1
|
Oluoch B, Mandizvo T, Musazura W, Badza T, Otieno B, Ojwach S, Odindo A. A review of pathogen removal from municipal wastewater using advanced oxidation processes: Agricultural application, regrowth risks, and new perspectives. Heliyon 2024; 10:e39625. [PMID: 39498016 PMCID: PMC11533656 DOI: 10.1016/j.heliyon.2024.e39625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
Pathogen removal in wastewater offers a chance to recover water and nutrients for crop production, reducing environmental contamination and public health risks. However, the risk of pathogens regrowing in treated effluents can endanger public health if reused in agriculture, attracting stringent reuse standards. While advanced oxidation processes (AOPs) promise to reduce pathogens, eliminating regrowth potential in AOP-treated effluents requires further scrutiny. This review aimed to summarize the available evidence on understanding pathogen reduction and regrowth potential in AOP-treated effluents, following best practices for scoping reviews like the preferred reporting items for systematic reviews and meta-analysis (PRISMA). It covers recent pathogen studies under AOPs, current AOP investigations, the impact of AOP dosage and retention time on pathogen control, and challenges in reusing AOP-treated effluents for crop production. Additionally, it identifies areas needing improvement or complementary treatments for pathogen-free effluents with no regrowth potential. The review concludes by summarizing key findings and suggesting research areas for further exploration.
Collapse
Affiliation(s)
- Barnabas Oluoch
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Takudzwa Mandizvo
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - William Musazura
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Taruvinga Badza
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Benton Otieno
- Water, Sanitation & Hygiene Research & Development Centre (WASH R&D Centre), University of KwaZulu-Natal, Howard College, 4041, Durban, South Africa
| | - Stephen Ojwach
- Chemistry Department, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Alfred Odindo
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
2
|
Kamranifar M, Ghanbari S, Fatehizadeh A, Taheri E, Azizollahi N, Momeni Z, Khiadani M, Ebrahimpour K, Ganachari SV, Aminabhavi TM. Unique effect of bromide ion on intensification of advanced oxidation processes for pollutants removal: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124136. [PMID: 38734054 DOI: 10.1016/j.envpol.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes (AOPs) have been developed to decompose toxic pollutants to protect the aquatic environment. AOP has been considered an alternative treatment method for wastewater treatment. Bromine is present in natural waters posing toxic effects on human health and hence, its removal from drinking water sources is necessary. Of the many techniques advanced oxidation is covered in this review. This review systematically examines literature published from 1997 to April 2024, sourced from Scopus, PubMed, Science Direct, and Web of Science databases, focusing on the efficacy of AOPs for pollutant removal from aqueous solutions containing bromide ions to investigate the impact of bromide ions on AOPs. Data and information extracted from each article eligible for inclusion in the review include the type of AOP, type of pollutants, and removal efficiency of AOP under the presence and absence of bromide ion. Of the 1784 documents screened, 90 studies met inclusion criteria, providing insights into various AOPs, including UV/chlorine, UV/PS, UV/H2O2, UV/catalyst, and visible light/catalyst processes. The observed impact of bromide ion presence on the efficacy of AOP processes, alongside the AOP method under scrutiny, is contingent upon various factors such as the nature of the target pollutant, catalyst type, and bromide ion concentration. These considerations are crucial in selecting the best method for removing specific pollutants under defined conditions. Challenges were encountered during result analysis included variations in experimental setups, disparities in pollutant types and concentrations, and inconsistencies in reporting AOP performance metrics. Addressing these parameters in research reports will enhance the coherence and utility of subsequent systematic reviews.
Collapse
Affiliation(s)
- Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Momeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharanabasava V Ganachari
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India; University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140 413, India; Korea University, Seoul, South Korea
| |
Collapse
|
3
|
Fernandes RA, Ranjan RS, Choudhary P. K 2S 2O 8-Mediated or Azobisisobutyronitrile-Catalyzed Regioselective Aerobic Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes. Org Lett 2024; 26:6247-6252. [PMID: 39018343 DOI: 10.1021/acs.orglett.4c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This work reveals the regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes mediated by K2S2O8 or catalyzed by azobisisobutyronitrile, a very common free radical initiator, in an easy to handle, simple procedure and free of transition metals. This approach demonstrates excellent regioselectivity, mild reaction conditions, and compatibility with a broad range of functional groups (45 examples).
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Ravikant S Ranjan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Priyanka Choudhary
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
4
|
Chinnaswamy V, Mohan SG, Ramsamy KM, Tm S. Photocatalytic activity of ZnO doped Nano hydroxyapatite/GO derived from waste oyster shells for removal of Methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41990-42011. [PMID: 38858286 DOI: 10.1007/s11356-024-33894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Hydroxyapatite (HAp) stands as an inorganic compound, recognized as a non-toxic, bioactive ceramic, and its composition closely resembles that of bone material. In this study, nHAp was prepared from waste oyster shells, which are biowaste rich in calcium carbonate. nHAp with its unique catalytic property can be used as an adsorbent in various fields, including wastewater treatment. nHAp with an exceptional surface adsorbent with excellent chemical stability, enabling its catalytic function. Nano hydroxyapatite doped with Zinc oxide (ZnO) by wet chemical precipitation and made into a composite with Graphene oxide (GO) by modified hummers method followed by grinding, which was taken as 9:1 ratio (nHAp/ZnO and GO) of weight, enhances its tensile and mechanical strength. The energy band gap of nHAp photocatalyst was evaluated as 3.39 eV and that of the in nHAp/ZnO/GO photocatalyst was narrowed to 1.77 eV. The ternary nanocomposites are very efficient in generating the photogenerated electrons and holes, thereby improving the degradation potential of dye effluents to by-products such as CO2 and H2O. The nanocomposites photocatalyst were characterized by FTIR, XRD, SEM, TEM, EDS, XPS, DRS, and BET techniques. The UV-visible study shows the complete dye degradation efficiency of the prepared nanocomposites photocatalyst. In this study, the prepared nanocomposites nHAp/ZnO/GO have studied their efficiency for the removal of MB dye in a batch process by varying the dosage from 0.1 to 0.5 g, and the effects of dosage variations, pH, kinetic, scavenger study were evaluated at a time interval of 30 min. The removal of dye was found to be 99% at 150 min of 0.3 g dosage and pH = 12 is most favorable as it reached the same percentage at 90 min. The as-prepared nanocomposite nHAp/ZnO/GO fits the kinetic rate constant equation and shows a pseudo-first-order reaction model. This study indicates the suitability for dye removal due to the synergistic effect and electrostatic interaction of the synthesized ternary nanocomposite, which shows the potential, socially active, low-cost-effective, eco-friendly, and safe for photocatalytic degradation of MB from wastewater.
Collapse
Affiliation(s)
- Vanitha Chinnaswamy
- PG and Research Department of Chemistry, R.V. Govt. Arts College, Chengalpattu, 603 001, Tamil Nadu, India
| | - Sundara Ganeasan Mohan
- Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India
| | - Kuppusamy Muniyan Ramsamy
- PG and Research Department of Chemistry, R.V. Govt. Arts College, Chengalpattu, 603 001, Tamil Nadu, India
| | - Sridhar Tm
- Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India.
| |
Collapse
|
5
|
Thi Yein W, Wang Q, Kim DS. Piezoelectric catalytic driven advanced oxidation process using two-dimensional metal dichalcogenides for wastewater pollutants remediation. CHEMOSPHERE 2024; 353:141524. [PMID: 38403122 DOI: 10.1016/j.chemosphere.2024.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The public and society have increasingly recognized numerous grave environmental issues, including water pollution, attributed to the rapid expansion of industrialization and agriculture. Renewable energy-driven catalytic advanced oxidation processes (AOPs) represent a green, sustainable, and environmentally friendly approach to meet the demands of environmental remediation. In this context, 2D transition metal dichalcogenides (TMDCs) piezoelectric materials, with their non-centrosymmetric crystal structure, exhibit unique features. They create dipole polarization, inducing a built-in electric field that generates polarized holes and electrons and triggers redox reactions, thereby facilitating the generation of reactive oxygen species for wastewater pollutant remediation. A broad spectrum of 2D TMDCs piezoelectric materials have been explored in self-integrated Fenton-like processes and persulfate activation processes. These materials offer a more simplistic and practical method than traditional approaches. Consequently, this review highlights recent advancements in 2D TMDCs piezoelectric catalysts and their roles in wastewater pollutant remediation through piezocatalytic-driven AOPs, such as Fenton-like processes and sulfate radicals-based oxidation processes.
Collapse
Affiliation(s)
- Win Thi Yein
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea; Department of Industrial Chemistry, University of Yangon, Republic of the Union of Myanmar, Myanmar
| | - Qun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
6
|
Vijayan V, Joseph CG, Taufiq-Yap YH, Gansau JA, Nga JLH, Li Puma G, Chia PW. Mineralization of palm oil mill effluent by advanced oxidation processes: A review on current trends and the way forward. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123099. [PMID: 38070640 DOI: 10.1016/j.envpol.2023.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023]
Abstract
Palm oil mill effluent (POME) is regarded as deleterious to the environment, primarily owing to the substantial volume of waste it produces during palm oil extraction. In terms of contaminant composition, POME surpasses the pollutant content typically found in standard municipal sewage, therefore releasing it without treatment into water bodies would do irreparable damage to the environment. Main palm oil mills are normally located in the proximity of natural rivers in order to take advantage of the cheap and abundant water source. The same rivers are also used as a water source for many villages situated along the river banks. As such, it is imperative to degrade POME before its disposal into the water bodies for obvious reasons. The treatment methods used so far include the biological processes such as open ponding/land application, which consist of aerobic as well as anaerobic ponds, physicochemical treatment including membrane technology, adsorption and coagulation are successful for the mitigation of contaminants. As the above methods require large working area and it takes more time for contaminant degradation, and in consideration of the strict environmental policies as well as palm oil being the most sort of vegetable oil in several countries, numerous researchers have concentrated on the emerging technologies such as advanced oxidation processes (AOPs) to remediate POME. Methods such as the photocatalysis, Fenton process, sonocatalysis, sonophotocatalysis, ozonation have attained special importance for the degradation of POME because of their efficiency in complete mineralization of organic pollutants in situ. This review outlines the AOP technologies currently available for the mineralization of POME with importance given to sonophotocatalysis and ozonation as these treatment process removes the need to transfer the pollutant while possibly degrading the organic matter sufficiently to be used in other industry like fertilizer manufacturing.
Collapse
Affiliation(s)
- Veena Vijayan
- Sonophotochemistry Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia; Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Collin G Joseph
- Sonophotochemistry Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia; Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Yun Hin Taufiq-Yap
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Malaysia; Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Jualang Azlan Gansau
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Janice L H Nga
- Sonophotochemistry Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia; Planning and Development Economics Programme, Faculty of Business, Economics and Accountancy, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK2, UK.
| | - Poh Wai Chia
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
7
|
Verma S, Mezgebe B, Hejase CA, Sahle-Demessie E, Nadagouda MN. Photodegradation and photocatalysis of per- and polyfluoroalkyl substances (PFAS): A review of recent progress. NEXT MATERIALS 2024; 2:1-12. [PMID: 38840836 PMCID: PMC11151751 DOI: 10.1016/j.nxmate.2023.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are oxidatively recalcitrant organic synthetic compounds. PFAS are an exceptional group of chemicals that have significant physical characteristics due to the presence of the most electronegative element (i.e., fluorine). PFAS persist in the environment, bioaccumulate, and have been linked to toxicological impacts. Epidemiological and toxicity studies have shown that PFAS pose environmental and health risks, requiring their complete elimination from the environment. Various separation technologies, including adsorption with activated carbon or ion exchange resin; nanofiltration; reverse osmosis; and destruction methods (e.g., sonolysis, thermally induced reduction, and photocatalytic dissociation) have been evaluated to remove PFAS from drinking water supplies. In this review, we will comprehensively summarize previous reports on the photodegradation of PFAS with a special focus on photocatalysis. Additionally, challenges associated with these approaches along with perspectives on the state-of-the-art approaches will be discussed. Finally, the photocatalytic defluorination mechanism of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) following complete mineralization will also be examined in detail.
Collapse
Affiliation(s)
- Sanny Verma
- Pegasus Technical Services INC., Cincinnati, OH 45219, USA
| | - Bineyam Mezgebe
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, US EPA, Ada, OK 74820, USA
| | - Charifa A. Hejase
- Pegasus Technical Services INC., Cincinnati, OH 45219, USA
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Endalkachew Sahle-Demessie
- Land Remediation and Technology Division, Center for Environmental Solutions and Emergency Response, US EPA, Cincinnati, OH 45268, USA
| | - Mallikarjuna N. Nadagouda
- Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, US EPA, Cincinnati, OH 45268, USA
| |
Collapse
|
8
|
Jing Q, Qiao FC, Sun J, Wang JY, Zhou MD. Persulfate promoted carbamoylation of N-arylacrylamides and N-arylcinnamamides with 4-carbamoyl-Hantzsch esters. Org Biomol Chem 2023; 21:7530-7534. [PMID: 37674373 DOI: 10.1039/d3ob01240a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Carbamoyl-Hantzsch esters were used as carbamoyl radical precursors for oxidative carbamoylation of N-arylacrylamides and N-arylcinnamamides in the presence of inexpensive persulfates. This protocol can be applied to a broad range of substrates with various functional groups, providing a variety of 3,3-disubstituted oxindoles and 3,4-disubstituted dihydroquinolin-2(1H)-ones in moderate to good yields via an intermolecular addition/cyclization process.
Collapse
Affiliation(s)
- Qi Jing
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Fu-Ci Qiao
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Jing Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Jing-Yun Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ming-Dong Zhou
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
9
|
Náfrádi M, Alapi T, Veres B, Farkas L, Bencsik G, Janáky C. Comparison of TiO 2 and ZnO for Heterogeneous Photocatalytic Activation of the Peroxydisulfate Ion in Trimethoprim Degradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5920. [PMID: 37687613 PMCID: PMC10489049 DOI: 10.3390/ma16175920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The persulfate-based advanced oxidation process is a promising method for degrading organic pollutants. Herein, TiO2 and ZnO photocatalysts were combined with the peroxydisulfate ion (PDS) to enhance the efficiency. ZnO was significantly more efficient in PDS conversion and SO4•- generation than TiO2. For ZnO, the PDS increased the transformation rate of the trimethoprim antibiotic from 1.58 × 10-7 M s-1 to 6.83 × 10-7 M s-1. However, in the case of TiO2, the moderated positive effect was manifested mainly in O2-free suspensions. The impact of dissolved O2 and trimethoprim on PDS transformation was also studied. The results reflected that the interaction of O2, PDS, and TRIM with the surface of the photocatalyst and their competition for photogenerated charges must be considered. The effect of radical scavengers confirmed that in addition to SO4•-, •OH plays an essential role even in O2-free suspensions, and the contribution of SO4•- to the transformation is much more significant for ZnO than for TiO2. The negative impact of biologically treated domestic wastewater as a matrix was manifested, most probably because of the radical scavenging capacity of Cl- and HCO3-. Nevertheless, in the case of ZnO, the positive effect of PDS successfully overcompensates that, due to the efficient SO4•- generation. Reusability tests were performed in Milli-Q water and biologically treated domestic wastewater, and only a slight decrease in the reactivity of ZnO photocatalysts was observed.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Tünde Alapi
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Bence Veres
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Luca Farkas
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Square 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Square 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| |
Collapse
|
10
|
Badiger SM, Nidheesh PV. Applications of biochar in sulfate radical-based advanced oxidation processes for the removal of pharmaceuticals and personal care products. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1329-1348. [PMID: 37001152 DOI: 10.2166/wst.2023.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, biochar (BC) has been increasingly used as a catalyst for the degradation of 'emerging pollutants' (EPs). Pharmaceuticals and personal care products (PPCPs), which come under 'EPs', can be harmful to the aquatic ecosystem despite being present in very low concentrations (ng/L-μg/L). Advanced oxidation processes (AOPs), which produce sulfate radical (SR-AOPs), show a great potential to degrade PPCPs effectively from wastewater. It is mainly due to the higher stability, long half-lives and better non-selectivity of SO4• - compared with AOPs with •OH generation. Furthermore, research focus is now given on AOPs coupled with BC-supported catalyst to enhance the degradation of PPCPs because of quicker generation of radicals (•OH, SO4•-) by the activation of persulfate (PS) and peroxymonosulfate (PMS). This article sheds light on the catalytic ability of BC after its physical and chemical modifications such as acid/alkali treatment and metal doping. The role of persistent free radicals (PFRs) in the BC for effective removal of PPCPs has been elaborated. Its potential applications in synthetic as well as real wastewater have also been discussed.
Collapse
Affiliation(s)
- Sourabh M Badiger
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Mubarokah ZR, Mahmed N, Norizan MN, Mohamad IS, Abdullah MMAB, Błoch K, Nabiałek M, Baltatu MS, Sandu AV, Vizureanu P. Near-Infrared (NIR) Silver Sulfide (Ag 2S) Semiconductor Photocatalyst Film for Degradation of Methylene Blue Solution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:437. [PMID: 36614775 PMCID: PMC9822198 DOI: 10.3390/ma16010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
A silver sulfide (Ag2S) semiconductor photocatalyst film has been successfully synthesized using a solution casting method. To produce the photocatalyst films, two types of Ag2S powder were used: a commercialized and synthesized powder. For the commercialized powder (CF/comAg2S), the Ag2S underwent a rarefaction process to reduce its crystallite size from 52 nm to 10 nm, followed by incorporation into microcrystalline cellulose using a solution casting method under the presence of an alkaline/urea solution. A similar process was applied to the synthesized Ag2S powder (CF/syntAg2S), resulting from the co-precipitation process of silver nitrate (AgNO3) and thiourea. The prepared photocatalyst films and their photocatalytic efficiency were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy (UV-Vis). The results showed that the incorporation of the Ag2S powder into the cellulose films could reduce the peak intensity of the oxygen-containing functional group, which indicated the formation of a composite film. The study of the crystal structure confirmed that all of the as-prepared samples featured a monoclinic acanthite Ag2S structure with space group P21/C. It was found that the degradation rate of the methylene blue dye reached 100% within 2 h under sunlight exposure when using CF/comAg2S and 98.6% for the CF/syntAg2S photocatalyst film, and only 48.1% for the bare Ag2S powder. For the non-exposure sunlight samples, the degradation rate of only 33-35% indicated the importance of the semiconductor near-infrared (NIR) Ag2S photocatalyst used.
Collapse
Affiliation(s)
- Zahrah Ramadlan Mubarokah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
| | - Norsuria Mahmed
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
- Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
| | - Mohd Natashah Norizan
- Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Ili Salwani Mohamad
- Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Mohd Mustafa Al Bakri Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
- Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
| | - Katarzyna Błoch
- Faculty of Mechanical Engineering and Computer Science, Częstochowa University of Technology, 42-201 Częstochowa, Poland
| | - Marcin Nabiałek
- Faculty of Mechanical Engineering and Computer Science, Częstochowa University of Technology, 42-201 Częstochowa, Poland
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| | - Andrei Victor Sandu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
- National Institute for Research and Development in Environmental Protection INCDPM, Splaiul Independentei 294, 060031 Bucharest, Romania
- Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
| | - Petrica Vizureanu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
- Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
| |
Collapse
|
12
|
Zieliński B, Miądlicki P, Przepiórski J. Development of activated carbon for removal of pesticides from water: case study. Sci Rep 2022; 12:20869. [PMID: 36460673 PMCID: PMC9718749 DOI: 10.1038/s41598-022-25247-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The work primarily concerns development of activated carbon dedicated for adsorption of pesticides from water prior directing it to the distribution system. We provide an information on research on important practical aspects related to research carried out to develop and to manufacture activated carbons. The paper concerns preliminary works on selection raw materials, a binder used for producing granulated adsorbent, activating gases, conditions of the production process, and others. The key attention in this research was paid to its target, i.e., industrial process to produce activated carbon revealing fulfilling required properties including satisfying adsorption of selected pesticides and meeting the requirements of companies dealing with a large-scale production of drinking water. Therefore, among others, the work includes considerations concerning such aspects like pore structure and specific surface area of the activated carbon, formation of granules that are the most demanded and thus preferred in an industrial practice form of activated carbons, and other aspects important from practical point of view. Using the results of our preliminary work, a batch of granular activated carbon was produced in industrial conditions. The obtained material was tested in terms of removing several pesticides at a water treatment plant operating on an industrial scale. During tests the concentration of acetochlor ESA was decreased from ca. 0.4 µg/l in raw water to below 0.1 µg/l. During 11 months of AC use specific surface area of adsorbent lowered significantly by 164 m2/g, and total pore volume declined from initial 0.56 cm3/g to 0.455 cm3/g. We discuss both a performance of the obtained activated carbon in a long-term removal of acetochlor and its derivatives from water and an effect of exploitation time on the removal efficiency. The explanations for the reduction in pesticide removal efficiency are also proposed and discussed.
Collapse
Affiliation(s)
- Bartosz Zieliński
- Grand Activated Sp. z o.o., ul. Białostocka 1, 7-200 Hajnówka, Poland ,grid.411391.f0000 0001 0659 0011Engineering of Catalytic and Sorbent Materials Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
| | - Piotr Miądlicki
- grid.411391.f0000 0001 0659 0011Engineering of Catalytic and Sorbent Materials Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
| | - Jacek Przepiórski
- grid.411391.f0000 0001 0659 0011Engineering of Catalytic and Sorbent Materials Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
13
|
Qazi UY, Iftikhar R, Ikhlaq A, Riaz I, Jaleel R, Nusrat R, Javaid R. Application of Fe-RGO for the removal of dyes by catalytic ozonation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89485-89497. [PMID: 35852749 DOI: 10.1007/s11356-022-21879-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Due to continuous industrialization, the discharge of hazardous dyes has enormously disrupted the ecosystem causing environmental problems. Due to the stable recalcitrant nature of dyes, advanced catalytic ozonation processes with the latest catalyst are under investigation. Fe-RGO is an effective oxidation catalyst, and the metal loaded platform provides enhanced catalytic performance. This study aims to investigate the effectiveness of Fe-RGO/O3 process for the removal of dyes. In the current research, the application of iron-coated reduced graphene oxide (Fe-RGO) was studied as a catalyst in the heterogeneous catalytic ozonation process to remove dyes. Methylene blue (MB) was selected as a model pollutant. RGO was prepared using the improved Hummers method and was coated with iron (Fe) implying the impregnation method. The FTIR, SEM-EDX, XRD, and BET analyses of RG and Fe-RGO were performed to characterize the catalyst. The effect of various parameters such as pH (3-10), catalyst dose (0.01-0.04 g), and radical scavengers (NaHCO3, NaCl) on removal efficiency was elucidated. The result revealed an excellent catalytic efficiency of Fe-RGO in the ozonation process. At optimum conditions, 96% removal efficiency was achieved in catalytic ozonation at pH 7 with a catalyst dose of 0.02 g and ozone dose 0.5 mg/min, after 10 min. Interestingly, a slight decrease in removal efficiency was observed in the catalytic ozonation process in hydroxyl radical scavengers (NaCl and NaHCO3), which makes the proposed catalyst more applicable in real conditions. Therefore, it is concluded that Fe-RGO can be used as an excellent catalyst for the removal of dyes in real conditions where radical scavengers may be present in a significant amount.
Collapse
Affiliation(s)
- Umair Yaqub Qazi
- Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Kingdom of Saudi Arabia
| | - Rabia Iftikhar
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan.
| | - Ibtsam Riaz
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan
| | - Rashid Jaleel
- Department of Physics, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan
- School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Rabia Nusrat
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan
| | - Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama, Fukushima, 963-0298, Japan.
| |
Collapse
|
14
|
Seyyedbagheri H, Alizadeh R, Mirzayi B. Visible-light-driven impressive activation of persulfate by Bi5O7Br-modified ZnO for photodegradation of tetracycline: Facile synthesis, kinetic and mechanism study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Foti L, Coviello D, Zuorro A, Lelario F, Bufo SA, Scrano L, Sauvetre A, Chiron S, Brienza M. Comparison of sunlight-AOPs for levofloxacin removal: kinetics, transformation products, and toxicity assay on Escherichia coli and Micrococcus flavus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58201-58211. [PMID: 35359212 PMCID: PMC8970974 DOI: 10.1007/s11356-022-19768-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Levofloxacin (LFX) is a widely used antibiotic medication. Persistent traces of LFX in water and wastewater may induce bacterial resistance. Photon-driven advanced oxidation processes (AOPs) can assist in attaining complete abatement of LFX for environmental protection. This work benchmarks different solar AOPs based on hydroxyl radical (OH•) and sulphate radical (SO4•-) chemistry. Other oxidant precursors, as radical sources, were used to selectively control the generation of either hydroxyl radical (i.e., H2O2), sulphate radical (i.e., peroxydisulphate (PDS)), or a controlled mixture ratio of both OH•/SO4•- (i.e., peroxymonosulphate (PMS)). The influence of pH on degradation performance was evaluated using unbuffered and buffered solutions. Simulated irradiation/PMS process exhibited a strong pH-dependence attaining partial degradation of ca. 56% at pH 5 up to complete degradation at pH 7. Despite the similitudes on the abatement of target pollutant LFX in pristine solutions, only simulated irradiation/PDS treatment achieved effective abatement of LFX in wastewater samples given the higher selectivity of SO4•-. Toxicity tests were conducted with Escherichia coli (LMG2092) and Micrococcus flavus (DSM1790), demonstrating successful inhibition of the antibiotic character of polluted waters, which would contribute to preventing the development of resistant bacterial strains. Finally, a degradative pathway was suggested from the by-products and intermediates identified by LC-MS. Results demonstrate that the degradation of specific functional groups (i.e., piperazine ring) is associated with the loss of antibacterial character of the molecule.
Collapse
Affiliation(s)
- Luca Foti
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Coviello
- Department of Engineering, University of Naples Parthenope, Centro Direzionale Isola C/4, 80143, Naples, Italy.
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Filomena Lelario
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Sabino Aurelio Bufo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg, 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100, Matera, Italy
| | - Andrés Sauvetre
- UMR HydroSciences 5569, IMT Mines Alès, Montpellier Université, Montpellier, France
| | - Serge Chiron
- Montpellier Université, UMR HydroSciences 5569, 15 Avenue Ch. Flahault, Montpellier cedex 5, 34093, Montpellier, France
| | - Monica Brienza
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
16
|
Domingues E, Silva MJ, Vaz T, Gomes J, Martins RC. Sulfate radical based advanced oxidation processes for agro-industrial effluents treatment: A comparative review with Fenton's peroxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155029. [PMID: 35390368 DOI: 10.1016/j.scitotenv.2022.155029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Agro-industrial wastewater management becomes a major task while environmental regulations are becoming stricter worldwide. Agro-industrial wastewaters are known by high content of organic pollutants that cause an adverse effect on the water bodies. Industries are looking for efficient, easy-to-use and affordable treatment processes. Sulfate radical based advanced oxidation processes (S-AOPs) are arising as suitable alternatives for agro-industrial effluents treatment. In this review, the major findings regarding the application of this technology for real agro-industrial wastewater depuration are discussed. Moreover, these technologies are compared as an alternative to Fenton's process, which is a widely studied advanced oxidation process and with high efficiency in the treatment of agro-industrial effluents. The studies already carried out are promising, but there is still a great lack of studies in this area and using this technique.
Collapse
Affiliation(s)
- Eva Domingues
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Maria João Silva
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Telma Vaz
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Gomes
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Rui C Martins
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
17
|
Fe2+ activating persulfate selectively oxidized alcohols by biphasic/homogeneous reaction switch strategy. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Cardoso IMF, Cardoso RMF, Pinto da Silva L, Esteves da Silva JCG. UV-Based Advanced Oxidation Processes of Remazol Brilliant Blue R Dye Catalyzed by Carbon Dots. NANOMATERIALS 2022; 12:nano12122116. [PMID: 35745454 PMCID: PMC9229011 DOI: 10.3390/nano12122116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023]
Abstract
UV-based advanced oxidation processes (AOPs) (UV/H2O2 and UV/S2O82-) with a titanium(IV)-doped carbon dot, TiP-CD, as a catalyst were developed for the decomposition of Remazol Brilliant Blue R (Reactive Blue 19), an anthraquinone textile dye (at T = 25 °C and pH = 7). The Ti-CD, with marked catalytic UV properties, was successfully synthesized by the one-pot hydrothermal procedure, using L-cysteine as carbon precursor, ethylenediamine as nitrogen source, PEG (polyethylene glycol) as a capping agent, and titanium(IV) isopropoxide (precursor of TiO2 doping). Contrary to azo dyes (methyl orange, orange II sodium salt, and reactive black 5), which achieved complete degradation in a time interval less than 30 min in the developed AOP systems (UV/H2O2, UV/S2O82-, and UV/TiO2), the RBB-R showed relatively low degradation rates and low discoloration rate constants. In the presence of the catalyzer, the reaction rate significantly increased, and the pseudo-first-order rate constants for the RBB-R discoloration were UV/3.0 mM H2O2/TIP-CD-0.0330 min-1 and UV/1.02 mM S2O82-/TIP-CD-0.0345 min-1.
Collapse
|
19
|
Natarajan P, Priya, Chuskit D. Persulfate-nitrogen doped graphene mixture as an oxidant for the synthesis of 3-nitro-4-aryl-2 H-chromen-2-ones from aryl alkynoate esters and nitrite. Org Biomol Chem 2022; 20:4616-4624. [PMID: 35608321 DOI: 10.1039/d2ob00827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 3-nitro-4-aryl-2H-chromen-2-ones in good yields have directly been obtained from aryl alkynoate esters and nitrite by employing a mixture of K2S2O8-nitrogen doped graphene as an oxidant in a watery medium at room temperature. A plausible mechanism for the reaction is also reported. It reveals that the product is formed through a cascade of nitro radical addition, spirocyclization, and ester migration. When compared to known methods for the synthesis of 3-nitro-4-aryl-2H-chromen-2-ones from aryl alkynoate esters, this protocol is environmentally friendly, sustainable, practical and energy efficient and does not use a harmful nitro source. Furthermore, nitrogen doped graphene used in this approach can be easily recovered and reused at least four times without losing its activity.
Collapse
Affiliation(s)
- Palani Natarajan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| | - Priya
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| | - Deachen Chuskit
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| |
Collapse
|
20
|
Fe-doped Al2O3 nanoplatforms as efficient and recyclable photocatalyst for the dyes remediation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Joseph CG, Taufiq-Yap YH, Affandi NA, Nga JLH, Vijayan V. Photocatalytic treatment of detergent-contaminated wastewater: A short review on current progress. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0964-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Lai H, Xu J, Lin J, Su B, Zha D. Chemo-selective control of Ritter-type reaction by coordinatively unsaturated inorganic salt hydrates. Org Chem Front 2022. [DOI: 10.1039/d1qo01832a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We used a readily available water source, MgSO4·2H2O, to realize the control of the chemo-selectivity of the Ritter-type reaction efficiently.
Collapse
Affiliation(s)
- Huifang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Jin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, China
| |
Collapse
|
23
|
Huang T, Du J, Yu D, Deng S, Zhang S, Liu L. Oxidative degradation of p-chlorophenol by the persulfate-doped Fe-Mn bimetallic hydroxide, the parametrical significance, and systematical optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1289-1300. [PMID: 34350579 DOI: 10.1007/s11356-021-15793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Aqueous Fe(II)-catalyzed activation commonly deteriorates the oxidation performance of persulfate (PS) to the treatment of organic contaminants. In this study, a PS-doped layered bimetallic hydroxide (Fe-Mn hydroxide) was synthesized to construct a heterogeneously catalytic system to solve the issue brought by homogeneity. The molar ratio of Fe(II) to Mn(II) and the mass ratio of PS to Fe-Mn hydroxide both had a significant impact on the catalytic degradation of p-CP. Reaction temperatures engaged in the most essential role in influencing the degradation and removal of p-chlorophenol (p-CP). The optimal combination of factors for the preparation of PS-hydroxide and the treatment of p-CP was finally determined by significance analysis. The degradation process was appropriately fitted by the pseudo-first-order kinetic model. The benzene ring in p-CP was broken by PS-hydroxide during the adsorption. The surface modification of PS-hydroxide caused by the valence transition of Mn was beneficial to the adsorption and catalytic degradation of p-CP.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China.
| | - Jing Du
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China.
| | - Danni Yu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Shihan Deng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, Hengyang, 421001, Hunan, China
| | - Longfei Liu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
| |
Collapse
|
24
|
Bao Y, Chen T, Zhu Z, Zhang H, Qiu Y, Yin D. Mo 2C/C catalyst as efficient peroxymonosulfate activator for carbamazepine degradation. CHEMOSPHERE 2022; 287:132047. [PMID: 34474388 DOI: 10.1016/j.chemosphere.2021.132047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Compared with generally reported Mo4+/Mo6+ redox cycle, the exposed Mo2+ active sites of Mo-based materials may have a superior potential to effectively activate PMS. However, Mo2+-involved materials as efficient catalysts in sulfate radical-based advanced oxidation processes (SR-AOPs) has rarely been researched. In this work, a spherical Mo2C-loaded carbon material, Mo2C/C, was prepared for the first time by hydrothermal-calcination method directly used as peroxymonosulfate (PMS) activator towards carbamazepine (CBZ) degradation. The results showed that the Mo2C/C could effectively remove nearly 100% CBZ (5 mg·L-1) in the presence of 0.75 mM PMS within 75 min under the optimal conditions. It was attributed to the reductive Mo2+, as active sites, benefits to absorb PMS on the surface to trigger electron transmission, and the defective carbon structures accelerate the activation of PMS. Consequently, the efficient Mo2+/Mo4+/Mo6+ electron transfer was achieved, resulting in excellent catalysis. A series of reactive species including SO4-, OH and 1O2 species participated in CBZ oxidation degradation. Derived from the superior stability and reusability of Mo2C/C, the removal rate of CBZ still maintained above 80% even after five consecutive cycles, which is expected to be applied in the wastewater treatment including pharmaceuticals in the future.
Collapse
Affiliation(s)
- Yujie Bao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China
| | - Ting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China.
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China
| |
Collapse
|
25
|
Sabri M, Habibi-Yangjeh A, Rahim Pouran S, Wang C. Titania-activated persulfate for environmental remediation: the-state-of-the-art. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1996776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mina Sabri
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shima Rahim Pouran
- Social Determinants of Health Research Center, Department of Environmental and Occupational Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan PR China
| |
Collapse
|
26
|
Wang Z, Lü S, Yang F, Kabir SF, Mahmud S, Liu H. Hyaluronate macromolecules reduced-stabilized colloidal palladium nanocatalyst for azo contaminated wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, Mohd Nor MZ, Azis RS, Umar AM. Contemporary Techniques for Remediating Endocrine-Disrupting Compounds in Various Water Sources: Advances in Treatment Methods and Their Limitations. Polymers (Basel) 2021; 13:polym13193229. [PMID: 34641045 PMCID: PMC8512899 DOI: 10.3390/polym13193229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Over the years, the persistent occurrence of superfluous endocrine-disrupting compounds (EDCs) (sub µg L−1) in water has led to serious health disorders in human and aquatic lives, as well as undermined the water quality. At present, there are no generally accepted regulatory discharge limits for the EDCs to avert their possible negative impacts. Moreover, the conventional treatment processes have reportedly failed to remove the persistent EDC pollutants, and this has led researchers to develop alternative treatment methods. Comprehensive information on the recent advances in the existing novel treatment processes and their peculiar limitations is still lacking. In this regard, the various treatment methods for the removal of EDCs are critically studied and reported in this paper. Initially, the occurrences of the EDCs and their attributed effects on humans, aquatic life, and wildlife are systematically reviewed, as well as the applied treatments. The most noticeable advances in the treatment methods include adsorption, catalytic degradation, ozonation, membrane separation, and advanced oxidation processes (AOP), as well as hybrid processes. The recent advances in the treatment technologies available for the elimination of EDCs from various water resources alongside with their associated drawbacks are discussed critically. Besides, the application of hybrid adsorption–membrane treatment using several novel nano-precursors is carefully reviewed. The operating factors influencing the EDCs’ remediations via adsorption is also briefly examined. Interestingly, research findings have indicated that some of the contemporary techniques could achieve more than 99% EDCs removal.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
- Department of Food, Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
- Correspondence: ; Tel.: +60-1-82314746
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
| | - Rabaah Syahidah Azis
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abba Mohammed Umar
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi 650221, Nigeria;
| |
Collapse
|
28
|
Wang J, Wang X, Liu X, Guo Q, Kong W, Liu D. Efficient and Solvent-Free Oxidation Coupling of Amines to Imines Using Persulfate as Oxidant with Ultrasound Assistance. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1977350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Junyan Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| | - Xing Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| | - Xiaona Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| | - Qingbin Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| | - Weimeng Kong
- Organic Chemical Plant, Beijing Dongfang Petrochemical Co. Ltd, Beijing, P. R. China
| | - Di Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| |
Collapse
|
29
|
Khraisheh M, AlMomani F, Inamdar M, Hassan MK, Al-Ghouti MA. Ionic liquids application for wastewater treatment and biofuel production: A mini review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Kokkinos P, Venieri D, Mantzavinos D. Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:283-302. [PMID: 34125359 PMCID: PMC8200792 DOI: 10.1007/s12560-021-09481-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/06/2021] [Indexed: 05/09/2023]
Abstract
Water and wastewater virological quality is a significant public health issue. Viral agents include emerging and re-emerging pathogens characterized by extremely small size, and high environmental stability. Since the mainly used conventional disinfection methods are usually not able to achieve complete disinfection of viral and other microbial targets, in real water and wastewater matrices, effective strategies for the treatment, use and reuse of water and the development of next-generation water supply systems are required. The scope of the present systematic review was to summarize research data on the application of advanced oxidation processes (AOPs) for viral disinfection of water and wastewater. A literature survey was conducted using the electronic databases PubMed, Scopus, and Web of Science. This comprehensive research yielded 23 records which met the criteria and were included and discussed in this review. Most of the studies (14/23) used only MS2 bacteriophage as an index virus, while the remaining studies (9/23) used two or more viral targets, including phages (MS2, T4, T7, phiX174, PRD-1, S2, ϕB124-14, ϕcrAssphage) and/or Adenovirus, Aichivirus, Norovirus (I, II, IV), Polyomavirus (JC and BK), Sapovirus, Enterovirus, Coxsackievirus B3, Echovirus, and Pepper mild mottle virus. The vast majority of the studies applied a combination of two or more treatments and the most frequently used process was ultraviolet light-hydrogen peroxide (UV/H2O2) advanced oxidation. The review is expected to highlight the potential of the AOPs for public health protection from the waterborne viral exposure.
Collapse
Affiliation(s)
- Petros Kokkinos
- Department of Chemical Engineering, University of Patras, University Campus, Caratheodory 1, 26504 Patras, Greece
| | - Danae Venieri
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, University Campus, Caratheodory 1, 26504 Patras, Greece
| |
Collapse
|
31
|
Mao W, Wang X, Hu X, Lin Z, Su Z. Activation of Peroxymonosulfate by Co-Metal–Organic Frameworks as Catalysts for Degradation of Organic Pollutants. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Wenjia Mao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China
| | - Xinting Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China
| | - Xiaoli Hu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China
| | - Zihan Lin
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China
- Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun 130022, China
| |
Collapse
|
32
|
Balci B, Aksoy N, Erkurt FE, Budak F, Basibuyuk M, Zaimoglu Z, Turan ES, Yilmaz S. Removal of a reactive dye from simulated textile wastewater by environmentally friendly oxidant calcium peroxide. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present study, calcium peroxide (CaO2) was used separately for potential application as an environmentally friendly and low-cost oxidant for the removal of a textile dye ‘Reactive Black 5’ (RB5) from simulated textile wastewater containing auxiliary chemicals of textile production. The specific morphology, elemental analysis, particle size distribution, specific surface area, identification of crystalline phases and surface functional groups of the synthesized CaO2 were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), laser diffraction (LD), Brunaure–Emmett–Teller method (BET), X-ray diffraction (XRD) and Fourier transmission infrared (FTIR), respectively. X-ray Diffraction analysis confirmed the synthesized oxidant as CaO2 with the tetragonal crystalline structure. The signal corresponded to a bending vibration of O–Ca–O was detected in the fingerprint region of the FTIR spectroscopy. The effects of various independent parameters such as contact time, pH, initial RB5 concentration and CaO2 dosage on decolorization were investigated. The results of the study showed that pH, initial dye concentration and the CaO2 amounts have significant effects on removal of the RB5. The optimum pH was determined 7 for the removal of RB5 by CaO2. 2.0 g CaO2 was found to be sufficient for the removal of 300 mg/L RB5 with 96.93% removal efficiency. Also 82.8% chemical oxygen demand (COD) removal efficiency from simulated textile wastewater (STW) was obtained by 2.0 g CaO2. The results of the present study showed that the CaO2 can be used as an environmentally friendly and low-cost oxidant for effective removal of reactive textile dyes.
Collapse
Affiliation(s)
- Behzat Balci
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Nurevsan Aksoy
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - F. Elcin Erkurt
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Fuat Budak
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Mesut Basibuyuk
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Zeynep Zaimoglu
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - E. Su Turan
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Sevgi Yilmaz
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| |
Collapse
|
33
|
Laha JK, Hunjan MK. K 2S 2O 8 activation by glucose at room temperature for the synthesis and functionalization of heterocycles in water. Chem Commun (Camb) 2021; 57:8437-8440. [PMID: 34342308 DOI: 10.1039/d1cc03777c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While persulfate activation at room temperature using glucose has primarily been focused on kinetic studies of the sulfate radical anion, the utilization of this protocol in organic synthesis is rarely demonstrated. We reinvestigated selected K2S2O8-mediated known organic reactions that invariably require higher temperatures and an organic solvent. A diverse, mild functionalization and synthesis of heterocycles using the inexpensive oxidant K2S2O8 in water at room temperature is reported, demonstrating the sustainability and broad scope of the method. Unlike traditional methods used for persulfate activation, the current method uses naturally abundant glucose as a K2S2O8 activator, avoiding the use of higher temperature, UV light, transition metals or bases.
Collapse
Affiliation(s)
- Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India.
| | | |
Collapse
|
34
|
Lai H, Xu J, Lin J, Zha D. Copper-promoted direct amidation of isoindolinone scaffolds by sodium persulfate. Org Biomol Chem 2021; 19:7621-7626. [PMID: 34308463 DOI: 10.1039/d1ob01054a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoindolinones are ubiquitous structural motifs in natural products and pharmaceuticals. Establishing an efficient method for structural modification of isoindolinones could significantly facilitate new drug development. Herein, we describe copper-promoted direct amidation of isoindolinone scaffolds mediated by sodium persulfate. The method exhibits mild reaction conditions and high site-selectivity, and enables the structural modification of the drug indobufen ester with various amides with yields of 49 to 98%. It is also gram-scalable. Additionally, the reaction mechanism appears to involve a radical and a carbocationic pathway.
Collapse
Affiliation(s)
- Huifang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China. and Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, China
| |
Collapse
|
35
|
Guo J, Gao Q, Chen Y, He Q, Zhou H, Liu J, Zou C, Chen W. Insight into sludge dewatering by advanced oxidation using persulfate as oxidant and Fe 2+ as activator: Performance, mechanism and extracellular polymers and heavy metals behaviors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112476. [PMID: 33827020 DOI: 10.1016/j.jenvman.2021.112476] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
This study established a Fe2+/persulfate oxidation system to dewater sludge in WWTPs. Dewatering performance, persulfate consumption and the variations of sludge pH, TN and TP during dewatering process were monitored. EPS and ζ-potential behaviors for ameliorating sludge dewatering was investigated. Transformation, leaching toxicity and environmental risk of heavy metals in sludge during dewatering were determined. Results demonstrated that after treated by Fe2+/persulfate oxidation system with 0.6 mmol/g-VS of persulfate at Fe2+/persulfate molar ratio 0.6, WC decreased to 53.5% and SCST increased to 4.15, which implied an excellent improvement of sludge dewatering. The fast persulfate consumption, the decrease of sludge pH and the increase of TN illustrated the positive effects of Fe2+ in activating persulfate and the decomposition of EPS by the activation products, SO4•- and •OH. Another product (Fe3+) generated during persulfate activation could decrease the content of phosphorus-containing matter (released from EPS decomposition) through the precipitation reaction with PO43-. The decrease of TOC and UV-254 happened in HPO-A, HPO-N and TPI-A organic substance of EPS (mainly contained in TB-EPS fraction) indicated that the destruction of hydrophobic organic matter of EPS would stimulate the release of bound water, which was beneficial to dewater sludge. The largest protein loss in TB-EPS (from 24.5 to 10.7 mg/L) indicated that the effective decomposition of TB-EPS could significantly ameliorate sludge dewatering. The increase of ζ-potential indicated the degradation of organic matter in EPS with negative charge. To sum up, the destruction of protein-like substances in hydrophobic organic matter of TB-EPS was the main mechanism for improving sludge dewatering by Fe2+/persulfate oxidation system. 3D-EEM fluorescence spectroscopy analysis proved that these protein-like substances were mainly tryptophan protein and humic acid. Moreover, due to the disruption of EPS, the contents of heavy metals in sludge, and their leaching toxicity and environmental risk were reduced. Therefore, Fe2+/persulfate oxidation system has potential and application prospects to improve sludge dewatering and optimize sludge management in WWTPs.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Qifan Gao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yihua Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Qianlan He
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Hengbing Zhou
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Jinbao Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Changwu Zou
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Wenjing Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
36
|
Hou J, He X, Zhang S, Yu J, Feng M, Li X. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145311. [PMID: 33736411 DOI: 10.1016/j.scitotenv.2021.145311] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted increasing attention for the degradation of organic contaminants in water. The oxidants of SR-AOPs could be activated to generate different kinds of reactive oxygen species (ROS, e.g., hydroxyl radicals (OH), sulfate radicals (SO4-), singlet oxygen (1O2), and superoxide radicals (O2-)) by various catalysts. As one of the promising catalysts, cobalt-based catalysts have been extensively investigated in catalytic activity and stability during water remediation. This article mainly summarizes recent advances in preparation and applications of cobalt-based catalysts on peroxydisulfate (PDS)/peroxymonosulfate (PMS) activation since 2016. The review covers the development of homogeneous cobalt ions, cobalt oxides, supported cobalt composites, and cobalt-based mixed metal oxides for PDS/PMS activation, especially for the latest nanocomposites such as cobalt-based metal-organic frameworks and single-atom catalysts. This article also discussed the activation mechanisms and the influencing factors of different cobalt-based catalysts for activating PDS/PMS. Finally, the future perspectives on the challenges and applications of cobalt-based catalysts are presented at the end of this paper.
Collapse
Affiliation(s)
- Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiudan He
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shengqi Zhang
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jialin Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingbao Feng
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
37
|
Bajagain R, Jeong SW. Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron. CHEMOSPHERE 2021; 270:128627. [PMID: 33109362 DOI: 10.1016/j.chemosphere.2020.128627] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Recently, the use of nanoscale zero-valent iron (nZVI) for removal of organic contaminants from aqueous and soil system has increased. In this study, we employ nZVI to activate peroxymonosulfate (PMS) for the degradation of total petroleum hydrocarbons (TPHs) in aged diesel-contaminated soil. Upon PMS activation by nZVI, PMS produces more highly reactive oxygen species (ROS) in both aqueous solution and soil compared to other compounds (PMS/Co(II)), as determined by electron paramagnetic resonance spectroscopy. Thus, nZVI is an effective catalyst for PMS activation, leading to the efficient degradation of diesel oil in soil compared to other catalysts and oxidants. The optimal concentrations of PMS and nZVI were found to be 3 and 0.2%, respectively, showing the best degradation efficiency (61.2% in 2 h). The observed TPH degradation was retarded (up to 19.1-37% efficiency) in the presence of radical scavengers, such as tert-butyl alcohol, nitrobenzene, ethyl alcohol, and isopropyl alcohol. These results also demonstrate that ROS (hydroxyl and sulfate free radicals) are generated via PMS activation by nZVI. Moreover, more than 96% of TPH can be degraded by sequential applications of PMS/nZVI. Factors affecting TPH degradation, namely PMS/nZVI concentration, soil:solution ratio, soil pH, activators, and oxidants, are also analyzed. The results demonstrate that TPH is degraded to below the residential soil quality limit using PMS/nZVI based on the advanced oxidation process (AOP), which is therefore an effective option for chemical remediation of diesel-contaminated soils over a wide range of pH.
Collapse
Affiliation(s)
- Rishikesh Bajagain
- Department of Environmental Engineering, Kunsan National University, Gunsan, 54150, South Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Gunsan, 54150, South Korea.
| |
Collapse
|
38
|
Iazdani F, Nezamzadeh-Ejhieh A. Supported cuprous oxide-clinoptilolite nanoparticles: Brief identification and the catalytic kinetics in the photodegradation of dichloroaniline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119348. [PMID: 33401177 DOI: 10.1016/j.saa.2020.119348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The supported CuO onto the ball-mill prepared clinoptilolite nanoparticles (CNPs) was prepared via an ion exchange process in Cu(II) aqueous solution followed by the calcination process. The CuO-CNP samples with various CuO loading were briefly characterized by XRD, FTIR, and DRS. pHpzc was varied in the range of 6.3 to 6.8 depending on the amount of loaded CuO in the samples. The band gap energy was estimated by applying the Kubelka-Munk equation on the DRS results that varied from 2.41 to 2.50 eV depending on the CuO loading. Based on the Scherrer equation nano-sized CuO-CNP at about 50 nm was estimated. The CuO-CNP contained 3.9% CuO showed the highest photocatalytic activity toward dichloroaniline (DCA). The effects of the experimental variables on DCA photodegradation were studied by using the Hinshelwood model. The optimal conditions for obtaining a higher rate for DCA photodegradation were the catalyst dose of 0.5 g/L, CDCA: 5 ppm, and the initial pH: 3. HPLC analysis of the photodegraded DCA solutions for 180 and 300 min gave the degradation extents 71% and 90%, respectively.
Collapse
Affiliation(s)
- Fereshteh Iazdani
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Young Researchers and Elite Club, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Young Researchers and Elite Club, Shahreza Branch, Islamic Azad University, Shahreza, Iran; Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
39
|
Shen D, Wang H, Zheng Y, Zhu X, Gong P, Wang B, You J, Zhao Y, Chao M. Catalyst-Free and Transition-Metal-Free Approach to 1,2-Diketones via Aerobic Alkyne Oxidation. J Org Chem 2021; 86:5354-5361. [PMID: 33764062 DOI: 10.1021/acs.joc.0c03010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A catalyst-free and transition-metal-free method for the synthesis of 1,2-diketones from aerobic alkyne oxidation was reported. The oxidation of various internal alkynes, especially more challenging aryl-alkyl acetylenes, proceeded smoothly with inexpensive, easily handled, and commercially available potassium persulfate and an ambient air balloon, achieving the corresponding 1,2-diketones with up to 85% yields. Meanwhile, mechanistic studies indicated a radical process, and the two oxygen atoms in the 1,2-diketons were most likely from persulfate salts and molecular oxygen, respectively, rather than water.
Collapse
Affiliation(s)
- Duyi Shen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hongyan Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yanan Zheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xinjing Zhu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peiwei Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.,Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, P. R. China
| | - Yulei Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mianran Chao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
40
|
Silvestri D, Wacławek S, Sobel B, Torres–Mendieta R, Pawlyta M, Padil VV, Filip J, Černík M. Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Crincoli KR, Huling SG. Contrasting hydrogen peroxide- and persulfate-driven oxidation systems: Impact of radical scavenging on treatment efficiency and cost. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 404:10.1016/j.cej.2020.126404. [PMID: 34121918 PMCID: PMC8193818 DOI: 10.1016/j.cej.2020.126404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For the first time, the fate of radicals generated in heterogeneous chemical oxidation treatment systems has been accounted for and used to assess treatment performance in three reaction compartments; reaction with the target compound, rhodamine B (RhB), the aqueous phase scavengers, and the solid phase scavengers. Radicals formed during the ultra-violet (UV) activation of hydrogen peroxide (H2O2) (UV-AHP) and persulfate (S2O8 2-) (UV-APS) include hydroxyl (•OH) and sulfate radicals (SO4 •-), respectively. •OH and SO4 •-, used in oxidation treatment systems to degrade a broad spectrum of environmental contaminants, may also react with non-target chemical species (scavengers) that limit treatment efficiency. UV-AHP and UV-APS treatment systems were amended with solid phase alumina to assess scavenging by solid surfaces. The overall rate of reaction and rate of radical scavenging was greater for •OH than SO4 •-. Scavenging by dissolved constituents was dominated by the oxidant used (H2O2, S2O8 2-); and the rate of radical scavenging by alumina was greater than the rate of RhB oxidation in all cases. Treatment efficiency was lower in the UV-AHP than in the UV-APS treatment system and was attributed to greater aqueous and solid phase scavenging rates. The cost of commercially available H2O2 ($0.031 mol-1) and PS ($0.24 mol-1) was used in conjunction with the overall treatment efficiency to assess specific cost of treatment. The specific cost to treat the probe compound with UV-AHP was greater than UV-APS and was attributed to the much lower treatment efficiency with UV-AHP. The much-desired high reaction rate constants between •OH and environmental contaminants, relative to SO4 •-, may come at the cost of greater combined scavenging rates, and consequently lower treatment efficiency.
Collapse
Affiliation(s)
- Klara Rusevova Crincoli
- National Research Council, Robert S. Kerr Environmental Research Center, 919 Kerr Lab Dr., Ada, OK 74820, USA
| | - Scott G. Huling
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Robert S. Kerr Environmental Research Center, 919 Kerr Lab Dr., Ada, OK 74820 USA
| |
Collapse
|
42
|
Schulz G, Kirschning A. Metal free decarboxylative aminoxylation of carboxylic acids using a biphasic solvent system. Org Biomol Chem 2021; 19:273-278. [PMID: 33191421 DOI: 10.1039/d0ob01773f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The smooth oxidative radical decarboxylation of carboxylic acids with TEMPO and other derivatives as radical scavengers is reported. The key to success was the use of a two-phase solvent system to avoid otherwise predominant side reactions such as the oxidation of TEMPO by persulfate and enabled the selective formation of synthetically useful alkoxyamines. The method does not require transition metals and was successfully used in a new synthetic approach for the antidepressant indatraline.
Collapse
Affiliation(s)
- Göran Schulz
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| | | |
Collapse
|
43
|
Bui Thanh Son, Nguyen Viet Long, Nguyen Thi Nhat Hang. Natural clay minerals and fly ash waste as green catalysts for heterogeneous photo-Fenton reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj03553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in the use of natural clay minerals and fly ash waste as efficient catalysts for the heterogeneous photo-Fenton degradation of emerging contaminants.
Collapse
Affiliation(s)
- Bui Thanh Son
- Nanotechnology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Nguyen Viet Long
- Nanotechnology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | | |
Collapse
|
44
|
Photocatalytic Degradation of Polyamide 66; Evaluating the Feasibility of Photocatalysis as a Microfibre-Targeting Technology. WATER 2020. [DOI: 10.3390/w12123551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wastewater treatment plants (WWTPs) have been identified as main contributors to releasing microfibres into the environment, however, WWTPs do not have microfibre-targeting technologies. In this study, photocatalysis is evaluated as a potential technology to treat microfibres in WWTPs by studying the degradation of polyamide 66 (PA66) microfibres using ultraviolet (UV) and titanium dioxide (TiO2). PA66 microfibres suspended in deionised water were exposed to different combinations of UV and TiO2. The degradation of the PA66 microfibres was monitored by changes in mass, carbonyl index and morphology using microbalance, infrared spectroscopy, and scanning electron microscopy. The formation of by-products from the degradation of the fibres was evaluated by measuring the chemical oxygen demand (COD) of the treated water. The degradation efficiency was optimised under UVC with a dose of 100 mg TiO2/L. Under these conditions, the PA66 microfibres presented a 97% mass loss within 48 h. The photocatalytic conditions applied generated a relatively low level of by-products (<10 mg/L of COD). Therefore, photocatalysis with TiO2 an UVC could potentially be a feasible technology to treat microfibres in WWTPs, although more investigation is required to establish if this treatment leads to the formation of nanofibres. Further work is needed to translate the present optimised conditions to WWTPs.
Collapse
|
45
|
Guo J, Wen X, Yang J, Fan T. Removal of benzo(a)pyrene in polluted aqueous solution and soil using persulfate activated by corn straw biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111058. [PMID: 32669257 DOI: 10.1016/j.jenvman.2020.111058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
An activator, corn straw biochar, was produced and applied in persulfate-based oxidation to remove benzo(a)pyrene (BaP) in polluted aqueous solution and soil. Polluted aqueous solution remediation results showed that at pH 7, approximately 88.4% of BaP was removed by 10 mM of persulfate activated by 1.6 g/L of biochar, and degradation played a dominant role. Polluted soil remediation results demonstrated that the activated persulfate solution (at 9 g/L) by biochar (at 3 wt% of soil) can remove 93.2% of BaP. In remediation of BaP-polluted soil, increasing biochar dosage and persulfate concentration accelerated BaP degradation to some extent, while excessive biochar or persulfate inhibited the degradation of BaP probably due to the unnecessary SO4- consumption. The biochar-activated persulfate oxidation reflected a good performance in tolerating the influences of background electrolytes (such as HCO3-, Cl-, and humic acid (HA)) in soil on BaP remediation. In addition, in the removal of BaP by the oxidation systems activated by biochar, persulfate was proved as a superior oxidant compared to peroxymonosulfate and H2O2, and the removal efficiencies of BaP were 93.2%, 86.5%, and 84.4% under the same treatment condition. To sum up, the biochar-activated persulfate oxidation would be a potential application in remediation of BaP-polluted aqueous solution and soil.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Xiaoying Wen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Jiawei Yang
- National Institute of Measurement and Testing Technology, Chengdu, Sichuan, 610021, China
| | - Ting Fan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| |
Collapse
|
46
|
Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis. MEMBRANES 2020; 10:membranes10060131. [PMID: 32630495 PMCID: PMC7344726 DOI: 10.3390/membranes10060131] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
Abstract
Wastewater reuse as a sustainable, reliable and energy recovery concept is a promising approach to alleviate worldwide water scarcity. However, the water reuse market needs to be developed with long-term efforts because only less than 4% of the total wastewater worldwide has been treated for water reuse at present. In addition, the reclaimed water should fulfill the criteria of health safety, appearance, environmental acceptance and economic feasibility based on their local water reuse guidelines. Moreover, municipal wastewater as an alternative water resource for non-potable or potable reuse, has been widely treated by various membrane-based treatment processes for reuse applications. By collecting lab-scale and pilot-scale reuse cases as much as possible, this review aims to provide a comprehensive summary of the membrane-based treatment processes, mainly focused on the hydraulic filtration performance, contaminants removal capacity, reuse purpose, fouling resistance potential, resource recovery and energy consumption. The advances and limitations of different membrane-based processes alone or coupled with other possible processes such as disinfection processes and advanced oxidation processes, are also highlighted. Challenges still facing membrane-based technologies for water reuse applications, including institutional barriers, financial allocation and public perception, are stated as areas in need of further research and development.
Collapse
|
47
|
Mendes GP, Magalhães VMA, Soares LCR, Aranha RM, Nascimento CAO, Vianna MMGR, Chiavone-Filho O. Treatability studies of naphthalene in soil, water and air with persulfate activated by iron(II). J Environ Sci (China) 2020; 90:67-77. [PMID: 32081342 DOI: 10.1016/j.jes.2019.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Chemical oxidation was applied to an artificially contaminated soil with naphthalene (NAP). Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. The importance of the air phase analysis was emphasized by demonstrating how NAP behaves in a sealed system over a 4 hr reaction period. Design of Experiments method was applied to the following variables: sodium persulfate concentration [SP], ferrous sulfate concentration [FeSO4], and pH. The system operated with a prefixed solid to liquid ratio of 1:2. The following conditions resulted in optimum NAP removal [SP] = 18.37 g/L, [FeSO4] = 4.25 g/L and pH = 3.00. At the end of the 4 hr reaction, 62% of NAP was degraded. In the soil phase, the chemical oxidation reduced the NAP concentration thus achieving levels which comply with Brazilian and USA environmental legislations. Besides the NAP partitioning view, the monitoring of each phase allowed the variabilities assessment over the process, refining the knowledge of mass reduction. Based on NAP distribution in the system, this study demonstrates the importance of evaluating the presence of semi-volatile and volatile organic compounds in the air phase during remediation, so that there is greater control of the system as to the distribution and presence of the contaminant in the environment. The results highlight the importance of treating the contaminant in all its phases at the contaminated site.
Collapse
Affiliation(s)
- Gabriela P Mendes
- Department of Chemical Engineering, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil.
| | - Vivian M A Magalhães
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
| | - Lélia C R Soares
- Department of Chemical Engineering, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Rayanne M Aranha
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
| | - Claudio A O Nascimento
- Department of Chemical Engineering, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Marilda M G R Vianna
- Department of Chemical Engineering, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Osvaldo Chiavone-Filho
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
| |
Collapse
|
48
|
Jung SC, Bang HJ, Lee H, Kim H, Ha HH, Yu YH, Park YK. Degradation behaviors of naproxen by a hybrid TiO 2 photocatalyst system with process components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135216. [PMID: 31806301 DOI: 10.1016/j.scitotenv.2019.135216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/05/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
A hybrid system combining microwave and a microwave discharge electrodeless lamp (MDEL) was proposed to overcome the limitations of conventional TiO2 photocatalysts. The degradation efficiency and mechanism of naproxen were determined using a series of single processes, including conventional TiO2 photocatalyst reactors and a hybrid system that fuses them. Although the degradation efficiency tended to increase after changing the experimental condition of a single process, the optimal conditions existed for these experimental conditions. On the other hand, remarkable synergy was observed in the fused process, whose efficiency was significantly higher than that of the unit process. In particular, the optimal degradation ability was obtained by adding hydrogen peroxide together with microwave irradiation. The seven intermediates in the proposed photocatalytic degradation pathway were generated by the demethylation and hydroxylation by hydroxyl radicals. These results are expected to provide new data on the design of high efficiency photocatalytic systems at low cost.
Collapse
Affiliation(s)
- Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Hye-Jin Bang
- Department of Environmental Engineering, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Heon Lee
- Department of Environmental Engineering, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
49
|
Gao Y, Champagne P, Blair D, He O, Song T. Activated persulfate by iron-based materials used for refractory organics degradation: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:853-875. [PMID: 32541106 DOI: 10.2166/wst.2020.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, the advanced oxidation processes (AOPs) based on sulfate radicals (SRs) for organics degradation have become the focus of water treatment research as the oxidation ability of SRs are higher than that of hydroxyl radicals (HRs). Since the AOP-SRs can effectively mineralize organics into carbon dioxide and water under the optimized operating conditions, they are used in the degradation of refractory organics such as dyes, pesticides, pharmaceuticals, and industrial additives. SRs can be produced by activating persulfate (PS) with ultraviolet, heat, ultrasound, microwave, transition metals, and carbon. The activation of PS in iron-based transition metals is widely studied because iron is an environmentally friendly and inexpensive material. This article reviews the mechanism and application of several iron-based materials, including ferrous iron (Fe2+), ferric iron (Fe3+), zero-valent iron (Fe0), nano-sized zero-valent iron (nFe0), materials-supported nFe0, and iron-containing compounds for PS activation to degrade refractory organics. In addition, the current challenges and perspectives of the practical application of PS activated by iron-based systems in wastewater treatment are analyzed and prospected.
Collapse
Affiliation(s)
- Yanjiao Gao
- Department of Civil Engineering, Queen's University, Kingston K7 L 3N6, Canada and Beaty Water Research Centre, Queen's University, Kingston K7 L 3N6, Canada E-mail: ; College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston K7 L 3N6, Canada and Beaty Water Research Centre, Queen's University, Kingston K7 L 3N6, Canada E-mail:
| | - David Blair
- Department of Civil Engineering, Queen's University, Kingston K7 L 3N6, Canada and Beaty Water Research Centre, Queen's University, Kingston K7 L 3N6, Canada E-mail:
| | - Ouwen He
- Department of Civil Engineering, Queen's University, Kingston K7 L 3N6, Canada and Beaty Water Research Centre, Queen's University, Kingston K7 L 3N6, Canada E-mail: ; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Centre for Cleaner Technology of Iron-steel Industry, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tiehong Song
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
50
|
Aris NIF, Rahman NA, Wahid MH, Yahaya N, Abdul Keyon AS, Kamaruzaman S. Superhydrophilic graphene oxide/electrospun cellulose nanofibre for efficient adsorption of organophosphorus pesticides from environmental samples. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192050. [PMID: 32269813 PMCID: PMC7137939 DOI: 10.1098/rsos.192050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Superhydrophilic graphene oxide/electrospun cellulose nanofibre (GO/CNF) was synthesized, characterized and successfully used in a solid-phase membrane tip adsorption (SPMTA) as an adsorbent towards a simultaneous analysis of polar organophosphorus pesticides (OPPs) in several food and water samples. Separation, determination and quantification were achieved prior to ultra-performance liquid chromatography coupled with ultraviolet detector. The influence of several parameters such as sample pH, adsorption time, adsorbent dosage and initial concentration were investigated. SPMTA was linear in the range of 0.05 and 10 mg l-1 under the optimum adsorption conditions (sample pH 12; 5 mg of adsorbent dosage; 15 min of adsorption time) for methyl parathion, ethoprophos, sulfotepp and chlorpyrifos with excellent correlation coefficients of 0.994-0.999. Acceptable precision (RSDs) as achieved for intraday (0.06-5.44%, n = 3) and interday (0.17-7.76%, n = 3) analyses. Low limits of detection (0.01-0.05 mg l-1) and satisfactory consistency in adsorption (71.14-99.95%) were obtained for the spiked OPPs from Sungai Pahang, Tasik Cheras, cabbages and rice samples. The adsorption data were well followed the second-order kinetic model and fits the Freundlich adsorption model. The newly synthesized GO/CNF showed a great adsorbent potential for OPPs analysis.
Collapse
Affiliation(s)
- Nor Izzati Fikrah Aris
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norizah Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Haniff Wahid
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, CanadaV6T 1Z1
| | - Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310 11 Johor Bahru, Johor, Malaysia
| | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|