1
|
Meskher H, Sharifianjazi F, Tavamaishvili K, Irandoost M, Nejadkoorki D, Makvandi P. Limitations, challenges and prospective solutions for bioactive glasses-based nanocomposites for dental applications: A critical review. J Dent 2024; 150:105331. [PMID: 39216818 DOI: 10.1016/j.jdent.2024.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Several nanomaterials have been recently used to overcome various challenges in the dental domain. Bioactive glasses, a class of bioceramics, with their outstanding properties including but not limited to their strong biocompatibility, antibacterial characteristics, and bioactivity inside the body's internal milieu have made them valuable biomaterials in a variety of dental domains. The utilization of nanomaterials has improved the performance of teeth, and the incorporation of bioactive glasses has the field of dentistry at an unsurpassed level in different categories such as esthetic and restorative dentistry, periodontics and dental implants, orthodontics, and endodontics. The current study discusses the most recent developments of the bioactive glasses' creation and implementation for dental applications, as well as the challenges and opportunities still facing the field. This work provides an overview of the current obstacles and potential future prospects for bioactive glasses-based nanocomposites to improve their dental uses. It also emphasizes the great potential synergistic effects of bioactive glasses used with other nanomaterials for dental applications.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Process Engineering, College of Science and Technology, Chadli Bendjedid University, 36000, Algeria
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str, Tbilisi 0160, Georgia
| | - Maryam Irandoost
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India; Centre of Research Impact and Outcome, Chitkara UniversityInstitute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Ding C, Yi Y, Cheng K, Wang Y, Wang S, Zhang M. Full life cycle green preparation of collagen-based food packaging films using Halocynthia roretzi as raw material. Food Chem 2024; 455:139943. [PMID: 38850993 DOI: 10.1016/j.foodchem.2024.139943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The extraction of collagen for packaging films typically requires a time-consuming process and the use of substantial chemicals. Herein, we present a full life cycle green preparation method for rapidly producing collagen-based food packaging films using Halocynthia roretzi (HR), a collagen-rich marine organism, as raw material. We first prepared the micro/nano-sized collagen fibers from HR tissue by utilizing urea and sonication as effective hydrogen-bond breakers. Subsequently, the collagen fiber was rapidly fabricated into a film through vacuum filtration. The resulting collagen fiber film (CFF) exhibited a uniform and dense surface, along with good tensile properties, water resistance, and biodegradability. In addition, the deposition of chitosan (CS) on the surface of CFF resulted in a remarkable preservation effect for both strawberries and pork. This full life cycle preparation method for collagen-based films provides a promising and innovative approach to the sustainable preparation of food packaging films.
Collapse
Affiliation(s)
- Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China; Institute of Food and Marine Bioresources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Yifan Yi
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Kuan Cheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Yue Wang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Shaoyun Wang
- Institute of Food and Marine Bioresources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, PR China.
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
3
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
4
|
Rajabimashhadi Z, Gallo N, Russo F, Ghiyami S, Mele C, Giordano ME, Lionetto MG, Salvatore L, Lionetto F. Production and physico-chemical characterization of nano-sized collagen from equine tendon. Int J Biol Macromol 2024; 277:134220. [PMID: 39069054 DOI: 10.1016/j.ijbiomac.2024.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
In recent years, significant academic and commercial interest has focused on collagen derived from horse tendons, with potential applications across diverse sectors such as medicine, pharmaceuticals, and cosmetics. Nano collagen, with its enhanced wound penetration, improved cell contact, and heightened cellular regeneration and repair capabilities due to its high surface area, holds promise for a wide range of applications. In this study, we present a novel method for producing nano collagen from the equine tendon. Our approach is characterized by its speed, affordability, simplicity and environmentally friendly nature, with precise temperature-control to prevent collagen denaturation. We conducted a comprehensive characterization of the obtained samples, including assessments of morphology, chemical and thermal properties, particle size distribution and biocompatibility. Importantly, our results indicate improvements in thermal stability, and surface roughness of nano collagen, while preserving its molecular weight. These advancements expand the potential applications of nano collagen in various fields.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy; Typeone Biomaterials S.r.l., Via Europa 167, 73021 Calimera, Lecce, Italy
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Sajjad Ghiyami
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Maria Elena Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via per Monteroni, Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via per Monteroni, Lecce, Italy
| | - Luca Salvatore
- Typeone Biomaterials S.r.l., Via Europa 167, 73021 Calimera, Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy.
| |
Collapse
|
5
|
Gil J, Solis M, Strong R, Cassagnol R, Jozic I, Davis SC. Antimicrobial effects of a multimodal wound matrix against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in an in vitro and an in vivo porcine wound model. Int Wound J 2024; 21:e70059. [PMID: 39359044 PMCID: PMC11447198 DOI: 10.1111/iwj.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
Chronic non-healing wounds pose significant challenges due to an elevated inflammatory response caused in part by bacterial contamination (Physiol Rev. 2019;99:665). These wounds lead to billions being spent in the health care system worldwide (N Engl J Med. 2017;376:2367, Int J Pharm. 2014;463:119). We studied the in-vitro and in-vivo antimicrobial effects of a multimodal wound matrix (MWM) against two common wound pathogens, Methicillin-Resistant Staphylococcus aureus (MRSA USA300) and Pseudomonas aeruginosa ATCC 27312 (PA27312) (Int Wound J. 2019;16:634). The in-vitro study conducted was a zone of inhibition test with the two microbes at 104 Log CFU/mL inoculated on Tryptic soy agar with 5% sheep blood (TSAII) plates. Treatments used were MWM, Mupirocin (Positive control for MRSA), Silver Sulfadiazine (Positive Control for PA), Petrolatum and Sterile Saline (both serving as Negative Controls). Treatments were allowed to diffuse into the agar for 3 h and then were incubated for 24 h at 37°C. The in-vivo study utilized a deep dermal porcine wound model (22 × 22 × 3 mm) created on six animals. Three animals were inoculated with MRSA USA300 and the other three with PA27312 with each allowing a 72-h biofilm formation. After 72 h, baseline wounds were assessed for bacterial concentration and all remaining wounds were treated with either MWM alone, Silver Treatment or Untreated Control. Wounds were assessed on days 4, 8 and 12 after treatment application for microbiological analysis. In-vitro, MWM exhibited significant inhibition of MRSA USA300 and PA27312 growth when compared to negative controls (p ≤ 0.05). Likewise, in-vivo, the MWM-treated wounds exhibited a significant (p ≤ 0.05) bacterial reduction compared to all other treatment groups, especially on days 8 and 12 for both pathogens. MWM demonstrated promise in addressing colonized wounds with biofilms. Additional studies on MWM's benefits and comparisons with existing treatments are warranted to optimize wound care strategies (Adv Wound Care. 2021;10:281).
Collapse
Affiliation(s)
- Joel Gil
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Michael Solis
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Ryan Strong
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Roger Cassagnol
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Ivan Jozic
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Stephen C. Davis
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
6
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
7
|
Al Hajj W, Salla M, Krayem M, Khaled S, Hassan HF, El Khatib S. Hydrolyzed collagen: Exploring its applications in the food and beverage industries and assessing its impact on human health - A comprehensive review. Heliyon 2024; 10:e36433. [PMID: 39253251 PMCID: PMC11381813 DOI: 10.1016/j.heliyon.2024.e36433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Hydrolyzed collagen (HC) consists of many small and low-molecular-weight amino acid chains (3-6 kDa) that can be produced either in basic or acidic media through enzymatic activity. This review details the sources of hydrolyzed collagen, its biosynthesis and its uses in the food industry, as well as its production process and beneficial health effects. HC can be extracted from a variety of sources, during which acetic acid is used for the extraction of collagen type I from bovine, porcine, marine, chicken, and fish cartilage. An enzymatic treatment combined with an acidic treatment has shown more efficient extraction results. Because of its properties, it is frequently employed in the food industry since it improves sensorial qualities, as well as in the cosmetic industry as a functional component in face and body cream because of its moisturizing properties. It is also used in the pharmaceutical development of antioxidant supplements often combined with hyaluronic acid and vitamin C. HC has an excellent therapeutic effect on osteoporosis and osteoarthritis, where a daily dose of 12 g enhances pain symptoms and contributes to bone health. It also increases mineral density and protects articular cartilage. This review presents the structure and properties of hydrolyzed collagen, which mainly consists of the amino acids glycine, proline and hydroxyproline in a triple helix, its extraction process and its sources, as well as its applications. In particular, the creation of Enzymatic Membrane Reactor allows the production of HC with different molecular weight distributions, allowing wider application.
Collapse
Affiliation(s)
- Walaa Al Hajj
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
| | - Mohamed Salla
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
- Department of Biological Sciences, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
| | - Maha Krayem
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
- Department of Biological Sciences, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
| | - Sanaa Khaled
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
- Department of Biological Sciences, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
| | - Hussein F Hassan
- Department of Natural Sciences, Nutrition Program, School of Arts and Sciences, Lebanese American University, 1102 2801, Koraytem, Beirut, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
- Department of Biological Sciences, School of Arts and Sciences, Lebanese International University, Al Khiyara, West Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB) at Gulf University for Science and Technology, Kuwait
| |
Collapse
|
8
|
Eom SJ, Kim JH, Ryu AR, Park H, Lee JH, Park JH, Lee NH, Lee S, Lim TG, Kang MC, Song KM. Skin Improvement Effects of Ultrasound-Enzyme-Treated Collagen Peptide Extracts from Flatfish ( Paralichthys olivaceus) Skin in an In Vitro Model. Int J Mol Sci 2024; 25:9300. [PMID: 39273248 PMCID: PMC11394740 DOI: 10.3390/ijms25179300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Collagen is considered to be an intercellular adhesive that prevents tissue stretching or damage. It is widely utilized in cosmetic skin solutions, drug delivery, vitreous substitutions, 3D cell cultures, and surgery. In this study, we report the development of a green technology for manufacturing collagen peptides from flatfish skin using ultrasound and enzymatic treatment and a subsequent assessment on skin functionality. First, flatfish skin was extracted using ultrasound in distilled water (DW) for 6 h at 80 °C. Molecular weight analysis via high-performance liquid chromatography (HPLC) after treatment with industrial enzymes (alcalase, papain, protamex, and flavourzyme) showed that the smallest molecular weight (3.56 kDa) was achieved by adding papain (0.5% for 2 h). To determine functionality based on peptide molecular weight, two fractions of 1100 Da and 468 Da were obtained through separation using Sephadex™ G-10. We evaluated the effects of these peptides on protection against oxidative stress in human keratinocytes (HaCaT) cells, inhibition of MMP-1 expression in human dermal fibroblast (HDF) cells, reduction in melanin content, and the inhibition of tyrosinase enzyme activity in murine melanoma (B16F10) cells. These results demonstrate that the isolated low-molecular-weight peptides exhibit superior skin anti-oxidant, anti-wrinkle, and whitening properties.
Collapse
Affiliation(s)
- Su-Jin Eom
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jae-Hoon Kim
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - A-Reum Ryu
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Heejin Park
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jae-Hoon Lee
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jung-Hyun Park
- Infrastructure Support Team, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Nam-Hyouck Lee
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- 3FC Corporation, Wanju-gun 55365, Republic of Korea
| | - Saerom Lee
- 3FC Corporation, Wanju-gun 55365, Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Min-Cheol Kang
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Kyung-Mo Song
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Science & Biotechnology, Sungshin Women's University, Seoul 01133, Republic of Korea
| |
Collapse
|
9
|
Mušič B, Pečnik JG, Pondelak A. Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity. Polymers (Basel) 2024; 16:2195. [PMID: 39125221 PMCID: PMC11314626 DOI: 10.3390/polym16152195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Protein-based fish adhesives have historically been used in various bonding applications; however, due to the protein's high affinity for water absorption, these adhesives become destabilized in high-moisture environments, resulting in reduced bondline strength and early failure. This limitation makes them unsuitable for industrial applications with higher demands. To address this issue, water-insoluble raw powder materials such as iron, copper, or zeolite were incorporated into natural fish adhesives. In this study, the hygroscopicity, dry matter content, thermal analysis (TGA/DSC), FT-IR spectroscopy, surface tension measurements, vapour permeability, and scanning electron microscope (SEM) of the modified adhesives were determined. In addition, the bonding properties of the modified adhesives were evaluated by the tensile shear strength of the lap joints, and mould growth was visually inspected. The resulting modified protein-based adhesives demonstrated improved stability in high humidity environments. Enhancing the hygroscopic properties of protein-based fish adhesives has the potential to unlock new opportunities and applications, providing a healthier and more environmentally sustainable alternative to petroleum-based adhesives.
Collapse
Affiliation(s)
- Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia;
| | | | - Andreja Pondelak
- Slovenian National Building and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Zhang K, Han Y. Thermostable Bacterial Collagenolytic Proteases: A Review. J Microbiol Biotechnol 2024; 34:1385-1394. [PMID: 38934777 PMCID: PMC11294657 DOI: 10.4014/jmb.2404.04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Collagenolytic proteases are widely used in the food, medical, pharmaceutical, cosmetic, and textile industries. Mesophilic collagenases exhibit collagenolytic activity under physiological conditions, but have limitations in efficiently degrading collagen-rich wastes, such as collagen from fish scales, at high temperatures due to their poor thermostability. Bacterial collagenolytic proteases are members of various proteinase families, including the bacterial collagenolytic metalloproteinase M9 and the bacterial collagenolytic serine proteinase families S1, S8, and S53. Notably, the C-terminal domains of collagenolytic proteases, such as the pre-peptidase C-terminal domain, the polycystic kidney disease-like domain, the collagen-binding domain, the proprotein convertase domain, and the β-jelly roll domain, exhibit collagen-binding or -swelling activity. These activities can induce conformational changes in collagen or the enzyme active sites, thereby enhancing the collagen-degrading efficiency. In addition, thermostable bacterial collagenolytic proteases can function at high temperatures, which increases their degradation efficiency since heat-denatured collagen is more susceptible to proteolysis and minimizes the risk of microbial contamination. To date, only a few thermophile-derived collagenolytic proteases have been characterized. TSS, a thermostable and halotolerant subtilisin-like serine collagenolytic protease, exhibits high collagenolytic activity at 60°C. In this review, we present and summarize the current research on A) the classification and nomenclature of thermostable and mesophilic collagenolytic proteases derived from diverse microorganisms, and B) the functional roles of their C-terminal domains. Furthermore, we analyze the cleavage specificity of the thermostable collagenolytic proteases within each family and comprehensively discuss the thermostable collagenolytic protease TSS.
Collapse
Affiliation(s)
- Kui Zhang
- College of Life Sciences and Technology, Longdong University, Qingyang 745000, P.R. China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang 745000, P.R. China
| | - Yapeng Han
- College of Life Sciences and Technology, Longdong University, Qingyang 745000, P.R. China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang 745000, P.R. China
| |
Collapse
|
11
|
Prosser S, Fava M, Rogers LM, Liaset B, Breen L. Postprandial plasma amino acid and appetite responses with ingestion of a novel salmon-derived protein peptide in healthy young adults. Br J Nutr 2024; 131:1860-1872. [PMID: 38418422 DOI: 10.1017/s0007114524000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
This study assessed postprandial plasma aminoacidemia, glycemia, insulinemia and appetite responses to ingestion of a novel salmon-derived protein peptide (Salmon PP) compared with milk protein isolate (Milk PI). In a randomised, participant-blind crossover design, eleven healthy adults (M = 5, F = 6; mean ± sd age: 22 ± 3 years; BMI: 24 ± 3 kg/m2) ingested 0·3 g/kg/body mass of Salmon PP or Milk PI. Arterialised blood samples were collected whilst fasted and over a 240-min postprandial period. Appetite sensations were measured via visual analogue scales. An ad libitum buffet-style test meal was administered after each trial. The incremental AUC (iAUC) plasma essential amino acid (EAA) response was similar between Salmon PP and Milk PI. The iAUC plasma leucine response was significantly greater following Milk PI ingestion (P < 0·001), whereas temporal and iAUC plasma total amino acid (P = 0·001), non-essential amino acid (P = 0·002), glycine (P = 0·0025) and hydroxyproline (P < 0·001) responses were greater following Salmon PP ingestion. Plasma insulin increased similarly above post-absorptive values following Salmon PP and Milk PI ingestion, whilst plasma glucose was largely unaltered. Indices of appetite were similarly altered following Salmon PP and Milk PI ingestion, and total energy and macronutrient intake during the ad libitum meal was similar between Salmon PP and Milk PI. The postprandial plasma EAA, glycine, proline and hydroxyproline response to Salmon PP ingestion suggest this novel protein source could support muscle and possibly connective tissue adaptive remodelling, which warrants further investigation, particularly as the plasma leucine response to Salmon PP ingestion was inferior to Milk PI.
Collapse
Affiliation(s)
- Sophie Prosser
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB15 2TT, UK
| | - Mia Fava
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB15 2TT, UK
| | - Lucy M Rogers
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB15 2TT, UK
| | | | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB15 2TT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Biomedical Research Centre, Birmingham, UK
| |
Collapse
|
12
|
Alekseeva LI, Kashevarova NG, Taskina EA, Strebkova EA, Korotkova TA, Sharapova EP, Savushkina NM, Lila AM, Shostak NA, Mazurov VI, Nesterovich II, Dedkova VA, Vasilyuk VB, Egorova NV, Leontyeva MA, Yakupova SP, Vinogradova IB, Sorotskaya VN, Shirokova LY. [Efficacy and safety of undenatured type II collagen in patients with knee osteoarthritis: a multicenter, prospective, double-blind, placebo-controlled, randomized trial]. TERAPEVT ARKH 2024; 96:500-509. [PMID: 38829812 DOI: 10.26442/00403660.2024.05.202788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Non-pharmacological treatments based on collagen as a dietary supplement are emerging as a new area of interest to support preventive or therapeutic effects in patients with osteoarthritis (OA). AIM In a multicenter, prospective, double-blind, placebo-controlled, randomized study, to evaluate the effectiveness and safety of the use of the Artneo complex containing undenatured chicken collagen type II in patients with OA of the knee joints. MATERIALS AND METHODS The study enrolled 212 outpatients from 12 centers in the Russian Federation with knee OA, stages II and III according to the Kellgren-Lawrence classification. The participants included 171 women (80.7%) and 41 men (19.3%), with an average age of 60.2±9.0 years (range: 40 to 75 years). The study population was randomly allocated in equal proportions into two groups using an interactive web response system (IWRS). Group 1 (Artneo) consisted of 106 patients who took one capsule of the drug once daily for 180 days. Group 2 (Placebo) also had 106 patients, with the dosage form and regimen identical to Group 1. During the treatment period, the following outcomes were assessed: WOMAC index, KOOS, pain according to VAS, quality of life using the EQ-5D questionnaire, and the need for NSAIDs. All patients underwent a clinical blood test, general urine analysis, biochemical blood test, and ultrasound examination of the affected knee joint. RESULTS In a prospective, double-blind, placebo-controlled, randomized study, it was demonstrated that the Artneo combination, containing undenatured chicken collagen type II, has a positive effect on all clinical manifestations of OA: it effectively reduces pain, stiffness, and improves the functional state of joints and quality of life. It has a good safety profile and is superior to placebo in all parameters studied. CONCLUSION The results of the study confirm the good effectiveness and safety of the Artneo combination in patients with OA of the knee joints.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A M Lila
- Nasonova Research Institute of Rheumatology
| | - N A Shostak
- Pirogov Russian National Research Medical University
| | - V I Mazurov
- Mechnikov North-Western State Medical University
- Clinical Rheumatology Hospital No. 25
- Medical and Sanitary Unit No. 157 LLC
| | - I I Nesterovich
- Pavlov First Saint Petersburg State Medical University
- Meili LLC
| | | | | | | | | | | | | | | | - L Y Shirokova
- Yaroslavl State Medical University
- Institute of Professional Training
| |
Collapse
|
13
|
Janssens-Böcker C, Wiesweg K, Doberenz C. Native collagen sheet mask improves skin health and appearance: A comprehensive clinical evaluation. J Cosmet Dermatol 2024; 23:1685-1702. [PMID: 38279521 DOI: 10.1111/jocd.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Collagen, a critical structural protein found abundantly in animal skin and bones, has become increasingly recognized for its potential therapeutic role in skincare. Despite growing interest, the scientific evidence for the efficacy of collagen sheet masks remains limited. The principal objective of our study was to provide insights into the multifaceted role of collagen in skin health, with a specific focus on its application in collagen sheet masks. METHODS The effects of a collagen sheet mask consisting of >92% native bovine collagen were investigated. The soluble protein components of the collagen matrix were analyzed and the influence of soluble collagen components on fibroblast regulation was examined. Scanning Electron Microscope (SEM) analysis was performed for structural analysis and effect on irritated skin. Five different clinical studies were conducted, including a comparison of the diversity of the skin microbiome, the tolerance and local irritating reactions in atopic dermatitis, an evaluation of skin redness after UV radiation, wrinkle reduction, and hydration and skin roughness of the collagen mask in comparison to a pre-soaked cellulose sheet mask. RESULTS The collagen mask contains soluble protein components, including small collagen peptides. The mask showed potential for promoting fibroblast activity. SEM analysis showed a native collagen structure similar to human dermis. The mask maintained the skin microbiome diversity and decreased skin pH levels. It demonstrated good tolerability on both intact and lesional skin and had a significant effect in reducing erythema caused by UV radiation compared to other skincare products. It showed significant improvements in skin hydration and the volume of eye wrinkles and was more effective than pre-soaked cellulose sheet masks. CONCLUSION Collagen sheet masks have the potential to positively impact skin health and appearance by increasing hydration, reducing erythema, minimizing wrinkles, and maintaining a healthy skin microbiome and skin barrier.
Collapse
|
14
|
Sionkowska A, Kulka-Kamińska K, Brudzyńska P, Lewandowska K, Piwowarski Ł. The Influence of Various Crosslinking Conditions of EDC/NHS on the Properties of Fish Collagen Film. Mar Drugs 2024; 22:194. [PMID: 38786585 PMCID: PMC11123180 DOI: 10.3390/md22050194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The process of crosslinking improves the physicochemical properties of biopolymer-based composites, making them valuable for biomedical applications. EDC/NHS-crosslinked collagen materials have a significant potential for tissue engineering applications, due to their enhanced properties and biocompatibility. Chemical crosslinking of samples can be carried out in several ways, which is crucial and has a direct effect on the final properties of the obtained material. In this study, the effect of crosslinking conditions on the properties of collagen films using EDC and NHS was investigated. Studies included FTIR spectroscopy, AFM, swelling and degradation tests, mechanical testing and contact angle measurements. Evaluation of prepared collagen films indicated that both crosslinking agents and crosslinking conditions influenced film properties. Notable alternations were observed in the infrared spectrum of the sample, to which EDC was added directly to the fish collagen solution. The same sample indicated the lowest Young modulus, tensile strength and breaking force parameters and the highest elongation at break. All samples reached the maximum swelling degree two hours after immersion in PBS solution; however, the immersion-crosslinked samples exhibited a significantly lower degree of swelling and were highly durable. The highest roughness was observed for the collagen film crosslinked with EDC, whereas the lowest was observed for the specimen crosslinked with EDC with NHS addition. The crosslinking agents increased the surface roughness of the collagen film, except for the sample modified with the addition of EDC and NHS mixture. All films were characterized by hydrophilic character. The films' modification resulted in a decrease in their hydrophilicity and wettability. Our research allows for a comparison of proposed EDC/NHS crosslinking conditions and their influence on the physicochemical properties of fish collagen thin films. EDC and NHS are promising crosslinking agents for the modification of fish collagen used in biomedical applications.
Collapse
Affiliation(s)
- Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.K.-K.); (P.B.); (K.L.)
| | - Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.K.-K.); (P.B.); (K.L.)
| | - Patrycja Brudzyńska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.K.-K.); (P.B.); (K.L.)
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.K.-K.); (P.B.); (K.L.)
| | - Łukasz Piwowarski
- SanColl Sp. z o. o., Juliusza Słowackiego 24, 35-060 Rzeszów, Poland;
| |
Collapse
|
15
|
Sasidharan A, Tronstad ER, Rustad T. Utilization of Lumpfish ( Cyclopterus lumpus) Skin as a Source for Gelatine Extraction Using Acid Hydrolysis. Mar Drugs 2024; 22:169. [PMID: 38667786 PMCID: PMC11051442 DOI: 10.3390/md22040169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Lumpfish (Cyclopterus lumpus) is an underutilized marine resource that is currently only being exploited for roe. Lumpfish skin was pre-treated with alkali (0.1M NaOH) and acid (0.1M HCl) at a skin to chemical ratio of 1:10 for 24 h at 5 °C to remove non-collagenous proteins and minerals. The pre-treated skin was washed, and gelatine was extracted with 0.1M of acetic acid at three different ratios (1:5, 1:10, and 1:15), time (12,18, and 24 h), and temperature combinations (12, 28, and 24 °C). The highest total extraction yield (>40%) was obtained with combinations of extraction ratios of 1:15 and 1:10 with a longer time (24 h) and higher temperature (18-24 °C). The highest gelatine content was obtained with an extraction period of 24 h and ratio of 1:10 (>80%). SDS-PAGE analysis confirmed the presence of type-I collagen. A rheological evaluation indicated melting and gelling temperatures, gel strength, and viscosity properties comparable to existing cold-water gelatine sources.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.S.); (E.R.T.)
- Department of Fish Processing Technology, KUFOS, Kochi 682506, India
| | - Elise Rabben Tronstad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.S.); (E.R.T.)
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.S.); (E.R.T.)
| |
Collapse
|
16
|
Tan SH, Liu S, Teoh SH, Bonnard C, Leavesley D, Liang K. A sustainable strategy for generating highly stable human skin equivalents based on fish collagen. BIOMATERIALS ADVANCES 2024; 158:213780. [PMID: 38280287 DOI: 10.1016/j.bioadv.2024.213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Tissue engineered skin equivalents are increasingly recognized as potential alternatives to traditional skin models such as human ex vivo skin or animal skin models. However, most of the currently investigated human skin equivalents (HSEs) are constructed using mammalian collagen which can be expensive and difficult to extract. Fish skin is a waste product produced by fish processing industries and identified as a cost-efficient and sustainable source of type I collagen. In this work, we describe a method for generating highly stable HSEs based on fibrin fortified tilapia fish collagen. The fortified fish collagen (FFC) formulation is optimized to enable reproducible fabrication of full-thickness HSEs that undergo limited contraction, facilitating the incorporation of human donor-derived skin cells and formation of biomimetic dermal and epidermal layers. The morphology and barrier function of the FFC HSEs are compared with a commercial skin model and validated with immunohistochemical staining and transepithelial electrical resistance testing. Finally, the potential of a high throughput screening platform with FFC HSE is explored by scaling down its fabrication to 96-well format.
Collapse
Affiliation(s)
- Shi Hua Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Swee Hin Teoh
- College of Materials Science and Engineering, Hunan University, People's Republic of China
| | - Carine Bonnard
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore
| | | | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore.
| |
Collapse
|
17
|
Pan L, Du J, Yin Q, Tao Y, Li P. Tannic acid adsorption properties of cellulose nanocrystalline/fish swim bladder gelatin composite sponge. Int J Biol Macromol 2024; 257:128552. [PMID: 38061524 DOI: 10.1016/j.ijbiomac.2023.128552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Foods and beverages with excessive tannins acid (TA) content taste astringent and bitter. The overconsumption of TA could result in nutritional and digestive problems. In this study, the cellulose nanocrystals (CNC)/fish swim bladder gelatin (FG) composite sponge was prepared with glutaraldehyde as a crosslinking agent. The TA adsorption performance of the sponge was discussed. The freeze-dried CNC/FG composite sponge had a porous network structure. CNC was combined into the FG matrix as a reinforcing phase. The mechanical strength, thermal stability, and swelling properties of the composite sponge were improved with the addition of an appropriate amount of CNC. Although CNC decreased the porosity of composite sponge, the increase in active adsorption sites resulted in an overall positive effect on its TA adsorption properties. Under the optimal adsorption conditions, the TA removal rate of 1.0 % CNC composites reached 80.4 %. Furthermore, the sponge retained a TA removal rate of 54 % after five cycles of adsorption and desorption using 50 % ethanol. The results demonstrated that CNC/FG composite sponge has application potential in the field of adsorption materials for TA.
Collapse
Affiliation(s)
- Ling Pan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Art and Design, Wuhan Polytechnic University, Wuhan 43004, China; College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Jinbao Du
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qing Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yubo Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
18
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
19
|
Laasri I, Bakkali M, Mejias L, Laglaoui A. Marine collagen: Unveiling the blue resource-extraction techniques and multifaceted applications. Int J Biol Macromol 2023; 253:127253. [PMID: 37806417 DOI: 10.1016/j.ijbiomac.2023.127253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Marine organisms such as fish and shellfish are composed of compounds with properties and characteristics that have been proven useful in a variety of sectors such as cosmetics, healthcare (wound healing), food industries, and tissue engineering. Collagen extraction from fish waste as a "blue resource" has attracted research attention over the past decade. Around 75 % of fish waste contains a high concentration of collagen. This has driven research in the conversion of these low-cost by-products into valuable products. Collagen extracted by acidic or/and enzymatic methods is gaining a lot of attention today due to its low cost and high yield. Fermentation and enzymatic hydrolysis stand out as one of the most environmentally sustainable and ecologically friendly methods for collagen extraction. Because of its great biocompatibility, excellent bioactivity, and low antigenicity, marine collagen is receiving more attention. Furthermore, collagen-derived peptides may exhibit interesting antioxidant activity, potent antihypertensive activity, and antimicrobial activity against different strains of bacteria. This review focuses on the advancements in extraction and detection methods of marine collagen, both from a technological and legislative standpoint, in addition to exploring its diverse range of application domains.
Collapse
Affiliation(s)
- Ikhlas Laasri
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco; BETA Technological Centre, University of Vic-UCC, Vic, Barcelona 08500, Spain.
| | - Mohammed Bakkali
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco
| | - Laura Mejias
- BETA Technological Centre, University of Vic-UCC, Vic, Barcelona 08500, Spain
| | - Amin Laglaoui
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco
| |
Collapse
|
20
|
Vieira H, Lestre GM, Solstad RG, Cabral AE, Botelho A, Helbig C, Coppola D, de Pascale D, Robbens J, Raes K, Lian K, Tsirtsidou K, Leal MC, Scheers N, Calado R, Corticeiro S, Rasche S, Altintzoglou T, Zou Y, Lillebø AI. Current and Expected Trends for the Marine Chitin/Chitosan and Collagen Value Chains. Mar Drugs 2023; 21:605. [PMID: 38132926 PMCID: PMC10744996 DOI: 10.3390/md21120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.
Collapse
Affiliation(s)
- Helena Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Gonçalo Moura Lestre
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Runar Gjerp Solstad
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Ana Elisa Cabral
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Anabela Botelho
- GOVCOPP—Research Unit on Governance, Competitiveness and Public Policies, DEGEIT, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos Helbig
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Kjersti Lian
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Kyriaki Tsirtsidou
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Miguel C. Leal
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Nathalie Scheers
- Department of Life Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden;
| | - Ricardo Calado
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Sofia Corticeiro
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Themistoklis Altintzoglou
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Yang Zou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Ana I. Lillebø
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| |
Collapse
|
21
|
Añazco C, Ojeda PG, Guerrero-Wyss M. Common Beans as a Source of Amino Acids and Cofactors for Collagen Biosynthesis. Nutrients 2023; 15:4561. [PMID: 37960212 PMCID: PMC10649776 DOI: 10.3390/nu15214561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Common beans (Phaseolus vulgaris L.) are widely consumed in diets all over the world and have a significant impact on human health. Proteins, vitamins, minerals, phytochemicals, and other micro- and macronutrients are abundant in these legumes. On the other hand, collagens, the most important constituent of extracellular matrices, account for approximately 25-30 percent of the overall total protein composition within the human body. Hence, the presence of amino acids and other dietary components, including glycine, proline, and lysine, which are constituents of the primary structure of the protein, is required for collagen formation. In this particular context, protein quality is associated with the availability of macronutrients such as the essential amino acid lysine, which can be acquired from meals containing beans. Lysine plays a critical role in the process of post-translational modifications facilitated with enzymes lysyl hydroxylase and lysyl oxidase, which are directly involved in the synthesis and maturation of collagens. Furthermore, collagen biogenesis is influenced by the cellular redox state, which includes important minerals and bioactive chemicals such as iron, copper, and certain quinone cofactors. This study provides a novel perspective on the significant macro- and micronutrients present in Phaseolus vulgaris L., as well as explores the potential application of amino acids and cofactors derived from this legume in the production of collagens and bioavailability. The utilization of macro- and micronutrients obtained from Phaseolus vulgaris L. as a protein source, minerals, and natural bioactive compounds could optimize the capacity to promote the development and durability of collagen macromolecules within the human body.
Collapse
Affiliation(s)
- Carolina Añazco
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile
| | - Paola G. Ojeda
- Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Marion Guerrero-Wyss
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile
| |
Collapse
|
22
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
23
|
M D S, Balange AK, Layana P, Naidu BC. Harnessing value and sustainability: Fish waste valorization and the production of valuable byproducts. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:175-192. [PMID: 37898539 DOI: 10.1016/bs.afnr.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The valorization of by-products, that are residual materials resulting from commercial product manufacturing, holds significant potential in various industries such as food, agrochemical, medical, and pharmaceutical sectors. This chapter explores the utilization of fish waste as a means to achieve sustainability in fish resources and enhance the production of profitable products. By developing cost-effective technologies, the abundant global supply of fish by-products can be transformed into low-cost sources of proteins and functional hydrolysates. This alternative approach in the food industry utilizes fish and seafood waste to generate valuable compounds with nutritional and functional properties, surpassing those found in traditional mammal products. Despite being commonly discarded, fish heads, viscera, skin, tails, blood, and seafood shells contain a wealth ofminerals, lipids, amino acids, polysaccharides, and proteins suitable for human health applications. This chapter presents an exploration of the various products and bioactive compounds that can be derived from seafood waste, contributing to a more sustainable and value-driven future.
Collapse
Affiliation(s)
- Sahana M D
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India
| | - Amjad K Balange
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India.
| | - P Layana
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India
| | - Bejawada Chanikya Naidu
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India
| |
Collapse
|
24
|
Mandal A, Dhineshkumar E, Murugan E. Collagen Biocomposites Derived from Fish Waste: Doped and Cross-Linked with Functionalized Fe 3O 4 Nanoparticles and Their Comparative Studies with a Green Approach. ACS OMEGA 2023; 8:24256-24267. [PMID: 37457468 PMCID: PMC10339420 DOI: 10.1021/acsomega.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Collagen-based nanobiocomposites can reabsorb and are biodegradable. These properties are effectively controlled by the number of cross-links. This study demonstrates an effortless and proficient approach for the functionalization of Fe3O4 NPs for cross-linking collagen obtained from biowaste, viz., fish scales of Lates Calcarifer, a marine origin. The size of Fe3O4 NPs (10-40 nm) was confirmed using particle size analysis. The physico-chemical properties of the aminosilane-coated Fe3O4 NPs cross-linked via succinylated collagen (FFCSC) were characterized using different analytical techniques and compared with succinylated collagen doped with Fe3O4 NPs (FDSC). Thermogravimetric analysis indicates cross-linked product FFCSC to be more stable than the FDSC. Also, the antibacterial effect was more pronounced for FFCSC than for FDSC nanobiocomposites. FFCSC exhibited improved mechanical properties which are essential for materials used for wound dressing purposes. Moreover, the cell viability of fibroblasts (3T3-L1) and their morphology studied by SEM and fluorescence microscopy showed biocompatibility of both FDSC and FFCSC. Thus, the current investigation, involves a waste to wealth approach where the collagen-based nanobiocomposites present an easy way to recycle the biowaste to value-added products using simple and clean methods, which are suitable for use in biomedical and environmental applications.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department
of Physical Chemistry, School of Chemical Sciences, University of Madras, Maramalai Campus, Guindy, Chennai 600 025, India
- Department
of Biotechnology, School of Life Sciences, Pondicherry University, R. V. Nagar, Kalapet, Puducherry 605 014, India
| | - Ezhumalai Dhineshkumar
- Dr.
Krishnamoorthi Foundation for Advanced Scientific Research, Vellore 632 001, Tamil Nadu, India
| | - Eagambaram Murugan
- Department
of Physical Chemistry, School of Chemical Sciences, University of Madras, Maramalai Campus, Guindy, Chennai 600 025, India
| |
Collapse
|
25
|
Jiang H, Kong Y, Song L, Liu J, Wang Z. A Thermostable Type I Collagen from Swim Bladder of Silver Carp ( Hypophthalmichthys molitrix). Mar Drugs 2023; 21:md21050280. [PMID: 37233474 DOI: 10.3390/md21050280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
As a major component of the extracellular matrix, collagen has been used as a biomaterial for many purposes including tissue engineering. Commercial collagen derived from mammals is associated with a risk of prion diseases and religious restrictions, while fish-derived collagen can avoid such issues. In addition, fish-derived collagen is widely available and low-cost; however, it often suffers from poor thermal stability, which limits its biomedical application. In this study, collagen with a high thermal stability was successfully extracted from the swim bladder of silver carp (Hypophthalmichthys molitrix) (SCC). The results demonstrated that it was a type I collagen with high purity and well-preserved triple-helix structure. Amino acid composition assay showed that the amounts of threonine, methionine, isoleucine and phenylalanine in the collagen of swim bladder of silver carp were higher than those of bovine pericardium. After adding salt solution, swim-bladder-derived collagen could form fine and dense collagen fibers. In particular, SCC exhibited a higher thermal denaturation temperature (40.08 °C) compared with collagens from the swim bladder of grass carp (Ctenopharyngodon idellus) (GCC, 34.40 °C), bovine pericardium (BPC, 34.47 °C) and mouse tail (MTC, 37.11 °C). Furthermore, SCC also showed DPPH radical scavenging ability and reducing power. These results indicate that SCC presents a promising alternative source of mammalian collagen for pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Honghui Jiang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuanyuan Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lili Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300385, China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
26
|
Martínez-Puig D, Costa-Larrión E, Rubio-Rodríguez N, Gálvez-Martín P. Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge. Nutrients 2023; 15:nu15061332. [PMID: 36986062 PMCID: PMC10058045 DOI: 10.3390/nu15061332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, generating pain, disability, and socioeconomic costs worldwide. Currently there are no approved disease-modifying drugs for OA, and safety concerns have been identified with the chronic use of symptomatic drugs. In this context, nutritional supplements and nutraceuticals have emerged as potential alternatives. Among them, collagen is being a focus of particular interest, but under the same term different types of collagens coexist with different structures, compositions, and origins, leading to different properties and potential effects. The aim of this narrative review is to generally describe the main types of collagens currently available in marketplace, focusing on those related to joint health, describing their mechanism of action, preclinical, and clinical evidence. Native and hydrolyzed collagen are the most studied collagen types for joint health. Native collagen has a specific immune-mediated mechanism that requires the recognition of its epitopes to inhibit inflammation and tissue catabolism at articular level. Hydrolyzed collagen may contain biologically active peptides that are able to reach joint tissues and exert chondroprotective effects. Although there are preclinical and clinical studies showing the safety and efficacy of food ingredients containing both types of collagens, available research suggests a clear link between collagen chemical structure and mechanism of action.
Collapse
|