1
|
Ahmadpour Z, Javadian S, Heidari Keleshteri F. Morphology-Dependent Corrosion Inhibition and Self-Healing Properties of Polypyrrole and Indigo Carmine Composites on Carbon Steel 1018 in a Saline Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27238-27252. [PMID: 39689232 DOI: 10.1021/acs.langmuir.4c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The aim of this research is to explore the effectiveness of epoxy-resin@polypyrole composites as a corrosion inhibitor when applied as a coating on carbon steel 1018 in a 3.5 wt % sodium chloride electrolyte solution. The anticorrosion properties of these composite coatings can be optimized by manipulating their morphology. To investigate how modifications in the structure of epoxy resin coatings impact their ability to inhibit corrosion, three distinct forms of polypyrrole nanoparticles/indigo carmine structures, including granular, rod-shaped, and spiral rods, were synthesized and incorporated into epoxy resin coatings for analysis. Various characterization techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR), and vibrating-sample magnetometer (VSM) analysis, were utilized to examine the structures of polymer nanoparticles. The FESEM images displayed that the indigo carmine concentration changes during micellar polymerization led to morphological changes in the polymer nanoparticles. Furthermore, electrochemical assessment methods such as Tafel analysis and electrochemical impedance spectroscopy (EIS) verified a reduction in corrosion current and enhancement in resistance due to the transformation of polymer nanoparticles from granular to spiral rods, leading to 99.99% corrosion inhibition. The corrosion rate of polymer nanoparticles varies significantly with their structure, exhibiting a rate of 1.9 × 10-6 for granular forms, 4.08 × 10-7 for rod-shaped structures, and 3.45 × 10-10 for spiral rods. In the next step, the self-healing properties of the scratched coating loaded by the spiral rod polymer nanoparticles were investigated by FESEM, UV-vis microscope images, energy-dispersive X-ray spectroscopy (EDX), EIS, and Tafel tests. The ability of polypyrrole and indigo carmine to inhibit corrosion, physically adhere to the metal surface, and create iron-indigo carmine complexes allows for the creation of a protective coating on carbon steel surfaces.
Collapse
Affiliation(s)
- Zahra Ahmadpour
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran 21, I.R. of Iran
| | - Soheila Javadian
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran 21, I.R. of Iran
| | - Fatemeh Heidari Keleshteri
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran 21, I.R. of Iran
| |
Collapse
|
2
|
El-Qarra LH, Cosottini N, Tangsombun C, Smith DK. Formulation and Release of Active Pharmaceutical Ingredients Using a Supramolecular Self-Healing Two-Component Gel. Chemistry 2024; 30:e202402530. [PMID: 39401090 DOI: 10.1002/chem.202402530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 11/15/2024]
Abstract
A two-component low-molecular-weight gelator (LMWG) formed from a modified amino acid and an aldehyde was formulated with active pharmaceutical ingredients (APIs). Basic APIs (propranolol, atropine) can be mixed with the LMWG prior to gel assembly while acidic APIs (naproxen, rosuvastatin) inhibit assembly by disrupting the LMWG imine bond and were loaded by diffusion after gel assembly. For diffusion-loaded gels, the API in the liquid-like phase was rapidly released, with the remainder, interacting with gel fibres, retained in the gel. Rosuvastatin release was particularly low with Saturation Transfer Difference (STD) NMR indicating interactions between the aromatic ring and the self-assembled gel network. Propranolol also interacted with the gel via its aromatic unit, and its release led to gel erosion. Using agarose as a polymer gelator additive reinforced the gel, restricting erosion. In contrast, atropine was readily released over a period of hours - it is primarily in the liquid-like phase with STD NMR indicating no interactions with the gel network. The atropine-loaded gel retained its thixotropic properties. Overall, APIs must be carefully chosen to optimise formulation/release. Of the APIs investigated, atropine has most potential for further development. Atropine has applications in treating myopia, and our results suggest potential ophthalmic applications of supramolecular gels.
Collapse
Affiliation(s)
- Lamisse H El-Qarra
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Niccolò Cosottini
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
3
|
Tripathi S, Dash M, Chakraborty R, Lukman HJ, Kumar P, Hassan S, Mehboob H, Singh H, Nanda HS. Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomater Sci 2024; 13:93-129. [PMID: 39535021 DOI: 10.1039/d4bm01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over eight million surgical procedures are conducted annually in the United Stats to address organ failure or tissue losses. In response to this pressing need, recent medical advancements have significantly improved patient outcomes, primarily through innovative reconstructive surgeries utilizing tissue grafting techniques. Despite tremendous efforts, repairing damaged tissues remains a major clinical challenge for bioengineers and clinicians. 3D bioprinting is an additive manufacturing technique that holds significant promise for creating intricately detailed constructs of tissues, thereby bridging the gap between engineered and actual tissue constructs. In contrast to non-biological printing, 3D bioprinting introduces added intricacies, including considerations for material selection, cell types, growth, and differentiation factors. However, technical challenges arise, particularly concerning the delicate nature of living cells in bioink for tissue construction and limited knowledge about the cell fate processes in such a complex biomechanical environment. A bioink must have appropriate viscoelastic and rheological properties to mimic the native tissue microenvironment and attain desired biomechanical properties. Hence, the properties of bioink play a vital role in the success of 3D bioprinted substitutes. This review comprehensively delves into the scientific aspects of tissue-centric or tissue-specific bioinks and sheds light on the current challenges of the translation of bioinks and bioprinting.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Ruchira Chakraborty
- Biodesign and Medical Device Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Harri Junaedi Lukman
- Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Prasoon Kumar
- Biodesign and Medical Device Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Centre (BTC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hassan Mehboob
- Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
- Terasaki Institute for Biomedical Innovation, 21100 Erwin, St Los Angeles, CA 91367, USA
| |
Collapse
|
4
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2024; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
5
|
Su X, Gu C, Wei Z, Sun Y, Zhu C, Chen X. Chitosan-Modified Hydrogel Microsphere Encapsulating Zinc-Doped Bioactive Glasses for Spinal Cord Injury Repair by Suppressing Inflammation and Promoting Angiogenesis. Adv Healthc Mater 2024:e2402129. [PMID: 39520381 DOI: 10.1002/adhm.202402129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a common nerve injury caused by external force, resulting in sensory and motor impairments. Previous studies demonstrated that inhibiting the neuroinflammation promoted SCI repair. However, these approaches are low efficient, and lack targeting specificity, and even require repeated and high doses of systemic administration. To address such issues, in the present study, chitosan-modified hydrogel microspheres encapsulating with zinc-doped bioactive glasses (CS-MG@Zn/BGs) is constructed for targeted repair of SCI. In vitro, the CS-MG@Zn/BGs effectively inhibited the acute inflammatory response initiated by microglia and promoted angiogenic activities. In vivo, CS-MG@Zn/BGs targeted the injured site, and attenuated neuroinflammation by inhibiting microglia infiltration and modulating microglia polarization toward M2 type. Furthermore, it facilitated vascular reconstruction, neuronal differentiation, axonal regeneration and remyelination at the injured site, and thereby promoted motor function recovery of SCI mice. The in vitro and in vivo results implied that CS-MG@Zn/BGs may be a promising alternative for the rehabilitation of SCI.
Collapse
Affiliation(s)
- Xinjin Su
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| | - Changjiang Gu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| | - Ziheng Wei
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| | - Yanqing Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| | - Chao Zhu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiongsheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| |
Collapse
|
6
|
Naghib SM, Matini A, Amiri S, Ahmadi B, Mozafari MR. Exploring the potential of polysaccharides-based injectable self-healing hydrogels for wound healing applications: A review. Int J Biol Macromol 2024; 282:137209. [PMID: 39505164 DOI: 10.1016/j.ijbiomac.2024.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In recent decades, significant advancements have been made in wound healing treatments, mainly due to the development of biopolymer-based hydrogels. These injectable self-healing hydrogels have attracted considerable interest because of their unique attributes, including reversible chemistry, injectability, and printability. Unlike traditional hydrogels, injectable polysaccharide-based self-healing hydrogels offer numerous benefits. They can be tailored to fit individual patients, significantly advancing personalized medicine. Upon injection, these hydrogels transform in situ into a substance that effectively covers the entire lesion in all three dimensions, reaching irregular and deep lesions. Injectable self-healing hydrogels also play a pivotal role in promoting tissue regeneration. Their diffusive and viscoelastic properties allow for the controlled delivery of cells or therapeutics in a spatiotemporal manner, provide mechanical support, and facilitate the local recruitment and modulation of host cells. Consequently, these hydrogels have revolutionized innovative approaches to tissue regeneration and are ideally suited for managing chronic wounds. This review paper presents a comprehensive classification of injectable self-healing hydrogels commonly used in chronic wound repair and provides a detailed analysis of the various applications of injectable self-healing hydrogels in treating chronic wounds, thereby illuminating this rapidly evolving field.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saba Amiri
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Bahar Ahmadi
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
7
|
Andreica BI, Mititelu-Tartau L, Rosca I, Pelin IM, Nicol E, Marin L. Biocompatible hydrogels based on quaternary ammonium salts of chitosan with high antimicrobial activity as biocidal agents for disinfection. Carbohydr Polym 2024; 342:122389. [PMID: 39048229 DOI: 10.1016/j.carbpol.2024.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
The paper reports new hydrogels based on quaternary ammonium salts of chitosan designed as biocidal products. The chitosan derivative was crosslinked with salicylaldehyde via reversible imine bonds and supramolecular self-assemble to give dynamic hydrogels which respond to environmental stimuli. The crosslinking mechanism was demonstrated by 1H NMR and FTIR spectroscopy, and X-ray diffraction and polarized light microscopy. The hydrogel nature, self-healing and thixotropy were proved by rheological investigation and visual observation, and their morphology was assessed by scanning electron microscopy. The relevant properties for application as biocidal products, such as swelling, dissolution, bioadhesiveness, antimicrobial activity and ex-vivo hemocompatibility and in vivo local toxicity and biocompatibility on experimental mice were measured and analyzed in relationship with the imination degree and the influence of each component. It was found that the hydrogels are superabsorbent, have good adhesivity to skin and various surfaces and antimicrobial activity against relevant gram-positive and gram-negative bacteria, while being hemocompatible and biocompatible. Besides, the hydrogels are easily biodegraded in soil. All these properties recommend the studied hydrogels as ecofriendly biocidal agents for living tissues and surfaces, but also open the perspectives of their use as platform for in vivo applications in tissue engineering, wound healing, or drug delivery systems.
Collapse
Affiliation(s)
| | | | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Irina Mihaela Pelin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans, France
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| |
Collapse
|
8
|
Zamani S, Rezaei Kolarijani N, Naeiji M, Vaez A, Maghsoodifar H, Sadeghi Douki SAH, Salehi M. Development of carboxymethyl cellulose/gelatin hydrogel loaded with Omega-3 for skin regeneration. J Biomater Appl 2024; 39:377-395. [PMID: 39049504 DOI: 10.1177/08853282241265769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.
Collapse
Affiliation(s)
- Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei Kolarijani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Naeiji
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasan Maghsoodifar
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
9
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
10
|
Sun S, Chen J. Recent Advances in Hydrogel-Based Biosensors for Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46988-47002. [PMID: 39190320 PMCID: PMC11403555 DOI: 10.1021/acsami.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Early cancer detection is crucial for effective treatment, but current methods have limitations. Novel biomaterials, such as hydrogels, offer promising alternatives for developing biosensors for cancer detection. Hydrogels are three-dimensional and cross-linked networks of hydrophilic polymers that have properties similar to biological tissues. They can be combined with various biosensors to achieve high sensitivity, specificity, and stability. This review summarizes the recent advances in hydrogel-based biosensors for cancer detection, their synthesis, their applications, and their challenges. It also discusses the implications and future directions of this emerging field.
Collapse
Affiliation(s)
- Shengwei Sun
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Jinju Chen
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
11
|
Wu H, Wang J, Fan W, Zhong Q, Xue R, Li S, Song Z, Tao Y. Eye of the future: Unlocking the potential utilization of hydrogels in intraocular lenses. Bioeng Transl Med 2024; 9:e10664. [PMID: 39553434 PMCID: PMC11561835 DOI: 10.1002/btm2.10664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 11/19/2024] Open
Abstract
Hydrogels are distinguished by their exceptional ability to absorb and retain large volumes of water within their complex three-dimensional polymer networks, which is advantageous for the development of intraocular lenses (IOLs). Their innate hydrophilicity offers an optimal substrate for the fabrication of IOLs that simulate the natural lens' accommodation, thereby reducing irritation and facilitating healing after surgery. The swelling and water retention characteristics of hydrogels contribute to their notable biocompatibility and versatile mechanical properties. However, the clinical application of hydrogels faces challenges, including managing potential adverse postimplantation effects. Rigorous research is essential to ascertain the safety and effectiveness of hydrogels. This review systematically examines the prospects and constraints of hydrogels as innovative materials for IOLs. Our comprehensive analysis examines their inherent properties, various classification strategies, cross-linking processes, and sensitivity to external stimuli. Additionally, we thoroughly evaluate their interactions with ocular tissues, underscoring the potential for hydrogels to be refined into seamless and biologically integrated visual aids. We also discuss the anticipated technological progress and clinical uses of hydrogels in IOL manufacturing. With ongoing technological advancements, the promise of hydrogels is poised to evolve from concept to clinical reality, marking a significant leap forward in ophthalmology characterized by improved patient comfort, enhanced functionality, and reliable safety.
Collapse
Affiliation(s)
- Hao Wu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Jiale Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Wenhui Fan
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Qi Zhong
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Rongyue Xue
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Siyu Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| |
Collapse
|
12
|
Alifah N, Palungan J, Ardayanti K, Ullah M, Nurkhasanah AN, Mustopa AZ, Lallo S, Agustina R, Yoo JW, Hasan N. Development of Clindamycin-Releasing Polyvinyl Alcohol Hydrogel with Self-Healing Property for the Effective Treatment of Biofilm-Infected Wounds. Gels 2024; 10:482. [PMID: 39057504 PMCID: PMC11275357 DOI: 10.3390/gels10070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Self-healing hydrogels have good mechanical strength, can endure greater external force, and have the ability to heal independently, resulting in a strong bond between the wound and the material. Bacterial biofilm infections are life-threatening. Clindamycin (Cly) can be produced in the form of a self-healing hydrogel preparation. It is noteworthy that the antibacterial self-healing hydrogels show great promise as a wound dressing for bacterial biofilm infection. In this study, we developed a polyvinyl alcohol/borax (PVA/B) self-healing hydrogel wound dressing that releases Cly. Four ratios of PVA, B, and Cly were used to make self-healing hydrogels: F1 (4%:0.8%:1%), F2 (4%:1.2%:1%), F3 (1.6%:1%), and F4 (4%:1.6%:0). The results showed that F4 had the best physicochemical properties, including a self-healing duration of 11.81 ± 0.34 min, swelling ratio of 85.99 ± 0.12%, pH value of 7.63 ± 0.32, and drug loading of 98.34 ± 11.47%. The B-O-C cross-linking between PVA and borax caused self-healing, according to FTIR spectra. The F4 formula had a more equal pore structure in the SEM image. The PVA/B-Cly self-healing hydrogel remained stable at 6 ± 2 °C for 28 days throughout the stability test. The Korsmeyer-Peppas model released Cly by Fickian diffusion. In biofilm-infected mouse wounds, PVA/B-Cly enhanced wound healing and re-epithelialization. Our results indicate that the PVA/B-Cly produced in this work has reliable physicochemical properties for biofilm-infected wound therapy.
Collapse
Affiliation(s)
- Nur Alifah
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Juliana Palungan
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Kadek Ardayanti
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (M.U.); (J.-W.Y.)
| | - Andi Nokhaidah Nurkhasanah
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia;
| | - Subehan Lallo
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Rina Agustina
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (M.U.); (J.-W.Y.)
| | - Nurhasni Hasan
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| |
Collapse
|
13
|
Rotaru-Zăvăleanu AD, Dinescu VC, Aldea M, Gresita A. Hydrogel-Based Therapies for Ischemic and Hemorrhagic Stroke: A Comprehensive Review. Gels 2024; 10:476. [PMID: 39057499 PMCID: PMC11276304 DOI: 10.3390/gels10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Stroke remains the second leading cause of death and a major cause of disability worldwide, significantly impacting individuals, families, and healthcare systems. This neurological emergency can be triggered by ischemic events, including small vessel arteriolosclerosis, cardioembolism, and large artery atherothromboembolism, as well as hemorrhagic incidents resulting from macrovascular lesions, venous sinus thrombosis, or vascular malformations, leading to significant neuronal damage. The resultant motor impairment, cognitive dysfunction, and emotional disturbances underscore the urgent need for effective therapeutic interventions. Recent advancements in biomaterials, particularly hydrogels, offer promising new avenues for stroke management. Hydrogels, composed of three-dimensional networks of hydrophilic polymers, are notable for their ability to absorb and retain substantial amounts of water. Commonly used polymers in hydrogel formulations include natural polymers like alginate, chitosan, and collagen, as well as synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide. Their customizable characteristics-such as their porosity, swelling behavior, mechanical strength, and degradation rates-make hydrogels ideal for biomedical applications, including drug delivery, cell delivery, tissue engineering, and the controlled release of therapeutic agents. This review comprehensively explores hydrogel-based approaches to both ischemic and hemorrhagic stroke therapy, elucidating the mechanisms by which hydrogels provide neuroprotection. It covers their application in drug delivery systems, their role in reducing inflammation and secondary injury, and their potential to support neurogenesis and angiogenesis. It also discusses current advancements in hydrogel technology and the significant challenges in translating these innovations from research into clinical practice. Additionally, it emphasizes the limited number of clinical trials utilizing hydrogel therapies for stroke and addresses the associated limitations and constraints, underscoring the need for further research in this field.
Collapse
Affiliation(s)
- Alexandra-Daniela Rotaru-Zăvăleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680, USA
| |
Collapse
|
14
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
15
|
Alshehri AM, Wilson OC. Biomimetic Hydrogel Strategies for Cancer Therapy. Gels 2024; 10:437. [PMID: 39057460 PMCID: PMC11275631 DOI: 10.3390/gels10070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Recent developments in biomimetic hydrogel research have expanded the scope of biomedical technologies that can be used to model, diagnose, and treat a wide range of medical conditions. Cancer presents one of the most intractable challenges in this arena due to the surreptitious mechanisms that it employs to evade detection and treatment. In order to address these challenges, biomimetic design principles can be adapted to beat cancer at its own game. Biomimetic design strategies are inspired by natural biological systems and offer promising opportunities for developing life-changing methods to model, detect, diagnose, treat, and cure various types of static and metastatic cancers. In particular, focusing on the cellular and subcellular phenomena that serve as fundamental drivers for the peculiar behavioral traits of cancer can provide rich insights into eradicating cancer in all of its manifestations. This review highlights promising developments in biomimetic nanocomposite hydrogels that contribute to cancer therapies via enhanced drug delivery strategies and modeling cancer mechanobiology phenomena in relation to metastasis and synergistic sensing systems. Creative efforts to amplify biomimetic design research to advance the development of more effective cancer therapies will be discussed in alignment with international collaborative goals to cure cancer.
Collapse
Affiliation(s)
- Awatef M. Alshehri
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
- Department of Nanomedicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdelaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia;
| | - Otto C. Wilson
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
16
|
Yu P, Wei L, Yang Z, Liu X, Ma H, Zhao J, Liu L, Wang L, Chen R, Cheng Y. Hydrogel Wound Dressings Accelerating Healing Process of Wounds in Movable Parts. Int J Mol Sci 2024; 25:6610. [PMID: 38928316 PMCID: PMC11203733 DOI: 10.3390/ijms25126610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ in the human body and requires proper dressing to facilitate healing after an injury. Wounds on movable parts, such as the elbow, knee, wrist, and neck, usually undergo delayed and inefficient healing due to frequent movements. To better accommodate movable wounds, a variety of functional hydrogels have been successfully developed and used as flexible wound dressings. On the one hand, the mechanical properties, such as adhesion, stretchability, and self-healing, make these hydrogels suitable for mobile wounds and promote the healing process; on the other hand, the bioactivities, such as antibacterial and antioxidant performance, could further accelerate the wound healing process. In this review, we focus on the recent advances in hydrogel-based movable wound dressings and propose the challenges and perspectives of such dressings.
Collapse
Affiliation(s)
- Pengcheng Yu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Liqi Wei
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Zhiqi Yang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Xin Liu
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Hongxia Ma
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Jian Zhao
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Lulu Liu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Lili Wang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Rui Chen
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Yan Cheng
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| |
Collapse
|
17
|
Khosravi Z, Kharaziha M, Goli R, Karimzadeh F. Antibacterial adhesive based on oxidized tannic acid-chitosan for rapid hemostasis. Carbohydr Polym 2024; 333:121973. [PMID: 38494226 DOI: 10.1016/j.carbpol.2024.121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
Currently, bacterial infections and bleeding interfere with wound healing, and multifunctional hydrogels with appropriate blood homeostasis, skin adhesion, and antibacterial activity are desirable. In this study, chitosan-based hydrogels were synthesized using oxidized tannic acid (OTA) and Fe3+ as cross-linkers (CS-OTA-Fe) by forming covalent, non-covalent, and metal coordination bonds between Fe3+ and OTA. Our results demonstrated that CS-OTA-Fe hydrogels showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus)and Gram-negative bacteria (Escherichia coli), low hemolysis rate (< 2 %), rapid blood clotting ability, in vitro (< 2 min), and in vivo (90 s) in mouse liver bleeding. Additionally, increasing the chitosan concentration from 3 wt% to 4.5 wt% enhanced cross-linking in the network, leading to a significant improvement in the strength (from 106 ± 8 kPa to 168 ± 12 kPa) and compressive modulus (from 50 ± 9 kPa to 102 ± 14 kPa) of hydrogels. Moreover, CS-OTA-Fe hydrogels revealed significant adhesive strength (87 ± 8 kPa) to the cow's skin tissue and cytocompatibility against L929 fibroblasts. Overall, multifunctional CS-OTA-Fe hydrogels with tunable mechanical properties, excellent tissue adhesive, self-healing ability, good cytocompatibility, and fast hemostasis and antibacterial properties could be promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Z Khosravi
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - R Goli
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - F Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| |
Collapse
|
18
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
19
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
20
|
Martorana A, Lenzuni M, Contardi M, Palumbo FS, Cataldo S, Pettignano A, Catania V, Schillaci D, Summa M, Athanassiou A, Fiorica C, Bertorelli R, Pitarresi G. Schiff Base-Based Hydrogel Embedded with In Situ Generated Silver Nanoparticles Capped by a Hyaluronic Acid-Diethylenetriamine Derivative for Wound Healing Application. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603548 DOI: 10.1021/acsami.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.
Collapse
Affiliation(s)
- Annalisa Martorana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Martina Lenzuni
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - Fabio S Palumbo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Cataldo
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Alberto Pettignano
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Valentina Catania
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Calogero Fiorica
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanna Pitarresi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
21
|
Taylor L. Self-healing hydrogels for enhancing chemotherapy drug efficacy: Advancements in anti-sarcoma and carcinoma therapies and clinical trial feasibility. CANCER PATHOGENESIS AND THERAPY 2024; 2:132-134. [PMID: 38601480 PMCID: PMC11002744 DOI: 10.1016/j.cpt.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 04/12/2024]
Abstract
•Site-specific administration is key for optimizing anticancer drug administration; self-healing hydrogels may allow this at reasonable costs and reproducibility.•Self-healing hydrogels have several real-world therapeutic applications, including drug administration.•Self-healing hydrogels are yet to be utilized for chemotherapy drug administration in clinical trials.•Clinical research on using self-healing hydrogels in anticancer therapeutics is feasible and valid compared to other advances in anticancer drug administration.
Collapse
Affiliation(s)
- Luc Taylor
- Cerebrovascular Health, Exercise, and Environmental Research Sciences (CHEERS) Laboratory, Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
22
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
23
|
Chandrasekar J, Venkatesan M, Sun TW, Hsu YC, Huang YH, Chen WW, Chen MH, Tsai ML, Chen JY, Lin JH, Zhou Y, Kuo CC. Recent progress in self-healable energy harvesting and storage devices - a future direction for reliable and safe electronics. MATERIALS HORIZONS 2024; 11:1395-1413. [PMID: 38282534 DOI: 10.1039/d3mh01519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Electronic devices with multiple features bring in comfort to the way we live. However, repeated use causes physical as well as chemical degradation reducing their lifetime. The self-healing ability is the most crucial property of natural systems for survival in unexpected situations and variable environments. However, this self-repair property is not possessed by the conventional electronic devices designed today. To expand their lifetime and make them reliable by restoring their mechanical, functional, and electrical properties, self-healing materials are a great go-to option to create robust devices. In this review the intriguing self-healing polymers and fascinating mechanism of self-healable energy harvesting devices such as triboelectric nanogenerators (TENG) and storage devices like supercapacitors and batteries from the aspect of electrodes and electrolytes in the past five years are reviewed. The current challenges, strategies, and perspectives for a smart and sustainable future are also discussed.
Collapse
Affiliation(s)
- Jayashree Chandrasekar
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Manikandan Venkatesan
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Ting-Wang Sun
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Yung-Chi Hsu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hang Huang
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Wen Chen
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Mei-Hsin Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Meng-Lin Tsai
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jung-Yao Chen
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Varma RS, Thakur VK. Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture. NANO-MICRO LETTERS 2024; 16:147. [PMID: 38457088 PMCID: PMC10923760 DOI: 10.1007/s40820-024-01348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers. In this context, renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production. Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features. These biomaterials have complex hierarchical structures, great stability, adjustable mechanical strength, stimuli-responsiveness, and self-healing attributes. Functional molecules may be added to their flexible structure, for enabling novel agricultural uses. This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production, soil health, and resource efficiency. Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals, bioactive agents, and biostimulators as they enhance nutrient absorption, moisture retention, and root growth. Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture. Despite their potential, further studies are warranted to understand and optimize their usage in agricultural domain. This effort seeks to bridge the knowledge gap by investigating their applications, challenges, and future prospects in the agricultural sector. Through experimental investigations and theoretical modeling, this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture, ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural Collage (SRUC), Edinburgh, EH9 3JG, UK.
| |
Collapse
|
25
|
Zhao Z, Liu J, Wu M, Yao X, Wang H, Liu X, He Z, Song X. A Soft, Adhesive Self-Healing Naked-Eye Strain/Stress Visualization Patch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307582. [PMID: 37781979 DOI: 10.1002/adma.202307582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Learning about the strain/stress distribution in a material is essential to achieve its mechanical stability and proper functionality. Conventional techniques such as universal testing machines only apply to static samples with standardized geometry in laboratory environment. Soft mechanical sensors based on stretchable conductors, carbon-filled composites, or conductive gels possess better adaptability, but still face challenges from complicated fabrication process, dependence on extra readout device, and limited strain/stress mapping ability. Inspired by the camouflage mechanism of cuttlefish and chameleons, here an innovative responsive hydrogel containing light-scattering "mechano-iridophores" is developed. Force induced reversible phase separation manipulates the dynamic generation of mechano-iridophores, serving as optical indicators of local deformation. Patch-shaped mechanical sensors made from the responsive hydrogel feature fast response time (<0.4 s), high spatial resolution (≈100 µm), and wide dynamic ranges (e.g., 10-150% strain). The intrinsic adhesiveness and self-healing material capability of sensing patches also ensure their excellent applicability and robustness. This combination of chemical and optical properties allows strain/stress distributions in target samples to be directly identified by naked eyes or smartphone apps, which is not yet achieved. The great advantages above are ideal for developing the next-generation mechanical sensors toward material studies, damage diagnosis, risk prediction, and smart devices.
Collapse
Affiliation(s)
- Zhi Zhao
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Junjie Liu
- Department of Engineering Mechanics, Beijing University of Technology, Beijing, 100124, China
| | - Mengfei Wu
- Department of Engineering Mechanics, Beijing University of Technology, Beijing, 100124, China
| | - Xuan Yao
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Haibin Wang
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xuemei Liu
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zhibin He
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaoyan Song
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
26
|
D’Altri G, Yeasmin L, Di Matteo V, Scurti S, Giovagnoli A, Di Filippo MF, Gualandi I, Cassani MC, Caretti D, Panzavolta S, Scavetta E, Rea M, Ballarin B. Preparation and Characterization of Self-Healing PVA-H 2SO 4 Hydrogel for Flexible Energy Storage. ACS OMEGA 2024; 9:6391-6402. [PMID: 38371784 PMCID: PMC10870281 DOI: 10.1021/acsomega.3c05392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
In the past decade, hydrogels have attracted growing interest for emerging applications in flexible electronic devices, human-machine interactions, energy supply, or energy storage. Developing a multifunctional gel architecture with superior ionic conductivity and good mechanical flexibility is a bottleneck to overcome. Herein, poly(vinyl alcohol)/sulfuric acid (PVA-H2SO4) hydrogels were prepared via a freeze-thaw method. With the aim of tuning the formulation in view of a possible application in energy storage, the effects of different combinations in terms of the molecular weight (MW) of PVA and PVA-H2SO4 weight ratio were investigated. Moreover, exploiting the self-healing properties of these hydrogels and the easy possibility of functionalizing them, i.e., introducing a conducting polymer such as poly(2-acrylamido-2-methyl-1-propane) sulfonic acid doped polyaniline (PANI_PAMPSA), a sandwiched all-in-one double-layer hydrogel (electrode/electrolyte configuration) was prepared (PVA-H2SO4-PANI_PAMPSA/PVA-H2SO4). Results showed that the water content is independent of the PVA amount and MW; the polymer concentration has a significant effect on the formation of crystalline domains and therefore on swelling degree, whereas the cross-linking degree depends on the MW. The PVA MW has the maximum effect on the swelling percentage normalized with respect to the polymer fraction and the tensile properties of the hydrogel. The assembled all-in-one electrode/electrolyte shows promising ionic conductivity (439.7 mS cm-1) and specific capacitance performance (0.297 mF cm-2 at a current density of 0.025 mA cm-2), as well as excellent flexibility and considerable self-healing properties. These results will promote the development of self-healing symmetrical supercapacitors for storage devices in wearable electronics.
Collapse
Affiliation(s)
- Giada D’Altri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
| | - Lamyea Yeasmin
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
| | - Valentina Di Matteo
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
| | - Stefano Scurti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
| | - Angelica Giovagnoli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
| | | | - Isacco Gualandi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
- Center
for Industrial Research−Advanced Applications in Mechanical
Engineering and Materials Technology—CIRI MAM, University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
- Center
for Industrial Research−Advanced Applications in Mechanical
Engineering and Materials Technology—CIRI MAM, University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy
- Consorzio
INSTM, Via G. Giusti,
9, 50121 Firenze, Italy
| | - Daniele Caretti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
- Center
for Industrial Research−Advanced Applications in Mechanical
Engineering and Materials Technology—CIRI MAM, University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy
| | - Silvia Panzavolta
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, I-40126 Bologna, Italy
| | - Erika Scavetta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
- Consorzio
INSTM, Via G. Giusti,
9, 50121 Firenze, Italy
| | - Mariangela Rea
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, I-40126 Bologna, Italy
| | - Barbara Ballarin
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, I-40136 Bologna, Italy
- Center
for Industrial Research−Advanced Applications in Mechanical
Engineering and Materials Technology—CIRI MAM, University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy
- Center
for Industrial Research−Fonti Rinnovabili, Ambiente, Mare e
Energia—CIRI FRAME, University of
Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy
- Consorzio
INSTM, Via G. Giusti,
9, 50121 Firenze, Italy
| |
Collapse
|
27
|
Ungureanu C, Răileanu S, Zgârian R, Tihan G, Burnei C. State-of-the-Art Advances and Current Applications of Gel-Based Membranes. Gels 2024; 10:39. [PMID: 38247761 PMCID: PMC10815837 DOI: 10.3390/gels10010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/09/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gel-based membranes, a fusion of polymer networks and liquid components, have emerged as versatile tools in a variety of technological domains thanks to their unique structural and functional attributes. Historically rooted in basic filtration tasks, recent advancements in synthetic strategies have increased the mechanical strength, selectivity, and longevity of these membranes. This review summarizes their evolution, emphasizing breakthroughs that have positioned them at the forefront of cutting-edge applications. They have the potential for desalination and pollutant removal in water treatment processes, delivering efficiency that often surpasses conventional counterparts. The biomedical field has embraced them for drug delivery and tissue engineering, capitalizing on their biocompatibility and tunable properties. Additionally, their pivotal role in energy storage as gel electrolytes in batteries and fuel cells underscores their adaptability. However, despite monumental progress in gel-based membrane research, challenges persist, particularly in scalability and long-term stability. This synthesis provides an overview of the state-of-the-art applications of gel-based membranes and discusses potential strategies to overcome current limitations, laying the foundation for future innovations in this dynamic field.
Collapse
Affiliation(s)
- Camelia Ungureanu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Silviu Răileanu
- Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Science, The National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenţei 313 Street, 060042 Bucharest, Romania;
| | - Roxana Zgârian
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Grațiela Tihan
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Cristian Burnei
- Clinical Department of Orthopedics and Traumatology II, Clinical Emergency Hospital, Calea Floreasca 8, 014461 Bucharest, Romania;
| |
Collapse
|
28
|
Nasra S, Patel M, Shukla H, Bhatt M, Kumar A. Functional hydrogel-based wound dressings: A review on biocompatibility and therapeutic efficacy. Life Sci 2023; 334:122232. [PMID: 37918626 DOI: 10.1016/j.lfs.2023.122232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Chronic wounds, burns, and surgical incisions represent critical healthcare challenges that significantly impact patient quality of life and strain healthcare resources. In response to these pressing needs, the field of wound healing has witnessed a radical advancement with the emergence of functional hydrogel-based dressings. This review article underscores the severity and importance of this transformative study in the domain of wound healing. The hydrogel matrix offers a moist and supportive environment that facilitates cellular migration, proliferation, and tissue regeneration, vital for efficient wound closure. Their conformable nature ensures patient comfort, reducing pain and uneasiness during dressing changes, particularly in chronic wounds where frequent interventions are required. Beyond their structural merits, functional hydrogel dressings possess the capability of incorporating bioactive molecules such as growth factors and antimicrobial agents. This facilitates targeted and sustained delivery of therapeutics directly to the wound site, addressing the multifactorial nature of chronic wounds and enhancing the healing trajectory. The integration of advanced nanotechnology has propelled the design of hydrogel dressings with enhanced mechanical strength and controlled drug release profiles, amplifying their therapeutic potential. In conclusion, the significance of this study lies in its ability to revolutionize wound healing practices and positively impact the lives of countless individuals suffering from chronic wounds and burns. As this transformative technology gains momentum, it holds the promise of addressing a major healthcare burden worldwide, thus heralding a new era in wound care management.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Milonee Patel
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Haly Shukla
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mahek Bhatt
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
29
|
Selvam A, Majood M, Chaurasia R, Rupesh, Singh A, Dey T, Agrawal O, Verma YK, Mukherjee M. Injectable organo-hydrogels influenced by click chemistry as a paramount stratagem in the conveyor belt of pharmaceutical revolution. J Mater Chem B 2023; 11:10761-10777. [PMID: 37807713 DOI: 10.1039/d3tb01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The field of injectable hydrogels has demonstrated a paramount headway in the myriad of biomedical applications and paved a path toward clinical advancements. The innate superiority of hydrogels emerging from organic constitution has exhibited dominance in overcoming the bottlenecks associated with inorganic-based hydrogels in the biological milieu. Inorganic hydrogels demonstrate various disadvantages, including limited biocompatibility, degradability, a cumbersome synthesis process, high cost, and ecotoxicity. The excellent biocompatibility, eco-friendliness, and manufacturing convenience of organo-hydrogels have demonstrated to be promising in therapizing biomedical complexities with low toxicity and augmented bioavailability. This report manifests the realization of biomimetic organo-hydrogels with the development of bioresponsive and self-healing injectable organo-hydrogels in the emerging pharmaceutical revolution. Furthermore, the influence of click chemistry in this regime as a backbone in the pharmaceutical conveyor belt has been suggested to scale up production. Moreover, we propose an avant-garde design stratagem of developing a hyaluronic acid (HA)-based injectable organo-hydrogel via click chemistry to be realized for its pharmaceutical edge. Ultimately, injectable organo-hydrogels that materialize from academia or industry are required to follow the standard set of rules established by global governing bodies, which has been delineated to comprehend their marketability. Thence, this perspective narrates the development of injectable organo-hydrogels via click chemistry as a prospective elixir to have in the arsenal of pharmaceuticals.
Collapse
Affiliation(s)
- Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Rupesh
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Akanksha Singh
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Tapan Dey
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Yogesh Kumar Verma
- Stem Cell & Tissue Engineering Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi, 110054, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
30
|
Torres JE, Meng F, Bhattacharya S, Buno KP, Ahmadzadegan A, Madduri S, Babiak PM, Vlachos PP, Solorio L, Yeo Y, Liu JC. Interpenetrating Networks of Collagen and Hyaluronic Acid That Serve as In Vitro Tissue Models for Assessing Macromolecular Transport. Biomacromolecules 2023; 24:4718-4730. [PMID: 37651737 DOI: 10.1021/acs.biomac.3c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
High-fidelity preclinical in vitro tissue models can reduce the failure rate of drugs entering clinical trials. Collagen and hyaluronic acid (HA) are major components of the extracellular matrix of many native tissues and affect therapeutic macromolecule diffusion and recovery through tissues. Although collagen and HA are commonly used in tissue engineering, the physical and mechanical properties of these materials are variable and depend highly on processing conditions. In this study, HA was chemically modified and crosslinked via hydrazone bonds to form interpenetrating networks of crosslinked HA (HAX) with collagen (Col). These networks enabled a wide range of mechanical properties, including stiffness and swellability, and microstructures, such as pore morphology and size, that can better recapitulate diverse tissues. We utilized these interpenetrating ColHAX hydrogels as in vitro tissue models to examine macromolecular transport and recovery for early-stage drug screening. Hydrogel formulations with varying collagen and HAX concentrations imparted different gel properties based on the ratio of collagen to HAX. These gels were stable and swelled up to 170% of their original mass, and the storage moduli of the ColHAX gels increased over an order of magnitude by increasing collagen and HA concentration. Interestingly, when HAX concentration was constant and collagen concentration increased, both the pore size and spatial colocalization of collagen and HA increased. HA in the system dominated the ζ-potentials of the gels. The hydrogel and macromolecule properties impacted the mass transport and recovery of lysozyme, β-lactoglobulin, and bovine serum albumin (BSA) from the ColHAX gels─large molecules were largely impacted by mesh size, whereas small molecules were influenced primarily by electrostatic forces. Overall, the tunable properties demonstrated by the ColHAX hydrogels can be used to mimic different tissues for early-stage assays to understand drug transport and its relationship to matrix properties.
Collapse
Affiliation(s)
- Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sayantan Bhattacharya
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kevin P Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Adib Ahmadzadegan
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sathvik Madduri
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
32
|
Feng L, Wang L, Ma Y, Duan W, Martin-Saldaña S, Zhu Y, Zhang X, Zhu B, Li C, Hu S, Bao M, Wang T, Zhu Y, Yang F, Bu Y. Engineering self-healing adhesive hydrogels with antioxidant properties for intrauterine adhesion prevention. Bioact Mater 2023; 27:82-97. [PMID: 37006827 PMCID: PMC10063385 DOI: 10.1016/j.bioactmat.2023.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
Intrauterine adhesion (IUA) is the fibrosis within the uterine cavity. It is the second most common cause of female infertility, significantly affecting women's physical and mental health. Current treatment strategies fail to provide a satisfactory therapeutic outcome for IUA patients, leaving an enormous challenge for reproductive science. A self-healing adhesive hydrogel with antioxidant properties will be highly helpful in IUA prevention. In this work, we prepare a series of self-healing hydrogels (P10G15, P10G20, and P10G25) with antioxidant and adhesive properties. Those hydrogels exhibit good self-healing properties and can adapt themselves to different structures. They possess good injectability and fit the shape of the human uterus. Moreover, the hydrogels exhibit good tissue adhesiveness, which is desirable for stable retention and therapeutic efficacy. The in vitro experiments using P10G20 show that the adhesive effectively scavenges ABTS+, DPPH, and hydroxyl radicals, rescuing cells from oxidative stress. In addition, P10G20 offers good hemocompatibility and in vitro and in vivo biocompatibility. Furthermore, P10G20 lowers down the in vivo oxidative stress and prevents IUA with less fibrotic tissue and better endometrial regeneration in the animal model. It can effectively downregulate fibrosis-related transforming growth factor beta 1 (TGF-β1) and vascular endothelial growth factor (VEGF). Altogether, these adhesives may be a good alternative for the clinical treatment of intrauterine adhesion.
Collapse
Affiliation(s)
- Luyao Feng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liqun Wang
- Department of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yao Ma
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wanglin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Ye Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xianpeng Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bin Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chaowei Li
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shibo Hu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mingjie Bao
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Ting Wang
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yuan Zhu
- Department of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
- Corresponding author. Department of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China.
| | - Fei Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Corresponding author. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Corresponding author.
| |
Collapse
|
33
|
Luo Y, Pauer W, Luinstra GA. Tough, Stretchable, and Thermoresponsive Smart Hydrogels. Gels 2023; 9:695. [PMID: 37754376 PMCID: PMC10528277 DOI: 10.3390/gels9090695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Self-healing, thermoresponsive hydrogels with a triple network (TN) were obtained by copolymerizing N-isopropyl acryl amide (NiPAAm) with polyvinyl alkohol (PVA) functionalized with methacrylic acid and N,N'-methylene bis(acryl amide) crosslinker in the presence of low amounts (<1 wt.%) of tannic acid (TA). The final gels were obtained by crystalizing the PVA in a freeze-thaw procedure. XRD, DCS, and SEM imaging indicate that the crystallinity is lower and the size of the PVA crystals is smaller at higher TA concentrations. A gel with 0.5 wt.% TA has an elongation at a break of 880% at a tension of 1.39 MPa. It has the best self-healing efficiency of 81% after cutting and losing the chemical network. Step-sweep strain experiments show that the gel has thixotropic properties, which are related to the TA/PVA part of the triple network. The low amount of TA leaves the gel with good thermal responsiveness (equilibrium swelling ratio of 13.3). Swelling-deswelling loop tests show enhanced dimensional robustness of the hydrogel, with a substantial constancy after two cycles.
Collapse
Affiliation(s)
| | | | - Gerrit A. Luinstra
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, 20146 Hamburg, Germany; (Y.L.); (W.P.)
| |
Collapse
|
34
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
35
|
Xu J, Hsu SH. Self-healing hydrogel as an injectable implant: translation in brain diseases. J Biomed Sci 2023; 30:43. [PMID: 37340481 DOI: 10.1186/s12929-023-00939-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Tissue engineering biomaterials are aimed to mimic natural tissue and promote new tissue formation for the treatment of impaired or diseased tissues. Highly porous biomaterial scaffolds are often used to carry cells or drugs to regenerate tissue-like structures. Meanwhile, self-healing hydrogel as a category of smart soft hydrogel with the ability to automatically repair its own structure after damage has been developed for various applications through designs of dynamic crosslinking networks. Due to flexibility, biocompatibility, and ease of functionalization, self-healing hydrogel has great potential in regenerative medicine, especially in restoring the structure and function of impaired neural tissue. Recent researchers have developed self-healing hydrogel as drug/cell carriers or tissue support matrices for targeted injection via minimally invasive surgery, which has become a promising strategy in treating brain diseases. In this review, the development history of self-healing hydrogel for biomedical applications and the design strategies according to different crosslinking (gel formation) mechanisms are summarized. The current therapeutic progress of self-healing hydrogels for brain diseases is described as well, with an emphasis on the potential therapeutic applications validated by in vivo experiments. The most recent aspect as well as the design rationale of self-healing hydrogel for different brain diseases is also addressed.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 350401, Taiwan, Republic of China.
| |
Collapse
|
36
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
37
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
38
|
Shen Z, Zhang C, Wang T, Xu J. Advances in Functional Hydrogel Wound Dressings: A Review. Polymers (Basel) 2023; 15:polym15092000. [PMID: 37177148 PMCID: PMC10180742 DOI: 10.3390/polym15092000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most advanced, promising, and commercially viable research issues in the world of hydrogel dressing is gaining functionality to achieve improved therapeutic impact or even intelligent wound repair. In addition to the merits of ordinary hydrogel dressings, functional hydrogel dressings can adjust their chemical/physical properties to satisfy different wound types, carry out the corresponding reactions to actively create a healing environment conducive to wound repair, and can also control drug release to provide a long-lasting benefit. Although a lot of in-depth research has been conducted over the last few decades, very few studies have been properly summarized. In order to give researchers a basic blueprint for designing functional hydrogel dressings and to motivate them to develop ever-more intelligent wound dressings, we summarized the development of functional hydrogel dressings in recent years, as well as the current situation and future trends, in light of their preparation mechanisms and functional effects.
Collapse
Affiliation(s)
- Zihao Shen
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Chenrui Zhang
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Ting Wang
- Aulin College, Northeast Forestry University, Harbin 150040, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Juan Xu
- National Research Institute for Family Planning, Haidian District, No. 12, Da Hui Si Road, Beijing 100081, China
| |
Collapse
|
39
|
Aunina K, Ramata-Stunda A, Kovrlija I, Tracuma E, Merijs-Meri R, Nikolajeva V, Loca D. Exploring the Interplay of Antimicrobial Properties and Cellular Response in Physically Crosslinked Hyaluronic Acid/ε-Polylysine Hydrogels. Polymers (Basel) 2023; 15:polym15081915. [PMID: 37112064 PMCID: PMC10141856 DOI: 10.3390/polym15081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The reduction of tissue cytotoxicity and the improvement of cell viability are of utmost significance, particularly in the realm of green chemistry. Despite substantial progress, the threat of local infections remains a concern. Therefore, hydrogel systems that provide mechanical support and a harmonious balance between antimicrobial efficacy and cell viability are greatly needed. Our study explores the preparation of physically crosslinked, injectable, and antimicrobial hydrogels using biocompatible hyaluronic acid (HA) and antimicrobial ε-polylysine (ε-PL) in different weight ratios (10 wt% to 90 wt%). The crosslinking was achieved by forming a polyelectrolyte complex between HA and ε-PL. The influence of HA content on the resulting HA/ε-PL hydrogel physicochemical, mechanical, morphological, rheological, and antimicrobial properties was evaluated, followed by an inspection of their in vitro cytotoxicity and hemocompatibility. Within the study, injectable, self-healing HA/ε-PL hydrogels were developed. All hydrogels showed antimicrobial properties against S. aureus, P. aeruginosa, E. coli, and C. albicans, where HA/ε-PL 30:70 (wt%) composition reached nearly 100% killing efficiency. The antimicrobial activity was directly proportional to ε-PL content in the HA/ε-PL hydrogels. A decrease in ε-PL content led to a reduction of antimicrobial efficacy against S. aureus and C. albicans. Conversely, this decrease in ε-PL content in HA/ε-PL hydrogels was favourable for Balb/c 3T3 cells, leading to the cell viability of 152.57% for HA/ε-PL 70:30 and 142.67% for HA/ε-PL 80:20. The obtained results provide essential insights into the composition of the appropriate hydrogel systems able to provide not only mechanical support but also the antibacterial effect, which can offer opportunities for developing new, patient-safe, and environmentally friendly biomaterials.
Collapse
Affiliation(s)
- Kristine Aunina
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Anna Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Ilijana Kovrlija
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Eliza Tracuma
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Remo Merijs-Meri
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Vizma Nikolajeva
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| |
Collapse
|
40
|
Zarepour A, Ahmadi S, Rabiee N, Zarrabi A, Iravani S. Self-Healing MXene- and Graphene-Based Composites: Properties and Applications. NANO-MICRO LETTERS 2023; 15:100. [PMID: 37052734 PMCID: PMC10102289 DOI: 10.1007/s40820-023-01074-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Today, self-healing graphene- and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications. Different studies have focused on designing novel self-healing graphene- and MXene-based composites with enhanced sensitivity, stretchability, and flexibility as well as improved electrical conductivity, healing efficacy, mechanical properties, and energy conversion efficacy. These composites with self-healing properties can be employed in the field of wearable sensors, supercapacitors, anticorrosive coatings, electromagnetic interference shielding, electronic-skin, soft robotics, etc. However, it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability, suitable adhesiveness, ideal durability, high stretchability, immediate self-healing responsibility, and outstanding electromagnetic features. Besides, optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated. MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area, which are important to evolve biomedical and sensing applications. However, flexibility and stretchability are important criteria that need to be improved for their future applications. Herein, the most recent advancements pertaining to the applications and properties of self-healing graphene- and MXene-based composites are deliberated, focusing on crucial challenges and future perspectives.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia.
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Türkiye.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Esfahān, 81746-73461, Iran.
| |
Collapse
|
41
|
Tadesse MG, Lübben JF. Recent Progress in Self-Healable Hydrogel-Based Electroluminescent Devices: A Comprehensive Review. Gels 2023; 9:gels9030250. [PMID: 36975699 PMCID: PMC10048157 DOI: 10.3390/gels9030250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Flexible electronics have gained significant research attention in recent years due to their potential applications as smart and functional materials. Typically, electroluminescence devices produced by hydrogel-based materials are among the most notable flexible electronics. With their excellent flexibility and their remarkable electrical, adaptable mechanical and self-healing properties, functional hydrogels offer a wealth of insights and opportunities for the fabrication of electroluminescent devices that can be easily integrated into wearable electronics for various applications. Various strategies have been developed and adapted to obtain functional hydrogels, and at the same time, high-performance electroluminescent devices have been fabricated based on these functional hydrogels. This review provides a comprehensive overview of various functional hydrogels that have been used for the development of electroluminescent devices. It also highlights some challenges and future research prospects for hydrogel-based electroluminescent devices.
Collapse
Affiliation(s)
- Melkie Getnet Tadesse
- Sustainable Engineering (STE), Albstadt-Sigmaringen University, 72458 Albstadt, Germany
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 1037, Ethiopia
| | - Jörn Felix Lübben
- Sustainable Engineering (STE), Albstadt-Sigmaringen University, 72458 Albstadt, Germany
| |
Collapse
|
42
|
Self-Healing Hydrogels Fabricated by Introducing Antibacterial Long-Chain Alkyl Quaternary Ammonium Salt into Marine-Derived Polysaccharides for Wound Healing. Polymers (Basel) 2023; 15:polym15061467. [PMID: 36987247 PMCID: PMC10051109 DOI: 10.3390/polym15061467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The development of hydrogels as wound dressings has gained considerable attention due to their promising ability to promote wound healing. However, in many cases of clinical relevance, repeated bacterial infection, which might obstruct wound healing, usually occurs due to the lack of antibacterial properties of these hydrogels. In this study, we fabricated a new class of self-healing hydrogel with enhanced antibacterial properties based on dodecyl quaternary ammonium salt (Q12)-modified carboxymethyl chitosan (Q12-CMC), aldehyde group- modified sodium alginate (ASA), Fe3+ via Schiff bases and coordination bonds (QAF hydrogels). The dynamic Schiff bases and coordination interactions conferred excellent self-healing abilities to the hydrogels, while the incorporation of dodecyl quaternary ammonium salt gave the hydrogels superior antibacterial properties. Additionally, the hydrogels displayed ideal hemocompatibility and cytocompatibility, crucial for wound healing. Our full-thickness skin wound studies demonstrated that QAF hydrogels could result in rapid wound healing with reduced inflammatory response, increased collagen disposition and improved vascularization. We anticipate that the proposed hydrogels, possessing both antibacterial and self-healing properties, will emerge as a highly desirable material for skin wound repair.
Collapse
|
43
|
Nie L, Wei Q, Li J, Deng Y, He X, Gao X, Ma X, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Jing S. Fabrication and desired properties of conductive hydrogel dressings for wound healing. RSC Adv 2023; 13:8502-8522. [PMID: 36926300 PMCID: PMC10012873 DOI: 10.1039/d2ra07195a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Conductive hydrogels are platforms recognized as constituting promising materials for tissue engineering applications. This is because such conductive hydrogels are characterized by the inherent conductivity properties while retaining favorable biocompatibility and mechanical properties. These conductive hydrogels can be particularly useful in enhancing wound healing since their favorable conductivity can promote the transport of essential ions for wound healing via the imposition of a so-called transepithelial potential. Other valuable properties of these conductive hydrogels, such as wound monitoring, stimuli-response etc., are also discussed in this study. Crucially, the properties of conductive hydrogels, such as 3D printability and monitoring properties, suggest the possibility of its use as an alternative wound dressing to traditional dressings such as bandages. This review, therefore, seeks to comprehensively explore the functionality of conductive hydrogels in wound healing, types of conductive hydrogels and their preparation strategies and crucial properties of hydrogels. This review will also assess the limitations of conductive hydrogels and future perspectives, with an emphasis on the development trend for conductive hydrogel uses in wound dressing fabrication for subsequent clinical applications.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Yaling Deng
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology Nanjing 211169 P.R. China
| | - Xiaorui He
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Xinyue Gao
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Xiao Ma
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Shengli Jing
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| |
Collapse
|
44
|
Merino-Gómez M, Gil J, Perez RA, Godoy-Gallardo M. Polydopamine Incorporation Enhances Cell Differentiation and Antibacterial Properties of 3D-Printed Guanosine-Borate Hydrogels for Functional Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24044224. [PMID: 36835636 PMCID: PMC9964593 DOI: 10.3390/ijms24044224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Tissue engineering focuses on the development of materials as biosubstitutes that can be used to regenerate, repair, or replace damaged tissues. Alongside this, 3D printing has emerged as a promising technique for producing implants tailored to specific defects, which in turn increased the demand for new inks and bioinks. Especially supramolecular hydrogels based on nucleosides such as guanosine have gained increasing attention due to their biocompatibility, good mechanical characteristics, tunable and reversible properties, and intrinsic self-healing capabilities. However, most existing formulations exhibit insufficient stability, biological activity, or printability. To address these limitations, we incorporated polydopamine (PDA) into guanosine-borate (GB) hydrogels and developed a PGB hydrogel with maximal PDA incorporation and good thixotropic and printability qualities. The resulting PGB hydrogels exhibited a well-defined nanofibrillar network, and we found that PDA incorporation increased the hydrogel's osteogenic activity while having no negative effect on mammalian cell survival or migration. In contrast, antimicrobial activity was observed against the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Thus, our findings suggest that our PGB hydrogel represents a significantly improved candidate as a 3D-printed scaffold capable of sustaining living cells, which may be further functionalized by incorporating other bioactive molecules for enhanced tissue integration.
Collapse
Affiliation(s)
- Maria Merino-Gómez
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Department of Dentistry, Faculty of Dentistry, International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Correspondence: (R.A.P.); (M.G.-G.); Tel.: +34-935-042-000 (ext. 5826) (R.A.P. & M.G.-G.)
| | - Maria Godoy-Gallardo
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Correspondence: (R.A.P.); (M.G.-G.); Tel.: +34-935-042-000 (ext. 5826) (R.A.P. & M.G.-G.)
| |
Collapse
|
45
|
Zhu W, Zhang J, Wei Z, Zhang B, Weng X. Advances and Progress in Self-Healing Hydrogel and Its Application in Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031215. [PMID: 36770226 PMCID: PMC9920416 DOI: 10.3390/ma16031215] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 06/02/2023]
Abstract
A hydrogel is a three-dimensional structure that holds plenty of water, but brittleness largely limits its application. Self-healing hydrogels, a new type of hydrogel that can be repaired by itself after external damage, have exhibited better fatigue resistance, reusability, hydrophilicity, and responsiveness to environmental stimuli. The past decade has seen rapid progress in self-healing hydrogels. Self-healing hydrogels can automatically self-repair after external damage. Different strategies have been proposed, including dynamic covalent bonds and reversible noncovalent interactions. Compared to traditional hydrogels, self-healing gels have better durability, responsiveness, and plasticity. These features allow the hydrogel to survive in harsh environments or even to be injected as a drug carrier. Here, we summarize the common strategies for designing self-healing hydrogels and their potential applications in clinical practice.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jinyi Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhanqi Wei
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Baozhong Zhang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
46
|
Morariu S. Advances in the Design of Phenylboronic Acid-Based Glucose-Sensitive Hydrogels. Polymers (Basel) 2023; 15:polym15030582. [PMID: 36771883 PMCID: PMC9919422 DOI: 10.3390/polym15030582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Diabetes, characterized by an uncontrolled blood glucose level, is the main cause of blindness, heart attack, stroke, and lower limb amputation. Glucose-sensitive hydrogels able to release hypoglycemic drugs (such as insulin) as a response to the increase of the glucose level are of interest for researchers, considering the large number of diabetes patients in the world (537 million in 2021, reported by the International Diabetes Federation). Considering the current growth, it is estimated that, up to 2045, the number of people with diabetes will increase to 783 million. The present work reviews the recent developments on the hydrogels based on phenylboronic acid and its derivatives, with sensitivity to glucose, which can be suitable candidates for the design of insulin delivery systems. After a brief presentation of the dynamic covalent bonds, the design of glucose-responsive hydrogels, the mechanism by which the hypoglycemic drug release is achieved, and their self-healing capacity are presented and discussed. Finally, the conclusions and the main aspects that should be addressed in future research are shown.
Collapse
Affiliation(s)
- Simona Morariu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
47
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:677-717. [DOI: 10.1007/978-3-031-09710-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
48
|
Saghir S, Imenes K, Schiavone G. Integration of hydrogels in microfabrication processes for bioelectronic medicine: Progress and outlook. Front Bioeng Biotechnol 2023; 11:1150147. [PMID: 37034261 PMCID: PMC10079906 DOI: 10.3389/fbioe.2023.1150147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Recent research aiming at the development of electroceuticals for the treatment of medical conditions such as degenerative diseases, cardiac arrhythmia and chronic pain, has given rise to microfabricated implanted bioelectronic devices capable of interacting with host biological tissues in synergistic modalities. Owing to their multimodal affinity to biological tissues, hydrogels have emerged as promising interface materials for bioelectronic devices. Here, we review the state-of-the-art and forefront in the techniques used by research groups for the integration of hydrogels into the microfabrication processes of bioelectronic devices, and present the manufacturability challenges to unlock their further clinical deployment.
Collapse
|
49
|
Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers (Basel) 2022; 14:polym14214539. [PMID: 36365532 PMCID: PMC9654449 DOI: 10.3390/polym14214539] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polymeric hydrogels have drawn considerable attention as a biomedical material for their unique mechanical and chemical properties, which are very similar to natural tissues. Among the conventional hydrogel materials, self-healing hydrogels (SHH) are showing their promise in biomedical applications in tissue engineering, wound healing, and drug delivery. Additionally, their responses can be controlled via external stimuli (e.g., pH, temperature, pressure, or radiation). Identifying a suitable combination of viscous and elastic materials, lipophilicity and biocompatibility are crucial challenges in the development of SHH. Furthermore, the trade-off relation between the healing performance and the mechanical toughness also limits their real-time applications. Additionally, short-term and long-term effects of many SHH in the in vivo model are yet to be reported. This review will discuss the mechanism of various SHH, their recent advancements, and their challenges in tissue engineering, wound healing, and drug delivery.
Collapse
|
50
|
Han Y, Cao Y, Lei H. Dynamic Covalent Hydrogels: Strong yet Dynamic. Gels 2022; 8:577. [PMID: 36135289 PMCID: PMC9498565 DOI: 10.3390/gels8090577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels are crosslinked polymer networks with time-dependent mechanical response. The overall mechanical properties are correlated with the dynamics of the crosslinks. Generally, hydrogels crosslinked by permanent chemical crosslinks are strong but static, while hydrogels crosslinked by physical interactions are weak but dynamic. It is highly desirable to create synthetic hydrogels that possess strong mechanical stability yet remain dynamic for various applications, such as drug delivery cargos, tissue engineering scaffolds, and shape-memory materials. Recently, with the introduction of dynamic covalent chemistry, the seemingly conflicting mechanical properties, i.e., stability and dynamics, have been successfully combined in the same hydrogels. Dynamic covalent bonds are mechanically stable yet still capable of exchanging, dissociating, or switching in response to external stimuli, empowering the hydrogels with self-healing properties, injectability and suitability for postprocessing and additive manufacturing. Here in this review, we first summarize the common dynamic covalent bonds used in hydrogel networks based on various chemical reaction mechanisms and the mechanical strength of these bonds at the single molecule level. Next, we discuss how dynamic covalent chemistry makes hydrogel materials more dynamic from the materials perspective. Furthermore, we highlight the challenges and future perspectives of dynamic covalent hydrogels.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|