1
|
Zhou Z, Li C, Zeng Y, Huang T, Jiang X, Yu DG, Wang K. Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. Int J Biol Macromol 2024; 282:136688. [PMID: 39447788 DOI: 10.1016/j.ijbiomac.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
2
|
Bianchini Silva M, Costa UO, Mattoso LHC, Monteiro SN, de Souza ML, Vitorazi L. Magnetic Nanoparticles in Biopolymer Fibers: Fabrication Techniques and Characterization Methods. Polymers (Basel) 2024; 16:2805. [PMID: 39408514 PMCID: PMC11478581 DOI: 10.3390/polym16192805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Hybrid nanocomposites combining biopolymer fibers incorporated with nanoparticles (NPs) have received increasing attention due to their remarkable characteristics. Inorganic NPs are typically chosen for their properties, such as magnetism and thermal or electrical conductivity, for example. Meanwhile, the biopolymer fiber component is a backbone, and could act as a support structure for the NPs. This shift towards biopolymers over traditional synthetic polymers is motivated by their sustainability, compatibility with biological systems, non-toxic nature, and natural decomposition. This study employed the solution blow spinning (SBS) method to obtain a nanocomposite comprising poly(vinyl pyrrolidone), PVA, and gelatin biodegradable polymer fibers incorporated with magnetic iron oxide nanoparticles coated with poly(acrylic acid), PAA2k, coded as γ-Fe2O3-NPs-PAA2k. The fiber production process entailed a preliminary investigation to determine suitable solvents, polymer concentrations, and spinning parameters. γ-Fe2O3-NPs were synthesized via chemical co-precipitation as maghemite and coated with PAA2k through the precipitation-redispersion protocol in order to prepare γ-Fe2O3-NPs-PAA2k. Biopolymeric fibers containing coated NPs with sub-micrometer diameters were obtained, with NP concentrations ranging from 1.0 to 1.7% wt. The synthesized NPs underwent characterization via dynamic light scattering, zeta potential analysis, and infrared spectroscopy, while the biopolymer fibers were characterized through scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Overall, this study demonstrates the successful implementation of SBS for producing biopolymeric fibers incorporating iron oxide NPs, where the amalgamation of materials demonstrated superior thermal behavior to the plain polymers. The thorough characterization of the NPs and fibers provided valuable insights into their properties, paving the way for their potential applications in various fields such as biomedical engineering, environmental remediation, and functional materials.
Collapse
Affiliation(s)
- Mariana Bianchini Silva
- Graduate Program in Metallurgical Engineering (PPGEM), EEIMVR, Fluminense Federal University, Avenida dos Trabalhadores, 420, Volta Redonda 27225-125, RJ, Brazil; (M.B.S.); (U.O.C.)
- Graduate Program in Chemistry, Institute of Chemistry (IQ), University of Campinas, Rua Josué de Castro, s/n, Cidade Universitária, Campinas 13083-970, SP, Brazil
| | - Ulisses Oliveira Costa
- Graduate Program in Metallurgical Engineering (PPGEM), EEIMVR, Fluminense Federal University, Avenida dos Trabalhadores, 420, Volta Redonda 27225-125, RJ, Brazil; (M.B.S.); (U.O.C.)
| | - Luiz Henrique Capparelli Mattoso
- Embrapa Instrumentation, National Laboratory of Nanotechnology for Agribusiness/LNNA, Rua 15 de Novembro, 1452, Centro, São Carlos 13560-970, SP, Brazil;
| | - Sergio Neves Monteiro
- Department of Engineering and Materials Science, Military Institute of Engineering (IME), Rio de Janeiro 22290-270, RJ, Brazil;
| | | | - Letícia Vitorazi
- Graduate Program in Metallurgical Engineering (PPGEM), EEIMVR, Fluminense Federal University, Avenida dos Trabalhadores, 420, Volta Redonda 27225-125, RJ, Brazil; (M.B.S.); (U.O.C.)
| |
Collapse
|
3
|
Chaka KT, Cao K, Tesfaye T, Qin X. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-43. [PMID: 39259663 DOI: 10.1080/09205063.2024.2399909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
Collapse
Affiliation(s)
- Kilole Tesfaye Chaka
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Kai Cao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Tamrat Tesfaye
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
4
|
Ma M, Jin C, Yao S, Li N, Zhou H, Dai Z. CNN-Optimized Electrospun TPE/PVDF Nanofiber Membranes for Enhanced Temperature and Pressure Sensing. Polymers (Basel) 2024; 16:2423. [PMID: 39274057 PMCID: PMC11397329 DOI: 10.3390/polym16172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Temperature and pressure sensors currently encounter challenges such as slow response times, large sizes, and insufficient sensitivity. To address these issues, we developed tetraphenylethylene (TPE)-doped polyvinylidene fluoride (PVDF) nanofiber membranes using electrospinning, with process parameters optimized through a convolutional neural network (CNN). We systematically analyzed the effects of PVDF concentration, spinning voltage, tip-to-collector distance, and flow rate on fiber morphology and diameter. The CNN model achieved high predictive accuracy, resulting in uniform and smooth nanofibers under optimal conditions. Incorporating TPE enhanced the hydrophobicity and mechanical properties of the nanofibers. Additionally, the fluorescent properties of the TPE-doped nanofibers remained stable under UV exposure and exhibited significant linear responses to temperature and pressure variations. The nanofibers demonstrated a temperature sensitivity of -0.976 gray value/°C and pressure sensitivity with an increase in fluorescence intensity from 537 a.u. to 649 a.u. under 600 g pressure. These findings highlight the potential of TPE-doped PVDF nanofiber membranes for advanced temperature and pressure sensing applications.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Sciences, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Ce Jin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Shufang Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Huchen Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
5
|
Zhang Z, Zhang Y, Guo Y, Qian C, Chen K, Fang S, Qiu A, Zhong L, Zhang J, He R. Preparing gelatin-containing polycaprolactone / polylactic acid nanofibrous membranes for periodontal tissue regeneration using side-by-side electrospinning technology. J Biomater Appl 2024; 39:48-57. [PMID: 38659361 DOI: 10.1177/08853282241248778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrospinning technology has recently attracted increased attention in the biomedical field, and preparing various cellulose nanofibril membranes for periodontal tissue regeneration has unique advantages. However, the characteristics of using a single material tend to make it challenging to satisfy the requirements for a periodontal barrier film, and the production of composite fibrous membranes frequently impacts the quality of the final fiber membrane due to the influence of miscibility between different materials. In this study, nanofibrous membranes composed of polylactic acid (PLA) and polycaprolactone (PCL) fibers were fabricated using side-by-side electrospinning. Different concentrations of gelatin were added to the fiber membranes to improve their hydrophilic properties. The morphological structure of the different films as well as their composition, wettability and mechanical characteristics were examined. The results show that PCL/PLA dual-fibrous composite membranes with an appropriate amount of gelatin ensures sufficient mechanical strength while obtaining improved hydrophilic properties. The viability of L929 fibroblasts was evaluated using CCK-8 assays, and cell adhesion on the scaffolds was confirmed by scanning electron microscopy and by immunofluorescence assays. The results demonstrated that none of the fibrous membranes were toxic to cells and the addition of gelatin improved cell adhesion to those membranes. Based on our findings, adding 30% gelatin to the membrane may be the most appropriate content for periodontal tissue regeneration, considering the scaffold's mechanical qualities, hydrophilic properties and biocompatibility. In addition, the PCL-gelatin/PLA-gelatin dual-fibrous membranes prepared using side-by-side electrospinning technology have potential applications for tissue engineering.
Collapse
Affiliation(s)
- Zhuochen Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Ying Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Yabin Guo
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Cheng Qian
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Kailun Chen
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Sheng Fang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Anna Qiu
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Rui He
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Yalcinkaya B, Buzgo M. Optimization of Electrospun TORLON ® 4000 Polyamide-Imide (PAI) Nanofibers: Bridging the Gap to Industrial-Scale Production. Polymers (Basel) 2024; 16:1516. [PMID: 38891462 PMCID: PMC11174607 DOI: 10.3390/polym16111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Polyamide-imide (PAI) is an exceptional polymer known for its outstanding mechanical, chemical, and thermal resistance. This makes it an ideal choice for applications that require excellent durability, such as those in the aerospace sector, bearings, gears, and the oil and gas industry. The current study explores the optimization of TORLON® 4000 T HV polyamide-imide nanofibers utilizing needleless electrospinning devices, ranging from laboratory-scale to industrial-scale production, for the first time. The PAI polymer has been dispersed in several solvent systems at varying concentrations. The diameter of the electrospun PAI nanofibers ranged from 65.8 nanometers to 1.52 μm. Their filtering efficiency was above 90% for particles with a size of 0.3 microns. The TGA results proved that PAI nanofibers have excellent resistance to high temperatures up to 450 °C. The PAI nanofibers are ideal for hot air intake filtration and fire-fighter personal protection equipment applications.
Collapse
Affiliation(s)
- Baturalp Yalcinkaya
- Respilon Membranes s.r.o., Nové sady 988/2, Staré Brno, 602 00 Brno, Czech Republic;
| | | |
Collapse
|
7
|
Masoumi Godgaz S, Asefnejad A, Bahrami SH. Fabrication of PEGylated SPIONs-Loaded Niosome for Codelivery of Paclitaxel and Trastuzumab for Breast Cancer Treatment: In Vivo Study. ACS APPLIED BIO MATERIALS 2024; 7:2951-2965. [PMID: 38602218 DOI: 10.1021/acsabm.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
There is a growing appeal for engineering drug delivery systems for controlled and local drug delivery. Conjugation of antibodies on the nanocarriers for targeted chemotherapeutic drugs has always been one of the main techniques. This work aims to develop a polycaprolactone/chitosan electrospun mat incorporated with paclitaxel/Fe3O4-loaded niosomes (SPNs) decorated with trastuzumab (TbNs) for cancer therapy. SPNs and TbNs were analyzed by DLS, zeta potential, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Fabricated mats with distinct concentrations of TbNs were classified into four groups (G0 (0), G1 (1), G2 (2.5), and G3 (5%)) and were studied physicochemically, mechanically, and biologically. Paclitaxel release was also studied for 7 days under an alternative magnetic field (AMF). The optimized mat was nominated for an in vivo study to evaluate its tumor growth inhibition. Based on the results, the TbNs had a spherical core and shell morphology with a smooth surface. The zeta potential and the mean size of TbNs were equal to -14.7 mV and 221 nm. TbNs did not affect the morphology and quality of nanofibers, but in general, the presence of TbNs increased the elastic modulus, water uptake, and degradation. Regarding the release study, AMF showed a significant increase in accelerating paclitaxel release from mats, and most releases belonged to the mat with 5% of TbNs. Results from the in vivo study showed the effective and synergistic effects of AMF on drug release and significant tumor growth inhibition. To summarize, the proposed nanocarrier under AMF can be a good candidate for cancer therapy.
Collapse
Affiliation(s)
- Saeideh Masoumi Godgaz
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855,Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855,Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran15875-4413,Iran
| |
Collapse
|
8
|
Sedláková V, Mourcos S, Pupkaitė J, Lunn Y, Visintini S, Guzman-Soto I, Ruel M, Suuronen E, Alarcon EI. Biomaterials for direct cardiac repair-A rapid scoping review 2012-2022. Acta Biomater 2024; 180:61-81. [PMID: 38588997 DOI: 10.1016/j.actbio.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
A plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials. This rapid scoping review aims to analyze literature available from 2012 to 2022 with a focus on clinical trials using biomaterials for direct cardiac repair, i.e., where the intended function of the biomaterial is to enhance the repair of the endocardium, myocardium, epicardium or pericardium. This review included neither biomaterials related to stents and valve repair nor biomaterials serving as vehicles for the delivery of drugs. Surprisingly, the literature search revealed that only 8 different biomaterials mentioned in 23 different studies out of 7038 documents (journal articles, conference abstracts or clinical trial entries) have been tested in clinical trials since 2012. All of these, intended to treat various forms of ischaemic heart disease (heart failure, myocardial infarction), were of natural origin and most used direct injections as their delivery method. This review thus reveals notable gaps between groups of biomaterials tested pre-clinically and clinically. STATEMENT OF SIGNIFICANCE: Rapid scoping review of clinical application of biomaterials for cardiac repair. 7038 documents screened; 23 studies mention 8 different biomaterials only. Biomaterials for repair of endocardium, myocardium, epicardium or pericardium. Only 8 different biomaterials entered clinical trials in the past 10 years. All of the clinically translated biomaterials were of natural origin.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 625 00, Czechia.
| | - Sophia Mourcos
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biomedical Science, Faculty of Science, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, Ontario K1N 9A7, Canada
| | - Justina Pupkaitė
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Yvonne Lunn
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sarah Visintini
- Berkman Library, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Irene Guzman-Soto
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Erik Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
9
|
El-Hussein IG. Effect of Adding Different Concentrations of Silver Nanoparticles on Flexural Strength and Microhardness of Different Denture Base Materials. J Contemp Dent Pract 2024; 25:417-423. [PMID: 39364839 DOI: 10.5005/jp-journals-10024-3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
AIM This study aimed to evaluate the effect of adding different concentrations of silver nanoparticles (AgNPs) on the flexural strength and microhardness of various denture base materials. MATERIALS AND METHODS For this study, a total of 60 specimens were used and divided into equal groups. The first group consisted of heat-cured acrylic resin (Vertex-Germany), while the second group consisted of thermoplastic resin (Breflex 2nd edition, Germany). The samples were created using a split brass mold with dimensions of 65 × 10 × 2.5 mm, in accordance with the specifications of the American Dental Association (specifically No. 12 for flexural and microhardness). Following this, the samples were divided into three groups (A, B, and C) based on different concentrations of AgNPs (0, 2, and 5%). The flexural and microhardness of the samples were assessed using a universal testing machine and the Vickers hardness test, respectively. The data were gathered, organized, and analyzed using statistical methods. RESULTS The flexural strength findings showed a significant difference between the two groups. Also, there was a considerable decrease in the average value of the acrylic group as the concentrations of AgNPs rose, while the flexural strength of the thermoplastic group notably improved. Regarding microhardness, the results showed a significant difference between the two groups. It showed that the mean value of both groups increased with increasing concentrations of AgNPs. CONCLUSION Within the limitations of laboratory testing conditions of this study, it was discovered that AgNPs negatively impact the flexural strength of acrylic resins. Furthermore, an increase in the concentration of AgNPs was found to be directly related to the flexural strength of thermoplastic resin and the microhardness of both groups. CLINICAL SIGNIFICANCE The concentration of AgNPs has a significant impact on certain mechanical properties of denture base materials, but it is important to consider their potential toxicity. How to cite this article: El-Hussein IG. Effect of Adding Different Concentrations of Silver Nanoparticles on Flexural Strength and Microhardness of Different Denture Base Materials. J Contemp Dent Pract 2024;25(5):417-423.
Collapse
Affiliation(s)
- Ibrahim Gamal El-Hussein
- Department of Removable Prosthodontics, Faculty of Dentistry, Sinai University (Kantara), Cairo, Egypt, Phone: +01156674887, e-mail:
| |
Collapse
|
10
|
Mohammadzadeh M, Zarei M, Abbasi H, Webster TJ, Beheshtizadeh N. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms. J Biol Eng 2024; 18:29. [PMID: 38649969 PMCID: PMC11036660 DOI: 10.1186/s13036-024-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
There is an increasing demand for innovative strategies that effectively promote osteogenesis and enhance bone regeneration. The critical process of bone regeneration involves the transformation of mesenchymal stromal cells into osteoblasts and the subsequent mineralization of the extracellular matrix, making up the complex mechanism of osteogenesis. Icariin's diverse pharmacological properties, such as anti-inflammatory, anti-oxidant, and osteogenic effects, have attracted considerable attention in biomedical research. Icariin, known for its ability to stimulate bone formation, has been found to encourage the transformation of mesenchymal stromal cells into osteoblasts and improve the subsequent process of mineralization. Several studies have demonstrated the osteogenic effects of icariin, which can be attributed to its hormone-like function. It has been found to induce the expression of BMP-2 and BMP-4 mRNAs in osteoblasts and significantly upregulate Osx at low doses. Additionally, icariin promotes bone formation by stimulating the expression of pre-osteoblastic genes like Osx, RUNX2, and collagen type I. However, icariin needs to be effectively delivered to bone to perform such promising functions.Encapsulating icariin within nanoplatforms holds significant promise for promoting osteogenesis and bone regeneration through a range of intricate biological effects. When encapsulated in nanofibers or nanoparticles, icariin exerts its effects directly at the cellular level. Recalling that inflammation is a critical factor influencing bone regeneration, icariin's anti-inflammatory effects can be harnessed and amplified when encapsulated in nanoplatforms. Also, while cell adhesion and cell migration are pivotal stages of tissue regeneration, icariin-loaded nanoplatforms contribute to these processes by providing a supportive matrix for cellular attachment and movement. This review comprehensively discusses icariin-loaded nanoplatforms used for bone regeneration and osteogenesis, further presenting where the field needs to go before icariin can be used clinically.
Collapse
Affiliation(s)
- Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Zarei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Abbasi
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
11
|
Dubey N, Chandra S. Miniaturized Biosensors Based on Lanthanide-Doped Upconversion Polymeric Nanofibers. BIOSENSORS 2024; 14:116. [PMID: 38534223 DOI: 10.3390/bios14030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Electrospun nanofibers possess a large surface area and a three-dimensional porous network that makes them a perfect material for embedding functional nanoparticles for diverse applications. Herein, we report the trends in embedding upconversion nanoparticles (UCNPs) in polymeric nanofibers for making an advanced miniaturized (bio)analytical device. UCNPs have the benefits of several optical properties, like near-infrared excitation, anti-Stokes emission over a wide range from UV to NIR, narrow emission bands, an extended lifespan, and photostability. The luminescence of UCNPs can be regulated using different lanthanide elements and can be used for sensing and tracking physical processes in biological systems. We foresee that a UCNP-based nanofiber sensing platform will open opportunities in developing cost-effective, miniaturized, portable and user-friendly point-of-care sensing device for monitoring (bio)analytical processes. Major challenges in developing microfluidic (bio)analytical systems based on UCNPs@nanofibers have been reviewed and presented.
Collapse
Affiliation(s)
- Neha Dubey
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Sudeshna Chandra
- Hanse-Wissenschaftskolleg-Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| |
Collapse
|
12
|
Voorhis C, González-Benito J, Kramar A. "Nano in Nano"-Incorporation of ZnO Nanoparticles into Cellulose Acetate-Poly(Ethylene Oxide) Composite Nanofibers Using Solution Blow Spinning. Polymers (Basel) 2024; 16:341. [PMID: 38337230 DOI: 10.3390/polym16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this work, the preparation and characterization of composites from cellulose acetate (CA)-poly(ethylene oxide) (PEO) nanofibers (NFs) with incorporated zinc oxide nanoparticles (ZnO-NPs) using solution blow spinning (SBS) is reported. CA-PEO nanofibers were produced by spinning solution that contained a higher CA-to-PEO ratio and lower (equal) CA-to-PEO ratio. Nanoparticles were added to comprise 2.5% and 5% of the solution, calculated on the weight of the polymers. To have better control of the SBS processing conditions, characterization of the spinning suspensions is carried out, which reveals a decrease in viscosity (two- to eightfold) upon the addition of NPs. It is observed that this variation of viscosity does not significantly affect the mean diameters of nanofibers, but does affect the mode of the nanofibers' size distribution, whereby lower viscosity provides thinner fibers. FESEM-EDS confirms ZnO NP encapsulation into nanofibers, specifically into the CA component based on UV-vis studies, since the release of ZnO is not detected for up to 5 days in deionized water, despite the significant swelling of the material and accompanied dissolution of water-soluble PEO. Upon the dissolution of CA nanofibers into acetone, immediate release of ZnO is detected, both visually and by spectrometer. ATR-FTIR studies reveal interaction of ZnO with the CA component of composite nanofibers. As ZnO nanoparticles are known for their bioactivity, it can be concluded that these CA-PEO-ZnO composites are good candidates to be used in filtration membranes, with no loss of incorporated ZnO NPs or their release into an environment.
Collapse
Affiliation(s)
- Caroline Voorhis
- School of Science, Marist College, 3399 North Road, Poughkeepsie, NY 12601, USA
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
13
|
Erdoğan N, Şen Karaman D, Yıldız Ö, Özdemir GD, Ercan UK. Mesoporous silica nanoparticles accommodating electrospun nanofibers as implantable local drug delivery system processed by cold atmospheric plasma and spin coating approaches. Biomed Mater 2024; 19:025015. [PMID: 38181435 DOI: 10.1088/1748-605x/ad1bb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Nanofibers (NF) and nanoparticles are attractive for drug delivery to improve the drug bioavailability and administration. Easy manipulation of NF as macroscopic bulk material give rise to potential usages as implantable local drug delivery systems (LLDS) to overcome the failures of systemic drug delivery systems such as unmet personalized needs, side effects, suboptimal dosage. In this study, poly(ethylene glycol) polyethyleneimine (mPEG:PEI) copolymer blended polyϵ-caprolactone NFs, NFblendaccommodating mesoporous silica nanoparticles (MSN) as the implantable LLDS was achieved by employing spin coating and cold atmospheric plasma (CAP) as the post-process for accommodation on NFblend. The macroporous morphology, mechanical properties, wettability, andin vitrocytocompatibility of NFblendensured their potential as an implantable LLDS and superior features compared to neat NF. The electron microscopy images affirmed of NFblendrandom fiber (average diameter 832 ± 321 nm) alignments and accessible macropores before and after MSN@Cur accommodation. The blending of polymers improved the elongation of NF and the tensile strength which is attributed as beneficial for implantable LLDS. CAP treatment could significantly improve the wettability of NF observed by the contact angle changes from ∼126° to ∼50° which is critical for the accommodation of curcumin-loaded MSN (MSN@Cur) andin vitrocytocompatibility of NF. The combined CAP and spin coating as the post-processes was employed for accommodating MSN@Cur on NFblendwithout interfering with the electrospinning process. The post-processing aided fine-tuning of curcumin dosing (∼3 µg to ∼15 µg) per dose unit and sustained zero-order drug release profile could be achieved. Introducing of MSN@Cur to cells via LLDS promoted the cell proliferation compared to MSN@Cur suspension treatments and assigned as the elimination of adverse effects by nanocarriers by the dosage form integration. All in all, NFblend-MSN@Cur was shown to have high potential to be employed as an implantable LLDS. To the best of our knowledge, this is the first study in which mPEG:PEI copolymer blend NF are united with CAP and spin coating for accommodating nano-drug carriers, which allows for NF both tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Nursu Erdoğan
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Didem Şen Karaman
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| | - Özlem Yıldız
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Gizem Dilara Özdemir
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
14
|
Renkler NZ, Scialla S, Russo T, D’Amora U, Cruz-Maya I, De Santis R, Guarino V. Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain. Pharmaceutics 2024; 16:134. [PMID: 38276504 PMCID: PMC10819193 DOI: 10.3390/pharmaceutics16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales-from several hundred microns down to tens of nanometers-for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches-based on EFDTs-for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions.
Collapse
Affiliation(s)
- Nergis Zeynep Renkler
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| |
Collapse
|
15
|
Zaiki Y, Iskandar A, Wong TW. Functionalized chitosan for cancer nano drug delivery. Biotechnol Adv 2023; 67:108200. [PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
Collapse
Affiliation(s)
- Yazid Zaiki
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Danchuk O, Levchenko A, da Silva Mesquita R, Danchuk V, Cengiz S, Cengiz M, Grafov A. Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine. Pharmaceutics 2023; 15:2326. [PMID: 37765294 PMCID: PMC10536669 DOI: 10.3390/pharmaceutics15092326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.
Collapse
Affiliation(s)
- Oleksii Danchuk
- Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences, 24 Mayatska Road, Khlibodarske Village, 67667 Odesa, Ukraine;
| | - Anna Levchenko
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum 25240, Turkey;
| | | | - Vyacheslav Danchuk
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, Mashynobudivna Str. 7, Chabany Village, 08162 Kyiv, Ukraine;
| | - Seyda Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Mehmet Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| |
Collapse
|
17
|
Stoica (Oprea) AE, Bîrcă AC, Mihaiescu DE, Grumezescu AM, Ficai A, Herman H, Cornel B, Roșu M, Gharbia S, Holban AM, Vasile BȘ, Andronescu E, Hermenean AO. Biocompatibility and Antimicrobial Profile of Acid Usnic-Loaded Electrospun Recycled Polyethylene Terephthalate (PET)-Magnetite Nanofibers. Polymers (Basel) 2023; 15:3282. [PMID: 37571176 PMCID: PMC10422401 DOI: 10.3390/polym15153282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The highest amount of the world's polyethylene terephthalate (PET) is designated for fiber production (more than 60%) and food packaging (30%) and it is one of the major polluting polymers. Although there is a great interest in recycling PET-based materials, a large amount of unrecycled material is derived mostly from the food and textile industries. The aim of this study was to obtain and characterize nanostructured membranes with fibrillar consistency based on recycled PET and nanoparticles (Fe3O4@UA) using the electrospinning technique. The obtained fibers limit microbial colonization and the development of biofilms. Such fibers could significantly impact modern food packaging and the design of improved textile fibers with antimicrobial effects and good biocompatibility. In conclusion, this study suggests an alternative for PET recycling and further applies it in the development of antimicrobial biomaterials.
Collapse
Affiliation(s)
- Alexandra Elena Stoica (Oprea)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
| | - Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
- ICUB—Research Institute of the University of Bucharest, 060102 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Hildegard Herman
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (S.G.); (A.O.H.)
| | - Baltă Cornel
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (S.G.); (A.O.H.)
| | - Marcel Roșu
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (S.G.); (A.O.H.)
| | - Sami Gharbia
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (S.G.); (A.O.H.)
| | - Alina Maria Holban
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
- ICUB—Research Institute of the University of Bucharest, 060102 Bucharest, Romania
| | - Anca Oana Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (S.G.); (A.O.H.)
| |
Collapse
|
18
|
Ma M, Zhou H, Gao S, Li N, Guo W, Dai Z. Analysis and Prediction of Electrospun Nanofiber Diameter Based on Artificial Neural Network. Polymers (Basel) 2023; 15:2813. [PMID: 37447459 DOI: 10.3390/polym15132813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Electrospinning technology enables the fabrication of electrospun nanofibers with exceptional properties, which are highly influenced by their diameter. This work focuses on the electrospinning of polyacrylonitrile (PAN) to obtain PAN nanofibers under different processing conditions. The morphology and size of the resulting PAN nanofibers were characterized using scanning electron microscopy (SEM), and the corresponding diameter data were measured using Nano Measure 1.2 software. The processing conditions and corresponding nanofiber diameter data were then inputted into an artificial neural network (ANN) to establish the relationship between the electrospinning process parameters (polymer concentration, applied voltage, collecting distance, and solution flow rate), and the diameter of PAN nanofibers. The results indicate that the polymer concentration has the greatest influence on the diameter of PAN nanofibers. The developed neural network prediction model provides guidance for the preparation of PAN nanofibers with specific dimensions.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Sciences, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Huchen Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Suhan Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Wenjuan Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
19
|
Tang C, Yang W, Zou Z, Liao F, Zeng C, Song K. Facile Synthesis Hyper-Crosslinked PdFe Bimetallic Polymer as Highly Active Catalyst for Ullmann Coupling Reaction of Chlorobenzene. Polymers (Basel) 2023; 15:2748. [PMID: 37376393 DOI: 10.3390/polym15122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The synthesis of efficient and sustainable heterogeneous Pd-based catalysts has been an active field of research due to their crucial role in carbon-carbon coupling reactions. In this study, we developed a facile and eco-friendly in situ assembly technique to produce a PdFe bimetallic hyper-crosslinked polymer (HCP@Pd/Fe) to use as a highly active and durable catalyst in the Ullmann reaction. The HCP@Pd/Fe catalyst exhibits a hierarchical pore structure, high specific surface area, and uniform distribution of active sites, which promote catalytic activity and stability. Under mild conditions, the HCP@Pd/Fe catalyst is capable of efficiently catalyzing the Ullmann reaction of aryl chlorides in aqueous media. The exceptional catalytic performance of HCP@Pd/Fe is attributed to its robust absorption capability, high dispersion, and strong interaction between Fe and Pd, as confirmed by various material characterizations and control experiments. Furthermore, the coated structure of a hyper-crosslinked polymer enables easy recycling and reuse of the catalyst for at least 10 cycles without any significant loss of activity.
Collapse
Affiliation(s)
- Cheng Tang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road, Nanchong 637009, China
- Key Laboratory of Low-Cost Rural Environmental Treatment Technology, Sichuan University of Arts and Science, Education Department of Sichuan Province, Dazhou 635000, China
| | - Wenwen Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road, Nanchong 637009, China
| | - Zhijuan Zou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road, Nanchong 637009, China
| | - Fang Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road, Nanchong 637009, China
| | - Chunmei Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road, Nanchong 637009, China
| | - Kunpeng Song
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road, Nanchong 637009, China
| |
Collapse
|
20
|
Su X, Jia C, Xiang H, Zhu M. Research progress in preparation, properties, and applications of medical protective fiber materials. APPLIED MATERIALS TODAY 2023; 32:101792. [PMID: 36937335 PMCID: PMC10001160 DOI: 10.1016/j.apmt.2023.101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
A variety of public health events seriously threaten human life and health, especially the outbreak of COVID-19 at the end of 2019 has caused a serious impact on human production and life. Wearing personal protective equipment (PPE) is one of the most effective ways to prevent infection and stop the spread of the virus. Medical protective fiber materials have become the first choice for PPE because of their excellent barrier properties and breathability. In this article, we systematically review the latest progress in preparation technologies, properties, and applications of medical protective fiber materials. We first summarize the technological characteristics of different fiber preparation methods and compare their advantages and disadvantages. Then the barrier properties, comfort, and mechanical properties of the medical protective fiber materials used in PPE are discussed. After that, the applications of medical protective fibers in PPE are introduced, and protective clothing and masks are discussed in detail. Finally, the current status, future development trend, and existing challenges of medical protective fiber materials are summarized.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
21
|
Torres FG, Gonzales KN, Troncoso OP, Cañedo VS. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Mar Drugs 2023; 21:338. [PMID: 37367663 DOI: 10.3390/md21060338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The marine environment offers a vast array of resources, including plants, animals, and microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin, chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environments can serve as carbon-rich precursors for synthesizing carbon quantum dots (CQDs). Marine polysaccharides have a distinct advantage over other CQD precursors because they contain multiple heteroatoms, including nitrogen (N), sulfur (S), and oxygen (O). The surface of CQDs can be naturally doped, reducing the need for excessive use of chemical reagents and promoting green methods. The present review highlights the processing methods used to synthesize CQDs from marine polysaccharide precursors. These can be classified according to their biological origin as being derived from algae, crustaceans, or fish. CQDs can be synthesized to exhibit exceptional optical properties, including high fluorescence emission, absorbance, quenching, and quantum yield. CQDs' structural, morphological, and optical properties can be adjusted by utilizing multi-heteroatom precursors. Moreover, owing to their biocompatibility and low toxicity, CQDs obtained from marine polysaccharides have potential applications in various fields, including biomedicine (e.g., drug delivery, bioimaging, and biosensing), photocatalysis, water quality monitoring, and the food industry. Using marine polysaccharides to produce carbon quantum dots (CQDs) enables the transformation of renewable sources into a cutting-edge technological product. This review can provide fundamental insights for the development of novel nanomaterials derived from natural marine sources.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Karen N Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Victoria S Cañedo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| |
Collapse
|
22
|
Chen X, Li H, Xu Z, Lu L, Pan Z, Mao Y. Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction. Biomimetics (Basel) 2023; 8:223. [PMID: 37366818 DOI: 10.3390/biomimetics8020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wearable electronics that imitate the tactile sensory function of human skin and identify the detected changes in external information through different electrical signals. Flexible e-skin can achieve a wide range of functions such as accurate detection and identification of pressure, strain, and temperature, which has greatly extended their application potential in the field of healthcare monitoring and human-machine interaction (HMI). During recent years, the exploration and development of the design, construction, and performance of artificial skin has received extensive attention from researchers. With the advantages of high permeability, great ratio surface of area, and easy functional modification, electrospun nanofibers are suitable for the construction of electronic skin and further demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the critical review is provided to comprehensively summarize the recent advances in substrate materials, optimized fabrication techniques, response mechanisms, and related applications of the flexible electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future prospects are outlined and discussed, and we hope that this review will help researchers to better understand the whole field and take it to the next level.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Han Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziteng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
24
|
Emad N, El-Hiti GA, Yousif E, Kariuki BM. Metal Oxide Nanoparticles Containing Clotrimazole to Suppress Photodegradation of Poly(Vinyl Chloride) Thin Films. Polymers (Basel) 2023; 15:polym15071632. [PMID: 37050246 PMCID: PMC10096931 DOI: 10.3390/polym15071632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Pol(vinyl chloride) or PVC has functional properties that enable its use in many industrial applications. It suffers from aging, however, in harsh conditions (e.g., elevated temperature or high humidity levels) if oxygen is present. One way to enhance the photostability of PVC is to blend it with additives. Thus, thin films were made by mixing PVC with clotrimazole, and five metal oxide (titanium, copper, cobalt, chromium, and nickel oxides) additives. The metal oxides and clotrimazole were added at concentrations of 0.1 and 0.5% by weight, respectively. The effect of the metal oxide nanoparticles accompanied by clotrimazole on the photodegradation of PVC was then assessed. The results indicated that the additives have a stabilizing effect and protect PVC against photodegradation significantly. The formation of polymeric fragments of small molecular weight containing carbon-carbon double bonds and carbonyl groups was lower in the blends containing metal oxide nanoparticles and clotrimazole than in unblended PVC. Similarly, the decrease in weight was much less for the films blended with additives. Additionally, surface analysis of the irradiated polymeric films showed significantly lower damage in the materials containing additives. The most effective additive in the stabilization of PVC was nickel oxide nanoparticles. The metal oxides are highly alkaline and act as scavengers for the hydrogen chloride produced during the photodegradation of PVC. They additionally act as peroxide decomposers. In contrast, clotrimazole can absorb harmful radiation and act as an ultraviolet absorber due to its heteroatom and aromatic content. Thus, the use of a combination of metal oxide nanoparticles and clotrimazole led to significant improvement in the resistance of PVC toward photodegradation.
Collapse
|
25
|
Smaldone G, Rosa E, Gallo E, Diaferia C, Morelli G, Stornaiuolo M, Accardo A. Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15031026. [PMID: 36986886 PMCID: PMC10051563 DOI: 10.3390/pharmaceutics15031026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Hydrogel nanoparticles, also known as nanogels (NGs), have been recently proposed as alternative supramolecular vehicles for the delivery of biologically relevant molecules like anticancer drugs and contrast agents. The inner compartment of peptide based NGs can be opportunely modified according to the chemical features of the cargo, thus improving its loading and release. A full understanding of the intracellular mechanism involved in nanogel uptake by cancer cells and tissues would further contribute to the potential diagnostic and clinical applications of these nanocarriers, allowing the fine tuning of their selectivity, potency, and activity. The structural characterization of nanogels were assessed by Dynamic Light Scattering (DLS) and Nanoparticles Tracking Analysis (NTA) analysis. Cells viability of Fmoc-FF nanogels was evaluated by MTT assay on six breast cancer cell lines at different incubation times (24, 48, and 72 h) and peptide concentrations (in the range 6.25 × 10-4 ÷ 5·10-3 × wt%). The cell cycle and mechanisms involved in Fmoc-FF nanogels intracellular uptake were evaluated using flow cytometry and confocal analysis, respectively. Fmoc-FF nanogels, endowed with a diameter of ~130 nm and a zeta potential of ~-20.0/-25.0 mV, enter cancer cells via caveolae, mostly those responsible for albumin uptake. The specificity of the machinery used by Fmoc-FF nanogels confers a selectivity toward cancer cell lines overexpressing the protein caveolin1 and efficiently performing caveolae-mediated endocytosis.
Collapse
Affiliation(s)
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
26
|
Gupta J, Quadros M, Momin M. Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization for controlled drug delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
27
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
28
|
Ma J, Liu X, Wang R, Lu C, Wen X, Tu G. Research Progress and Application of Polyimide-Based Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040656. [PMID: 36839026 PMCID: PMC9961415 DOI: 10.3390/nano13040656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Polyimide (PI) is one of the most dominant engineering plastics with excellent thermal, mechanical, chemical stability and dielectric performance. Further improving the versatility of PIs is of great significance, broadening their application prospects. Thus, integrating functional nanofillers can finely tune the individual characteristic to a certain extent as required by the function. Integrating the two complementary benefits, PI-based composites strongly expand applications, such as aerospace, microelectronic devices, separation membranes, catalysis, and sensors. Here, from the perspective of system science, the recent studies of PI-based composites for molecular design, manufacturing process, combination methods, and the relevant applications are reviewed, more relevantly on the mechanism underlying the phenomena. Additionally, a systematic summary of the current challenges and further directions for PI nanocomposites is presented. Hence, the review will pave the way for future studies.
Collapse
|
29
|
Xie G, Wang X, Mo M, Zhang L, Zhu J. Photothermal Hydrogels for Promoting Infected Wound Healing. Macromol Biosci 2023; 23:e2200378. [PMID: 36337010 DOI: 10.1002/mabi.202200378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Photothermal therapies (PTT), with spatiotemporally controllable antibacterial capabilities without inducing resistance, have shown encouraging prospects in the field of infected wound treatments. As an important platform for PTT, photothermal hydrogels exhibit attractive advantages in the field of infected wound treatment due to their excellent biochemical properties and have been intensively explored in recent years. This review summarizes the progress of the photothermal hydrogels for promoting infected wound healing. Three major elements of photothermal hydrogels, i.e., photothermal materials, hydrogel matrix, and construction methods, are introduced. Furthermore, different strategies of photothermal hydrogels in the treatment of infected wounds are summarized. Finally, the challenges and prospects in the clinical treatment of photothermal hydrogels are discussed.
Collapse
Affiliation(s)
- Ge Xie
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiao Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Min Mo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
30
|
Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL, Cornejo-Bravo JM. Hybrid Systems of Nanofibers and Polymeric Nanoparticles for Biological Application and Delivery Systems. MICROMACHINES 2023; 14:208. [PMID: 36677269 PMCID: PMC9864385 DOI: 10.3390/mi14010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Nanomedicine is a new discipline resulting from the combination of nanotechnology and biomedicine. Nanomedicine has contributed to the development of new and improved treatments, diagnoses, and therapies. In this field, nanoparticles have notable importance due to their unique properties and characteristics, which are useful in different applications, including tissue engineering, biomarkers, and drug delivery systems. Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. The combination of nanoparticles with nanofibers creates hybrid systems that acquire properties that differ from their components' characteristics. By utilizing nanoparticles and nanofibers composed of dissimilar polymers, the two synergize to improve the overall performance of electrospinning mats and nanoparticles. This review summarizes the hybrid systems of polymeric nanoparticles and polymeric nanofibers, critically analyzing how the combination improves the properties of the materials and contributes to the reduction of some disadvantages found in nanometric devices and systems.
Collapse
Affiliation(s)
| | - Aracely Serrano-Medina
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Kenia Palomino-Vizcaino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 22427, Mexico
| | | | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
31
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
32
|
Jamil M, Mustafa IS, Ahmed NM, Sahul Hamid SB. Cytotoxicity evaluation of poly(ethylene) oxide nanofibre in MCF-7 breast cancer cell line. BIOMATERIALS ADVANCES 2022; 143:213178. [PMID: 36368056 DOI: 10.1016/j.bioadv.2022.213178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Biocompatible polymers have received significant interest from researchers for their potential in diagnostic applications. This type of polymer can perform with an appropriate host response or carrier for a specific purpose. The current study aims to fabricate and characterise poly(ethylene) oxide (PEO) nanofibres with different concentrations for cytotoxicity evaluation in human breast cancer cell lines (MCF-7) and to get an optimal PEO nanofibre concentration (permissible limit) as a suitable polymer matrix or carrier with potential use in diagnostic applications. The fabrication of PEO nanofibres was done using electrospinning and was characterised by structure and morphology, surface roughness, chemical bonding and release profiles. The functional effects of PEO nanofibres were evaluated with MTS assay and colony formation assay in MCF-7 cells. The results showed that viscosity plays a vital role in synthesising a polymer solution in electrospinning for producing beadless nanofibrous mats ranging from 4.7 Pa·s to 77.7 Pa·s. As the PEO concentration increases, the nanofibre diameter and thickness will increase, but the surface roughness will be decreased. The average fibre diameter for 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 129 ± 70 nm, 185 ± 55 nm and 192 ± 53 nm, respectively. In addition, the fibre thickness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 269 ± 3 μm, 664 ± 4 μm, 758 ± 7 μm and 1329 ± 44 μm, respectively. Contrarily, the surface roughness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 55.6 ± 9 nm, 42.8 ± 6 nm, 42.7 ± 7 nm and 36.6 ± 1 nm, respectively. PEO nanofibres showed the same burst release pattern and rate due to the same molecular weight of PEO with a stable release rate profile after 15 min. It also demonstrates that the percentage of PEO nanofibre release increased with the increasing PEO concentration due to the fibre diameter and thickness. The findings showed that all PEO nanofibres formulations were non-toxic to MCF-7 cells. It is suggested that 5 wt% PEO nanofibre exhibited non-cytotoxic characteristics by maintaining the cell viability from dose 0-1000 μg/ml and did not induce the number of colonies. Therefore, 5 wt% PEO nanofibre is the optimal nanofibre concentration and was suggested as a suitable base polymer matrix or carrier with potential use for diagnostic purposes. The findings in this study have demonstrated the influence of cell growth and viability, including the effects of PEO nanofibre formulations on cancer progress characteristics to achieve a permissible PEO nanofibre concentration limit that can be a benchmark in medical applications, particularly diagnostic applications.
Collapse
Affiliation(s)
- Munirah Jamil
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia.
| | | | - Naser Mahmoud Ahmed
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; Department of Medical Instrumentation Engineering, Dijlah University College, Baghdad, Iraq.
| | | |
Collapse
|
33
|
Mutlu-Ağardan NB, Tort S, Aydoğduoğlu Ş, Kıymacı ME. A New Insight to Silver Sulfadiazine Antibacterial Dressings: Nanoparticle-Loaded Nanofibers for Controlled Drug Delivery. AAPS PharmSciTech 2022; 24:8. [PMID: 36451066 DOI: 10.1208/s12249-022-02465-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
The aim of this study was formulating a new-generation antibacterial dressing in a form of polymer-based hybrid nanofiber-nanoparticles, effective on Gram-negative and Gram-positive bacteria using silver sulfadiazine (SSD), an FDA-approved topical antibiotic. In this study, SSD nanoparticles were prepared with chitosan for taking the advantage of antibacterial and wound healing properties. Chitosan nanoparticles of SSD were prepared by using tripolyphosphate (TPP) or sulfobutylether-β-cyclodextrin (SBE-β-CD) as crosslinkers via ionic gelation method and then loaded to PVP-K30 and PVP-K90 nanofibers to obtain polymer-based nanofiber-nanoparticles. SSD-loaded chitosan nanoparticles prepared with SBE-β-CD had lower particle size (359.6 ± 19.9 nm) and polydispersity index (0.364 ± 0.113) as well, indicating a more desired particle size distribution but lower encapsulation efficiency (56.04% ± 4.33). It was found that loading drug in SBE-β-CD crosslinked nanoparticles and dispersing in nanofiber matrix lowered SSD release compared to TPP crosslinked nanoparticle-loaded nanofibers. Drug release obtained by both TPP or SBE-β-CD crosslinked nanoparticle-loaded PVP-K30 nanofibers is significantly higher than nanoparticle-loaded PVP-K90 nanofibers, indicating that SSD release was mainly affected by polymer type. SSD nanoparticle-loaded PVP-K30 nanofibers were found to be effective against Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii) and Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). SSD release was sustained by PVP-K90, resulting in lower antibacterial efficiency especially against Gram-positive bacteria. PVP-K30-based nanofiber-CS nanoparticle hybrids offer a new platform by combining and improving advantages of nanofibers and nanoparticles for obtaining controlled drug release and antibacterial efficacy.
Collapse
Affiliation(s)
- N Başaran Mutlu-Ağardan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06630, Ankara, Turkey.
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06630, Ankara, Turkey
| | - Şeyma Aydoğduoğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06630, Ankara, Turkey
| | - Merve Eylül Kıymacı
- Department of Pharmaceutical Microbiology, Gülhane Faculty of Pharmacy, University of Health Sciences, 06018, Ankara, Turkey
| |
Collapse
|
34
|
Kabay G, Meydan AE, Eom T, Shim BS, Mutlu M, Kaleli-Can G. Stimuli-responsive nanoparticle-nanofiber hybrids for drug delivery and photodynamic therapy. Int J Pharm 2022; 630:122442. [PMID: 36442721 DOI: 10.1016/j.ijpharm.2022.122442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Hybrid nanomaterials possess integrated multi-components to syncretize various properties and functions within a single entity. Owing to this synergistic effect, they promise efficient anti-cancer therapy. In line with this target, we produced stimuli-responsive nanoparticle-nanofiber hybrids (NNHs) via embedding photoresponsive natural melanin nanoparticles (MNPs) within a biocompatible polycaprolactone (PCL) nanofiber matrix. Electrospinning was performed to produce monolithic and core-shell structured NNHs using a single and a coaxial nozzle. The NNHs were upgraded to drug delivery systems by model hydrophilic drug-ampicillin (amp)-loading. The drug release results showed that monolithic PCL meshes displayed a burst release, whereas nanohybrid formation with MNPs improved the release profile toward Fickian diffusion. Core-shell NNH presented a more sustained drug release profile than its MNP-free replica and monolithic NNH because its encapsulating shell layer hindered the diffusion of the drug. The photodynamic therapy accompanied by UV-A-irradiation on monolithic and core-shell NNHs yielded up to 34 % and 37 % malignant melanoma cell death. Moreover, this study proved the potency of MNPs-enhanced NNHs in drug delivery and photodynamic therapy applications. Even so, more efforts should be concerted to unlock unknown features of the NNHs, which have the power to advance emerging areas, including but not limited to material science, biosensing, and theranostics.
Collapse
Affiliation(s)
- Gözde Kabay
- Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey; Karlsruhe Institute of Technology, Institute of Functional Interfaces - IFG, 76344 Karlsruhe, Germany.
| | - Ahmet Ersin Meydan
- Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey; Department of Molecular Medicine, Graduate School of Health Sciences, TOBB University of Economics and Technology, 06560 Ankara, Turkey
| | - Taesik Eom
- Soft Matter Laboratory, Department of Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Bong Sup Shim
- Soft Matter Laboratory, Department of Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Mehmet Mutlu
- Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey; Department of Material Science and Engineering, Faculty of Engineering, Ostim Technical University, 06374 Ankara, Turkey
| | - Gizem Kaleli-Can
- Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey; Department of Biomedical Engineering, İzmir Democracy University, 35140 İzmir, Turkey.
| |
Collapse
|
35
|
Nigella/honey/garlic/olive oil co-loaded PVA electrospun nanofibers for potential biomedical applications. Prog Biomater 2022; 11:431-446. [PMID: 36264478 DOI: 10.1007/s40204-022-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/10/2022] [Indexed: 10/24/2022] Open
Abstract
The current work focuses on the formation of nanofibrous mats without the use of toxic solvents and metallic nanoparticles utilizing polyvinyl alcohol (PVA) and a blend of nigella, honey, garlic, and olive oil. Using deionized water (DI) water as a solvent, nanofibrous mats composed of PVA/nigella/honey (PNH) and PVA/garlic/honey/olive oil (PGHO) were developed. Methanol extraction was utilized to extract the therapeutic components of nigella sativa. Antibacterial and moisture management tests (MMT) were employed to examine the antibacterial and absorbance characteristics of the PNH and PGHO nanofibrous. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) tests were employed to analyze the morphological and chemical characteristics. PGHO showed thermal stability up to 245 °C, and PNH withstands until 225 °C. PNH and PGHO both exhibited antibacterial activity against Staphylococcus aureus (S. aureus), with inhibition zones of 36 mm and 35 mm, respectively. The synthesized materials exhibited excellent absorbance properties, thermal stability, cytotoxicity, and the production of thin nanofibers with an average diameter between 150 and 170 nm. The samples were characterized using FTIR spectra, which confirmed the presence of all components in the developed samples. To date, extensive research on electrospinning for biomedical applications has been undertaken using a variety of hazardous solvents and metallic nanoparticles. Briefly, our objective is to develop nanofibrous materials from plant extracts through a process called "green electrospinning" to observe the synergistic effect of multiple biocomponents incorporated nanofibers avoiding toxic solvents and metallic compounds for potential biomedical applications.
Collapse
|
36
|
Wu H, Hu Z, Geng Q, Chen Z, Song Y, Chu J, Ning X, Dong S, Yuan D. Facile preparation of CuMOF-modified multifunctional nanofiber membrane for high-efficient filtration/separation in complex environments. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
38
|
Doustdar F, Ghorbani M. ZIF-8 enriched electrospun ethyl cellulose/polyvinylpyrrolidone scaffolds: The key role of polyvinylpyrrolidone molecular weight. Carbohydr Polym 2022; 291:119620. [DOI: 10.1016/j.carbpol.2022.119620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
|
39
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
40
|
Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Song W. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci 2022; 10:5369-5390. [PMID: 35861101 DOI: 10.1039/d2bm00719c] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porous organic polymers have received considerable attention in recent years because of their applicability as biomaterials. In particular, their hierarchical pore structures, variable morphologies, and tunable biological properties make them suitable as drug-delivery systems. In this review, the synthetic and post forming/control methods including templated methods, template-free methods, mechanical methods, electrospun methods, and 3D printing methods for controlling the hierarchical structures and morphologies of porous organic polymers are discussed, and the different methods affecting their specific surface areas, hierarchical structures, and unique morphologies are highlighted in detail. In addition, we discuss their applications in drug encapsulation and the development of stimuli (pH, heat, light, and dual-stimuli)-responsive materials, focusing on their use for targeted drug release and as therapeutic agents. Finally, we present an outlook concerning the research directions and applications of porous polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Anuraj Varyambath
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Yuanchen Ding
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Bailiang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Xinyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China. .,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
41
|
Deng Z, Li J, Chen Y, Huang C, Zhong N, Hu Y. Microparticle‐hydrogel hybrids for sustained release of dual bioactive compounds. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhicheng Deng
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Jinjun Li
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Yun Chen
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Chao Huang
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Nanjing Zhong
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Yong Hu
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
- GDPU‐HKU Zhongshan Biomedical Innovation Platform Zhongshan People's Republic of China
| |
Collapse
|
42
|
Jasim SA, Hadi JM, Jalil AT, Catalan Opulencia MJ, Hammid AT, Tohidimoghadam M, Moghaddam-manesh M. Electrospun Ta-MOF/PEBA Nanohybrids and Their CH 4 Adsorption Application. Front Chem 2022; 10:868794. [PMID: 35832463 PMCID: PMC9272026 DOI: 10.3389/fchem.2022.868794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
For the first time, biocompatible and biodegradable Ta-metal organic framework (MOF)/polyether block amide (PEBA) fibrous polymeric nanostructures were synthesized by ultrasonic and electrospinning routes in this study. The XRD peaks of products were wider, which is due to the significant effect of the ultrasonic and electrospinning methods on the final product. The adsorption/desorption behavior of the nanostructures is similar to that of the third type of isotherm series, which showed mesoporous behavior for the products. The sample has uniform morphology without any evidence of agglomeration. Since the adsorption and trapping of gaseous pollutants are very important, the application of the final Ta-MOF/PEBA fibrous polymeric nanostructures was investigated for CH4 adsorption. In order to achieve the optimal conditions of experiments and also systematic studies of the parameters, fractional factorial design was used. The results showed that by selecting temperature 40°C, time duration 35 min, and pressure 3 bar, the CH4 gas adsorption rate was near 4 mmol/g. Ultrasonic and electrospinning routes as well as immobilization of Ta-MOF in the PEBA fibrous network affect the performance of the final products for CH4 gas adsorption.
Collapse
Affiliation(s)
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Slemani, Iraq
| | | | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | | | - Mohammadreza Moghaddam-manesh
- Petrochemistry and Polymer Research Group, Chemistry and Petrochemistry Research Center, Standard Research Institute, Karaj, Iran
| |
Collapse
|
43
|
Liu X, Zhang M, Song W, Zhang Y, Yu DG, Liu Y. Electrospun Core (HPMC-Acetaminophen)-Shell (PVP-Sucralose) Nanohybrids for Rapid Drug Delivery. Gels 2022; 8:357. [PMID: 35735701 PMCID: PMC9223299 DOI: 10.3390/gels8060357] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The gels of cellulose and its derivatives have a broad and deep application in pharmaceutics; however, limited attention has been paid to the influences of other additives on the gelation processes and their functional performances. In this study, a new type of electrospun core-shell nanohybrid was fabricated using modified, coaxial electrospinning which contained composites of hydroxypropyl methyl cellulose (HPMC) and acetaminophen (AAP) in the core sections and composites of PVP and sucralose in the shell sections. A series of characterizations demonstrated that the core-shell hybrids had linear morphology with clear core-shell nanostructures, and AAP and sucralose distributed in the core and shell section in an amorphous state separately due to favorable secondary interactions such as hydrogen bonding. Compared with the electrospun HPMC-AAP nanocomposites from single-fluid electrospinning of the core fluid, the core-shell nanohybrids were able to promote the water absorbance and HMPC gelation formation processes, which, in turn, ensured a faster release of AAP for potential orodispersible drug delivery applications. The mechanisms of the drug released from these nanofibers were demonstrated to be a combination of erosion and diffusion mechanisms. The presented protocols pave a way to adjust the properties of electrospun, cellulose-based, fibrous gels for better functional applications.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Mingxin Zhang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Wenliang Song
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China;
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
44
|
Ji Y, Song W, Xu L, Yu DG, Annie Bligh SW. A Review on Electrospun Poly(amino acid) Nanofibers and Their Applications of Hemostasis and Wound Healing. Biomolecules 2022; 12:794. [PMID: 35740919 PMCID: PMC9221312 DOI: 10.3390/biom12060794] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The timely and effective control and repair of wound bleeding is a key research issue all over the world. From traditional compression hemostasis to a variety of new hemostatic methods, people have a more comprehensive understanding of the hemostatic mechanism and the structure and function of different types of wound dressings. Electrospun nanofibers stand out with nano size, high specific surface area, higher porosity, and a variety of complex structures. They are high-quality materials that can effectively promote wound hemostasis and wound healing because they can imitate the structural characteristics of the skin extracellular matrix (ECM) and support cell adhesion and angiogenesis. At the same time, combined with amino acid polymers with good biocompatibility not only has high compatibility with the human body but can also be combined with a variety of drugs to further improve the effect of wound hemostatic dressing. This paper summarizes the application of different amino acid electrospun wound dressings, analyzes the characteristics of different materials in preparation and application, and looks forward to the development of directions of poly(amino acid) electrospun dressings in hemostasis.
Collapse
Affiliation(s)
- Yuexin Ji
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Wenliang Song
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Lin Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
45
|
Wang M, Yu DG, Williams GR, Bligh SWA. Co-Loading of Inorganic Nanoparticles and Natural Oil in the Electrospun Janus Nanofibers for a Synergetic Antibacterial Effect. Pharmaceutics 2022; 14:1208. [PMID: 35745781 PMCID: PMC9228218 DOI: 10.3390/pharmaceutics14061208] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Side-by-side electrospinning is a powerful but challenging technology that can be used to prepare Janus nanofibers for various applications. In this work, cellulose acetate (CA) and polycaprolactone (PCL) were used as polymer carriers for silver nanoparticles (Ag NPs) and lavender oil (LO), respectively, processing these into two-compartment Janus fibers. A bespoke spinneret was used to facilitate the process and prevent the separation of the working fluids. The process of side-by-side electrospinning was recorded with a digital camera, and the morphology and internal structure of the products were characterized by electron microscopy. Clear two-compartment fibers are seen. X-ray diffraction patterns demonstrate silver nanoparticles have been successfully loaded on the CA side, and infrared spectroscopy indicates LO is dispersed on the PCL side. Wetting ability and antibacterial properties of the fibers suggested that PCL-LO//CA-Ag NPs formulation had strong antibacterial activity, performing better than fibers containing only one active component. The PCL-LO//CA-Ag NPs had a 20.08 ± 0.63 mm inhibition zone for E. coli and 19.75 ± 0.96 mm for S. aureus. All the fibers had water contact angels all around 120°, and hence, have suitable hydrophobicity to prevent water ingress into a wound site. Overall, the materials prepared in this work have considerable promise for wound healing applications.
Collapse
Affiliation(s)
- Menglong Wang
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China;
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | | | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China;
| |
Collapse
|
46
|
Ullah S, Hashmi M, Kim IS. Electrospun Composite Nanofibers for Functional Applications. Polymers (Basel) 2022; 14:2290. [PMID: 35683961 PMCID: PMC9183182 DOI: 10.3390/polym14112290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
of the Special Issue: [...].
Collapse
Affiliation(s)
- Sana Ullah
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Motahira Hashmi
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Ick Soo Kim
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
47
|
Liu Y, Chen X, Gao Y, Yu DG, Liu P. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. J Nanobiotechnology 2022; 20:244. [PMID: 35643572 PMCID: PMC9148457 DOI: 10.1186/s12951-022-01463-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diversified combination of nanostructure and material has received considerable attention from researchers to exploit advanced functional materials. In drug delivery systems, the hydrophilicity and sustained–release drug properties are in opposition. Thus, difficulties remain in the simultaneous improve sustained–release drug properties and increase the hydrophilicity of materials. Methods In this work, we proposed a modified triaxial electrospinning strategy to fabricate functional core–shell fibres, which could elaborate design of shell component for manipulating the sustained-release drug. Cellulose acetate (CA) was designed as the main polymeric matrix, whereas polyethylene glycol (PEG) was added as a hydrophilic material in the middle layer. Cur, as a model drug, was stored in the inner layer. Results Scanning electron microscopy (SEM) results and transmission electron microscopy (TEM) demonstrated that the cylindrical F2–F4 fibres had a clear core–shell structure. The model drug Cur in fibres was verified in an amorphous form during the X-ray diffraction (XRD) patterns, and Fourier transformed infrared spectroscopy (FTIR) results indicated good compatibility with the CA matrix. The water contact angle test showed that functional F2–F4 fibres had a high hydrophilic property in 120 s and the control sample F1 needed over 0.5 h to obtain hydrophilic property. In the initial stage of moisture intrusion into fibres, the quickly dissolved PEG component guided the water molecules and rapidly eroded the internal structure of functional fibres. The good hydrophilicity of F2–F4 fibres brought relatively excellent swelling rate around 4600%. Blank outer layer of functional F2 fibres with 1% PEG created an exciting opportunity for providing a 96 h sustained-release drug profile, while F3 and F4 fibres with over 3% PEG provided a 12 h modified drug release profile to eliminate tailing–off effect. Conclusion Here, the functional F2–F4 fibres had been successfully produced by using the advanced modified triaxial electrospinning nanotechnology with different polymer matrices. The simple strategy in this work has remarkable potential to manipulate hydrophilicity and sustained release of drug carriers, meantime it can also enrich the preparation approaches of functional nanomaterials. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01463-0.
Collapse
|
48
|
Astragalus Polysaccharides/PVA Nanofiber Membranes Containing Astragaloside IV-Loaded Liposomes and Their Potential Use for Wound Healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9716271. [PMID: 35600951 PMCID: PMC9117023 DOI: 10.1155/2022/9716271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Delayed wound healing is a common and serious complication in diabetic patients, especially the slow healing of foot ulcers, which seriously affects the quality of life of patients and is also the most important risk factor for lower limb amputation. The multifunctional novel dressing prepared by loading the polymer nanofibers with anti-inflammatory and prohealing plant extracts can promote the wound repair of these ulcers by electrospinning technology. Liposomes are nanoparticles prepared from phospholipids and have been widely used as drug delivery systems. Liposomes can be combined with electrospun nanofibrous webs to facilitate local and sustained delivery of loaded bioactive substances. In this study, liposomes were prepared with astragaloside IV (AS) by employing a modified ethanol injection method and conducting the physical and chemical characterization (e.g., the particle size, polydispersity index, zeta potential, and entrapment efficiency). Astragalus polysaccharides were extracted from Astragalus membranaceus. Subsequently, we prepared the electrospun polyvinyl alcohol (PVA)/astragalus polysaccharide (APS)/astragaloside IV (AS) nanofibers. The morphology of the produced ASL/APS/PVA, APS/PVA, and PVA nanofibers were analyzed by scanning electron microscopy (SEM), and it turns out that the addition of astragalus extract made the fiber diameter smaller and the fibers arranged neatly with no dripping. An induced diabetic rat model was built, and a diabetic ulcer model was built by total cortical resection to assess the prorepair ability of the prepared nanofibers. According to in vivo animal experiments, the nanofibrous membrane loaded with APS and ASL was reported to inhibit the occurrence of wound inflammation, enhance the deposition of collagen fibers (P < 0.05) and the repair of regenerated epithelium (P < 0.05), and effectively strengthen the wound healing of diabetic rats (P < 0.05). In brief, PVA-loaded APS/ASL nanofibrous membranes refer to a prominent wound healing dressing material, which can effectively facilitate the healing of diabetic wounds, and they are demonstrated to be highly promising for application in diabetic wound dressings and tissue engineering.
Collapse
|
49
|
Liu H, Jiang W, Yang Z, Chen X, Yu DG, Shao J. Hybrid Films Prepared from a Combination of Electrospinning and Casting for Offering a Dual-Phase Drug Release. Polymers (Basel) 2022; 14:2132. [PMID: 35683805 PMCID: PMC9182575 DOI: 10.3390/polym14112132] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
One of the most important trends in developments in electrospinning is to combine itself with traditional materials production and transformation methods to take advantage of the unique properties of nanofibers. In this research, the single-fluid blending electrospinning process was combined with the casting film method to fabricate a medicated double-layer hybrid to provide a dual-phase drug controlled release profile, with ibuprofen (IBU) as a common model of a poorly water-soluble drug and ethyl cellulose (EC) and polyvinylpyrrolidone (PVP) K60 as the polymeric excipients. Electrospun medicated IBU-PVP nanofibers (F7), casting IBU-EC films (F8) and the double-layer hybrid films (DHFs, F9) with one layer of electrospun nanofibers containing IBU and PVP and the other layer of casting films containing IBU, EC and PVP, were prepared successfully. The SEM assessments demonstrated that F7 were in linear morphologies without beads or spindles, F8 were solid films, and F9 were composed of one porous fibrous layer and one solid layer. XRD and FTIR results verified that both EC and PVP were compatible with IBU. In vitro dissolution tests indicated that F7 were able to provide a pulsatile IBU release, F8 offered a typical drug sustained release, whereas F9 were able to exhibit a dual-phase controlled release with 40.3 ± 5.1% in the first phase for a pulsatile manner and the residues were released in an extended manner in the second phase. The DHFs from a combination of electrospinning and the casting method pave a new way for developing novel functional materials.
Collapse
Affiliation(s)
- Haoran Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.L.); (W.J.); (Z.Y.)
| | - Wenlai Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.L.); (W.J.); (Z.Y.)
| | - Zili Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.L.); (W.J.); (Z.Y.)
| | - Xiren Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.L.); (W.J.); (Z.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Jun Shao
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;
| |
Collapse
|
50
|
Chou YL, Wen HY, Weng YQ, Liu YC, Wu CW, Hsu HC, Chiang CC. A U-Shaped Optical Fiber Temperature Sensor Coated with Electrospinning Polyvinyl Alcohol Nanofibers: Simulation and Experiment. Polymers (Basel) 2022; 14:2110. [PMID: 35631992 PMCID: PMC9145072 DOI: 10.3390/polym14102110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
This study describes the fabrication of an electrospun, U-shaped optical fiber sensor for temperature measurements. The sensor is based on single mode fibers and was fabricated into a U-shaped optical fiber sensor through flame heating. This study applied electrospinning to coat PVA, a polymer, onto the sensor layer to reduce its sensitivity to humidity. The sensor is used to measure temperature variations ranging from 30 °C to 100 °C. The objectives of this study were to analyze the sensitivity variation of the sensor with different sensor layer thicknesses resulting from different electrospinning durations, as well as to simulate the wavelength signals generated at different electrospinning durations using COMSOL. The results revealed that the maximum wavelength sensitivity, transmission loss sensitivity, and linearity of the sensor were 25 dBm/°C, 70 pm/°C, and 0.956, respectively. Longer electrospinning durations resulted in thicker sensor layers and higher sensor sensitivity, that wavelength sensitivity of the sensor increased by 42%.
Collapse
Affiliation(s)
- Yen-Lung Chou
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (Y.-L.C.); (Y.-Q.W.); (Y.-C.L.); (H.-C.H.)
| | - Hsin-Yi Wen
- Department of Green Energy and Environmental Resources, Chang Jung Christian University, Tainan City 71101, Taiwan;
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yu-Qiao Weng
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (Y.-L.C.); (Y.-Q.W.); (Y.-C.L.); (H.-C.H.)
| | - Yi-Ching Liu
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (Y.-L.C.); (Y.-Q.W.); (Y.-C.L.); (H.-C.H.)
| | - Chao-Wei Wu
- Department of Aeronautical and Mechanical Engineering, Air Force Academy, Kaohsiung, No. Sisou 1, Jieshou W. Rd., Gangshan District, Kaohsiung City 82047, Taiwan;
| | - Hsiang-Cheng Hsu
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (Y.-L.C.); (Y.-Q.W.); (Y.-C.L.); (H.-C.H.)
| | - Chia-Chin Chiang
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (Y.-L.C.); (Y.-Q.W.); (Y.-C.L.); (H.-C.H.)
| |
Collapse
|