1
|
Meléndez-Martínez D, Ortega-Hernández E, Reza-Zaldívar EE, Carbajal-Saucedo A, Arnaud-Franco G, Gatica-Colima A, Plenge-Tellechea LF, Antunes-Ricardo M, Jacobo-Velázquez DA, Mayolo-Deloisa K, Lozano O, Rito-Palomares M, Benavides J. Bioprospection of rattlesnake venom peptide fractions with anti-adipose and anti-insulin resistance activity in vitro. Toxicon X 2024; 24:100209. [PMID: 39398348 PMCID: PMC11471244 DOI: 10.1016/j.toxcx.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Animal venoms are natural products that have served as a source of novel molecules that have inspired novel drugs for several diseases, including for metabolic diseases such as type-2 diabetes and obesity. From venoms, toxins such as exendin-4 (Heloderma suspectum) and crotamine (Crotalus durissus terrificus) have demonstrated their potential as treatments for obesity. Moreover, other toxins such as Phospholipases A2 and Disintegrins have shown their potential to modulate insulin secretion in vitro. This suggests an unexplored diversity of venom peptides with a potential anti-obesogenic in Mexican rattlesnake venoms. For that reason, this study explored the in vitro effect of Crotalus venom peptide-rich fractions on models for insulin resistance, adipocyte lipid accumulation, antioxidant activity, and inflammation process through nitric oxide production inhibition. Our results demonstrated that the peptide-rich fractions of C. aquilus, C. ravus, and C. scutulatus scutulatus were capable of reverting insulin resistance, enhancing glucose consumption to normal control; C. culminatus, C. molossus oaxacus, and C. polystictus diminished the lipid accumulation on adipocytes by 20%; C. aquilus, C. ravus, and C. s. salvini had the most significant cellular antioxidant activity, having nearly 80% of ROS inhibition. C. aquilus, C. pyrrhus, and C. s. salvini inhibited nitric oxide production by about 85%. We demonstrated the potential of these peptides from Crotalus venoms to develop novel drugs to treat type-2 diabetes and obesity. Moreover, we described for the first time that Crotalus venom peptide fractions have antioxidant and inflammatory properties in vitro models.
Collapse
Affiliation(s)
- David Meléndez-Martínez
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Erika Ortega-Hernández
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Edwin Estefan Reza-Zaldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan, 45201, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan, 45201, Mexico
| | - Alejandro Carbajal-Saucedo
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Herpetología, San Nicolás de los Garza, Nuevo León, C.P. 66450, Mexico
| | - Gustavo Arnaud-Franco
- Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional, 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S, 23090, Mexico
| | - Ana Gatica-Colima
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chih, 32310, Mexico
| | - Luis Fernando Plenge-Tellechea
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chih, 32310, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Omar Lozano
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Pte, C.P. 64460, Monterrey, N.L., Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Pte, C.P. 64460, Monterrey, N.L., Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| |
Collapse
|
2
|
Senji Laxme RR, Khochare S, Bhatia S, Martin G, Sunagar K. From birth to bite: the evolutionary ecology of India's medically most important snake venoms. BMC Biol 2024; 22:161. [PMID: 39075553 PMCID: PMC11287890 DOI: 10.1186/s12915-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.
Collapse
Affiliation(s)
- R R Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Siddharth Bhatia
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gerard Martin
- The Liana Trust. Survey, #1418/1419 Rathnapuri, Hunsur, 571189, Karnataka, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
3
|
Figueroa-Huitrón R, Díaz de la Vega-Pérez A, Plasman M, Pérez-Mendoza HA. Physiological thermal responses of three Mexican snakes with distinct lifestyles. PeerJ 2024; 12:e17705. [PMID: 39040933 PMCID: PMC11262299 DOI: 10.7717/peerj.17705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
The impact of temperature on reptile physiology has been examined through two main parameters: locomotor performance and metabolic rates. Among reptiles, different species may respond to environmental temperatures in distinct ways, depending on their thermal sensitivity. Such variation can be linked to the ecological lifestyle of the species and needs to be taken into consideration when assessing the thermal influence on physiology. This is particularly relevant for snakes, which are a very functionally diverse group. In this study, our aim was to analyze the thermal sensitivity of locomotor performance and resting metabolic rate (RMR) in three snake species from central Mexico (Crotalus polystictus, Conopsis lineata, and Thamnophis melanogaster), highlighting how it is influenced by their distinctive behavioral and ecological traits. We tested both physiological parameters in five thermal treatments: 15 °C, 25 °C, 30 °C, 33 °C, and 36 °C. Using the performance data, we developed thermal performance curves (TPCs) for each species and analyzed the RMR data using generalized linear mixed models. The optimal temperature for locomotion of C. polystictus falls near its critical thermal maximum, suggesting that it can maintain performance at high temperatures but with a narrow thermal safety margin. T. melanogaster exhibited the fastest swimming speeds and the highest mass-adjusted RMR. This aligns with our expectations since it is an active forager, a high energy demand mode. The three species have a wide performance breadth, which suggests that they are thermal generalists that can maintain performance over a wide interval of temperatures. This can be beneficial to C. lineata in its cold habitat, since such a characteristic has been found to allow some species to maintain adequate performance levels in suboptimal temperatures. RMR increased along with temperature, but the proportional surge was not uniform since thermal sensitivity measured through Q10 increased at the low and high thermal treatments. High Q10 at low temperatures could be an adaptation to maintain favorable performance in suboptimal temperatures, whereas high Q10 at high temperatures could facilitate physiological responses to heat stress. Overall, our results show different physiological adaptations of the three species to the environments they inhabit. Their different activity patterns and foraging habits are closely linked to these adaptations. Further studies of other populations with different climatic conditions would provide valuable information to complement our current understanding of the effect of environmental properties on snake physiology.
Collapse
Affiliation(s)
- Ricardo Figueroa-Huitrón
- Laboratorio de Ecología Evolutiva y Conservación de Anfibios y Reptiles, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anibal Díaz de la Vega-Pérez
- Consejo Nacional de Humanidades Ciencias y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Melissa Plasman
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Hibraim Adán Pérez-Mendoza
- Laboratorio de Ecología Evolutiva y Conservación de Anfibios y Reptiles, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
4
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
5
|
Borja M, Neri-Castro E, Gutiérrez-Martínez A, Bledsoe R, Zarzosa V, Rodriguez-López B, Strickland JL, Becerra-López J, Valenzuela-Ceballos S, Parkinson CL, Alagón A, Castañeda-Gaytán G. Ontogenetic change in the venom composition of one Mexican black-tailed rattlesnake (Crotalus molossus nigrescens) from Durango, Mexico. Toxicon 2023; 234:107280. [PMID: 37673344 DOI: 10.1016/j.toxicon.2023.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
To corroborate the ontogenetic shift in the venom composition of the Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) previously reported through the census approach, we evaluated the shift in the protein profile, lethality, and proteolytic and phospholipase activities of four venom samples obtained in 2015, 2018, 2019, and 2021 from one C. m. nigrescens individual (CMN06) collected in Durango, Mexico. We demonstrated that the venom of C. m. nigrescens changed from a myotoxin-rich venom to a phospholipase A2 and snake venom metalloproteinase-rich venom. Additionally, the proteolytic and phospholipase activities increased with age, but the lethality decreased approximately three times.
Collapse
Affiliation(s)
- Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Arelí Gutiérrez-Martínez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Richard Bledsoe
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Vanessa Zarzosa
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Bruno Rodriguez-López
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Jason L Strickland
- Department of Biology, University of South Alabama, 5871 USA Dr. N., Mobile, AL, 36688, USA
| | - Jorge Becerra-López
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Sara Valenzuela-Ceballos
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | | | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico.
| |
Collapse
|
6
|
Schulte L, Damm M, Avella I, Uhrig L, Erkoc P, Schiffmann S, Fürst R, Timm T, Lochnit G, Vilcinskas A, Lüddecke T. Venomics of the milos viper ( Macrovipera schweizeri) unveils patterns of venom composition and exochemistry across blunt-nosed viper venoms. Front Mol Biosci 2023; 10:1254058. [PMID: 37719269 PMCID: PMC10500195 DOI: 10.3389/fmolb.2023.1254058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Snakebite is a neglected tropical disease and a globally important driver of death and morbidity. Vipers of the genus Macrovipera (Viperidae: Viperinae) are among the snakes of higher medical importance in the Old World. Despite the medical relevance of Macrovipera venoms, the knowledge regarding them is heterogeneously distributed with virtually all works conducted so far focusing on subspecies of Macrovipera lebetinus, while other species within the genus are largely overlooked. Here we present the first proteomic evaluation of the venom from the Greek endemic Milos viper (Macrovipera schweizeri). In line with clinical symptoms typically elicited by Macrovipera envenomations, Milos viper venom primarily comprises coagulotoxic and cytotoxic protein families, such as metalloproteinases (svMP) and serine proteases (svSP). Methods: We conducted comparative bioactivity assays on venoms from M. schweizeri and the M. lebetinus subspecies M. lebetinus cernovi, M. lebetinus obtusa, and M. lebetinus turanica, and showed that they all exhibit similarities in levels of cytotoxicity proteolytic activity, and inhibition of prokaryotic growth. Lastly, we compared Macrovipera venom profiles by 1D-SDS-PAGE and RP-HPLC, as well as our proteomic data with previously published Macrovipera venom proteomes. Results and discussion: The analyzes performed to reveal that a general venom profile seems to be conserved across blunt-nosed vipers, and that, M. schweizeri envenomations, similarly to those caused by other blunt-nosed vipers, are able to cause significant tissue damage. The present work represents an important starting point for the development of comparative studies across the full taxonomic range of the genus Macrovipera and can potentially help optimize the treatment of envenomations caused by M. schweizeri.
Collapse
Affiliation(s)
- Lennart Schulte
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Maik Damm
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Ignazio Avella
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, University Port, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairão, Portugal
| | - Lilien Uhrig
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Pelin Erkoc
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Robert Fürst
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Timm
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| |
Collapse
|
7
|
Vanuopadath M, Rajan K, Alangode A, Nair SS, Nair BG. The Need for Next-Generation Antivenom for Snakebite Envenomation in India. Toxins (Basel) 2023; 15:510. [PMID: 37624267 PMCID: PMC10467155 DOI: 10.3390/toxins15080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
The limitations posed by currently available antivenoms have emphasized the need for alternative treatments to counteract snakebite envenomation. Even though exact epidemiological data are lacking, reports have indicated that most global snakebite deaths are reported in India. Among the many problems associated with snakebite envenomation, issues related to the availability of safer and more efficient antivenoms are of primary concern. Since India has the highest number of global snakebite deaths, efforts should be made to reduce the burden associated with snakebite envenoming. Alternative methods, including aptamers, camel antivenoms, phage display techniques for generating high-affinity antibodies and antibody fragments, small-molecule inhibitors, and natural products, are currently being investigated for their effectiveness. These alternative methods have shown promise in vitro, but their in vivo effectiveness should also be evaluated. In this review, the issues associated with Indian polyvalent antivenoms in neutralizing venom components from geographically distant species are discussed in detail. In a nutshell, this review gives an overview of the current drawbacks of using animal-derived antivenoms and several alternative strategies that are currently being widely explored.
Collapse
Affiliation(s)
| | | | | | | | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India; (M.V.); (K.R.); (A.A.); (S.S.N.)
| |
Collapse
|
8
|
Heptinstall TC, Strickland JL, Rosales-Garcia RA, Rautsaw RM, Simpson CL, Nystrom GS, Ellsworth SA, Hogan MP, Borja M, Fernandes Campos P, Grazziotin FG, Rokyta DR, Junqueira-de-Azevedo ILM, Parkinson CL. Venom phenotype conservation suggests integrated specialization in a lizard-eating snake. Toxicon 2023; 229:107135. [PMID: 37146732 PMCID: PMC11000244 DOI: 10.1016/j.toxicon.2023.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Biological specialization reduces the size of niche space while increasing efficiency in the use of available resources. Specialization often leads to phenotypic changes via natural selection aligning with niche space constraints. Commonly observed changes are in size, shape, behavior, and traits associated with feeding. One often selected trait for dietary specialization is venom, which, in snakes, often shows variation dependent on diet across and within species. The Neotropical Blunt-headed Treesnake (Imantodes cenchoa) is a highly specialized, rear-fanged, arboreal, lizard hunter that displays a long thin body, enlarged eyes, and a large Duvernoy's gland. However, toxin characterization of I. cenchoa has never been completed. Here, we use RNA-seq and mass spectrometry to assemble, annotate, and analyze the venom gland transcriptomes of four I. cenchoa from across their range. We find a lack of significant venom variation at the sequence and expression levels, suggesting venom conservation across the species. We propose this conservation provides evidence of a specialized venom repertoire, adapted to maximize efficiency of capturing and processing lizards. Importantly, this study provides the most complete venom gland transcriptomes of I. cenchoa and evidence of venom specialization in a rear-fanged snake, giving insight into selective pressures of venom across all snake species.
Collapse
Affiliation(s)
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA; Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | | | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA; School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA; Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Cassandra L Simpson
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35070, Gómez Palacio, Dgo., Mexico
| | | | - Felipe G Grazziotin
- Laboratório Especial de Colecões Zoológicas, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA; Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
9
|
Bittenbinder MA, Bergkamp ND, Slagboom J, Bebelman JPM, Casewell NR, Siderius MH, Smit MJ, Kool J, Vonk FJ. Monitoring Snake Venom-Induced Extracellular Matrix Degradation and Identifying Proteolytically Active Venom Toxins Using Fluorescently Labeled Substrates. BIOLOGY 2023; 12:765. [PMID: 37372050 DOI: 10.3390/biology12060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Snakebite envenoming is an important public health issue with devastating consequences and annual mortality rates that range between 81,000 and 138,000. Snake venoms may cause a range of pathophysiological effects affecting the nervous system and the cardiovascular system. Moreover, snake venom may have tissue-damaging activities that result in lifelong morbidities such as amputations, muscle degeneration, and organ malfunctioning. The tissue-damaging components in snake venoms comprise multiple toxin classes with various molecular targets including cellular membranes and the extracellular matrix (ECM). In this study, we present multiple assay formats that enable investigation of snake venom-induced ECM degradation using a variety of (dye-quenched) fluorescently labeled ECM components. Using a combinatorial approach, we were able to characterise different proteolytic profiles for different medically relevant snake venoms, followed by identification of the responsible components within the snake venoms. This workflow could provide valuable insights into the key mechanisms by which proteolytic venom components exert their effects and could therefore prove useful for the development of effective snakebite treatments against this severe pathology.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands
| | - Nick D Bergkamp
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands
| | - Jan Paul M Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Marco H Siderius
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Grabowsky ER, Saviola AJ, Alvarado-Díaz J, Mascareñas AQ, Hansen KC, Yates JR, Mackessy SP. Montane Rattlesnakes in México: Venoms of Crotalus tancitarensis and Related Species within the Crotalus intermedius Group. Toxins (Basel) 2023; 15:72. [PMID: 36668891 PMCID: PMC9867100 DOI: 10.3390/toxins15010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Crotalus intermedius group is a clade of rattlesnakes consisting of several species adapted to a high elevation habitat, primarily in México. Crotalus tancitarensis was previously classified as C. intermedius, until individuals occurring on Cerro Tancítaro in Michoacán, México, were reevaluated and classified as a new species (C. tancitarensis) based on scale pattern and geographic location. This study aimed to characterize the venom of C. tancitarensis and compare the venom profile to those of other species within the Crotalus intermedius group using gel electrophoresis, biochemical assays, reverse-phase high performance liquid chromatography, mass spectrometry, and lethal toxicity (LD50) assays. Results show that the venom profiles of species within the Crotalus intermedius group are similar, but with distinct differences in phospholipase A2 (PLA2), metalloproteinase PI (SVMP PI), and kallikrein-like serine proteinase (SVSP) activity and relative abundance. Proteomic analysis indicated that the highland forms produce venoms with 50-60 protein isoforms and a composition typical of type I rattlesnake venoms (abundant SVMPs, lack of presynaptic PLA2-based neurotoxins), as well as a diversity of typical Crotalus venom components such as serine proteinases, PLA2s, C-type lectins, and less abundant toxins (LAAOs, CRiSPs, etc.). The overall venom profile of C. tancitarensis appears most similar to C. transversus, which is consistent with a previous mitochondrial DNA analysis of the Crotalus intermedius group. These rattlesnakes of the Mexican highlands represent a radiation of high elevation specialists, and in spite of divergence of species in these Sky Island habitats, venom composition of species analyzed here has remained relatively conserved. The majority of protein family isoforms are conserved in all members of the clade, and as seen in other more broadly distributed rattlesnake species, differences in their venoms are largely due to relative concentrations of specific components.
Collapse
Affiliation(s)
- Emily R. Grabowsky
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Alvarado-Díaz
- INIRENA (Instituto de Investigaciones sobre los Recursos Naturales), Morelia CP 58330, Michoacán, Mexico
| | | | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John R. Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen P. Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| |
Collapse
|
11
|
Venom Variation of Neonate and Adult Chinese Cobras in Captivity Concerning Their Foraging Strategies. Toxins (Basel) 2022; 14:toxins14090598. [PMID: 36136536 PMCID: PMC9501182 DOI: 10.3390/toxins14090598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
The venom and transcriptome profile of the captive Chinese cobra (Naja atra) is not characterized until now. Here, LC-MS/MS and illumine technology were used to unveil the venom and trascriptome of neonates and adults N. atra specimens. In captive Chinese cobra, 98 co-existing transcripts for venom-related proteins was contained. A total of 127 proteins belong to 21 protein families were found in the profile of venom. The main components of snake venom were three finger toxins (3-FTx), snake venom metalloproteinase (SVMP), cysteine-rich secretory protein (CRISP), cobra venom factor (CVF), and phosphodiesterase (PDE). During the ontogenesis of captive Chinese cobra, the rearrangement of snake venom composition occurred and with obscure gender difference. CVF, 3-FTx, PDE, phospholipase A2 (PLA2) in adults were more abundant than neonates, while SVMP and CRISP in the neonates was richer than the adults. Ontogenetic changes in the proteome of Chinese cobra venom reveals different strategies for handling prey. The levels of different types of toxin families were dramatically altered in the wild and captive specimens. Therefore, we speculate that the captive process could reshape the snake venom composition vigorously. The clear comprehension of the composition of Chinese cobra venom facilitates the understanding of the mechanism of snakebite intoxication and guides the preparation and administration of traditional antivenom and next-generation drugs for snakebite.
Collapse
|
12
|
Interpopulational variation and ontogenetic shift in the venom composition of Lataste's viper (Vipera latastei, Boscá 1878) from northern Portugal. J Proteomics 2022; 263:104613. [PMID: 35589061 DOI: 10.1016/j.jprot.2022.104613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
Abstract
Lataste's viper (Vipera latastei) is a venomous European viper endemic to the Iberian Peninsula, recognised as medically important by the World Health Organization. To date, no comprehensive characterisation of this species' venom has been reported. Here, we analysed the venoms of juvenile and adult specimens of V. latastei from two environmentally different populations from northern Portugal. Using bottom-up venomics, we produced six venom proteomes (three per population) from vipers belonging to both age classes (i.e., two juveniles and four adults), and RP-HPLC profiles of 54 venoms collected from wild specimens. Venoms from juveniles and adults differed in their chromatographic profiles and relative abundances of their toxins, suggesting the occurrence of ontogenetic changes in venom composition. Specifically, snake venom metalloproteinase (SVMP) was the most abundant toxin family in juvenile venoms, while snake venom serine proteinases (SVSPs), phospholipases A2 (PLA2s), and C-type lectin-like (CTLs) proteins were the main toxins comprising adult venoms. The RP-HPLC venom profiles were found to vary significantly between the two sampled localities, indicating geographic variability. Furthermore, the presence/absence of certain peaks in the venom chromatographic profiles appeared to be significantly correlated also to factors like body size and sex of the vipers. Our findings show that V. latastei venom is a variable phenotype. The intraspecific differences we detected in its composition likely mirror changes in the feeding ecology of this species, taking place during different life stages and under different environmental pressures. SIGNIFICANCE: Lataste's viper (Vipera latastei) is a medically important viper endemic to the Iberian Peninsula, inhabiting different habitats and undergoing a marked ontogenetic dietary shift. In the current study, we report the first proteomic analysis of V. latastei venom from two environmentally different localities in northern Portugal. Our bottom-up venomic analyses show that snake venom serine proteinases (SVSPs), phospholipases A2 (PLA2s), and C-type lectin-like (CTLs) proteins are the major components of adult V. latastei venom. The comparative analysis of young and adult venoms suggests the occurrence of ontogenetic shift in toxin abundances, with snake venom metalloproteinases (SVMPs) being the predominant toxins in juvenile venoms. Moreover, geographic venom variation between the two studied populations is also detected, with our statistical analyses suggesting that factors like body size and sex of the vipers are possibly at play in its determination. Our work represents the first assessment of the composition of V. latastei venom, and the first step towards a better understanding of the drivers behind its variability.
Collapse
|
13
|
Roldán-Padrón O, Cruz-Pérez MS, Castro-Guillén JL, García-Arredondo JA, Mendiola-Olaya E, Saldaña-Gutiérrez C, Herrera-Paniagua P, Blanco-Labra A, García-Gasca T. Hybridization between Crotalus aquilus and Crotalus polystictus Species: A Comparison of Their Venom Toxicity and Enzymatic Activities. BIOLOGY 2022; 11:661. [PMID: 35625389 PMCID: PMC9138290 DOI: 10.3390/biology11050661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
Hybridization is defined as the interbreeding of individuals from two populations distinguishable by one or more heritable characteristics. Snake hybridization represents an interesting opportunity to analyze variability and how genetics affect the venom components between parents and hybrids. Snake venoms exhibit a high degree of variability related to biological and biogeographical factors. The aim of this work is to analyze the protein patterns and enzymatic activity of some of the main hemotoxic enzymes in snake venoms, such as serine proteases (trypsin-like, chymotrypsin-like, and elastase-like), metalloproteases, hyaluronidases, and phospholipase A2. The lethal dose of 50 (LD50) of venom from the Crotalus aquilus (Cabf) and Crotalus polystictus (Cpbm) parents and their hybrids in captivity was determined, and phenetic analysis is also conducted, which showed a high similarity between the hybrids and C. polystictus. The protein banding patterns and enzymatic activity analyze by zymography resulted in a combination of proteins from the parental venoms in the hybrids, with variability among them. In some cases, the enzymatic activity is higher in the hybrids with a lower LD50 than in the parents, indicating higher toxicity. These data show the variability among snake venoms and suggest that hybridization is an important factor in changes in protein concentration, peptide variability, and enzymatic activity that affect toxicity and lethality.
Collapse
Affiliation(s)
- Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| | - Martha Sandra Cruz-Pérez
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| | - José Luis Castro-Guillén
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, Mexico; (J.L.C.-G.); (E.M.-O.)
| | - José Alejandro García-Arredondo
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, Queretaro 76010, Qro, Mexico;
| | - Elizabeth Mendiola-Olaya
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, Mexico; (J.L.C.-G.); (E.M.-O.)
| | - Carlos Saldaña-Gutiérrez
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| | - Patricia Herrera-Paniagua
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, Mexico; (J.L.C.-G.); (E.M.-O.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| |
Collapse
|
14
|
Vanuopadath M, Raveendran D, Nair BG, Nair SS. Venomics and antivenomics of Indian spectacled cobra (Naja naja) from the Western Ghats. Acta Trop 2022; 228:106324. [PMID: 35093326 DOI: 10.1016/j.actatropica.2022.106324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
Abstract
Venom proteome profiling of Naja naja from the Western Ghats region in Kerala was achieved through SDS-PAGE and RP-HPLC followed by Q-TOF LC-MS/MS analysis, incorporating PEAKS and Novor assisted de novo sequencing methodologies. A total of 115 proteins distributed across 17 different enzymatic and non-enzymatic venom protein families were identified through conventional and 39 peptides through homology-driven proteomics approaches. Fourteen peptides derived through de novo complements the Mascot data indicating the importance of homology-driven approaches in improving protein sequence information. Among the protein families identified, glutathione peroxidase and endonuclease were reported for the first time in the Indian cobra venom. Immunological cross-reactivity assessed using Indian polyvalent antivenoms suggested that VINS showed better EC50 (2.48 µg/mL) value than that of PSAV (6.04 µg/mL) and Virchow (6.03 µg/mL) antivenoms. Western blotting experiments indicated that all the antivenoms elicited poor binding specificities, especially towards low molecular mass proteins. Second-generation antivenomics studies revealed that VINS antivenom was less efficient to detect many low molecular mass proteins such as three-finger toxins and Kunitz-type serine protease Inhibitors. Taken together, the present study enabled a large-scale characterization of the venom proteome of Naja naja from the Western Ghats and emphasized the need for developing more efficient antivenoms.
Collapse
Affiliation(s)
| | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd., SCTIMST-TIMed, BMT Wing-Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | | | | |
Collapse
|
15
|
Montealegre-Sánchez L, Montoya-Gómez A, Jiménez-Charris E. Individual variations in the protein profiles and functional activities of the eyelash palm pit-viper (Bothriechis schlegelii) venom from the Colombian southwest region. Acta Trop 2021; 223:106113. [PMID: 34450060 DOI: 10.1016/j.actatropica.2021.106113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Bothriechis schlegelii is a venomous snake found in Central and South America, mainly sighted in regions devoted to agriculture. However, in Colombia, little is known about its contribution to the total envenoming cases. Furthermore, there are no reports of the biochemical and functional activities of venoms from the southwest populations, and the differences respecting other populations are unknown. This study analyzed the protein profiles of venom samples obtained from three specimens originating from this region of Colombia using electrophoresis and chromatography. The lethality, edema-induction, hemorrhagic, defibrinating, coagulant, and indirect hemolytic activities were also evaluated. As a result, venoms were composed of proteins with a wide range of molecular weights, most of them below <37 kDa, with differences between male and female electrophoretic and chromatographic profiles. These variations were also observed in the evaluation of venom functional activities such as pro-coagulant, indirect hemolytic, and edema-inducing activities, whereas neither hemorrhagic nor defibrinating activities were detected. These results are also different considering reports with venom samples from other geographical locations, restating the existence of high intraspecific variability in B. schlegelii venoms, which could have relevant pathophysiological and therapeutic implications.
Collapse
|
16
|
Colis-Torres A, Neri-Castro E, Strickland JL, Olvera-Rodríguez A, Borja M, Calvete J, Jones J, Parkinson CL, Bañuelos J, López de León J, Alagón A. Intraspecific venom variation of Mexican West Coast Rattlesnakes (Crotalus basiliscus) and its implications for antivenom production. Biochimie 2021; 192:111-124. [PMID: 34656669 DOI: 10.1016/j.biochi.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/02/2022]
Abstract
Intraspecific variation in snake venoms has been widely documented worldwide. However, there are few studies on this subject in Mexico. Venom characterization studies provide important data used to predict clinical syndromes, to evaluate the efficacy of antivenoms and, in some cases, to improve immunogenic mixtures in the production of antivenoms. In the present work, we evaluated the intraspecific venom variation of Crotalus basiliscus, a rattlesnake of medical importance and whose venom is used in the immunization of horses to produce one of the Mexican antivenoms. Our results demonstrate that there is variation in biological and biochemical activities among adult venoms and that there is an ontogenetic change from juvenile to adult venoms. Juvenile venoms were more lethal and had higher percentages of crotamine and crotoxin, while adult venoms had higher percentages of snake venom metalloproteases (SVMPs). Additionally, we documented crotoxin-like PLA2 variation in which specimens from Zacatecas, Sinaloa and Michoacán (except 1) lacked the neurotoxin, while the rest of the venoms had it. Finally, we evaluated the efficacy of three lots of Birmex antivenom and all three were able to neutralize the lethality of four representative venoms but were not able to neutralize crotamine. We also observed significant differences in the LD50 values neutralized per vial among the different lots. Based on these results, we recommend including venoms containing crotamine in the production of antivenom for a better immunogenic mixture and to improve the homogeneity of lots.
Collapse
Affiliation(s)
- Andrea Colis-Torres
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jason L Strickland
- Department of Biology, University of South Alabama, 5871 USA Dr. N, Mobile, AL, 36688, USA
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel Borja
- Facultad Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Juan Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
| | - Jason Jones
- Herp.mx A.C, Villa del Álvarez, Colima, Mexico
| | - Christopher L Parkinson
- Department of Biological Sciences and Department of Forestry, and Environmental Conservation, Clemson University, 190 Collings St. Clemson, SC, 29631, USA
| | - Jorge Bañuelos
- Herp.mx A.C, Villa del Álvarez, Colima, Mexico; Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Edificio de Biología Campus II Ave. Preparatoria S/N, Col. Agronómica, 98066, ZacatecasZacatecas, Mexico
| | - Jorge López de León
- Hospital General Norberto Treviño Zapata, Ciudad Victoria, Tamaulipas, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
17
|
Franco-Servín C, Neri-Castro E, Bénard-Valle M, Alagón A, Rosales-García RA, Guerrero-Alba R, Poblano-Sánchez JE, Silva-Briano M, Guerrero-Barrera AL, Sigala-Rodríguez JJ. Biological and Biochemical Characterization of Coronado Island Rattlesnake ( Crotalus helleri caliginis) Venom and Antivenom Neutralization. Toxins (Basel) 2021; 13:toxins13080582. [PMID: 34437453 PMCID: PMC8402616 DOI: 10.3390/toxins13080582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
The Baja California Peninsula has over 250 islands and islets with many endemic species. Among them, rattlesnakes are the most numerous but also one of the least studied groups. The study of island rattlesnake venom could guide us to a better understanding of evolutionary processes and the description of novel toxins. Crotalus helleri caliginis venom samples were analyzed to determine possible ontogenetic variation with SDS-PAGE in one and two dimensions and with RP-HPLC. Western Blot, ELISA, and amino-terminal sequencing were used to determine the main components of the venom. The biological and biochemical activities demonstrate the similarity of C. helleri caliginis venom to the continental species C. helleri helleri, with both having low proteolytic and phospholipase A2 (PLA2) activity but differing due to the absence of neurotoxin (crotoxin-like) in the insular species. The main components of the snake venom were metalloproteases, serine proteases, and crotamine, which was the most abundant toxin group (30–35% of full venom). The crotamine was isolated using size-exclusion chromatography where its functional effects were tested on mouse phrenic nerve–hemidiaphragm preparations in which a significant reduction in muscle twitch contractions were observed. The two Mexican antivenoms could neutralize the lethality of C. helleri caliginis venom but not the crotamine effects.
Collapse
Affiliation(s)
- Cristian Franco-Servín
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Ramsés Alejandro Rosales-García
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Raquel Guerrero-Alba
- Laboratorio de Electrofisiología, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - José Emanuel Poblano-Sánchez
- Laboratorio Clínico de Especialidades del Hospital General ISSSTE, Av. Universidad 410, Aguascalientes CP 20010, Ags, Mexico;
| | - Marcelo Silva-Briano
- Laboratorio de Ecología, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Alma Lilián Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Correspondence: (A.L.G.-B.); (J.J.S.-R.)
| | - José Jesús Sigala-Rodríguez
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Correspondence: (A.L.G.-B.); (J.J.S.-R.)
| |
Collapse
|
18
|
Hatakeyama DM, Jorge Tasima L, da Costa Galizio N, Serino-Silva C, Fabri Bittencourt Rodrigues C, Rodrigues Stuginski D, Stefanini Sant’Anna S, Fernandes Grego K, Tashima AK, Nishiduka ES, de Morais-Zani K, Tanaka-Azevedo AM. From birth to adulthood: An analysis of the Brazilian lancehead (Bothrops moojeni) venom at different life stages. PLoS One 2021; 16:e0253050. [PMID: 34111213 PMCID: PMC8191990 DOI: 10.1371/journal.pone.0253050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
The Brazilian lancehead (Bothrops moojeni) has a wide distribution in Brazil and represents a serious public health hazard. Previous works reported that the symptoms of snakebites caused by B. moojeni juveniles’ bites were mainly related to coagulation, while those caused by adults’ bites had a more prominent local damage. In this work, we analyzed the venoms of B. moojeni at different life stages to better understand the ontogeny shift in this species. Snakes were grouped by age and sex, and venom pools were formed accordingly. Compositional analyses by one-dimensional electrophoresis (1-DE), chromatography, and mass spectrometry revealed that ontogenetic changes might be mostly related to phospholipase A2 (PLA2) and metalloproteases. Regarding the venoms functional aspect, proteolytic, L-amino acid oxidase, PLA2, and coagulant in vitro activities were assayed, but only the first and the last ones showed age-related changes, with the venom of snakes up to 1 year-old displaying lower proteolytic and higher coagulant activities, while those from 2 years-old onward presented the opposite relation. The venoms of 3 years-old snakes were exceptions to the compositional and functional pattern of adults as both venoms presented profiles similar to neonates. Sex-related differences were observed in specific groups and were not age-related. In vivo experiments (median lethal dose and hemorrhagic activity) were statistically similar between neonates and adults, however we verified that the adult venom killed mice faster comparing to the neonates. All venoms were mostly recognized by the antibothropic serum and displayed similar profiles to 1-DE in western blotting. In conclusion, the Brazilian lancehead venom showed ontogenetic shift in its composition and activities. Furthermore, this change occurred in snakes from 1 to 2 years-old, and interestingly the venom pools from 3 years-old snakes had particular characteristics, which highlights the importance of comprehensive studies to better understand venom variability.
Collapse
Affiliation(s)
- Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Lídia Jorge Tasima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Nathália da Costa Galizio
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | | | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Deshwal A, Phan P, Datta J, Kannan R, Thallapuranam SK. A Meta-Analysis of the Protein Components in Rattlesnake Venom. Toxins (Basel) 2021; 13:toxins13060372. [PMID: 34071038 DOI: 10.3390/toxins13060372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The specificity and potency of venom components give them a unique advantage in developing various pharmaceutical drugs. Though venom is a cocktail of proteins, rarely are the synergy and association between various venom components studied. Understanding the relationship between various components of venom is critical in medical research. Using meta-analysis, we observed underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I and LAAO; SVMP P-III and LAAO. In Sistrurus venom, CTL and NGF have the most associations. These associations can predict the presence of proteins in novel venom and understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit the classification of proteins as major components or minor components is highlighted. The revised classification of venom components is based on ubiquity, bioactivity, the number of associations, and synergies. The revised classification can be expected to trigger increased research on venom components, such as NGF, which have high biomedical significance. Using hierarchical clustering, we observed that the genera's venom compositions were similar, based on functional characteristics rather than phylogenetic relationships.
Collapse
Affiliation(s)
- Anant Deshwal
- Division of Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jyotishka Datta
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ragupathy Kannan
- Department of Biology, University of Arkansas-Fort Smith, Fort Smith, AR 72913, USA
| | | |
Collapse
|
20
|
Seneci L, Zdenek CN, Chowdhury A, Rodrigues CFB, Neri-Castro E, Bénard-Valle M, Alagón A, Fry BG. A Clot Twist: Extreme Variation in Coagulotoxicity Mechanisms in Mexican Neotropical Rattlesnake Venoms. Front Immunol 2021; 12:612846. [PMID: 33815366 PMCID: PMC8011430 DOI: 10.3389/fimmu.2021.612846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Rattlesnakes are a diverse clade of pit vipers (snake family Viperidae, subfamily Crotalinae) that consists of numerous medically significant species. We used validated in vitro assays measuring venom-induced clotting time and strength of any clots formed in human plasma and fibrinogen to assess the coagulotoxic activity of the four medically relevant Mexican rattlesnake species Crotalus culminatus, C. mictlantecuhtli, C. molossus, and C. tzabcan. We report the first evidence of true procoagulant activity by Neotropical rattlesnake venom in Crotalus culminatus. This species presented a strong ontogenetic coagulotoxicity dichotomy: neonates were strongly procoagulant via Factor X activation, whereas adults were pseudo-procoagulant in that they converted fibrinogen into weak, unstable fibrin clots that rapidly broke down, thereby likely contributing to net anticoagulation through fibrinogen depletion. The other species did not activate clotting factors or display an ontogenetic dichotomy, but depleted fibrinogen levels by cleaving fibrinogen either in a destructive (non-clotting) manner or via a pseudo-procoagulant mechanism. We also assessed the neutralization of these venoms by available antivenom and enzyme-inhibitors to provide knowledge for the design of evidence-based treatment strategies for envenomated patients. One of the most frequently used Mexican antivenoms (Bioclon Antivipmyn®) failed to neutralize the potent procoagulant toxic action of neonate C. culminatus venom, highlighting limitations in snakebite treatment for this species. However, the metalloprotease inhibitor Prinomastat substantially thwarted the procoagulant venom activity, while 2,3-dimercapto-1-propanesulfonic acid (DMPS) was much less effective. These results confirm that venom-induced Factor X activation (a procoagulant action) is driven by metalloproteases, while also suggesting Prinomastat as a more promising potential adjunct treatment than DMPS for this species (with the caveat that in vivo studies are necessary to confirm this potential clinical use). Conversely, the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibited the direct fibrinogen cleaving actions of C. mictlantecuhtli venom, thereby revealing that the pseudo-procoagulant action is driven by kallikrein-type serine proteases. Thus, this differential ontogenetic variation in coagulotoxicity patterns poses intriguing questions. Our results underscore the need for further research into Mexican rattlesnake venom activity, and also highlights potential limitations of current antivenom treatments.
Collapse
Affiliation(s)
- Lorenzo Seneci
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Institute of Biology Leiden (IBL), Leiden University, Leiden, Netherlands
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Caroline F B Rodrigues
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
21
|
Arnaud G, García-de León FJ, Beltrán LF, Carbajal-Saucedo A. Proteomic comparison of adult and juvenile Santa Catalina rattlesnake (Crotalus catalinensis) venom. Toxicon 2021; 193:55-62. [PMID: 33545227 DOI: 10.1016/j.toxicon.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
Rattlesnake's venom constitutes an important ecological trait that dynamically changes over time. Venoms of adult and juvenile rattleless rattlesnakes, Crotalus catalinensis, an endemic insular species from the Gulf of California, were compared by electrophoretic profile, fibrinogenolytic activity, and proteomic composition to assess ontogenetic variability. The SDS-PAGE profiles show important differences at 12, 22, and 45 kDa, which were prominent in adult samples and absent in juvenile samples, while bands around 20, 25, and 70 kDa are almost absent in adults. Both venoms hydrolyze Aa and Bb chains of fibrinogen generating different patterns of degradation products. This activity was partially inhibited by EDTA and PMSF and completely abolished only in the presence of both inhibitors. More than 260 proteins were identified and quantified in both venoms by proteomic analysis. Metalloproteinases (more than 60%), serine proteinases (14.5% in adult venom and 17.7% in juvenile venom), and C-type lectins (7.1 and 5.9%) represent the three most abundant toxin-related protein families. Bradykinin inhibitor peptides and L-amino acid oxidases were not detected in juvenile venom. A protein-specific comparison shows that adult and juvenile venom share about 30.5% of total toxin-related proteins, while 32% and 35% are exclusively present in adult and juvenile venoms, respectively. This work represents one of the first efforts to understand phenotypic diversity in the venom composition of insular rattlesnake species from Mexico.
Collapse
Affiliation(s)
- Gustavo Arnaud
- Centro de Investigaciones Biológicas del Noroeste S.C. Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP, 23096, Mexico
| | - Francisco J García-de León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste S.C. Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP, 23096, Mexico
| | - Luis F Beltrán
- Centro de Investigaciones Biológicas del Noroeste S.C. Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP, 23096, Mexico
| | | |
Collapse
|
22
|
Hatakeyama DM, Tasima LJ, Bravo-Tobar CA, Serino-Silva C, Tashima AK, Rodrigues CFB, Aguiar WDS, Galizio NDC, de Lima EOV, Kavazoi VK, Gutierrez-Marín JD, de Farias IB, Sant’Anna SS, Grego KF, de Morais-Zani K, Tanaka-Azevedo AM. Venom complexity of Bothrops atrox (common lancehead) siblings. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200018. [PMID: 33101399 PMCID: PMC7553035 DOI: 10.1590/1678-9199-jvatitd-2020-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Variability in snake venoms is a well-studied phenomenon. However, sex-based variation of Bothrops atrox snake venom using siblings is poorly investigated. Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Differences in the venom composition of Bothrops genus have been linked to several factors such as ontogeny, geographical distribution, prey preferences and sex. Thus, in the current study, venom samples of Bothrops atrox male and female siblings were analyzed in order to compare their biochemical and biological characteristics. METHODS Venoms were collected from five females and four males born from a snake captured from the wild in São Bento (Maranhão, Brazil), and kept in the Laboratory of Herpetology of Butantan Intitute. The venoms were analyzed individually and as a pool of each gender. The assays consisted in protein quantification, 1-DE, mass spectrometry, proteolytic, phospholipase A2, L-amino acid oxidase activities, minimum coagulant dose upon plasma, minimum hemorrhagic dose and lethal dose 50%. RESULTS Electrophoretic profiles of male's and female's venom pools were quite similar, with minor sex-based variation. Male venom showed higher LAAO, PLA2 and hemorrhagic activities, while female venom showed higher coagulant activity. On the other hand, the proteolytic activities did not show statistical differences between pools, although some individual variations were observed. Meanwhile, proteomic profile revealed 112 different protein compounds; of which 105 were common proteins of female's and male's venom pools and seven were unique to females. Despite individual variations, lethality of both pools showed similar values. CONCLUSION Although differences between female and male venoms were observed, our results show that individual variations are significant even between siblings, highlighting that biological activities of venoms and its composition are influenced by other factors beyond gender.
Collapse
Affiliation(s)
- Daniela Miki Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lídia Jorge Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cesar Adolfo Bravo-Tobar
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Caroline Serino-Silva
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Weslei da Silva Aguiar
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Nathália da Costa Galizio
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Victor Koiti Kavazoi
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Juan David Gutierrez-Marín
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Iasmim Baptista de Farias
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Karen de Morais-Zani
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
23
|
Pozas-Ocampo IF, Carbajal-Saucedo A, Gatica-Colima AB, Cordero-Tapia A, Arnaud-Franco G. Toxicological comparison of Crotalus ruber lucasensis venom from different ecoregions of the Baja California Peninsula. Toxicon 2020; 187:111-115. [PMID: 32896514 DOI: 10.1016/j.toxicon.2020.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
The Baja California Peninsula possesses a mosaic of ecoregions that offers a wide variety of environments for the species that here inhabit. Here we report biological variations in. Crotalus ruber lucasensis venom from arid, semiarid and tropical eco-regions. Lethal (1.4-6.8 mg/kg), edematogenic (0.3-0.5 μg) and defibrinogenating (from non-detectable to 20 μg) activities were found to have significant differences among eco-regions.
Collapse
Affiliation(s)
- Iván Fernando Pozas-Ocampo
- Centro de Investigaciones Biológicas Del Noroeste SC, Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP 23096, Mexico
| | | | - Ana Bertha Gatica-Colima
- Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Anillo Envolvente Del PRONAF y Estocolmo, S/n. Ciudad Juárez, Chihuahua, CP 32310, Mexico
| | - Amaury Cordero-Tapia
- Centro de Investigaciones Biológicas Del Noroeste SC, Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP 23096, Mexico
| | - Gustavo Arnaud-Franco
- Centro de Investigaciones Biológicas Del Noroeste SC, Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP 23096, Mexico.
| |
Collapse
|
24
|
Ontogenetic changes in the venom of Metlapilcoatlus nummifer, the mexican jumping viper. Toxicon 2020; 184:204-214. [DOI: 10.1016/j.toxicon.2020.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 01/27/2023]
|
25
|
Neri-Castro E, Sanz L, Olvera-Rodríguez A, Bénard-Valle M, Alagón A, Calvete JJ. Venomics and biochemical analysis of the black-tailed horned pitviper, Mixcoatlus melanurus, and characterization of Melanurutoxin, a novel crotoxin homolog. J Proteomics 2020; 225:103865. [DOI: 10.1016/j.jprot.2020.103865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
|
26
|
Román-Domínguez L, Neri-Castro E, Vázquez López H, García-Osorio B, Archundia IG, Ortiz-Medina JA, Petricevich VL, Alagón A, Bénard-Valle M. Biochemical and immunochemical characterization of venoms from snakes of the genus Agkistrodon. Toxicon X 2019; 4:100013. [PMID: 32550570 PMCID: PMC7285990 DOI: 10.1016/j.toxcx.2019.100013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
In the present work, venoms from five species of the genus Agkistrodon were evaluated in terms of their enzymatic (Phospholipase A2 and caseinolytic) and biological (edema forming, hemorrhagic, procoagulant and lethal) effects. Horses were used to produce monovalent hyperimmune sera against each of three venoms (A. bilineatus, A. contortrix and A. piscivorus) and their neutralizing potency, expressed as Median Effective Dose (ED50), was determined against the venoms of all five species. In terms of PLA2 and caseinolytic activities, all venoms are extremely homogeneous. PLA2 activity is high, while caseinolytic activity is low when in contrast with that of the rattlesnake Crotalus simus. On the other hand, biological activities showed marked interspecific differences, particularly between the species from Mexico and those from the United States. Mexican species displayed higher edema-forming, hemorrhagic and lethal effects than US species, while none of the species studied presented procoagulant activity. All three monovalent hyperimmune sera showed good neutralizing potency against the analyzed venoms. Nonetheless, we observed relevant immunochemical differences among the venoms using ELISA and Western Blot assays. We conclude that the venoms of A. piscivorus (USA) and A. bilineatus would be ideal to use as immunogens for the production of a polyvalent antivenom with good neutralizing potency against the venoms of all the species of the genus.
Collapse
Affiliation(s)
- Luis Román-Domínguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad # 2001 Colonia Chamilpa. CP: 62210. Cuernavaca, Morelos, Mexico
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos. Av. Universidad # 2001 Colonia Chamilpa. CP: 62210. Cuernavaca, Morelos, Mexico
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad # 2001 Colonia Chamilpa. CP: 62210. Cuernavaca, Morelos, Mexico
| | - Hilda Vázquez López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad # 2001 Colonia Chamilpa. CP: 62210. Cuernavaca, Morelos, Mexico
| | - Belem García-Osorio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad # 2001 Colonia Chamilpa. CP: 62210. Cuernavaca, Morelos, Mexico
| | - Irving G. Archundia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad # 2001 Colonia Chamilpa. CP: 62210. Cuernavaca, Morelos, Mexico
| | - Javier A. Ortiz-Medina
- Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán. Km 15.5, Carretera Mérida-Xmatkuil. C.P: 97315. Mérida, Yucatán, Mexico
- Unidad de Manejo para la Conservación de la Vida Silvestre Tsáab Kaan. Km. 2.8, Carretera Baca-Dzemul, C.P. 97450. Baca, Yucatán, Mexico
| | - Vera L. Petricevich
- Facultad de Medicina. Universidad Autónoma del Estado de Morelos. Calle Leñeros S/N, Colonia Vista Hermosa. CP: 62290. Cuernavaca, Morelos, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad # 2001 Colonia Chamilpa. CP: 62210. Cuernavaca, Morelos, Mexico
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad # 2001 Colonia Chamilpa. CP: 62210. Cuernavaca, Morelos, Mexico
| |
Collapse
|
27
|
Dobson JS, Zdenek CN, Hay C, Violette A, Fourmy R, Cochran C, Fry BG. Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen through Destructive Cleavage. Toxins (Basel) 2019; 11:E255. [PMID: 31067768 PMCID: PMC6563220 DOI: 10.3390/toxins11050255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
The functional activities of Anguimorpha lizard venoms have received less attention compared to serpent lineages. Bite victims of varanid lizards often report persistent bleeding exceeding that expected for the mechanical damage of the bite. Research to date has identified the blockage of platelet aggregation as one bleeding-inducing activity, and destructive cleavage of fibrinogen as another. However, the ability of the venoms to prevent clot formation has not been directly investigated. Using a thromboelastograph (TEG5000), clot strength was measured after incubating human fibrinogen with Heloderma and Varanus lizard venoms. Clot strengths were found to be highly variable, with the most potent effects produced by incubation with Varanus venoms from the Odatria and Euprepriosaurus clades. The most fibrinogenolytically active venoms belonged to arboreal species and therefore prey escape potential is likely a strong evolutionary selection pressure. The results are also consistent with reports of profusive bleeding from bites from other notably fibrinogenolytic species, such as V. giganteus. Our results provide evidence in favour of the predatory role of venom in varanid lizards, thus shedding light on the evolution of venom in reptiles and revealing potential new sources of bioactive molecules useful as lead compounds in drug design and development.
Collapse
Affiliation(s)
- James S Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Chris Hay
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
28
|
Jones BK, Saviola AJ, Reilly SB, Stubbs AL, Arida E, Iskandar DT, McGuire JA, Yates JR, Mackessy SP. Venom Composition in a Phenotypically Variable Pit Viper ( Trimeresurus insularis) across the Lesser Sunda Archipelago. J Proteome Res 2019; 18:2206-2220. [PMID: 30958009 DOI: 10.1021/acs.jproteome.9b00077] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genus Trimeresurus comprises a group of venomous pitvipers endemic to Southeast Asia and the Pacific Islands. Of these, Trimeresurus insularis, the White-lipped Island Pitviper, is a nocturnal, arboreal species that occurs on nearly every major island of the Lesser Sunda archipelago. In the current study, venom phenotypic characteristics of T. insularis sampled from eight Lesser Sunda Islands (Flores, Lembata, Lombok, Pantar, Sumba, Sumbawa, Timor, and Wetar) were evaluated via SDS-PAGE, enzymatic activity assays, fibrinogenolytic assays, gelatin zymography, and RP-HPLC, and the Sumbawa sample was characterized by venomic analysis. For additional comparative analyses, venoms were also examined from several species in the Trimeresurus complex, including T. borneensis, T. gramineus, T. puniceus, T. purpureomaculatus, T. stejnegeri, and Protobothrops flavoviridis. Despite the geographical isolation, T. insularis venoms from all eight islands demonstrated remarkable similarities in gel electrophoretic profiles and RP-HPLC patterns, and all populations had protein bands in the mass ranges of phosphodiesterases (PDE), l-amino acid oxidases (LAAO), P-III snake venom metalloproteinases (SVMP), serine proteases, cysteine-rich secretory proteins (CRISP), phospholipases A2 (PLA2), and C-type lectins. An exception was observed in the Lombok sample, which lacked protein bands in the mass range of serine protease and CRISP. Venomic analysis of the Sumbawa venom also identified these protein families, in addition to several proteins of lesser abundance (<1%), including glutaminyl cyclase, aminopeptidase, PLA2 inhibitor, phospholipase B, cobra venom factor, 5'-nucleotidase, vascular endothelial growth factor, and hyaluronidase. All T. insularis venoms exhibited similarities in thrombin-like and PDE activities, while significant differences were observed for LAAO, SVMP, and kallikrein-like activities, though these differences were only observed for a few islands. Slight but noticeable differences were also observed with fibrinogen and gelatin digestion activities. Trimeresurus insularis venoms exhibited overall similarity to the other Trimeresurus complex species examined, with the exception of P. flavoviridis venom, which showed the greatest overall differentiation. Western blot analysis revealed that all major T. insularis venom proteins were recognized by Green Pitviper ( T. albolabris) antivenom, and reactivity was also seen with most venom proteins of the other Trimeresurus species, but incomplete antivenom-venom recognition was observed against P. flavoviridis venom proteins. These results demonstrate significant conservation in the venom composition of T. insularis across the Lesser Sunda archipelago relative to the other Trimeresurus species examined.
Collapse
Affiliation(s)
- Brenda Kathryn Jones
- School of Biological Sciences , University of Northern Colorado , 501 20th Street, CB 92 , Greeley , Colorado 80639-0017 , United States
| | - Anthony J Saviola
- School of Biological Sciences , University of Northern Colorado , 501 20th Street, CB 92 , Greeley , Colorado 80639-0017 , United States.,Department of Molecular Medicine and Neurobiology , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Sean B Reilly
- Museum of Vertebrate Zoology and Department of Integrative Biology , University of California , 3101 Valley Life Sciences Building , Berkeley , California 94720-3160 , United States
| | - Alexander L Stubbs
- Museum of Vertebrate Zoology and Department of Integrative Biology , University of California , 3101 Valley Life Sciences Building , Berkeley , California 94720-3160 , United States
| | - Evy Arida
- Museum Zoologicum Bogoriense , Indonesian Institute of Sciences (LIPI) , Jalan Raya Bogor-Jakarta Km. 46 , Cibinong 16911 , Indonesia
| | - Djoko T Iskandar
- School of Life Sciences and Technology , Institut Teknologi Bandung , 10, Jalan Ganesa , Bandung , Java 40132 , Indonesia
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology , University of California , 3101 Valley Life Sciences Building , Berkeley , California 94720-3160 , United States
| | - John R Yates
- Department of Molecular Medicine and Neurobiology , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Stephen P Mackessy
- School of Biological Sciences , University of Northern Colorado , 501 20th Street, CB 92 , Greeley , Colorado 80639-0017 , United States
| |
Collapse
|
29
|
Snake Venom Hemotoxic Enzymes: Biochemical Comparison between Crotalus Species from Central Mexico. Molecules 2019; 24:molecules24081489. [PMID: 31014025 PMCID: PMC6514926 DOI: 10.3390/molecules24081489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 01/20/2023] Open
Abstract
Snakebite envenoming is a serious medical problem in different areas of the world. In Latin America, the major prevalence is due to snakes of the family Viperidae, where rattlesnakes (Crotalus) are included. They produce hemotoxic venom which causes bleeding, tissue degradation and necrosis. Each venom has several enzymatic activities, producing different effects in the envenoming, doing its clinical effects difficult to study. Comparison between venom molecules is also difficult when different techniques are used, and therefore, their identification/characterization using the same methodology is necessary. In this work, a general biochemical characterization in snake venom of serine proteases (SVSP), phospholipases A2 (PLA2), metalloproteases (SVMP) and hyaluronidases (SVH) of Crotalus aquilus (Ca), Crotalus polystictus (Cp) and Crotalus molossus nigrescens (Cmn) was done. Differences in protein pattern, enzyme content and enzymatic activities were observed. All the venoms showed high PLA2 activity, high molecular weight SVSP, and a wide variety of SVMP and SVH forms. Ca and Cp showed the highest enzymatic activities of SVMP and SVSP trypsin-like and chymotrypsin-like, whereas Cmn showed the highest SVH and similar PLA2 activity with Ca. All the venoms showed peptides with similar molecular weight to crotamine-like myotoxins. No previous biochemical characterization of C. aquilus has been reported and there are no previous analyses that include these four protein families in these Crotalus venoms.
Collapse
|
30
|
Rex CJ, Mackessy SP. Venom composition of adult Western Diamondback Rattlesnakes (Crotalus atrox) maintained under controlled diet and environmental conditions shows only minor changes. Toxicon 2019; 164:51-60. [PMID: 30954451 DOI: 10.1016/j.toxicon.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/16/2022]
Abstract
Many species of snakes produce venom as a chemical means of procuring potentially fractious prey. Studies have increasingly focused on venom compositional variation between and within individual snakes of the same species/subspecies, with significant differences often being observed. This variation in composition has been attributed to differences in age, season, diet, and environment, suggesting that these factors could help explain the inter- and intra-specific variation found in some snake venoms, perhaps via some type of feedback mechanism(s). To address several of these possible sources of variation, this study utilized wild-caught Western Diamondback Rattlesnakes (Crotalus atrox) from Cochise Co., AZ. Sixteen adult C. atrox were maintained in the lab on a diet of NSA mice for eight months to determine whether venom composition changed in captivity under a static diet in a stable environment. Reducing 1-D SDS-PAGE, fibrinogen degradation assays, reversed-phase HPLC, and MALDI-TOF mass spectrometry revealed only minor differences over time within individuals. Venom L-amino acid oxidase (LAAO) and phosphodiesterase activities significantly increased over the course of captivity, with no changes occurring in azocasein metalloproteinase, kallikrein-like serine proteinase (KLSP), or thrombin-like serine proteinase (TLSP) activities. Snake total length was positively correlated with TLSP activity and negatively correlated with LAAO and KLSP activity. There was typically a much higher degree of variation between individuals than within individuals for all analyses performed and measurements collected. Because the overall "fingerprint" of each snake's venom remained more/less constant, it is concluded that biologically significant changes in venom composition did not occur within individual C. atrox as a function of captivity/diet. However, this study does indicate that differences in activity levels do occur in minor venom enzyme components, but the differences observed are likely to be of minimal significance to the production of antivenom or to subsequent treatment of human envenomations.
Collapse
Affiliation(s)
- Christopher J Rex
- Department of Biological Sciences, 501 20th St., University of Northern Colorado, Greeley, CO, 80639-0017, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, 501 20th St., University of Northern Colorado, Greeley, CO, 80639-0017, USA.
| |
Collapse
|
31
|
Borja M, Neri-Castro E, Pérez-Morales R, Strickland JL, Ponce-López R, Parkinson CL, Espinosa-Fematt J, Sáenz-Mata J, Flores-Martínez E, Alagón A, Castañeda-Gaytán G. Ontogenetic Change in the Venom of Mexican Black-Tailed Rattlesnakes ( Crotalus molossus nigrescens). Toxins (Basel) 2018; 10:toxins10120501. [PMID: 30513722 PMCID: PMC6315878 DOI: 10.3390/toxins10120501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ontogenetic changes in venom composition have important ecological implications due the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation has direct medical consequences for the treatment of snakebite. However, ontogenetic changes are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry. In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes; however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes. Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults; however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic. Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa) of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have difficulty neutralizing some human envenomations and, therefore, it may be necessary improve the immunization mixture in Mexican antivenoms to account for low molecular mass proteins, like myotoxins.
Collapse
Affiliation(s)
- Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n. Fracc. Filadelfia, Apartado Postal No. 51, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
- Programa de Doctorado en Ciencias Biomédicas UNAM, C.P. 04510 México D.F., Mexico.
| | - Rebeca Pérez-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n. Fracc. Filadelfia, Apartado Postal No. 51, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Roberto Ponce-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
- Department of Forestry and Environmental Conservation, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Jorge Espinosa-Fematt
- Facultad de Ciencias de la Salud, Universidad Juárez del Estado de Durango, Calz. Palmas 1, Revolución, 35050 Gómez Palacio, Dgo., Mexico.
| | - Jorge Sáenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Esau Flores-Martínez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| |
Collapse
|