominerals and calcium phosphate (apatite)–long known from animals–has recently been reported. Strikingly, up to three different biominerals may occur in a single trichome in, e.g., Urticaceae and Loasaceae, and in combination with organic compounds, can form organic/inorganic composite materials. This article presents an extension of previous studies on the distribution of these biominerals in Loasaceae trichomes with a focus on their spatial (three-dimensional) distribution and co-localization with organic substances. Light microscopy and scanning electron microscopy with high-resolution EDX element analyses of sample surfaces and sections illustrate the differential distribution and composition of the different biomineral phases across cell surfaces and cell walls. Raman spectroscopy additionally permits the identification of organic and inorganic compounds side by side. All three biominerals may be found in a nearly pure inorganic phase, e.g., on the plant surfaces and in the barbs of the glochidiate trichomes, or in combination with a larger proportion of organic compounds (cellulose, pectin). The cell lumen may be additionally filled with amorphous mineral deposits. Water-solubility of the mineral fractions differs considerably. Plant trichomes provide an exciting model system for biomineralization and enable the in-vivo study of the formation of complex composite materials with different biomineral and organic compounds involved.
Collapse
|
23
|
Wang D, Hou L, Zhang L, Liu P. The mechanisms of silicon on maintaining water balance under water deficit stress. PHYSIOLOGIA PLANTARUM 2021; 173:1253-1262. [PMID: 34389991 DOI: 10.1111/ppl.13520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Water deficit stress severely threatens crop yield and numerous reports have shown silicon could enhance plants resistance to water deficit. One of the most important mechanisms is that silicon maintains the water balance. In this review, we summarized advanced research to elucidate the effect of silicon on plant water transport processes, including leaf water loss, vessel water transport, and root water uptake. In leaves, the deposition of silica phytolith on cuticle and stomata decreases transpirational water loss under water deficit stress. However, accumulating evidence suggest that silicon maintaining leaf water content is not through reducing water loss, but through osmotic adjustments, enhancing water transport and uptake. Enhancement of stem water transport efficiency by silicon is due to silica phytolith depositing in the cell wall of vessel tubes and pits, which support it avoiding to collapse and embolism, respectively. The improvement of root water uptake capacity by silicon acts as a key role in maintaining water balance. The underlying mechanisms include (i) enlargement of the root water uptake area, (ii) improvement of the water driving force, (iii) the prevention of water loss from root to soil, and (iv) the up-regulation of aquaporin activity. This review provides three simple models to understand the mechanism of silicon on water balance and highlights the future research area.
Collapse
Affiliation(s)
- Dan Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
24
|
Luyckx M, Hausman JF, Sergeant K, Guerriero G, Lutts S. Molecular and Biochemical Insights Into Early Responses of Hemp to Cd and Zn Exposure and the Potential Effect of Si on Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:711853. [PMID: 34539703 PMCID: PMC8446647 DOI: 10.3389/fpls.2021.711853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
With the intensification of human activities, plants are more frequently exposed to heavy metals (HM). Zinc (Zn) and cadmium (Cd) are frequently and simultaneously found in contaminated soils, including agronomic soils contaminated by the atmospheric fallout near smelters. The fiber crop Cannabis sativa L. is a suitable alternative to food crops for crop cultivation on these soils. In this study, Cd (20 μM) and Zn (100 μM) were shown to induce comparable growth inhibition in C. sativa. To devise agricultural strategies aimed at improving crop yield, the effect of silicon (Si; 2 mM) on the stress tolerance of plants was considered. Targeted gene expression and proteomic analysis were performed on leaves and roots after 1 week of treatment. Both Cd- and Zn-stimulated genes involved in proline biosynthesis [pyrroline-5-carboxylate reductase (P5CR)] and phenylpropanoid pathway [phenylalanine ammonia-lyase (PAL)] but Cd also specifically increased the expression of PCS1-1 involved in phytochelatin (PC) synthesis. Si exposure influences the expression of numerous genes in a contrasting way in Cd- and Zn-exposed plants. At the leaf level, the accumulation of 122 proteins was affected by Cd, whereas 47 proteins were affected by Zn: only 16 proteins were affected by both Cd and Zn. The number of proteins affected due to Si exposure (27) alone was by far lower, and 12 were not modified by heavy metal treatment while no common protein seemed to be modified by both CdSi and ZnSi treatment. It is concluded that Cd and Zn had a clear different impact on plant metabolism and that Si confers a specific physiological status to stressed plants, with quite distinct impacts on hemp proteome depending on the considered heavy metal.
Collapse
Affiliation(s)
- Marie Luyckx
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
25
|
Basu S, Kumar G. Exploring the significant contribution of silicon in regulation of cellular redox homeostasis for conferring stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:393-404. [PMID: 34153883 DOI: 10.1016/j.plaphy.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si), a bioactive metalloid is beneficial for plant growth and development. It also plays a key role in the amelioration of different abiotic and biotic stresses. Extensive studies have elucidated the morpho-physiological, biochemical and molecular background of Si-mediated stress tolerance in plants. However, the mechanism acquired by Si to enhance stress tolerance in plants is still unheeded. Present review summarized the prospective mechanisms of Si in acquisition of stress tolerance with emphasis on its interactions with secondary messengers. Silicon usually modulates the different gene expressions in plants under stress conditions rather than acting as a direct signal or secondary messengers. Silicon regulates the production and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants under stress conditions. Furthermore, Si also activates the antioxidant defence system in plants; thereby, maintaining the cellular redox homeostasis and preventing the oxidative damage of cells. Silicon also up-regulates the synthesis of hydrogen sulfide (H2S) or acts synergistically with nitric oxide (NO), consequently conferring stress tolerance in plants. Overall, the review may provide a progressive understanding of the role of Si in conservation of the redox homeostasis in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
26
|
Quantification of Silicon in Rice Based on an Electrochemical Sensor via an Amplified Electrocatalytic Strategy. MICROMACHINES 2021; 12:mi12091048. [PMID: 34577693 PMCID: PMC8469415 DOI: 10.3390/mi12091048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Silicon plays a very important role in the growth of rice. The study of the relationship between rice and silicon has become a hot area in the last decade. Currently, the silica-molybdenum blue spectrophotometric method is mostly used for the determination of silicon content in rice. However, the results of this method vary greatly due to the different choices of reducing agents, measurement wavelengths and color development times. In this work, we present for the first time an electrochemical sensor for the detection of silicon content in rice. This electrochemical analysis technique not only provides an alternative detection strategy, but also, due to the rapid detection by electrochemical methods and the miniaturization of the instrument, it is suitable for field testing. Methodological construction using electrochemical techniques is a key objective. The silicon in rice was extracted by HF and becomes silica after pH adjustment. The silica was then immobilized onto the glassy carbon surface. These silica nanoparticles provided additional specific surface area for adsorption of sodium borohydride and Ag ions, which in turn formed Ag nanoparticles to fabricate an electrochemical sensor. The proposed electrochemical sensor can be used for indirect measurements of 10-400 mg/L of SiO2, and thus, the method can measure 4.67-186.8 mg/g of silicon. The electrochemical sensor can be used to be comparable with the conventional silicon-molybdenum blue spectrophotometric method. The RSD of the current value was only 3.4% for five sensors. In practical use, 200 samples of glume, leaf, leaf sheath and culm were tested. The results showed that glume had the highest silicon content and culm had the lowest silicon content. The linear correlation coefficients for glume, leaf, leaf sheath and culm were 0.9841, 0.9907, 0.9894 and 0.993, respectively.
Collapse
|
27
|
Haghighi TM, Saharkhiz MJ. Phytotoxic potential of Vitex pseudo-negundo leaf and flower extracts and analysis of phenolic compounds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Ranjan A, Sinha R, Bala M, Pareek A, Singla-Pareek SL, Singh AK. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:15-25. [PMID: 33799014 DOI: 10.1016/j.plaphy.2021.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/16/2021] [Indexed: 05/21/2023]
Abstract
Silicon (Si) is a beneficial macronutrient for plants. The Si supplementation to growth media mitigates abiotic and biotic stresses by regulating several physiological, biochemical and molecular mechanisms. The uptake of Si from the soil by root cells and subsequent transport are facilitated by Lsi1 (Low silicon1) belonging to nodulin 26-like major intrinsic protein (NIP) subfamily of aquaporin protein family, and Lsi2 (Low silicon 2) belonging to putative anion transporters, respectively. The soluble Si in the cytosol enhances the production of jasmonic acid, enzymatic and non-enzymatic antioxidants, secondary metabolites and induces expression of genes in plants under stress conditions. Silicon has been found beneficial in conferring tolerance against biotic and abiotic stresses by scavenging the reactive oxygen species (ROS) and regulation of different metabolic pathways. In the present review, Si transporters identified in various plant species and mechanisms of Si-mediated abiotic and biotic stress tolerance have been presented. In addition, role of Si in regulating gene expression under various abiotic and biotic stresses as revealed by transcriptome level studies has been discussed. This provides a deeper understanding of various mechanisms of Si-mediated stress tolerance in plants and may help in devising strategies for stress resilient agriculture.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010, India
| | - Meenu Bala
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010, India.
| |
Collapse
|
29
|
Qiu S, Zhai S, Gao H, Mi H. Dynamics of biogenic silica accumulation and ecological characteristics in single-species communities and ecotones in Min River estuary, China. CHEMOSPHERE 2021; 270:128645. [PMID: 33121812 DOI: 10.1016/j.chemosphere.2020.128645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The role of silicon in plant resistance to biotic and abiotic stresses is clear; however, its role in interspecific interactions is not well understood. Biogenic silica (BSi) accumulation and ecological characteristics in single-species communities (Phragmites australis, Cyperus malaccensis, and Spartina alterniflora) and ecotones (P. australis-C. malaccensis and C. malaccensis-S. alterniflora) of Shanyutan marsh, China, were monitored from January to December in 2016. The BSi content of the three plant species decreased at the end of winter and beginning of spring, and continued to increase after March. In ecotones, the density of P. australis, the lengths of C. malaccensis and S. alterniflora, and the BSi content of C. malaccensis were greater than those in single-species communities. However, in single-species communities, the densities of C. malaccensis and S. alterniflora, the length of P. australis, the biomass and BSi stocks of the three species, and the BSi content of P. australis and S. alterniflora were greater than those in the ecotones. The three species may apply different strategies to compete for resources during interactive growth. Phragmites australis may improve its competitive ability by increasing vegetation density, aboveground biomass, and Si allocation to the leaves and withered body. Spartina alterniflora appears to enhance root biomass accumulation and the Si uptake and allocation capacity of roots. Cyperus malaccensis appears to allocate greater biomass and BSi to aboveground organs, as well as improve the absorption capacity of roots to resist competition pressure from P. australis. Cyperus malaccensis mixed with S. alterniflora increased its belowground biomass and BSi stocks. These results help clarify the mechanisms and processes of Si translocation during mixed plant growth, and increase our understanding of the strategies involved in plant competition.
Collapse
Affiliation(s)
- Siting Qiu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou, 350007, PR China
| | - Shuijing Zhai
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou, 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Hui Gao
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou, 350007, PR China
| | - Huishan Mi
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou, 350007, PR China
| |
Collapse
|
30
|
Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R. Significance of silicon uptake, transport, and deposition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6703-6718. [PMID: 32592476 DOI: 10.1093/jxb/eraa301] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/20/2020] [Indexed: 05/28/2023]
Abstract
Numerous studies have shown the beneficial effects of silicon (Si) for plant growth, particularly under stress conditions, and hence a detailed understanding of the mechanisms of its uptake, subsequent transport, and accumulation in different tissues is important. Here, we provide a thorough review of our current knowledge of how plants benefit from Si supplementation. The molecular mechanisms involved in Si transport are discussed and we highlight gaps in our knowledge, particularly with regards to xylem unloading and transport into heavily silicified cells. Silicification of tissues such as sclerenchyma, fibers, storage tissues, the epidermis, and vascular tissues are described. Silicon deposition in different cell types, tissues, and intercellular spaces that affect morphological and physiological properties associated with enhanced plant resilience under various biotic and abiotic stresses are addressed in detail. Most Si-derived benefits are the result of interference in physiological processes, modulation of stress responses, and biochemical interactions. A better understanding of the versatile roles of Si in plants requires more detailed knowledge of the specific mechanisms involved in its deposition in different tissues, at different developmental stages, and under different environmental conditions.
Collapse
Affiliation(s)
- Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vandana Thakral
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Suhas Shinde
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV, USA
| | - Miroslav Nikolić
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Durgesh K Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, UP, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
31
|
Mathur P, Roy S. Nanosilica facilitates silica uptake, growth and stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:114-127. [PMID: 33099119 DOI: 10.1016/j.plaphy.2020.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Nanobiotechnology has gained considerable momentum in the field of plant sciences in the last few years. Nanomaterials of various metal oxides has been utilized for enhancing growth, productivity and in crop protection strategies. Among them, nanosilica has emerged as a key player in orchestrating plant growth and conferring tolerance to various abiotic and biotic stresses. Nanosilica has increased absorptivity that accounts for an increased uptake of silica, although the exact mechanism is not fully understood. Nanosilica uptake in the roots and leaves reduces the accumulation of reactive oxygen species (ROS) and membrane lipid peroxidation. It is known to restrict the entry of sodium ions and other heavy metals in plants. Concurrently, nanosilica deposition in the leaf tissue enhances the plant defense against pathogens. The present review attempts to provide a novel insight into its uptake mechanism and nanosilica mediated abiotic and biotic stress tolerance in plants. This review will also shed light on the prospects and challenges related to application of nanosilica based fertilizers.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
32
|
Nawaz MA, Azeem F, Zakharenko AM, Lin X, Atif RM, Baloch FS, Chan TF, Chung G, Ham J, Sun S, Golokhvast KS. In-silico Exploration of Channel Type and Efflux Silicon Transporters and Silicification Proteins in 80 Sequenced Viridiplantae Genomes. PLANTS 2020; 9:plants9111612. [PMID: 33233677 PMCID: PMC7709012 DOI: 10.3390/plants9111612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Silicon (Si) accumulation protects plants from biotic and abiotic stresses. It is transported and distributed within the plant body through a cooperative system of channel type (e.g., OsLsi1) and efflux (Lsi2s e.g., OsLsi2) Si transporters (SITs) that belong to Noduline-26 like intrinsic protein family of aquaporins and an uncharacterized anion transporter family, respectively. Si is deposited in plant tissues as phytoliths and the process is known as biosilicification but the knowledge about the proteins involved in this process is limited. In the present study, we explored channel type SITs and Lsi2s, and siliplant1 protein (Slp1) in 80 green plant species. We found 80 channel type SITs and 133 Lsi2s. The channel type SITs characterized by the presence of two NPA motifs, GSGR or STAR selectivity filter, and 108 amino acids between two NPA motifs were absent from Chlorophytes, while Streptophytes evolved two different types of channel type SITs with different selectivity filters. Both channel type SITs and Lsi2s evolved two types of gene structures each, however, Lsi2s are ancient and were also found in Chlorophyta. Homologs of Slp1 (225) were present in almost all Streptophytes regardless of their Si accumulation capacity. In Si accumulator plant species, the Slp1s were characterized by the presence of H, D-rich domain, P, K, E-rich domain, and P, T, Y-rich domain, while moderate Si accumulators lacked H, D-rich domain and P, T, Y-rich domains. The digital expression analysis and coexpression networks highlighted the role of channel type and Lsi2s, and how Slp1 homologs were ameliorating plants’ ability to withstand different stresses by co-expressing with genes related to structural integrity and signaling. Together, the in-silico exploration made in this study increases our knowledge of the process of biosilicification in plants.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Laboratory of Bio-Economics and Biotechnology, Department of Bio-Economics and Food Safety, School of Economics and Management, Far Eastern Federal University, 690950 Vladivostok, Russia;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | | | - Xiao Lin
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Rana Muhammad Atif
- US-Pakistan Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Turkey;
| | - Ting-Fung Chan
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
| | - Junghee Ham
- Department of Health Policy and Management, Wonkwang University, Iksan, Jeonbuk 54538, Korea;
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
- Correspondence: (S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42, 44 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia;
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia
- Pacific Geographical Institute, FEB RAS, 7 Radio street, 690014 Vladivostok, Russia
- Correspondence: (S.S.); (K.S.G.)
| |
Collapse
|
33
|
Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HYH. Silicon-mediated plant defense against pathogens and insect pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104641. [PMID: 32711774 DOI: 10.1016/j.pestbp.2020.104641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Farghama Khalil
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
34
|
Abstract
A biomineral is a crystalline or amorphous mineral product of the biochemical activity of an organism and the local accumulation of elements available in the environment. The cactus family has been characterized by accumulating calcium oxalates, although other biominerals have been detected. Five species of Cacteae were studied to find biominerals. For this, anatomical sections and Fourier transform infrared, field emission scanning electron microscopy and energy dispersive x-ray spectrometry analyses were used. In the studied regions of the five species, they presented prismatic or spherulite dihydrate calcium oxalate crystals, as the predominant biomineral. Anatomical sections of Astrophytum asterias showed prismatic crystals and Echinocactus texensis amorphous silica bodies in the hypodermis. New findings were for Ariocarpus retusus subsp. trigonus peaks assigned to calcium carbonate and for Mammillaria sphaerica peaks belonging to silicates.
Collapse
|
35
|
Huang C, Wang L, Gong X, Huang Z, Zhou M, Li J, Wu J, Chang SX, Jiang P. Silicon fertilizer and biochar effects on plant and soil PhytOC concentration and soil PhytOC stability and fractionation in subtropical bamboo plantations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136846. [PMID: 32040993 DOI: 10.1016/j.scitotenv.2020.136846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 05/29/2023]
Abstract
The use of exogenous silicon (Si) amendments, such as Si fertilizers and biochar, can effectively increase crop Si uptake and the formation of phytoliths, which are siliceous substances that are abundant in numerous plant species. Phytolith-occluded carbon (C) (PhytOC) accumulation in soil plays an important role in long-term soil organic C (SOC) storage. Nevertheless, the effects of both Si fertilizer and biochar application on PhytOC sequestration in forest plant-soil systems have not been studied. We investigated the impact of Si fertilizer and biochar applications on 1) the PhytOC pool size, the solubility of plant and soil phytoliths, and soil PhytOC in soil physical fractions (light (LFOM) and heavy fractions of organic matter (HFOM)) in Moso bamboo (Phyllostachys pubescens) forests; and 2) the relationships among plant and soil PhytOC concentrations and soil properties. We used a factorial design with three Si fertilizer application rates: 0 (S0), 225 (S1) and 450 (S2) kg Si ha-1, and two biochar application rates: 0 (B0) and 10 (B1) t ha-1. The concentrations of PhytOC in the bamboo plants and topsoil (0-10 cm) increased with increasing Si fertilizer addition, regardless of biochar application. Biochar addition increased the soil PhytOC pool size, as well as the LFOM- and HFOM-PhytOC fractions, regardless of Si fertilizer application. The Si fertilizer application increased or had no effect on soil phytolith solubility with or without biochar application, respectively. Soil PhytOC was correlated with the concentration of soil organic nitrogen (R2 = 0.32), SOC (R2 = 0.51), pH (R2 = 0.28), and available Si (R2 = 0.23). Furthermore, Si fertilizer application increased plant and soil PhytOC by increasing soil available Si. Moreover, biochar application increased soil PhytOC concentration in LFOM-PhytOC and the unstable fraction of PhytOC. We conclude that Si fertilizer and biochar application promoted PhytOC sequestration in the plant-soil system and changed its distribution in physical fractions in the Moso bamboo plantation in subtropical China.
Collapse
Affiliation(s)
- Chengpeng Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; School of Environmental and Resources Science, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; 442 Earth Sciences Building, Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| | - Li Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoqiang Gong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; 442 Earth Sciences Building, Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| | - Zhangting Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; School of Environmental and Resources Science, Zhejiang A&F University, Lin'an 311300, Zhejiang, China
| | - Miaorong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China
| | - Jiong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China
| | - Jiasen Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; School of Environmental and Resources Science, Zhejiang A&F University, Lin'an 311300, Zhejiang, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; 442 Earth Sciences Building, Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada.
| | - Peikun Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an 311300, Zhejiang, China; School of Environmental and Resources Science, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
| |
Collapse
|
36
|
Molecular and Functional Characterization of Grapevine NIPs through Heterologous Expression in aqy-Null Saccharomyces cerevisiae. Int J Mol Sci 2020; 21:ijms21020663. [PMID: 31963923 PMCID: PMC7013980 DOI: 10.3390/ijms21020663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022] Open
Abstract
Plant Nodulin 26-like Intrinsic Proteins (NIPs) are multifunctional membrane channels of the Major Intrinsic Protein (MIP) family. Unlike other homologs, they have low intrinsic water permeability. NIPs possess diverse substrate selectivity, ranging from water to glycerol and to other small solutes, depending on the group-specific amino acid composition at aromatic/Arg (ar/R) constriction. We cloned three NIPs (NIP1;1, NIP5;1, and NIP6;1) from grapevine (cv. Touriga Nacional). Their expression in the membrane of aqy-null Saccharomyces cerevisiae enabled their functional characterization for water and glycerol transport through stopped-flow spectroscopy. VvTnNIP1;1 demonstrated high water as well as glycerol permeability, whereas VvTnNIP6;1 was impermeable to water but presented high glycerol permeability. Their transport activities were declined by cytosolic acidification, implying that internal-pH can regulate NIPs gating. Furthermore, an extension of C-terminal in VvTnNIP6;1M homolog, led to improved channel activity, suggesting that NIPs gating is putatively regulated by C-terminal. Yeast growth assays in the presence of diverse substrates suggest that the transmembrane flux of metalloids (As, B, and Se) and the heavy metal (Cd) are facilitated through grapevine NIPs. This is the first molecular and functional characterization of grapevine NIPs, providing crucial insights into understanding their role for uptake and translocation of small solutes, and extrusion of toxic compounds in grapevine.
Collapse
|