1
|
Sharma A, Bharti PS. Transforming orthodontic retention: potential of 3D printing and biocompatible material characteristics. J Med Eng Technol 2025:1-26. [PMID: 39976311 DOI: 10.1080/03091902.2025.2466198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/12/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
This review article delves into the cutting-edge realm of 3D printing and its impact on the fabrication of customised orthodontic retainers, which is an essential utility in the prevention of relapse post orthodontic treatment. This review evaluates the use of biocompatible materials and provides insight into future perspectives and improvements in this field. It highlights the potential of data collecting method and 3D printing to improve orthodontic retainers' fabrication and emphasises the importance of using biocompatible materials for patient safety and efficacy. It also explains cytotoxic qualities of retainer fabrication materials, which are vital for safeguarding the oral health of the patient. The evaluation procedure enables the early diagnosis and correction of any potential difficulties, such as maladjustment or inappropriate fit, allowing for a more effective treatment. It illustrates the breakthroughs and innovations in the field of orthodontics, the advantages of 3D printing over conventional methods, as well as the advantages and disadvantages of various fabrication method. Incorporating 3D printing and review into the production of orthodontic retainers enhances the overall effectiveness and efficiency of patient treatment.
Collapse
Affiliation(s)
- Anmol Sharma
- USIC&T, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | | |
Collapse
|
2
|
Alfaraj A, Lin W. Color reproduction trueness of 3D-printed full-color dental casts with scans derived from an intraoral scanner. J Prosthodont 2025; 34:196-203. [PMID: 38112239 PMCID: PMC11795340 DOI: 10.1111/jopr.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/26/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023] Open
Abstract
PURPOSE To investigate the effects of shade tab color variations (tooth-colored vs. gingiva-colored) and surface treatment (application of mineral oil) on the trueness of color reproduction from dental shade tabs to 3D-printed full-color dental casts, using digital scans obtained from an intraoral scanner. MATERIALS AND METHODS Pristine tooth-colored (with 16 shade tabs) and gingiva-colored (with five shade tabs) shade guides were digitally scanned using an intraoral scanner, and subsequently, 3D-printed replicas were created using a full-color material jetting 3D printer. Three color measurements using a contact type digital spectrophotometer were recorded, including actual shade tabs (R0), dried 3D-printed study samples (RP1), and study samples with mineral oil application (RP2), in this study to calculate color differences between the actual shade tabs and 3D-printed ones. The CIEDE2000 formula was used to calculate the color differences (color reproduction trueness) between reference shade tabs and 3D-printed full-color study samples-without and with mineral oil, ∆E00(RP1), and ∆E00(RP2). ∆E00(RP1) and ∆E00(RP2) were compared with a 50:50% accessibility threshold (AT) and a 50:50% perceptibility threshold (PT). A grading system, based on the relative ranges of AT and PT, was employed. The percentage of samples falling into each color-matching category was then recorded. The data collected were subjected to statistical analysis, utilizing a mixed model ANOVA to evaluate the effects of shade tab color and mineral oil application on color differences, α = 0.05. RESULTS The application of mineral oil significantly affected the ∆E00 [F(1, 378) = 19.1, p = < 0.0001]. However, this effect was only significant for the gingiva-colored study samples; the mineral oil application significantly decreased color difference, showing ∆E00(RP1) of 8.71 ± 3.78 and ∆E00(RP2) of 6.55 ± 2.14 (p < 0.0001). For the tooth-colored groups, the mineral oil application did not yield any color difference, showing ∆E00(RP1) of 7.05 ± 2.35 and ∆E00(RP2) of 6.94 ± 2.35 (p = 0.497). In the absence of mineral oil, gingiva-colored samples revealed a significantly larger ∆E00(RP1) of 8.71 ± 3.78 compared to tooth-colored samples at 7.05 ± 2.35 (p = 0.017). Conversely, mineral oil application rendered comparable ∆E00(RP2) values between gingiva-colored (6.55 ± 2.14) and tooth-colored (6.94 ± 2.35) samples (p = 0.558). All 3D-printed full-color samples showed Grade 1 (extremely unacceptable mismatch) and Grade 2 (clearly unacceptable mismatch), regardless of the shades or the presence of mineral oil. CONCLUSIONS Utilizing an intraoral scanner to gather digital color data, along with an MJ 3D printer, offers the potential for producing 3D-printed full-color dental casts for prosthesis characterization in the dental laboratory. While mineral oil improves the color reproduction trueness of gingiva-colored objects, all 3D-printed full-color samples exhibited unacceptable mismatches when compared to their target objects. This underscores the need for future improvement in the digital color data acquisition process and color optimization protocols in 3D printing processes.
Collapse
Affiliation(s)
- Amal Alfaraj
- Department of ProsthodonticsIndiana University School of DentistryIndianapolisIndianaUSA
| | - Wei‐Shao Lin
- Department of ProsthodonticsIndiana University School of DentistryIndianapolisIndianaUSA
| |
Collapse
|
3
|
A AR, Saravanan M, Muthukumar B. Precision Beyond Limits: A Case Report of the Castable Resin Prosthesis. Cureus 2025; 17:e77165. [PMID: 39925546 PMCID: PMC11806204 DOI: 10.7759/cureus.77165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
This paper explores the application of castable resin in fabricating fixed partial dentures (FPDs), presenting a comprehensive companion to the fashion. Castable resin offers unknown perfection and customization, revolutionizing the field of prosthodontics. Despite its advantages, challenges like material selection and technological integration must be navigated. Future developments should improve the clinical mileage and case concerns of castable resin FPDs, effectively and perfectly altering the field of dental prostheses.
Collapse
Affiliation(s)
- Angel Rose A
- Prosthodontics, SRM Dental College, Chennai, IND
| | - M Saravanan
- Prosthodontics, SRM Dental College, Chennai, IND
| | - B Muthukumar
- Prosthodontics, SRM Dental College, Chennai, IND
| |
Collapse
|
4
|
Sennimalai K, Selvaraj M, Siddiqui HP, Monga N, Sameemullah KH. Exploring the potential applications of intraoral scanners in the treatment of cleft lip and palate deformity-A scoping review of literature. J World Fed Orthod 2024; 13:265-278. [PMID: 39079851 DOI: 10.1016/j.ejwf.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND In the realm of cleft lip and palate (CLP) care, the integration of intraoral scanners (IOS) may offer a promising avenue, enabling precise digital imaging, record-keeping, treatment planning and execution. This scoping review aimed to explore the current applications of IOS in CLP patients and discuss potential future directions for optimizing the utilization of IOS in cleft care. MATERIAL AND METHODS The review was registered apriori in the Open Science Framework (OSF) Registries (https://doi.org/10.17605/OSF.IO/KPD34). A systematic search was conducted across various databases like Ovid MEDLINE, PubMed, Cochrane Library, Embase, Web of Science, Scopus, Google Scholar, Grey literature, and Trial registries using a broad search strategy. The articles published in any language till December 20, 2023 were considered. Studies that demonstrated the application of intraoral scanning in nonsyndromic CLP patients were included. A validated sixteen-item content assessment tool was used to evaluate the included studies. Two independent reviewers performed data extraction and content assessment. RESULTS Fifteen research studies and thirteen case reports/series were included in the final analysis. Various applications included capturing intraoral and extraoral images, scanning orthodontic study models, assessing dental changes, monitoring treatment changes related to nasoalveolar molding therapy, and fabricating appliances. The content assessment showed below-average mean scores of 34.79 ± 9.37% for research studies and 39.7 ± 0.14% for case reports/series. This can be attributed to insufficient information on scanning parameters, methodology, accuracy, patient outcomes, limitations, and potential solutions. The reproducibility of landmark identification in IOS was within 0.2 mm. Patients and caregivers preferred digital impressions over traditional alginate methods, reporting positive experiences in 84.8% of cases. CONCLUSION Intraoral scanners offer good clinical accuracy and validity in assessing dentofacial and nasolabial morphology in cleft patients. Adopting IOS can streamline clinical workflows, enhance treatment accuracy, and improve patient outcomes in managing cleft lip and palate.
Collapse
Affiliation(s)
- Karthik Sennimalai
- Assistant Professor, Department of Orthodontics, All India Institute of Medical Sciences, Vijaypur, Jammu, Jammu and Kashmir, India
| | - Madhanraj Selvaraj
- Senior Resident, Division of Orthodontics and Dentofacial Orthopedics, Department of Dentistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - Hamza Parvez Siddiqui
- Former postgraduate student, College of Medical, Veterinary & Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Nitika Monga
- Scientist E, Division of Non-Communicable Diseases, Indian Council of Medical Research Headquarters, Ansari Nagar, New Delhi, India
| | - Kathijathul Hidhaya Sameemullah
- Senior Lecturer, Department of Orthodontics and Dentofacial Orthopedics, Sri Venkateshwaraa Dental College, Ariyur, Puducherry, India
| |
Collapse
|
5
|
Koaban A, Alotaibi SS, Abu Nakha KM, Bin Huraib S, Alhassan MH, Rubayan AR, Alzahir KZ, Alhamdan LA, Alshehri ZA, Hamza SM, Alqahtani BA. Orthodontic Space Management in Pediatric Dentistry: A Clinical Review. Cureus 2024; 16:e76026. [PMID: 39835004 PMCID: PMC11743602 DOI: 10.7759/cureus.76026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
The mixed dentition stage is a vital period characterized by significant physiological changes, including jaw growth, the development and eruption of permanent teeth, the exfoliation of primary teeth, and the maturation of surrounding soft tissues. These processes collectively ensure functional, esthetic, and stable occlusion. Disruptions during this stage, such as the premature loss of deciduous teeth, can lead to spacing or crowding issues and affect the dental arch length and the position of permanent teeth. To prevent or mitigate malocclusion, space maintainers and regainers are commonly used as part of space management strategies during the mixed dentition phase. This clinical review examines traditional and modern approaches to space management, highlighting the types of appliances used and their effectiveness. It emphasizes the importance of preserving primary teeth until their natural exfoliation, as they serve as the best natural space maintainers. In cases of premature tooth loss, removable or fixed space maintainers and regainers are effective tools to minimize malocclusion and ensure optimal dental outcomes.
Collapse
Affiliation(s)
- Abdullah Koaban
- Orthodontics and Dentofacial Orthopedics, Ministry of Health, First Health Cluster, Riyadh, SAU
| | | | | | | | | | | | | | | | | | - Solara M Hamza
- Dentistry, Khamis Mushait Specialized Dental Center, Khamis Mushait, SAU
| | | |
Collapse
|
6
|
Tang Z, Dai J, Yu A, Li P, Liu C, Shen X. 3D-printed zirconia orthodontic brackets: Effect of printing method on dimensional accuracy. Orthod Craniofac Res 2024; 27 Suppl 2:147-154. [PMID: 39169632 DOI: 10.1111/ocr.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES This study investigated the effect of additive manufacturing (AM) methods on the slot height dimensions and accuracy of 3D-printed orthodontic brackets. METHODS A 3D model of a standard Mclaughlin Bennett Trevisi bracket was used as a reference to print the ceramic bracket in a 90° orientation using two representative AM methods: digital light processing (DLP) and material jetting (MJ). The dimensional accuracy and slot heights were determined using a scanning electron microscope and an optical scanner. Also, all specimens were analysed using the Geomagic Control X 3D inspection software. The root mean square (RMS) values were used for trueness and precision assessment. Statistical analyses were performed using an independent sample t-test. RESULTS Slot height dimensions, trueness RMS, and precision RMS were statistically affected by different AM methods (p < .01). There was a significant difference between the different printing methods, with DLP meeting the tolerance requirements (mean slot height = 0.557 ± 0.018 mm) and MJ being slightly below them (mean slot height = 0.544 ± 0.021 mm). However, MJ significantly outperformed DLP in terms of accuracy. Among the two printing methods, MJ was associated with higher trueness (RMS = 0.025 ± 0.004 mm) and precision (RMS = 0.038 ± 0.005 mm). CONCLUSIONS Both tested AM methods yielded clinically acceptable outcomes, with the RMS range set to ±100 μm and the slot height tolerance established at 0.549-0.569 mm. The MJ technology achieved the highest accuracy.
Collapse
Affiliation(s)
- Zhi Tang
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Anlan Yu
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Li
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Shen
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Alamri H, Alshammari FR, Bin Rahmah A, Alsaif MI, Almutairi F, Alolaywi H, Altariqi A, Alotaibi S, Almutairi R, Almadhoon H, AlMoharib HS. Evaluating knowledge and awareness of 3D design and printing among dental students in Saudi Arabia: a cross-sectional study. FRONTIERS IN DENTAL MEDICINE 2024; 5:1466393. [PMID: 39917671 PMCID: PMC11797805 DOI: 10.3389/fdmed.2024.1466393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/08/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction As 3D design and printing technology gains popularity, there remains limited evidence on dental students' perceptions in Saudi Arabia regarding its use. This study aims to assess the knowledge and awareness of dental students in Saudi Arabia about 3D design and printing technology. Methods A cross-sectional questionnaire-based study was conducted among dental students in their third, fourth, and fifth years at multiple universities in Saudi Arabia between February and October 2023. A validated self-administered questionnaire with 15 close-ended items, including demographic and knowledge-related questions about 3D design and printing, was used. Statistical analysis was performed using Chi-square and Fisher exact tests to identify factors associated with knowledge and awareness levels. Results A total of 374 dental students participated in the study, with 63.1% being female students. Of the participants, 40.4% identified the cost of equipment as the primary barrier to 3D printing usage in dentistry in Saudi Arabia. The majority (94.4%) recognized the advantages of 3D models for implant placement. Awareness of 3D printing utilization in the field was reported by 69.3% of participants, and 74.3% acknowledged its increasing popularity. Furthermore, 73.8% of participants expressed confidence in the biocompatibility and safety of 3D printed materials. A significant percentage (64.0%) were aware of 3D printing's role in creating Invisalign aligners, and 42.4% believed in the value of 3D printed drill guides for root canal treatment. The study found statistically significant regional differences (p < 0.05) across all questions. Participants primarily relied on colleges (64.8%) as their source of information, and a high proportion (82.4%) expressed interest in further exploring the usage of 3D printing in dentistry. Conclusion Our study found that students' knowledge and awareness in Saudi Arabia are generally satisfactory. Integrating 3D printing into dental curricula and providing workshops is crucial to meet dental students' interest in exploring its usage and equipping them for its future implementation.
Collapse
Affiliation(s)
- Hamdan Alamri
- Community Dentistry and Oral Epidemiology Department, College of Dentistry, Qassim University, Buraydah, Saudi Arabia
| | - Falah R. Alshammari
- Dental Public Health and Community Dentistry, College of Dentistry, University of Ha’il, Ha’il, Saudi Arabia
| | - Abdullah Bin Rahmah
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed I. Alsaif
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Farah Almutairi
- College of Dentistry, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Hissah Alolaywi
- College of Dentistry, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Aroub Altariqi
- College of Dentistry, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sarah Alotaibi
- College of Dentistry, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Rahaf Almutairi
- College of Dentistry, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Hossam Almadhoon
- Faculty of Dentistry, Alazhar University—Gaza, Gaza Strip, Palestine
| | - Hani S. AlMoharib
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Sag OM, Li X, Åman B, Thor A, Brantnell A. Qualitative exploration of 3D printing in Swedish healthcare: perceived effects and barriers. BMC Health Serv Res 2024; 24:1455. [PMID: 39580425 PMCID: PMC11585134 DOI: 10.1186/s12913-024-11975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Three-dimensional (3D) printing produces objects by adding layers of material rather than mechanically reducing material. This production technology has several advantages and has been used in various medical fields to, for instance, improve the planning of complicated operations, customize medical devices, and enhance medical education. However, few existing studies focus on the adoption and the aspects that could influence or hinder the adoption of 3D printing. OBJECTIVE To describe the state of 3D printing in Sweden, explore the perceived effects of using 3D printing, and identify barriers to its adoption. METHODS A qualitative study with respondents from seven life science regions (i.e., healthcare regions with university hospitals) in Sweden. Semi-structured interviews were employed, involving 19 interviews, including one group interview. The respondents were key informants in terms of 3D printing adoption. Data collection occurred between April and May 2022 and then between February and May 2023. Thematic analysis was applied to identify patterns and themes. RESULTS All seven regions in Sweden used 3D printing, but none had an official adoption strategy. The most common applications were surgical planning and guides in clinical areas such as dentistry, orthopedics, and oral and maxillofacial surgery. Perceived effects of 3D printing included improved surgery, innovation, resource efficiency, and educational benefits. Barriers to adoption were categorized into organization, environment, and technology. Organizational barriers, such as high costs and lack of central decisions, were most prominent. Environmental barriers included a complex regulatory framework, uncertainty, and difficulty in interpreting regulations. Technological barriers were less frequent. CONCLUSIONS The study highlights the widespread use of 3D printing in Swedish healthcare, primarily in surgical planning. Perceived benefits included improved surgical precision, innovation, resource efficiency, and educational enhancements. Barriers, especially organizational and regulatory challenges, play a significant role in hindering widespread adoption. Policymakers need comprehensive guidance on 3D printing adoption, considering the expensive nature of technology investments. Future studies could explore adoption in specific clinical fields and investigate adoption in non-life science regions within and outside Sweden.
Collapse
Affiliation(s)
- Olivya Marben Sag
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Xiang Li
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden
| | - Beatrice Åman
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden
| | - Andreas Thor
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Anders Brantnell
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden.
- Department of Women's and Children's Health, Healthcare Sciences and E-Health, Uppsala University, MTC-Huset, Dag Hammarskjölds Väg 14B, 1 Tr, Uppsala, 752 37, Sweden.
| |
Collapse
|
9
|
Tichá D, Tomášik J, Oravcová Ľ, Thurzo A. Three-Dimensionally-Printed Polymer and Composite Materials for Dental Applications with Focus on Orthodontics. Polymers (Basel) 2024; 16:3151. [PMID: 39599241 PMCID: PMC11598508 DOI: 10.3390/polym16223151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Three-dimensional printing has transformed dentistry by enabling the production of customized dental restorations, aligners, surgical guides, and implants. A variety of polymers and composites are used, each with distinct properties. This review explores materials used in 3D printing for dental applications, focusing on trends identified through a literature search in PubMed, Scopus, and the Web of Science. The most studied areas include 3D-printed crowns, bridges, removable prostheses, surgical guides, and aligners. The development of new materials is still ongoing and also holds great promise in terms of environmentally friendly technologies. Modern manufacturing technologies have a promising future in all areas of dentistry: prosthetics, periodontology, dental and oral surgery, implantology, orthodontics, and regenerative dentistry. However, further studies are needed to safely introduce the latest materials, such as nanodiamond-reinforced PMMA, PLA reinforced with nanohydroxyapatite or magnesium, PLGA composites with tricalcium phosphate and magnesium, and PEEK reinforced with hydroxyapatite or titanium into clinical practice.
Collapse
Affiliation(s)
- Daniela Tichá
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, 81102 Bratislava, Slovakia; (J.T.); (Ľ.O.)
| | | | | | - Andrej Thurzo
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, 81102 Bratislava, Slovakia; (J.T.); (Ľ.O.)
| |
Collapse
|
10
|
Alattas MH. The Role of 3D Printing in Endodontic Treatment Planning: A Comprehensive Review. Eur J Dent 2024. [PMID: 39510527 DOI: 10.1055/s-0044-1791242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
This review aims to provide an overall picture of the three-dimensional (3D) printing contributions to endodontic practice in treatment planning and execution. The methodology entails a comprehensive literature review of the technological processes and 3D printing applications in the field. Some key findings show that 3D printing is highly effective in producing the right dental models for training, helps in complex surgeries, and supports the transition toward personalized therapies. The review reveals that 3D printing has many benefits but that the broader adoption of this technology faces issues, including high technical requirements, high costs, and the need for safety standards. The study concludes that although in the future some challenges need to be addressed, the potential of 3D printing in endodontics is enormous and this means that the treatment methods of dentistry could be more efficient and innovative.
Collapse
Affiliation(s)
- Mustafa Hussein Alattas
- Department of Conservative Dental Sciences and Endodontics, College of Dentistry, Qassim University, Mulaidaa, Buraydah, Saudia Arabia
| |
Collapse
|
11
|
Sharma A, Bharti PS. Optimization of Resin Printing Parameters for Improved Surface Roughness Using Metaheuristic Algorithms: A Multifaceted Approach. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE 2024. [DOI: 10.1007/s11665-024-10296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 01/03/2025]
|
12
|
Dias Gonçalves VP, Vieira CMF, Simonassi NT, Perissé Duarte Lopes F, Youssef G, Colorado HA. Evaluation of Mechanical Properties of ABS-like Resin for Stereolithography Versus ABS for Fused Deposition Modeling in Three-Dimensional Printing Applications for Odontology. Polymers (Basel) 2024; 16:2921. [PMID: 39458749 PMCID: PMC11511427 DOI: 10.3390/polym16202921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the differences in mechanical properties between acrylonitrile butadiene styrene (ABS) samples produced using fused deposition modeling (FDM) and stereolithography (SLA) using ABS filaments and ABS-like resin, respectively. The central question is to determine how these distinct printing techniques affect the properties of ABS and ABS-like resin and which method delivers superior performance for specific applications, particularly in dental treatments. The evaluation methods used in this study included Shore D hardness, accelerated aging, tensile testing, Izod impact testing, flexural resistance measured by a 3-point bending test, and compression testing. Poisson's ratio was also assessed, along with microstructure characterization, density measurement, confocal microscopy, dilatometry, wettability, Fourier-transform infrared spectroscopy (FTIR), and nanoindentation. It was concluded that ABS has the same hardness in both manufacturing methods; however, the FDM process results in significantly superior mechanical properties compared to SLA. Microscopy demonstrates a more accurate sample geometry when fabricated with SLA. It is also concluded that printable ABS is suitable for applications in dentistry to fabricate models and surgical guides using the SLA and FDM methods, as well as facial protectors for sports using the FDM method.
Collapse
Affiliation(s)
- Victor Paes Dias Gonçalves
- Advanced Materials Laboratory—LAMAV, State University of the Northern Rio de Janeiro—UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Carlos Maurício Fontes Vieira
- Advanced Materials Laboratory—LAMAV, State University of the Northern Rio de Janeiro—UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Noan Tonini Simonassi
- Advanced Materials Laboratory—LAMAV, State University of the Northern Rio de Janeiro—UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Felipe Perissé Duarte Lopes
- Advanced Materials Laboratory—LAMAV, State University of the Northern Rio de Janeiro—UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - George Youssef
- Experimental Mechanics Laboratory, Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Henry A. Colorado
- Advanced Materials Laboratory—LAMAV, State University of the Northern Rio de Janeiro—UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
- CCComposites Laboratory, Engineering School, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, CO 050010, USA
| |
Collapse
|
13
|
Hassanpour M, Narongdej P, Alterman N, Moghtadernejad S, Barjasteh E. Effects of Post-Processing Parameters on 3D-Printed Dental Appliances: A Review. Polymers (Basel) 2024; 16:2795. [PMID: 39408505 PMCID: PMC11479229 DOI: 10.3390/polym16192795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
In recent years, additive manufacturing (AM) has been recognized as a transformative force in the dental industry, with the ability to address escalating demand, expedite production timelines, and reduce labor-intensive processes. Despite the proliferation of three-dimensional printing technologies in dentistry, the absence of well-established post-processing protocols has posed formidable challenges. This comprehensive review paper underscores the critical importance of precision in post-processing techniques for ensuring the acquisition of vital properties, encompassing mechanical strength, biocompatibility, dimensional accuracy, durability, stability, and aesthetic refinement in 3D-printed dental devices. Given that digital light processing (DLP) is the predominant 3D printing technology in dentistry, the main post-processing techniques and effects discussed in this review primarily apply to DLP printing. The four sequential stages of post-processing support removal, washing, secondary polymerization, and surface treatments are systematically navigated, with each phase requiring meticulous evaluation and parameter determination to attain optimal outcomes. From the careful selection of support removal tools to the consideration of solvent choice, washing methodology, and post-curing parameters, this review provides a comprehensive guide for practitioners and researchers. Additionally, the customization of post-processing approaches to suit the distinct characteristics of different resin materials is highlighted. A comprehensive understanding of post-processing techniques is offered, setting the stage for informed decision-making and guiding future research endeavors in the realm of dental additive manufacturing.
Collapse
Affiliation(s)
- Mana Hassanpour
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA; (M.H.); (S.M.)
| | - Poom Narongdej
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA; (P.N.); (N.A.)
| | - Nicolas Alterman
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA; (P.N.); (N.A.)
| | - Sara Moghtadernejad
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA; (M.H.); (S.M.)
| | - Ehsan Barjasteh
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA; (M.H.); (S.M.)
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA; (P.N.); (N.A.)
| |
Collapse
|
14
|
Alyami MH. The Applications of 3D-Printing Technology in Prosthodontics: A Review of the Current Literature. Cureus 2024; 16:e68501. [PMID: 39364461 PMCID: PMC11447575 DOI: 10.7759/cureus.68501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Prosthodontics has become increasingly popular because of its cosmetic attractiveness. 3D printing has revolutionized prosthodontics, enabling the creation of high-quality dental prostheses. It creates detailed restorations, such as crowns, bridges, implant-supported frameworks, surgical templates, dentures, and orthodontic models. In addition, it saves production time but faces challenges such as elevated expenses and the requirement for innovative materials and technologies. This review gives insights into the uses of 3D printing in prosthodontics, presenting how it has significantly changed clinical practices. This article discusses different materials and techniques. Additionally, it showcases the capacity of 3D printing to improve prosthodontic practice and proposes prospects for future investigation.
Collapse
|
15
|
Li R, Albaghli A, Orgev A, Marrano J, Sadid-Zadeh R. Effect of thermal cycling on the flexure strength of CAD-CAM denture base materials: An in vitro study. J Prosthet Dent 2024; 132:645.e1-645.e7. [PMID: 39013679 DOI: 10.1016/j.prosdent.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
STATEMENT OF PROBLEM The impact of thermal cycling on the flexure strength of contemporary denture base materials remains inadequately understood despite its crucial role in determining the long-term performance of complete dentures. PURPOSE The purpose of this in vitro study was to evaluate the flexural strength of different CAD-CAM denture base materials and the effects of thermal cycling. MATERIAL AND METHODS A total of 120 rectangular specimens were fabricated from 6 denture base materials according to the International Organization for Standardization (ISO) 20795-1:2013 standard: a heat-compressed PMMA ([Lucitone 199 [C-L199]), 2 brands of milled material (Ivotion Base [M-IB] and Lucitone Digital Fit [M-LDF]), and 3 types of 3- dimensionally (3D) printed material (Lucitone Digital Print [P-LDP], Flexcera Base [P-FB], and FotoDent Dentures [P-FD]). Specimens were divided into 2 subgroups of 10; half underwent thermocycling, half did not. Thermally cycled specimens were immersed in distilled water at 37 °C for 2 days, followed by 5000 thermal cycles at 5 and 55 ºC, with a dwell time of 30 seconds. They were then subjected to a 3-point flexural strength test. Two-way ANOVA, followed by post hoc Tukey multiple comparison tests were used to assess the effect of material type and the thermal cycling process on the flexural strength of denture base materials (α=.05). RESULTS All materials met the ISO standard of 65 MPa flexural strength, except for thermal cycled P-FB. A significant difference (P<.05) in flexure strength value was found among various denture base materials without thermal cycling (M-LDF>M-IB≈P-FD≈P-LDP>C-L199≈ P-FB) and with thermal cycling (M-LDF> M-IB≈P-FD>P-LDP≈C-L199>P-FB). The flexural strength of tested materials was reduced significantly (P<.05) with thermal cycling. CONCLUSIONS Three-dimensionally printed denture base materials have a flexural strength value similar to or less than that of milled denture base materials. Thermal cycling impacts the flexural strength of denture base materials.
Collapse
Affiliation(s)
- Rui Li
- Assistant Professor, Restorative Dentistry Department, University at Buffalo School of Dental Medicine, Buffalo, NY
| | - Abdullah Albaghli
- Prosthodontics Resident, University at Buffalo School of Dental Medicine, Buffalo, NY
| | - Ahmet Orgev
- Clinical Associate Professor, Restorative Dentistry Department, University at Buffalo School of Dental Medicine, Buffalo, NY
| | | | - Ramtin Sadid-Zadeh
- Professor, Department of Restorative Sciences, University of Alabama at Birmingham, School of Dentistry, Birmingham, Ala.
| |
Collapse
|
16
|
Chander NG, Gopi A. Trends and future perspectives of 3D printing in prosthodontics. Med J Armed Forces India 2024; 80:399-403. [PMID: 39071750 PMCID: PMC11280134 DOI: 10.1016/j.mjafi.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 07/30/2024] Open
Abstract
The three-dimensional (3D) printing technology has led to transformative shift in prosthodontics. This review summarizes the evolution, processing techniques, materials, integration of digital plan, challenges, clinical applications and future directions of 3D printing in prosthodontics. It appraises from the launch of 3D printing to its current applications in prosthodontics. The convergence of printing technology with digital dentistry has facilitated the creation of accurate, customized prostheses, redefining treatment planning, design, and manufacturing processes. The progression of this technology is from generating models to prosthesis like-fixed dental prosthesis (FDP), implants, and splints. Additionally, it exhibits more wide capabilities. The exploration of materials for 3D printing provides various options like polymers, ceramics, metals, and hybrids, each with distinctive properties that are applicable to different clinical scenarios. The combination of 3D-printing technology and digital workflow simplifies the processes of data transfer, computer-aided design (CAD) design to fabrication, decreasing errors and chairside time. The clinical benefits include enhanced accuracy, comfort, conservative lab procedures, and economics. Challenges in the technology involve significant aspects like initial investment, material availability, and skill requirements. Future trends emphasize on research for improved materials, bioprinting integration, artificial intelligence (AI) application, regularization efforts to ensure safe and common use of the technology. 3D printing offers promise in prosthodontics, addressing challenges through research. The material improvements will promote its broader adoption and revolutionize the future of dental rehabilitation.
Collapse
Affiliation(s)
| | - Anup Gopi
- Associate Professor, Department of Dental Surgery & Instructor (Prosthodontics), Armed Forces Medical College, Pune, India
| |
Collapse
|
17
|
Klink A, Engelskirchen F, Kaucher-Fernandez P, Huettig F, Roehler A. Implementation of Patient-Individualized 3D-Printed Models in Undergraduate Students' Education for Various Prosthetic Treatments: A Cross-Sectional Survey Study. Dent J (Basel) 2024; 12:199. [PMID: 39056986 PMCID: PMC11276254 DOI: 10.3390/dj12070199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Due to rapid changes in dental practice, digital technologies have become prominent in undergraduate dental education at German universities in recent years. This shift has prompted a re-evaluation of content as well as teaching methods, particularly in courses where students are prepared for patient treatment. Traditional training on standardized models with resin teeth cannot cover the complexity of individual dental arch configuration encountered in patient situations. This study explores the use of 3D printing technology to create individualized models for prosthetic treatment simulations, aiming to evaluate students' feedback towards their experience with this training setting. METHODS First, the study describes the design and fabrication of individualized models with exchangeable teeth based on intraoral scans, mounted on connected plates with distance holders that can be fixed to standard phantom heads. Second, students provided feedback through a questionnaire, assessing various aspects such as the effectiveness of the 3D-printed models compared to traditional frasaco models for preparation exercises. RESULTS The results indicated that the design of the realized models was feasible for preparation training (question no. 4: 93% positive rating) and showed positive perceptions of the 3D-printed models, with students finding them effective for preparation exercises and beneficial in bridging the gap between simulation and real patient situations (question no. 6: 69% positive rating). CONCLUSIONS The study suggests that 3D printing technology offers a valuable tool in dental education, providing realistic and patient-specific scenarios for students to enhance their skills and readiness for clinical practice. Further improvements in material properties in hand with cost-effective approaches are essential for widespread implementation.
Collapse
Affiliation(s)
- Andrea Klink
- Department of Prosthodontics, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tuebingen, 72076 Tübingen, Germany; (F.E.); (F.H.)
| | - Fabian Engelskirchen
- Department of Prosthodontics, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tuebingen, 72076 Tübingen, Germany; (F.E.); (F.H.)
| | - Pablo Kaucher-Fernandez
- Department of Prosthodontics, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tuebingen, 72076 Tübingen, Germany; (F.E.); (F.H.)
| | - Fabian Huettig
- Department of Prosthodontics, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tuebingen, 72076 Tübingen, Germany; (F.E.); (F.H.)
| | - Ariadne Roehler
- Department of Medical Materials Science and Technology, Institute for Biomedical Engineering, University Hospital Tuebingen, 72076 Tübingen, Germany;
| |
Collapse
|
18
|
Yu X, Li J, Yu L, Wang Y, Gong Z, Pan J. A fully digital workflow for the design and manufacture of a class of metal orthodontic appliances. Heliyon 2024; 10:e32064. [PMID: 38867998 PMCID: PMC11168385 DOI: 10.1016/j.heliyon.2024.e32064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Background Traditional working procedures requires a lot of clinical processes and processing time. Methods The orthodontic metal appliances were made by applying oral scanners, digital images, computer-aided design and computer-aided manufacturing (CAD-CAM) printers. Results The computer digital technology simplified the manufacturing process for dental appliances and shorten the duration for clinical operation and technical processing. Conclusions The technique described in this paper can guarantee the accuracy of orthodontic appliances and bring revolution the field. Clinical significance The CAD-CAM technology provides a fully digital workflow for manufacturing metal orthodontic appliances, which saves a considerable amount of labor and material costs, and significantly reduces heavy metal pollution in the working environment of dental technicians.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthodontics Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 356 East Beijing Rd, Shanghai, 200001, China
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Jiaxin Li
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Liming Yu
- Department of Orthodontics Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 356 East Beijing Rd, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yuhui Wang
- Department of Orthodontics Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 356 East Beijing Rd, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Zhicheng Gong
- Department of Dental Laboratory Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Jie Pan
- Department of Orthodontics Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 356 East Beijing Rd, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Zheng X, Wang R, Thor A, Brantnell A. Oral and maxillofacial surgeons' views on the adoption of additive manufacturing: findings from a nationwide survey. Oral Maxillofac Surg 2024; 28:869-875. [PMID: 38316694 PMCID: PMC11144670 DOI: 10.1007/s10006-024-01219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES Hospitals in many European countries have implemented Additive Manufacturing (AM) technology for multiple Oral and Maxillofacial Surgery (OMFS) applications. Although the technology is widely implemented, surgeons also play a crucial role in whether a hospital will adopt the technology for surgical procedures. The study has two objectives: (1) to investigate how hospital type (university or non-university hospital) influences surgeons' views on AM, and (2) to explore how previous experience with AM (AM experience or not) influences surgeons' views on AM. MATERIALS AND METHODS An online questionnaire to capture surgeons' views was designed, consisting of 11 Likert scale questions formulated according to the Consolidated Framework for Implementation Research (CFIR). The questionnaire was sent to OMF surgeons through the channel provided by the Association of Oral and Maxillofacial Surgery in Sweden. Data were analyzed using the Mann-Whitney U test to identify significant differences among OMF surgeons in terms of organizational form (i.e., university hospital or non-university hospital) and experience of AM (i.e., AM experience or no-experience). RESULTS In total, 31 OMF surgeons responded to the survey. Views of surgeons from universities and non-universities, as well as between surgeons with experience and no-experience, did not show significant differences in the 11 questions captured across five CFIR domains. However, the "individual characteristics" domain in CFIR, consisting of three questions, did show significant differences between surgeons' experience with AM and no-experience (P-values: P = 0.01, P = 0.01, and P = 0.04). CONCLUSIONS Surgeons, whether affiliated with university hospitals or non-university hospitals and regardless of their prior experience with AM, generally exhibit a favorable attitude towards AM. However, there were significant differences in terms of individual characteristics between those who had prior experience with AM and those who did not. CLINICAL RELEVANCE This investigation facilitates the implementation of AM in OMFS by reporting on the views of OMF surgeons on AM.
Collapse
Affiliation(s)
- Xuewei Zheng
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Ruilin Wang
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Andreas Thor
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Brantnell
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden.
- Department of Women's and Children's Health, Healthcare Sciences and e-Health, Uppsala University, MTC-Huset, Dag Hammarskjölds väg 14B, 1 tr, 752 37, Uppsala, Sweden.
| |
Collapse
|
20
|
Cho SM, Young Kim RJ, Park JM, Chung HM, Kim DY. Trueness, physical properties, and surface characteristics of additive-manufactured zirconia crown. J Mech Behav Biomed Mater 2024; 154:106536. [PMID: 38579394 DOI: 10.1016/j.jmbbm.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE This study aimed to conduct a comparison of trueness and physical and surface properties among five distinct types of additive manufactured (AM) zirconia crowns and zirconia crowns produced using the subtractive manufacturing (SM). MATERIAL AND METHODS Zirconia crowns were fabricated using five distinct techniques, each varying in the method of slurry transfer and photocuring source. Each experimental group utilized either one of the four digital light processing (DLP)-based techniques (DLP spreading, DLP spreading gradation, DLP vat and DLP circular spreading) or the stereolithography (SLA)-based technique (SLA spreading). The control (CON) group employed SM. To assess accuracy, trueness was measured between the scan and reference data. To analyze the physical properties, voids were examined using high-energy spiral micro-computed tomography scans, and the crystal structure analysis was performed using X-ray diffraction (XRD). Surface roughness was assessed through laser scanning microscopy. RESULTS Differences in the trueness of internal surfaces of crowns were found among the groups (P < 0.05). Trueness varied across the measurement surfaces (occlusal, lateral, and marginal) in all the groups except for the DLP spreading gradation group (P < 0.05). Voids were observed in all AM groups. All groups showed similar XRD patterns. All AM groups showed significantly greater surface roughness compared to the CON group (P < 0.001). CONCLUSION The AM zirconia crowns showed bubbles and a rougher surface compared to the SM crowns. All groups exhibited typical zirconia traits and trueness levels within clinically acceptable limits, suggesting that current zirconia AM techniques could be suitable for dental applications.
Collapse
Affiliation(s)
- Su-Min Cho
- Dental Research Institute, Seoul National University School of Dentistry, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| | - Ryan Jin Young Kim
- Dental Research Institute, Seoul National University School of Dentistry, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| | - Ji-Man Park
- Department of Prosthodontics & Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| | - Hye-Min Chung
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Deok-Yeong Kim
- Dental Research Institute, Seoul National University School of Dentistry, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Tseng CW, Lin WS, Sahrir CD, Lin WC. The impact of base design and restoration type on the resin consumption, trueness, and dimensional stability of dental casts additively manufactured from liquid crystal display 3D printers. J Prosthodont 2024. [PMID: 38706414 DOI: 10.1111/jopr.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
PURPOSE To evaluate the effects of two base types and three restoration designs on the resin consumption and trueness of the 3D-printed dental casts. Additionally, the study explored the dimensional stability of these 3D-printed dental casts after 1 year of storage. MATERIALS AND METHODS Various types of reference dental casts were specifically designed to represent three types of dental restoration fabrications, including full-arch (FA), long-span (LS), and single-unit (SU) prostheses. The reference casts were digitized with a dental laboratory scanner and used to create flat and hollow base designs (N = 18) for the 3D-printed study casts. The 3D-printed study casts were digitized and evaluated against their corresponding references immediately after 3D printing and again after 1 year of storage, with the trueness quantified using the root mean square error (RMSE) at both time points. Volumes of resin used were recorded to measure resin consumption, and the weights of the 3D-printed study casts were also measured. The data were analyzed using two-way ANOVA and a Tukey post hoc test, α = 0.05. RESULTS Volumetric analysis showed the flat-base design had significantly higher resin consumption with weights for the FA group at 42.51 ± 0.16 g, the LS group at 31.64 ± 0.07 g, and the SU group at 27.67 ± 0.31 g, as opposed to 26.22 ± 1.01 g, 22.86 ± 0.93 g, and 20.10 ± 0.19 g for the hollow designs respectively (p < 0.001). Trueness, assessed through two-way ANOVA, revealed that the flat-base design had lower RMSE values indicating better trueness in the LS (54 ± 6 µm) and SU (59 ± 7 µm) groups compared to the hollow-base design (LS: 73 ± 5, SU: 99 ± 11 µm, both p < 0.001), with no significant difference in the FA group (flat-base: 50 ± 3, hollow: 47 ± 5 µm, p = 0.398). After 1 year, the flat-base design demonstrated superior dimensional stability in the LS (flat base: 56 ± 6 µm, hollow base: 149 ±45 µm, p < 0.001) and SU groups (flat base: 95 ± 8 µm, hollow base: 183 ±27 µm, p < 0.001), with the FA group showing no significant difference in the base design (flat base: 47 ± 9, hollow base: 62 ± 12 µm, p = 0.428). CONCLUSIONS The hollow-base design group showed lower resin consumption than the flat-base design group. However, the flat-base designs exhibited superior trueness and less distortion after 1 year of storage. These findings indicate that despite the higher material usage, flat-base designs provide better initial accuracy and maintain their dimensional stability over time for most groups.
Collapse
Affiliation(s)
- Chih-Wei Tseng
- Department of Dentistry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shao Lin
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | - Citra Dewi Sahrir
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun Lin
- Department of Dentistry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Molina BG, Fuentes J, Alemán C, Sánchez S. Merging BioActuation and BioCapacitive properties: A 3D bioprinted devices to self-stimulate using self-stored energy. Biosens Bioelectron 2024; 251:116117. [PMID: 38350239 DOI: 10.1016/j.bios.2024.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Biofabrication of three-dimensional (3D) cultures through the 3D Bioprinting technique opens new perspectives and applications of cell-laden hydrogels. However, to continue with the progress, new BioInks with specific properties must be carefully designed. In this study, we report the synthesis and 3D Bioprinting of an electroconductive BioInk made of gelatin/fibrinogen hydrogel, C2C12 mouse myoblast and 5% w/w of conductive poly (3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The influence of PEDOT NPs, incorporated in the cell-laden BioInk, not only showed a positive effect in cells viability, differentiation and myotube functionalities, also allowed the printed constructs to behaved as BioCapacitors. Such devices were able to electrochemically store a significant amount of energy (0.5 mF/cm2), enough to self-stimulate as BioActuator, with typical contractions ranging from 27 to 38 μN, during nearly 50 min. The biofabrication of 3D constructs with the proposed electroconductive BioInk could lead to new devices for tissue engineering, biohybrid robotics or bioelectronics.
Collapse
Affiliation(s)
- Brenda G Molina
- Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. C, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| | - Judith Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Carlos Alemán
- Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. C, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
23
|
Huang HY, Feng SW, Chiang KY, Li YC, Peng TY, Nikawa H. Effects of various functional monomers' reaction on the surface characteristics and bonding performance of polyetheretherketone. J Prosthodont Res 2024; 68:319-325. [PMID: 37574275 DOI: 10.2186/jpr.jpr_d_23_00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
PURPOSE Polyetheretherketone (PEEK) is a new polymeric material that has received significant attention in dentistry because of its mechanical properties, biocompatibility, and aesthetics. However, the bonding performance of PEEK to other materials is not preferable. This study aimed to analyze the variations in the surface characteristics of PEEK under the chemical action of primers containing different functional monomers or polymers and to evaluate the bonding performance of PEEK and dental cement. METHODS Disk-shaped PEEK samples were prepared by dental milling, blasting with alumina oxide, and covering with primers containing functional monomers or polymers. The surface characteristics of the samples were analyzed by microscopy and spectroscopy. The shear bond strength (SBS) between PEEK and dental cement, with and without thermocycling, was tested using a universal testing machine. Finally, the data were statistically analyzed and compared. RESULTS Functional monomers or polymers were successfully bonded to the surface of PEEK. This treatment significantly improved its hydrophilicity and surface free energy (P < 0.05). The primer containing pentaerythritol triacrylate had the highest SBS without thermocycling (13.89 MPa). Meanwhile, the primers containing urethane dimethacrylate (UDMA) and methyl methacrylate (MMA) (abbreviated as the HC group) showed the highest SBS and lowest reduction (25.51%) after thermocycling. Notably, all the testing groups achieved the ISO10477 standard of 5 MPa. After thermocycling, adhesive failure accounted for the largest proportion of failures in all the groups except the HC group. CONCLUSIONS The chemical priming treatment can significantly improve the SBS of PEEK and dental cement. Moreover, a primer containing both UDMA and MMA can provide improved bonding for PEEK materials.
Collapse
Affiliation(s)
- Huei-Yu Huang
- Department of Dentistry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yu Chiang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Chen Li
- Department of Dentistry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City, Hiroshima, Japan
| |
Collapse
|
24
|
Chuchulska B, Dimitrova M, Vlahova A, Hristov I, Tomova Z, Kazakova R. Comparative Analysis of the Mechanical Properties and Biocompatibility between CAD/CAM and Conventional Polymers Applied in Prosthetic Dentistry. Polymers (Basel) 2024; 16:877. [PMID: 38611135 PMCID: PMC11013798 DOI: 10.3390/polym16070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Modern media often portray CAD/CAM technology as widely utilized in the fabrication of dental prosthetics. This study presents a comparative analysis of the mechanical properties and biocompatibility of CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) polymers and conventional polymers commonly utilized in prosthetic dentistry. With the increasing adoption of CAD/CAM technology in dental laboratories and practices, understanding the differences in material properties is crucial for informed decision-making in prosthodontic treatment planning. Through a narrative review of the literature and empirical data, this study evaluates the mechanical strength, durability, esthetics, and biocompatibility of CAD/CAM polymers in comparison to traditional polymers. Furthermore, it examines the implications of these findings on the clinical outcomes and long-term success of prosthetic restorations. The results provide valuable insights into the advantages and limitations of CAD/CAM polymers, informing clinicians and researchers about their suitability for various dental prosthetic applications. This study underscores the considerable advantages of CAD/CAM polymers over conventional ones in terms of mechanical properties, biocompatibility, and esthetics for prosthetic dentistry. CAD/CAM technology offers improved mechanical strength and durability, potentially enhancing the long-term performance of dental prosthetics, while the biocompatibility of these polymers makes them suitable for a broad patient demographic, reducing the risk of adverse reactions. The practical implications of these findings for dental technicians and dentists are significant, as understanding these material differences enables tailored treatment planning to meet individual patient needs and preferences. Integration of CAD/CAM technology into dental practices can lead to more predictable outcomes and heightened patient satisfaction with prosthetic restorations.
Collapse
Affiliation(s)
- Bozhana Chuchulska
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Mariya Dimitrova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Angelina Vlahova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Ilian Hristov
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Zlatina Tomova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Rada Kazakova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
25
|
Perambudhuru Y, Goyal L, Dewan M, Mahajan A, Chaudhari PK. Application of 4D printing in dentistry: A narrative review. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:55-63. [PMID: 39027206 PMCID: PMC11252150 DOI: 10.34172/japid.2024.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
4D printing is an innovative digital manufacturing technology that originated by adding a fourth dimension, i.e., time, to pre-existing 3D technology or additive manufacturing (AM). AM is a fast-growing technology used in many fields, which develops accurate 3D objects based on models designed by computers. Dentistry is one such field in which 3D technology is used for manufacturing objects in periodontics (scaffolds, local drug-delivering agents, augmentation of ridges), implants, prosthodontics (partial and complete dentures, obturators), oral surgery for reconstructing jaw, and orthodontics. Dynamism is a vital property needed for the survival of materials used in the oral cavity since the oral cavity is constantly subjected to various insults. 4D printing technology has overcome the disadvantages of 3D printing technology, i.e., it cannot create dynamic objects. Therefore, constant knowledge of 4D technology is required. 3D printing technology has shortcomings, which are discussed in this review. This review summaries various printing technologies, materials used, stimuli, and potential applications of 4D technology in dentistry.
Collapse
Affiliation(s)
- Yeshwanth Perambudhuru
- Periodontics Division, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Lata Goyal
- Periodontics Division, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Meghna Dewan
- All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Mahajan
- HP Government Dental College, Shimla, Himachal Pradesh, India
| | - Prabhat Kumar Chaudhari
- Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Perlea P, Stefanescu C, Dalaban M, Petre A. Experimental study on dimensional variations of 3D printed dental models based on printing orientation. Clin Case Rep 2024; 12:e8630. [PMID: 38449896 PMCID: PMC10914698 DOI: 10.1002/ccr3.8630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
This research investigates the trueness and precision of 3D printing technology in dental applications, specifically focusing on dimensional variations observed in models printed at different angles. The methodology involved importing a dental model into slicing software, adjusting its orientation, and implementing support structures for stability. Subsequently, the model underwent 3D printing five times for each orientation using appropriate equipment and underwent post-processing steps, including cleaning, washing, and UV-light post-curing. The printed models were then scanned using a specialized desktop scanner for further analysis. Accuracy assessment was carried out using dedicated software, employing an algorithm for precise alignment by comparing the scanned files. Color deviation maps were utilized to visually represent variations, aiming to evaluate how positioning during printing influences the trueness and precision of 3D-printed dental models. Trueness and precision analyses involved the Shapiro-Wilk test for normality and a one-way ANOVA to compare means of three independent groups, with statistical analyses conducted using IBM SPSS Statistics software. The color maps derived from 3D comparisons revealed positive and negative deviations, represented by distinct colors. Comparative results indicated that models positioned at 0° exhibited the least dimensional deviation, whereas those at 90° showed the highest. Regarding precision, models printed at 0° demonstrated the highest reproducibility, while those at 15° exhibited the lowest. Based on the desired level of precision, it is recommended that printed models be produced at an inclination angle of 0°.
Collapse
Affiliation(s)
- Paula Perlea
- Department of EndodonticsCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Cosmin Stefanescu
- Department of ProsthodonticsCarol Davila University of Medicine and PharmacyBucharestRomania
| | | | - Alexandru‐Eugen Petre
- Department of ProsthodonticsCarol Davila University of Medicine and PharmacyBucharestRomania
| |
Collapse
|
27
|
Alanazi KK, Alzaid AA, Alotaibi A, Almehisni N, Alzahrani G, Gufran K. Assessment of knowledge and practices of additive manufacturing in dentistry among university teaching faculty in Saudi Arabia. BMC Oral Health 2024; 24:271. [PMID: 38402388 PMCID: PMC10893747 DOI: 10.1186/s12903-024-04037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND In recent era, digitalization in the dental sciences has been observed in wide ranges. This cross-sectional study aimed to assess knowledge and practice of additive manufacturing (AM) in dentistry among university teaching faculty in Saudi Arabia. METHODS A questionnaire was prepared and validated to distribute to the different dental colleges in Saudi Arabia. The questionnaire was divided into three parts: demographic information, knowledge and practices of AM among the dental teaching faculty. After receiving all the responses, descriptive statistics were used for the frequency distribution of all the responses. RESULTS A total of 367 responses were received from the different faculty members. Most of the participants were male (67.30%), holding assistant professor (52.50%) positions in the field of prosthodontics (23.40%). In terms of knowledge, even though most of the participants were aware of AM (64.30%); however, do not understand the AM techniques (33.50). Moreover, 71.90% of the participants had no experience working with AM and only 13.60% of participants used AM in their respective dental colleges. CONCLUSION AM techniques are not commonly used in the field of dentistry in Saudi Arabia; therefore, more platforms should have created to enhance the knowledge and practice of AM in the current population.
Collapse
Affiliation(s)
- Khalid K Alanazi
- Conservative Dental Science Department, College of Dentistry, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia.
| | - Abdulaziz A Alzaid
- Restorative and Prosthetic Dental Sciences Department, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Adel Alotaibi
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
- Preventive Dental Science Department, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Nora Almehisni
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
- Dental Intern, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Ghida Alzahrani
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
- Dental Intern, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Khalid Gufran
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| |
Collapse
|
28
|
Tribst JPM, Pereira GKR, Kleverlaan CJ. Advancements in Dental Care: The Evolving Landscape of Prosthetic Dentistry. J Clin Med 2024; 13:1225. [PMID: 38592049 PMCID: PMC10932426 DOI: 10.3390/jcm13051225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
In the dental field, the specialty of prosthodontics stands out as the frontline of innovation, continually pushing the boundaries to enhance both function and aesthetics for optimal oral rehabilitation [...].
Collapse
Affiliation(s)
- João Paulo Mendes Tribst
- Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands
| | - Gabriel Kalil Rocha Pereira
- Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Rio Grande do Sul State, Brazil;
| | - Cornelis Johannes Kleverlaan
- Department of Dental Materials, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
29
|
Kornfellner E, Königshofer M, Krainz L, Krause A, Unger E, Moscato F. Measured and simulated mechanical properties of additively manufactured matrix-inclusion multimaterials fabricated by material jetting. 3D Print Med 2024; 10:4. [PMID: 38305928 PMCID: PMC10835942 DOI: 10.1186/s41205-023-00201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
Modern additive manufacturing enables the simultaneous processing of different materials during the printing process. While multimaterial 3D printing allows greater freedom in part design, the prediction of the mix-material properties becomes challenging. One type of multimaterials are matrix-inclusion composites, where one material contains inclusions of another material. Aim of this study was to develop a method to predict the uniaxial Young's modulus and Poisson's ratio of material jetted matrix-inclusion composites by a combination of simulations and experimental data.Fifty samples from commercially available materials in their pure and matrix-inclusion mixed forms, with cubic inclusions, have been fabricated using material jetting and mechanically characterized by uniaxial tensile tests. Multiple simulation approaches have been assessed and compared to the measurement results in order to find and validate a method to predict the multimaterials' properties. Optical coherence tomography and microscopy was used to characterize the size and structure of the multimaterials, compared to the design.The materials exhibited Young's moduli in the range of 1.4 GPa to 2.5 GPa. The multimaterial mixtures were never as stiff as the weighted volume average of the primary materials (up to [Formula: see text] softer for 45% RGD8530-DM inclusions in VeroClear matrix). Experimental data could be predicted by finite element simulations by considering a non-ideal contact stiffness between matrix and inclusion ([Formula: see text] for RGD8530-DM, [Formula: see text] for RGD8430-DM), and geometries of the printed inclusions that deviated from the design (rounded edge radii of [Formula: see text]m). Not considering this would lead to a difference of the estimation result of up to [Formula: see text]MPa (44%), simulating an inclusion volume fraction of 45% RGD8530-DM.Prediction of matrix-inclusion composites fabricated by multimaterial jetting printing, is possible, however, requires a priori knowledge or additional measurements to characterize non-ideal contact stiffness between the components and effective printed geometries, precluding therefore a simple multimaterial modelling.
Collapse
Affiliation(s)
- Erik Kornfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Markus Königshofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Lisa Krainz
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Arno Krause
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
30
|
Bargellini A, Mannari E, Cugliari G, Deregibus A, Castroflorio T, Es Sebar L, Serino G, Roggia A, Scotti N. Short-Term Effects of 3D-Printed Occlusal Splints and Conventional Splints on Sleep Bruxism Activity: EMG-ECG Night Recordings of a Sample of Young Adults. J Clin Med 2024; 13:776. [PMID: 38337469 PMCID: PMC10856225 DOI: 10.3390/jcm13030776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: This study aims to compare the effects of 3D-printed splints and conventional manufactured splints on sleep bruxism (SB) EMG activity. (2) Methods: Twenty-six patients (19 M, 7 F, 25.8 ± 2.6 years) were randomly allocated to a study group (3D splints) and a control group (conventional manufactured splints) and followed for a period of three months with night EMG-ECG recordings. Samples of the involved materials were analyzed for nanoindentation. The outcomes of interest considered were the overall SB index, the total amount of surface masseter muscle activity (sMMA), and general and SB-related phasic and tonic contractions. A statistical evaluation was performed with a confidence interval (CI) between 2.5% and 97.5%. (3) Results: Differences between groups with OAs were observed for general tonic contraction (p = 0.0009), while differences between recording times were observed for general phasic contractions (p = 0.002) and general tonic contractions (p = 0.00001). Differences between recording times were observed for the total amount of sMMA (p = 0.01), for general phasic contractions (p = 0.0001), and for general tonic contractions (p = 0.000009) during night recordings without OAs. (4) Conclusions: Three-dimensional splints seem to have a higher impact on SB-related electromyographic activity but not on the overall sleep bruxism index. The more regular surfaces offered by 3D splints could be related to phasic contraction stabilization.
Collapse
Affiliation(s)
- Andrea Bargellini
- Department of Surgical Sciences, Specialization School of Orthodontics, Dental School, University of Torino, 10126 Torino, Italy; (A.B.); (A.D.); (T.C.)
- Department of Surgical Sciences, Gnathology Unit, Dental School, University of Torino, 10126 Torino, Italy
| | - Elena Mannari
- Department of Surgical Sciences, Dental School, University of Torino, 10126 Torino, Italy; (E.M.); (A.R.)
| | - Giovanni Cugliari
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Andrea Deregibus
- Department of Surgical Sciences, Specialization School of Orthodontics, Dental School, University of Torino, 10126 Torino, Italy; (A.B.); (A.D.); (T.C.)
- Department of Surgical Sciences, Gnathology Unit, Dental School, University of Torino, 10126 Torino, Italy
| | - Tommaso Castroflorio
- Department of Surgical Sciences, Specialization School of Orthodontics, Dental School, University of Torino, 10126 Torino, Italy; (A.B.); (A.D.); (T.C.)
- Department of Surgical Sciences, Gnathology Unit, Dental School, University of Torino, 10126 Torino, Italy
| | - Leila Es Sebar
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | - Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy;
- PolitoBioMedLab, Politecnico di Torino, 10129 Turin, Italy
| | - Andrea Roggia
- Department of Surgical Sciences, Dental School, University of Torino, 10126 Torino, Italy; (E.M.); (A.R.)
| | - Nicola Scotti
- Department of Surgical Sciences, Restorative Dentistry Unit, Dental School, University of Torino, 10126 Torino, Italy
| |
Collapse
|
31
|
Narongdej P, Hassanpour M, Alterman N, Rawlins-Buchanan F, Barjasteh E. Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers (Basel) 2024; 16:371. [PMID: 38337260 DOI: 10.3390/polym16030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Clear aligners have revolutionized orthodontic treatment by offering an esthetically driven treatment modality to patients of all ages. Over the past two decades, aligners have been used to treat malocclusions in millions of patients worldwide. The inception of aligner therapy goes back to the 1940s, yet the protocols to fabricate aligners have been continuously evolved. CAD/CAM driven protocol was the latest approach which drastically changed the scalability of aligner fabrication-i.e., aligner mass production manufacturing. 3D printing technology has been adopted in various sectors including dentistry mostly because of the ability to create complex geometric structures at high accuracy while reducing labor and material costs-for the most part. The integration of 3D printing in dentistry has been across, starting in orthodontics and oral surgery and expanding in periodontics, prosthodontics, and oral implantology. Continuous progress in material development has led to improved mechanical properties, biocompatibility, and overall quality of aligners. Consequently, aligners have become less invasive, more cost-effective, and deliver outcomes comparable to existing treatment options. The promise of 3D printed aligners lies in their ability to treat malocclusions effectively while providing esthetic benefits to patients by remaining virtually invisible throughout the treatment process. Herein, this review aims to provide a comprehensive summary of studies regarding direct-3D printing of clear aligners up to the present, outlining all essential properties required in 3D-printed clear aligners and the challenges that need to be addressed. Additionally, the review proposes implementation methods to further enhance the effectiveness of the treatment outcome.
Collapse
Affiliation(s)
- Poom Narongdej
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
| | - Mana Hassanpour
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| | - Nicolas Alterman
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| | | | - Ehsan Barjasteh
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
32
|
Hajjaj MS, Alamoudi RAA, Babeer WA, Rizg WY, Basalah AA, Alzahrani SJ, Yeslam HE. Flexural strength, flexural modulus and microhardness of milled vs. fused deposition modeling printed Zirconia; effect of conventional vs. speed sintering. BMC Oral Health 2024; 24:38. [PMID: 38185744 PMCID: PMC10771678 DOI: 10.1186/s12903-023-03829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Various methods can be used for creating zirconia dental restorations, including 3-dimensional (3D) printing and computer-aided design/ computer-aided manufacturing (CAD/CAM) milling. The fused deposition modeling (FDM) printing method for zirconia presents numerous advantages, albeit research on the mechanical properties of these materials and resultant restorations remains scarce. Such developments are undeniably intriguing and warrant further investigation. The objective of the present study was to evaluate the impact of the sintering firing cycle (Conventional vs. Speed sintering) on the flexural strength, flexural modulus, and Vickers Microhardness of milled vs. FDM printed zirconia. METHODS A total of 60 bars (2 × 5 × 27 mm) were fabricated for flexural strength testing, along with 40 discs (12 × 1.5 mm) for Vickers microhardness testing. Half of the specimens underwent conventional sintering, while the other half underwent a speed sintering cycle. The flexural strength and modulus were determined by a three-point bending test in a universal testing machine. The microhardness of the specimens was evaluated using a Vickers microhardness tester. Statistical analysis was performed using a two-way ANOVA test with a post-hoc Tukey test (p < 0.05). RESULTS CAD/CAM milled zirconia had significantly higher flexural strength and modulus than FDM-printed zirconia. The sintering process did not significantly affect the flexural strength or modulus of milled or FDM-printed zirconia. The milled speed sintering group had significantly higher values in the Vickers microhardness test compared to the other groups. CONCLUSIONS The mechanical properties of FDM-printed zirconia specimens were not found to be comparable to those of milled zirconia. Speed sintering cycle may produce milled zirconia restorations with similar flexural strength and modulus to conventional sintering, and even higher Vickers Microhardness values.
Collapse
Affiliation(s)
- Maher S Hajjaj
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
- Advanced Technology Dental Research Laboratory, King Abdulaziz University, P.O. Box 80209, Jeddah, 21589, Saudi Arabia.
| | - Rana A A Alamoudi
- Prosthodontic Master Student, Department of Oral and Maxillofacial Rehabilitation, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa A Babeer
- Department of Oral and Maxillofacial Rehabilitation, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad A Basalah
- Mechanical Engineering Department, College of Engineering and Architecture, Umm Al Qura University, Makkah, Saudi Arabia
| | - Saeed J Alzahrani
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanin E Yeslam
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Li JW, Chen HF, Huang PH, Kuo CFJ, Cheng CC, Chiu CW. Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors. Polymers (Basel) 2023; 15:4706. [PMID: 38139958 PMCID: PMC10747156 DOI: 10.3390/polym15244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations.
Collapse
Affiliation(s)
- Jia-Wun Li
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ho-Fu Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Peng-Han Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chung-Feng Jeffrey Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
34
|
Urkande NK, Mankar N, Nikhade PP, Chandak M. Understanding the Complexities of Cast Post Retention: A Comprehensive Review of Influential Factors. Cureus 2023; 15:e51258. [PMID: 38288201 PMCID: PMC10823198 DOI: 10.7759/cureus.51258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
This comprehensive review delves into the intricate landscape of cast post retention in restorative dentistry, encompassing historical perspectives, contemporary techniques, and future directions. Examining factors ranging from tooth-related considerations to prosthesis-related dynamics, the review provides a detailed analysis of clinical techniques, including step-by-step procedures, common challenges, and innovative advancements. Technological breakthroughs, such as digital impressions, computer-aided design and computer-aided manufacturing (CAD/CAM) technology, three-dimensional (3D) printing, and finite element analysis, are explored for their transformative impact on precision and customization. The discussion extends to the promising future of cast post retention, emphasising emerging materials, the integration of artificial intelligence in treatment planning, and patient-specific approaches. Implications for clinical practice underscore the importance of individualised treatment planning and the adoption of advanced technologies. Recommendations for future research advocate for comprehensive long-term clinical studies, investigations into AI-driven treatment planning, and a focus on patient outcomes and satisfaction. This review consolidates existing knowledge and anticipates a future marked by enhanced precision, individualised care, and improved long-term success in cast post-retained restorations.
Collapse
Affiliation(s)
- Neha K Urkande
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Nikhil Mankar
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pradnya P Nikhade
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Manoj Chandak
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
35
|
Dimitrova M, Vlahova A, Kalachev Y, Zlatev S, Kazakova R, Capodiferro S. Recent Advances in 3D Printing of Polymers for Application in Prosthodontics. Polymers (Basel) 2023; 15:4525. [PMID: 38231950 PMCID: PMC10708542 DOI: 10.3390/polym15234525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Contemporary mass media frequently depict 3D printing as a technology with widespread utilization in the creation of dental prosthetics. This paper endeavors to provide an evidence-based assessment of the current scope of 3D printing's integration within dental laboratories and practices. Its primary objective is to offer a systematic evaluation of the existing applications of 3D-printing technology within the realm of dental prosthetic restorations. Furthermore, this article delves into potential prospects, while also critically examining the sustained relevance of conventional dental laboratory services and manufacturing procedures. The central focus of this article is to expound upon the extent to which 3D printing is presently harnessed for crafting dental prosthetic appliances. By presenting verifiable data and factual insights, this article aspires to elucidate the actual implementation of 3D printing in prosthetic dentistry and its seamless integration into dental practices. The aim of this narrative review is twofold: firstly, to provide an informed and unbiased evaluation of the role that 3D printing currently plays within dental laboratories and practices; and secondly, to instigate contemplation on the transformative potential of this technology, both in terms of its contemporary impact and its future implications, while maintaining a balanced consideration of traditional dental approaches.
Collapse
Affiliation(s)
- Mariya Dimitrova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
| | - Angelina Vlahova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yavor Kalachev
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
| | - Stefan Zlatev
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Rada Kazakova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Saverio Capodiferro
- Department of Interdisciplinary Medicine, Aldo Moro, University of Bari, 70100 Bari, Italy;
| |
Collapse
|
36
|
El Charkawi HG, Abdelaziz MS. Novel CAD-CAM fabrication of a custom-made ball attachment retentive housing: an in-vitro study. Eur J Med Res 2023; 28:520. [PMID: 37968756 PMCID: PMC10652503 DOI: 10.1186/s40001-023-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
PURPOSE This study aims to evaluate the digitally designed ball attachment housing in its initial retentive force and after 2 years of simulated clinical use and to compare it with the regular nylon ball attachment housing. MATERIALS AND METHODS Twenty implants with their corresponding ball abutments (diameter 4.5 × 4.0 mm) were inserted in resin blocks. They were divided into two groups. In Group I, ten ball abutments each received their corresponding conventional attachment with nylon rings. In Group II, ten ball abutments received the novel CAD-CAM polyetheretherketone ball attachment housing. A universal testing machine was used to measure the retention force. The achieved maximum values of retention force were recorded at the beginning of the study (initial retention) and after 2 years of artificial ageing (2000 cycles of insertion and removal). Results were statistically analyzed using an independent sample T test. RESULTS The PEEK attachment housing showed high retention forces (25.12 ± 0.99 N) compared to the conventional attachment with a nylon ring (15.76 ± 0.93 N) in the initial dislodgement test. There was a statistically significant difference in mean retention at the initial retention test and after 2 years of stimulated usage between the two studied groups, p = 0.000. CONCLUSIONS Within the limitations of this study, the novel CAD-CAM-PEEK attachment showed high retention characteristics compared to the conventional attachment with nylon rings, initially and after simulated long-term use.
Collapse
Affiliation(s)
- Hussein G El Charkawi
- Department of Prosthodontics, Faculty of Oral and Dental Medicine, Future University, Fifth Settlement, End of 90 Street, Cairo, Egypt.
| | - Medhat Sameh Abdelaziz
- Department of Prosthodontics, Faculty of Oral and Dental Medicine, Future University, Fifth Settlement, End of 90 Street, Cairo, Egypt
| |
Collapse
|
37
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
38
|
Cameron AB, Abdelhamid HMHAS, George R. CBCT Segmentation and Additive Manufacturing for the Management of Root Canals with Ledges: A Case Report and Technique. J Endod 2023; 49:1570-1575. [PMID: 37582414 DOI: 10.1016/j.joen.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Cone-beam computed tomography (CBCT) assessment of a ledge could be useful to a clinician; however, using this information effectively during a treatment procedure can be challenging. Advanced additive manufacturing technologies combined with semi-automated segmentation of root canals can help simulate the ledge and help in management of these iatrogenic complications. A patient presented after unsuccessful root canal treatment with a ledge on the left mandibular first molar. A CBCT was taken, and the images imported into a segmentation software (Mimics, Materialise). The canal was isolated, and segmentation performed along with the other structures of the tooth. A 3-dimensional digital model of the internal structures of the canal were used to design a mock-up which was additively manufactured. This was used as a preclinical guide to simulate the procedure, precurve the file, and manage the canal. This novel technique using virtual modeling from CBCT data post ledge formation allowed for successful and quick management of a tooth with ledges.
Collapse
Affiliation(s)
- Andrew B Cameron
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia; Menzies Health Institute Queensland Disability & Rehabilitation Center, Gold Coast, Australia
| | | | - Roy George
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia.
| |
Collapse
|
39
|
Silva NR, Moreira FGDG, Cabral ABDC, Bottino MA, Marinho RMDM, Souza ROA. Influence of the postpolymerization type and time on the flexural strength and dimensional stability of 3D printed interim resins. J Prosthet Dent 2023; 130:796.e1-796.e8. [PMID: 37659913 DOI: 10.1016/j.prosdent.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/04/2023]
Abstract
STATEMENT OF PROBLEM The mechanical strength of 3-dimensionally (3D) printed interim resins is unclear but influenced by printing parameters. Evidence regarding standardization of the postpolymerization type and time for 3D printed interim resins is sparse. PURPOSE The purpose of this in vitro study was to evaluate the influence of postpolymerization type and time on flexural strength and dimensional stability of 3D printed resins for interim restorations. MATERIAL AND METHODS A total of 288 bars were 3D printed (Form 2; Formlabs, stereolithography-SLA, 50 µm, 30 degrees), (25×2×2 mm; International Organization for Standardization-ISO 4049:2019) abraded and randomly divided into 9 groups (n=30) according to postpolymerization (Ultraviolet device-UV; Microwave with water-MWA; Microwave without water-MW) and time (15, 20, and 30 minutes for UV; and 5, 8, and 10 minutes for MW and MWA). Each bar was then measured with digital calipers at 11 points for length, thickness, and width before and after postpolymerization to analyze dimensional stability. The flexural strength was then measured (σ; 980.6 N, 1 mm/minute) and the fractured surfaces were analyzed with scanning electron microscopy. The σ (MPa) data were evaluated by using a 2-way analysis of variance (ANOVA) and the Tukey honestly significant difference (HSD) pairwise comparisons test (α=.05). Dimensional stability data (mm) were analyzed by using the Kruskal-Wallis test and Dwass-Steel-Critchlow-Fligner multiple comparisons. The Weibull analysis was performed with σ data. RESULTS The 2-way ANOVA revealed that all factors and their interaction were significant for σ (P<.001). The UV groups presented the highest σ values, being statistically higher than all MW and MWA groups. The Weibull analysis revealed that postpolymerization UV groups found the highest values regarding the characteristic strength, although the MW 8-minute group (13.71) found the highest value for the Weibull modulus. Furthermore, the Kruskal-Wallis test revealed that only the postpolymerization factor was significant for dimensional stability (P<.001). The postpolymerization microwave groups found greater expansion variations at all times, with the MW 8-minute group (0.78 ±0.54) presenting the greatest variation in dimensional stability. CONCLUSIONS UV was determined to be the most suitable type of postpolymerization for interim printed resin among the postpolymerization methods, regardless of the application time. The postpolymerization MW groups found greater variations in dimensional stability.
Collapse
Affiliation(s)
- Nathalia R Silva
- Researcher, Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fernanda G de G Moreira
- PhD student, Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana B de C Cabral
- Researcher, Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Marco A Bottino
- Professor, São Paulo State University (UNESP), Institute of Science and Technology, São Paulo, Brazil
| | - Renata M de M Marinho
- Researcher, São Paulo State University (UNESP), Institute of Science and Technology, São Paulo, Brazil
| | - Rodrigo O A Souza
- Professor, Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil..
| |
Collapse
|
40
|
Yangdol P, Kalra N, Tyagi R, Khatri A, Sabherwal P, Goyal T. Three-dimensional Printing Technology: Patient-friendly and Time-saving Approach for Space Management in an Autistic Child in COVID-19 Times. Int J Clin Pediatr Dent 2023; 16:321-326. [PMID: 38268629 PMCID: PMC10804291 DOI: 10.5005/jp-journals-10005-2702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Aim and objective The present case report comprehensively illustrates the use of a novel digital three-dimensional (3D) printed band and loop space maintainer [computer-aided design and computer-aided manufacturing (CAD/CAM)] for the guidance of eruption with their distinctive attribute of reduced chairside time in a home-schooled autistic child. Background Three-dimensional (3D) printing is a promising and emerging technology in the arena of dentistry based on CAD/CAM. It has led to the production of customized 3D objects or patient-specific prostheses with accurate results achieved in a time-saving manner. 3D printing has been employed in several latitudes of dentistry; however, the applications are few in the field of pediatric dentistry. Case description The paper describes the space management of an autistic child for the missing mandibular left primary second molar through the novel technique of 3D printed band and loop space maintainer. Clinical significance The novel technique has definite advantages, including high precision, accuracy, fast production, and reduced patient exposure to dentists and vice versa, which has been the need of the hour since the advent of the coronavirus disease of 2019 (COVID-19) pandemic. Conclusion Three-dimensional (3D) printing minimizes dental aerosol-generated exposure by decreasing chairside procedural time and minimizing procedural sitting. The cost-benefit analysis, as applied to the Indian scenario, has also been computed, which makes it equally acceptable. Moreover, 3D printing reduces material waste production, offering a greener and environmentally friendly option in the coming years. The future of pediatric dentistry will evolve with signs of progress in the latest materials and technologies. How to cite this article Yangdol P, Kalra N, Tyagi R, et al. Three-dimensional Printing Technology: Patient-friendly and Time-saving Approach for Space Management in an Autistic Child in COVID-19 Times. Int J Clin Pediatr Dent 2023;16(S-3):S321-S326.
Collapse
Affiliation(s)
- Padma Yangdol
- Department of Dentistry, Pedodontics and Preventive Dentistry, University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital, University of Delhi, Delhi, India
| | - Namita Kalra
- Department of Dentistry, Pedodontics and Preventive Dentistry, University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital, University of Delhi, Delhi, India
| | - Rishi Tyagi
- Department of Dentistry, Pedodontics and Preventive Dentistry, University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital, University of Delhi, Delhi, India
| | - Amit Khatri
- Department of Dentistry, Pedodontics and Preventive Dentistry, University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital, University of Delhi, Delhi, India
| | - Puja Sabherwal
- Department of Dentistry, Pedodontics and Preventive Dentistry, University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital, University of Delhi, Delhi, India
| | - Tavisha Goyal
- Department of Dentistry, Pedodontics and Preventive Dentistry, University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital, University of Delhi, Delhi, India
| |
Collapse
|
41
|
Alhabshi MO, Aldhohayan H, BaEissa OS, Al Shehri MS, Alotaibi NM, Almubarak SK, Al Ahmari AA, Khan HA, Alowaimer HA. Role of Three-Dimensional Printing in Treatment Planning for Orthognathic Surgery: A Systematic Review. Cureus 2023; 15:e47979. [PMID: 38034130 PMCID: PMC10686238 DOI: 10.7759/cureus.47979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Three-dimensional (3D) printing refers to a wide range of additive manufacturing processes that enable the construction of structures and models. It has been rapidly adopted for a variety of surgical applications, including the printing of patient-specific anatomical models, implants and prostheses, external fixators and splints, as well as surgical instrumentation and cutting guides. In comparison to traditional methods, 3D-printed models and surgical guides offer a deeper understanding of intricate maxillofacial structures and spatial relationships. This review article examines the utilization of 3D printing in orthognathic surgery, particularly in the context of treatment planning. It discusses how 3D printing has revolutionized this sector by providing enhanced visualization, precise surgical planning, reduction in operating time, and improved patient communication. Various databases, including PubMed, Google Scholar, ScienceDirect, and Medline, were searched with relevant keywords. A total of 410 articles were retrieved, of which 71 were included in this study. This article concludes that the utilization of 3D printing in the treatment planning of orthognathic surgery offers a wide range of advantages, such as increased patient satisfaction and improved functional and aesthetic outcomes.
Collapse
Affiliation(s)
- Manaf O Alhabshi
- Oral and Maxillofacial Surgery, King Abdullah Medical City, Jeddah, SAU
| | | | - Olla S BaEissa
- General Dentistry, North of Riyadh Dental Clinic, Second Health Cluster, Riyadh, SAU
- General Dentistry, Ibn Sina National College, Jeddah, SAU
| | | | | | | | | | - Hayithm A Khan
- Oral and Maxillofacial Surgery, Ministry of Health, Jeddah, SAU
| | | |
Collapse
|
42
|
Abad-Coronel C, Ruano Espinosa C, Ordóñez Palacios S, Paltán CA, Fajardo JI. Comparative Analysis between Conventional Acrylic, CAD/CAM Milled, and 3D CAD/CAM Printed Occlusal Splints. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6269. [PMID: 37763547 PMCID: PMC10532716 DOI: 10.3390/ma16186269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The development of digital technologies has allowed for the fabrication of new materials; however, it makes it difficult to choose the best methods to obtain occlusal splints with optimal properties, so it is essential to evaluate the effectiveness of these materials. The aim of the study is to compare the fracture resistance of occlusal splints made of different materials after thermo-mechanical aging. METHODS A total of 32 samples were made from 4 materials (two 3D printed polymeric materials, a PMMA disc for CAD/CAM, and a conventional heat-cured acrylic resin); subsequently, the fracture test was performed using the load compression mode applied occlusally on the splint surface. STATISTICAL ANALYSIS Four statistical tests were used (Shapiro-Wilk, Levene's test, ANOVA, and Tukey's HSD test). RESULTS The following study showed that there are differences in fracture strength among the four materials investigated, where the highest strength was observed in the milled splint, with a mean of 3051.2 N (newton) compared to the strength of the flexible splint with 1943.4 N, the printed splint with 1489.9 N, and the conventional acrylic splint with 1303.9 N. CONCLUSIONS The milled splints were the most resistant to fracture. Of the printed splints, the splint made with flexural rigid resin withstood the applied forces in acceptable ranges, so its clinical indication may be viable. Although the results of this research indicated differences in the mechanical properties between the CAD/CAM and conventional fabrication methods, the selection may also be influenced by processing time and cost, since with a CAD/CAM system there is a significant reduction in the production time of the splint material.
Collapse
Affiliation(s)
- Cristian Abad-Coronel
- CAD/CAM Materials and Digital Dentistry Research Group, Faculty of Dentistry, Universidad de Cuenca, Cuenca 010204, Ecuador
| | | | | | - César A. Paltán
- New Materials and Transformation Processes Research Group GiMaT, Universidad Politécnica Salesiana, Cuenca 010105, Ecuador; (C.A.P.); (J.I.F.)
| | - Jorge I. Fajardo
- New Materials and Transformation Processes Research Group GiMaT, Universidad Politécnica Salesiana, Cuenca 010105, Ecuador; (C.A.P.); (J.I.F.)
| |
Collapse
|
43
|
Farook TH, Ahmed S, Talukder MSI, Dudley J. A 3D printed electronic wearable device to generate vertical, horizontal and phono-articulatory jaw movement parameters: A concept implementation. PLoS One 2023; 18:e0290497. [PMID: 37703272 PMCID: PMC10499219 DOI: 10.1371/journal.pone.0290497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023] Open
Abstract
PURPOSE The current research aimed to develop a concept open-source 3D printable, electronic wearable head gear to record jaw movement parameters. MATERIALS & METHODS A 3D printed wearable device was designed and manufactured then fitted with open-source sensors to record vertical, horizontal and phono-articulatory jaw motions. Mean deviation and relative error were measured invitro. The device was implemented on two volunteers for the parameters of maximum anterior protrusion (MAP), maximum lateral excursion (MLE), normal (NMO), and maximum (MMO) mouth opening and fricative phono-articulation. Raw data was normalized using z-score and root mean squared error (RMSE) values were used to evaluate relative differences in readings across the two participants. RESULTS RMSE differences across the left and right piezoresistive sensors demonstrated near similar bilateral movements during normal (0.12) and maximal mouth (0.09) opening for participant 1, while varying greatly for participant 2 (0.25 and 0.14, respectively). There were larger differences in RMSE during accelerometric motion in different axes for MAP, MLE and Fricatives. CONCLUSION The current implementation demonstrated that a 3D printed electronic wearable device with open-source sensor technology can record horizontal, vertical, and phono-articulatory maxillomandibular movements in two participants. However, future efforts must be made to overcome the limitations documented within the current experiment.
Collapse
Affiliation(s)
| | - Saif Ahmed
- Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh
| | | | - James Dudley
- Adelaide Dental School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
44
|
Topa-Skwarczyńska M, Jankowska M, Gruchała-Hałat A, Petko F, Galek M, Ortyl J. High-performance photoinitiating systems for new generation dental fillings. Dent Mater 2023; 39:729. [PMID: 37393151 DOI: 10.1016/j.dental.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES To obtain new generation dental composites with improved performance properties compared to currently available dental fillings on the market and to determine the influence of new initiating systems on final product parameters such as degree of cure, hardness, color, and shrinkage. METHODS In order to verify the effectiveness of the developed initiating systems, typical spectroscopic, electrochemical, and kinetic studies using the real-time FT-IR method were shown. Moreover, paste dental fillings were prepared, the compositions were irradiated with the dental lamp, and the degrees of cross-linking were measured by Raman spectroscopy. The polymerization shrinkage was also determined using the rheometer. In addition, their hardness was examined on the Shore scale. Finally, the color analysis of the composites in the L*a*b* color space was compared with the VITA CLASSIC colorant. RESULTS It was shown that, due to their excellent spectroscopic and electrochemical properties, new quinazolin-2-one can act as co-initiators in cationic and radical photopolymerization. It was demonstrated that the most effective composite containing the initiator system in the form of 3-SCH3Ph-Q, IOD, MDEA, and an inorganic filler as nanometric silica and a bonding agent is cured more than 90% after just 1 cycle of dental lamp exposure (30 s), the hardness of the composite after curing on the Shor Scale is 82 ± 4, and the polymerization shrinkage is less than 2.8%. SIGNIFICANCE The article demonstrates effective new initiator systems as an alternative to CQ/amine for obtaining new-generation dental composites. The developed dental composites are a big competition to the currently used dental fillings on the market.
Collapse
Affiliation(s)
- Monika Topa-Skwarczyńska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland.
| | - Magdalena Jankowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland
| | - Alicja Gruchała-Hałat
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland
| | - Filip Petko
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Mariusz Galek
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland; Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland.
| |
Collapse
|
45
|
Celik HK, Koc S, Kustarci A, Caglayan N, Rennie AE. The state of additive manufacturing in dental research - A systematic scoping review of 2012-2022. Heliyon 2023; 9:e17462. [PMID: 37484349 PMCID: PMC10361388 DOI: 10.1016/j.heliyon.2023.e17462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background/purpose Additive manufacturing (AM), also known as 3D printing, has the potential to transform the industry. While there have been advancements in using AM for dental restorations, there is still a need for further research to develop functional biomedical and dental materials. It's crucial to understand the current status of AM technology and research trends to advance dental research in this field. The aim of this study is to reveal the current status of international scientific publications in the field of dental research related to AM technologies. Materials and methods In this study, a systematic scoping review was conducted using appropriate keywords within the scope of international scientific publishing databases (PubMed and Web of Science). The review included related clinical and laboratory research, including both human and animal studies, case reports, review articles, and questionnaire studies. A total of 187 research studies were evaluated for quantitative synthesis in this review. Results The findings highlighted a rising trend in research numbers over the years (From 2012 to 2022). The most publications were produced in 2020 and 2021, with annual percentage increases of 25.7% and 26.2%, respectively. The majority of AM-related publications in dentistry research originate from Korea. The pioneer dental sub-fields with the ost publications in its category are prosthodontics and implantology, respectively. Conclusion The final review result clearly stated an expectation for the future that the research in dentistry would concentrate on AM technologies in order to increase the new product and process development in dental materials, tools, implants and new generation modelling strategy related to AM. The results of this work can be used as indicators of trends related to AM research in dentistry and/or as prospects for future publication expectations in this field.
Collapse
Affiliation(s)
- H. Kursat Celik
- Dept. of Agr. Machinery and Technology Engineering, Akdeniz University, Antalya, 07070, Turkey
| | - Simay Koc
- Dept. of Endodontics, Fac. of Dentistry, Akdeniz University, Antalya, Turkey
| | - Alper Kustarci
- Dept. of Endodontics, Fac. of Dentistry, Akdeniz University, Antalya, Turkey
| | - Nuri Caglayan
- Dept. of Mechatronics, Fac. of Engineering, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
46
|
Alzahrani SJ, Hajjaj MS, Azhari AA, Ahmed WM, Yeslam HE, Carvalho RM. Mechanical Properties of Three-Dimensional Printed Provisional Resin Materials for Crown and Fixed Dental Prosthesis: A Systematic Review. Bioengineering (Basel) 2023; 10:663. [PMID: 37370594 DOI: 10.3390/bioengineering10060663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of digital dentistry has led to the introduction of various three-dimensional (3D) printing materials in the market, specifically for provisional fixed restoration. This study aimed to undertake a systematic review of the published literature on the Mechanical Properties of 3D- Printed Provisional Resin Materials for crown and fixed dental prosthesis (FDP). The electronic database on PubMed/Medline was searched for relevant studies. The search retrieved articles that were published from January 2011 to March 2023. The established focus question was: "Do provisional 3D-printed materials have better mechanical properties than conventional or milled provisional materials?". The systematically extracted data included the researcher's name(s), publication year, evaluation method, number of samples, types of materials, and study outcome. A total of 19 studies were included in this systematic review. These studies examined different aspects of the mechanical properties of 3D-printed provisional materials. Flexural Strength and Microhardness were the frequently used mechanical testing. Furthermore, 3D-printed provisional restorations showed higher hardness, smoother surfaces, less wear volume loss, and higher wear resistance compared to either milled or conventional, or both. 3D-printed provisional resin materials appear to be a promising option for fabricating provisional crowns and FDPs.
Collapse
Affiliation(s)
- Saeed J Alzahrani
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maher S Hajjaj
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr Ahmed Azhari
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Walaa Magdy Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanin E Yeslam
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ricardo Marins Carvalho
- Department of Oral Biological and Medical Science, Faculty of Dentistry, The University of British Columbia, Vancouver, BC V63 1Z3, Canada
| |
Collapse
|
47
|
Hu L, Rong R, Song W, Wu H, Jia S, He Z, Sa Y. Patient-specific 3D printed models for enhanced learning of immediate implant procedures and provisionalization. EUROPEAN JOURNAL OF DENTAL EDUCATION : OFFICIAL JOURNAL OF THE ASSOCIATION FOR DENTAL EDUCATION IN EUROPE 2023. [PMID: 37246340 DOI: 10.1111/eje.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION This study aimed to describe the fabrication, implementation and evaluation of 3D-printed patient-specific models for unskilled students to enhance learning in immediate implant procedures and provisionalization. MATERIALS AND METHODS The individualized simulation models were designed and processed based on CT and digital intraoral scanning of a patient. Thirty students performed simulation implant surgery and provisionalized the implant sites on the models and answered questionnaires to assess their perceptions before and after the training. The scores of the questionnaires were analysed using the Wilcoxon signed-rank test. RESULTS Significant differences before and after training were found in the students' responses. Students reported better results in understanding of surgical procedures, knowledge in prosthetically driven implantology, understanding of minimally invasive tooth extraction, confirming the accuracy of surgical template, usage of the guide rings and usage of the surgical cassette after simulation training. The overall expenditure on the simulation training involving 30 students amounted to 342.5 USD. CONCLUSIONS The patient-specific and cost-efficient 3D printed models are helpful for students to improve theoretical knowledge and practical skills. Such individualized simulation models have promising application prospects.
Collapse
Affiliation(s)
- Liqun Hu
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Rong Rong
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Wenjuan Song
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Hongzhao Wu
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Shuqing Jia
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhixiao He
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Yue Sa
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| |
Collapse
|
48
|
Cai H, Xu X, Lu X, Zhao M, Jia Q, Jiang HB, Kwon JS. Dental Materials Applied to 3D and 4D Printing Technologies: A Review. Polymers (Basel) 2023; 15:2405. [PMID: 37242980 PMCID: PMC10224282 DOI: 10.3390/polym15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
As computer-aided design and computer-aided manufacturing (CAD/CAM) technologies have matured, three-dimensional (3D) printing materials suitable for dentistry have attracted considerable research interest, owing to their high efficiency and low cost for clinical treatment. Three-dimensional printing technology, also known as additive manufacturing, has developed rapidly over the last forty years, with gradual application in various fields from industry to dental sciences. Four-dimensional (4D) printing, defined as the fabrication of complex spontaneous structures that change over time in response to external stimuli in expected ways, includes the increasingly popular bioprinting. Existing 3D printing materials have varied characteristics and scopes of application; therefore, categorization is required. This review aims to classify, summarize, and discuss dental materials for 3D printing and 4D printing from a clinical perspective. Based on these, this review describes four major materials, i.e., polymers, metals, ceramics, and biomaterials. The manufacturing process of 3D printing and 4D printing materials, their characteristics, applicable printing technologies, and clinical application scope are described in detail. Furthermore, the development of composite materials for 3D printing is the main focus of future research, as combining multiple materials can improve the materials' properties. Updates in material sciences play important roles in dentistry; hence, the emergence of newer materials are expected to promote further innovations in dentistry.
Collapse
Affiliation(s)
- HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| | - Xiaotong Xu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Xinyue Lu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Menghua Zhao
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Qi Jia
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Heng-Bo Jiang
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| |
Collapse
|
49
|
Edward J, Usha AM, Nair RU, Geetha NK. Patient-Specific Implants for Reconstruction and Functional Rehabilitation: the New Era of Management-a Case Report. J Maxillofac Oral Surg 2023; 22:161-164. [PMID: 37041940 PMCID: PMC10082866 DOI: 10.1007/s12663-023-01882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/23/2023] [Indexed: 04/13/2023] Open
Affiliation(s)
- Joseph Edward
- Department Of Oral and Maxillofacial Surgery, Azeezia College of Dental Science and Research, Diamond Hill, Meeyannoor PO, Kollam, 691537 India
| | - Arjun Madhu Usha
- Department Of Oral and Maxillofacial Surgery, Azeezia College of Dental Science and Research, Diamond Hill, Meeyannoor PO, Kollam, 691537 India
| | - Roopesh U. Nair
- Department Of Oral and Maxillofacial Surgery, Azeezia College of Dental Science and Research, Diamond Hill, Meeyannoor PO, Kollam, 691537 India
| | - Neethu Kumaran Geetha
- Department Of Oral and Maxillofacial Surgery, Azeezia College of Dental Science and Research, Diamond Hill, Meeyannoor PO, Kollam, 691537 India
| |
Collapse
|
50
|
Acharya A, Chodankar RN, Patil R, Patil AG. Assessment of knowledge, awareness, and practices toward the use of 3D printing in dentistry among dental practitioners and dental technicians: A cross-sectional study. J Oral Biol Craniofac Res 2023; 13:253-258. [PMID: 36818024 PMCID: PMC9930153 DOI: 10.1016/j.jobcr.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/03/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Background The applications and scope of digitization and technology in dentistry are becoming increasingly valuable right from clinical dentistry to research, student training, teaching, and laboratory techniques. Mastering 3D printing and its usage are essential for dental practitioners and dental technicians as it allows them to choose and necessarily know what is offered, as well as how to implement it in everyday practices thereby contributing to the betterment of the dental profession. The study aims to assess dental practitioners' and dental technicians' knowledge, understanding, and practices related to the use of 3D printing in dentistry. Methods A cross-sectional questionnaire-based study was done among dental practitioners and technicians in Karnataka, India who were given access to a self-explanatory questionnaire via Google link consisting of questions that evaluated their knowledge, awareness, and practices regarding 3D printing. The Chi-square test was used for statistical analysis. Results A total of 380 replies were obtained after the questionnaire was circulated. Awareness regarding the use of digital technology in dentistry was known by 98.9% of practitioners and 92.7% of technicians, of which we discovered that 9.28% of practitioners and 17.7% of technicians were unfamiliar with 3D printing, which was statistically significant (p = 0.0400*). 81.6% of practitioners consider 3D printing can be used to fabricate complex design prostheses. Conclusion The participants' understanding of digital dentistry and 3D printing is acceptable. The majority of dental professionals expressed an interest in adopting 3D printing and believe that there should be a forum for collecting and exchanging skills and knowledge about 3D printing.
Collapse
Affiliation(s)
- Aditya Acharya
- Department of Prosthodontics and Crown and Bridge, KAHER’ S KLE VK Institute of Dental Sciences, Belagavi, Karnataka, 590010, India
| | - Raisa N. Chodankar
- Department of Prosthodontics and Crown and Bridge, KAHER’ S KLE VK Institute of Dental Sciences, Belagavi, Karnataka, 590010, India
| | - Raghunath Patil
- Department of Prosthodontics and Crown and Bridge, KAHER’ S KLE VK Institute of Dental Sciences, Belagavi, Karnataka, 590010, India
| | - Anandkumar G. Patil
- Department of Prosthodontics and Crown and Bridge, KAHER’ S KLE VK Institute of Dental Sciences, Belagavi, Karnataka, 590010, India
| |
Collapse
|