1
|
Banahene JCM, Ofosu IW, Odai BT, Lutterodt HE, Agyemang PA, Ellis WO. Ochratoxin A in food commodities: A review of occurrence, toxicity, and management strategies. Heliyon 2024; 10:e39313. [PMID: 39640601 PMCID: PMC11620267 DOI: 10.1016/j.heliyon.2024.e39313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Ochratoxin A (OTA) is a potent mycotoxin produced by species of Aspergillus and Penicillium that contaminate agricultural products and pose significant health risks to both humans and animals. This review examines the mechanisms of OTA toxicity, its occurrence in various food commodities, and the implications for public health and trade. Literature pertaining to OTA was sourced from Google Scholar, covering the period from 2004 to 2024. OTA exposure is linked to multiple adverse health effects, including teratogenicity, immunotoxicity, and hepatotoxicity, with a primary impact on kidney function, and it is classified as a possible human carcinogen (Group 2B). Its toxic effects are attributed to several mechanisms, including lipid peroxidation, inhibition of protein synthesis, DNA damage, oxidative stress, and mitochondrial dysfunction. Notable findings included the presence of OTA in 46.7 % of cocoa products in Turkey, 32 % of cocoa samples in Côte d'Ivoire exceeding the OTA threshold of 2 μg/kg, and 91.5 % of ready-to-sell cocoa beans in Nigeria testing positive for OTA. Coffee beans are particularly susceptible to OTA contamination, which underscores the need for vigilant monitoring. Additionally, OTA contamination impacts agricultural productivity and food safety, leading to significant economic consequences, particularly in regions reliant on exports, such as cocoa and coffee. Several countries regulate the OTA levels in food products to safeguard public health. However, these regulations can impede trade, particularly in countries with high levels of contamination. Balancing regulatory compliance with economic viability is crucial for affected nations. Current strategies for managing OTA include improved agronomic practices, such as the use of biocontrol agents for pest management, enhanced storage conditions to prevent mould growth, and the implementation of detoxification techniques to reduce OTA levels in food products. Despite these strategies, OTA remains a significant threat to public health and the agricultural economy worldwide. The complexity of contamination in food products requires robust prevention, control, and management strategies to mitigate its impact. Continuous research and regulatory initiatives are essential for safeguarding consumers and ensuring food safety.
Collapse
Affiliation(s)
- Joel Cox Menka Banahene
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Isaac Williams Ofosu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Bernard Tawiah Odai
- Radiation Technology Centre–BNARI, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| | - Herman Erick Lutterodt
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Paul Ayiku Agyemang
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Williams Otoo Ellis
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| |
Collapse
|
2
|
Arata AF, Martínez M, Castellari C, Cristos D, Pesquero NV, Dinolfo MI. Impact of Fusarium spp. on different maize commercial hybrids: disease evaluation and mycotoxin contamination. Fungal Biol 2024; 128:1983-1991. [PMID: 39174234 DOI: 10.1016/j.funbio.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Maize is one of the most important crops cultivated worldwide, whose production can be affected by the presence of several pathogens. Fusarium verticillioides and Fusarium graminearum are the most predominant pathogens affecting maize ears. However, few studies have been focused on studying the interaction between both pathogens in field conditions. For this reason, the aim of the present work was to evaluate the interaction between F. graminearum and F. verticillioides in different genotypes of maize under field conditions. Field experiments were carried out during two growing seasons in Azul, Argentina, including 12 commercial hybrids of maize, which were inoculated with F. graminearum, F. verticillioides, and a mixture of both pathogens. Phenotypic traits (plant height, plant diameter, tiller and cob number, and radiation interception), disease evaluation, and mycotoxin contamination were analyzed. The results showed significant differences between genotypes in disease severity (DS) for both years. In general terms, higher values of DS were reported in 2020 (21.70% ± 0.40) than in 2021 (16.50% ± 0.20). Different climatic conditions registered along the assay, especially precipitations and relative humidity, could be responsible for the differences observed over the years. Moreover, no significant correlations were found regarding DS and mycotoxin contamination for each genotype. For these reasons, an automatic correspondence between DS and mycotoxin contamination could lead to wrong agronomic decisions. The present study points out novel information regarding plant-pathogen interaction (maize-F. verticillioides/F. graminearum) under field conditions that could be useful for future maize breeding programmes.
Collapse
Affiliation(s)
- Agustín F Arata
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA. Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina; Centro de Investigaciones Integradas Sobre Sistemas Agronómicos Sustentables (CIISAS), Facultad de Agronomía, UNCPBA. Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina
| | - Mauro Martínez
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA. Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina; Área de Mejoramiento Genético Vegetal, Facultad de Agronomía, UNCPBA. Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina
| | - Claudia Castellari
- Laboratorio de Microbiología de Suelos y Alimentos. Facultad de Ciencias Agrarias. Universidad Nacional de Mar Del Plata, Buenos Aires, Argentina
| | - Diego Cristos
- Área de Protección de Alimentos Instituto Tecnología de Alimentos Centro de Investigación de Agroindustria (CIA-INTA), Nicolas Repetto y de Los Reseros S/n. 1686 Hurlingham, Buenos. Aires, Argentina
| | - Natalia V Pesquero
- Área de Protección de Alimentos Instituto Tecnología de Alimentos Centro de Investigación de Agroindustria (CIA-INTA), Nicolas Repetto y de Los Reseros S/n. 1686 Hurlingham, Buenos. Aires, Argentina
| | - María I Dinolfo
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA. Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Kos J, Radić B, Lešić T, Anić M, Jovanov P, Šarić B, Pleadin J. Climate Change and Mycotoxins Trends in Serbia and Croatia: A 15-Year Review. Foods 2024; 13:1391. [PMID: 38731762 PMCID: PMC11083470 DOI: 10.3390/foods13091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review examines the 15-year presence of mycotoxins in food from Serbia and Croatia to provide a comprehensive overview of trends. Encompassing the timeframe from 2009 to 2023, this study integrates data from both countries and investigates climate change patterns. The results from Serbia focus primarily on maize and milk and show a strong dependence of contamination on weather conditions. However, there is limited data on mycotoxins in cereals other than maize, as well as in other food categories. Conversely, Croatia has a broader spectrum of studies, with significant attention given to milk and maize, along with more research on other cereals, meat, and meat products compared to Serbia. Over the investigated 15-year period, both Serbia and Croatia have experienced notable shifts in climate, including fluctuations in temperature, precipitation, and humidity levels. These changes have significantly influenced agriculture, consequently affecting the occurrence of mycotoxins in various food products. The results summarized in this 15-year review indicate the urgent need for further research and action to address mycotoxins contamination in Serbian and Croatian food supply chains. This urgency is further emphasized by the changing climatic conditions and their potential to exacerbate public health and food safety risks associated with mycotoxins.
Collapse
Affiliation(s)
- Jovana Kos
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Bojana Radić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Tina Lešić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (T.L.); (J.P.)
| | - Mislav Anić
- Croatian Meteorological and Hydrological Service, Ravnice 48, 10000 Zagreb, Croatia;
| | - Pavle Jovanov
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Bojana Šarić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Jelka Pleadin
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (T.L.); (J.P.)
| |
Collapse
|
4
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Del Palacio A, Corallo B, Simoens M, Cea J, de Aurrecoechea I, Martinez I, Sanchez A, Stewart S, Pan D. Major Fusarium species and mycotoxins associated with freshly harvested maize grain in Uruguay. Mycotoxin Res 2023; 39:379-391. [PMID: 37442904 DOI: 10.1007/s12550-023-00498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Fusarium species are common fungal pathogens of maize. Fusarium graminearum and Fusarium verticillioides, among others, can cause maize ear rot, and they are also mycotoxin producers. The aims of this work were to determine the frequency and diversity of Fusarium species in Uruguayan maize kernels, evaluate the toxigenic potential of the isolates, determine toxin contamination levels on freshly harvested grain, and assess the sensitivity of main Fusarium species against fungicides. Fusarium verticillioides was the most frequent species isolated, followed by Fusarium graminearum sensu stricto. Of F. verticillioides isolates studied for fumonisin production, 72% produced fumonisin B1 and 32% fumonisin B2. Considering in vitro toxin production by F. graminearum sensu stricto isolates, deoxynivalenol was the main toxin produced, followed by zearalenone and nivalenol. Fumonisins were the most frequently found toxins on freshly harvested maize samples (98% in 2018 and 86% in 2019), and also, fumonisin B1 was the toxin with highest concentration in both years studied (4860 µg/kg in 2018 and 1453 µg/kg in 2019). Deoxynivalenol and zearalenone were also found as contaminants. Metconazole and epoxiconazole were the most effective fungicides tested on F. verticillioides isolates. Fusarium graminearum sensu stricto isolates also were more sensitive to metconazole compared to other fungicides; nevertheless, epoxiconazole was less efficient in controlling this species. This is the first study that reports Fusarium species and mycotoxin contamination levels associated with maize grain in Uruguay. Its detection is the main step to develop management strategies in order to minimize fungal infection in maize crops.
Collapse
Affiliation(s)
- A Del Palacio
- Laboratorio de Micología, Facultad de Ciencias-Facultad de Ingeniería, UdelaR, 565, 11200, Montevideo, Julio Herreray Reissig , Uruguay
| | - B Corallo
- Laboratorio de Micología, Facultad de Ciencias-Facultad de Ingeniería, UdelaR, 565, 11200, Montevideo, Julio Herreray Reissig , Uruguay
| | - M Simoens
- Departamento de Análisis de Productos Agropecuarios, Laboratorio Tecnológico del Uruguay, Montevideo, Uruguay
| | - Jacqueline Cea
- Departamento de Análisis de Productos Agropecuarios, Laboratorio Tecnológico del Uruguay, Montevideo, Uruguay
| | - I de Aurrecoechea
- Departamento de Granos, Ministerio de Ganadería, Dirección General de Servicios Agrícolas, Agricultura y Pesca, Montevideo, Uruguay
| | - I Martinez
- Fundación del Laboratorio Tecnológico del Uruguay, Montevideo, Uruguay
| | - A Sanchez
- Fundación del Laboratorio Tecnológico del Uruguay, Montevideo, Uruguay
| | - S Stewart
- Programa Cultivos de Secano, Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Colonia, Uruguay
| | - D Pan
- Laboratorio de Micología, Facultad de Ciencias-Facultad de Ingeniería, UdelaR, 565, 11200, Montevideo, Julio Herreray Reissig , Uruguay.
| |
Collapse
|
6
|
Alamir J, Almaiman L, Alrujib Y, Alhamidi R, Alowais B, Alhussain S, Aldakheelallah A, Alkhalaf M, Bineid M. Aflatoxins in food products consumed in the Kingdom of Saudi Arabia: A preliminary dietary risk assessment. Food Sci Nutr 2023; 11:5948-5958. [PMID: 37823116 PMCID: PMC10563739 DOI: 10.1002/fsn3.3526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 10/13/2023] Open
Abstract
Aflatoxins (AFs) are hepatotoxic, mutagenic, genotoxic, and immunosuppressive toxins. Several food commodities consumed in the Kingdom of Saudi Arabia (KSA) are susceptible to AF contamination because of improper storage practices and the warm and humid climate of the country. Therefore, the occurrence of AFs in 2388 food samples was measured and the estimated daily intake (EDI) of AFs in Saudi adults was assessed. The risks of AFB1 exposure were characterized using the margin of exposure (MoE) approach and by estimating the number of possible hepatocellular carcinoma (HCC) cases in the KSA. The results revealed that 12.1% of the analyzed samples were contaminated with AFs and the highest concentration of total AFs was observed in the nut and seed group. The mean EDI of AFB1 was estimated to be 0.21 and 0.55 ng/kg body weight (bw)/day for the lower bound (LB) and upper bound (UB) scenarios, respectively. The MoEs were estimated to be 1902.4 and 722.1, while the estimated liver cancer risk ranged from 0.002 to 0.008 cancer cases/year/100,000 persons. Based on the study's findings, contamination with AFs in the KSA is low; however, AFs are considered potent genotoxic contaminants, and therefore, exposure through food should be kept as low as possible.
Collapse
Affiliation(s)
- Jumanah Alamir
- Department of Monitoring and Risk Assessment, Food SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| | - Lama Almaiman
- Department of Monitoring and Risk Assessment, Food SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| | - Yasser Alrujib
- Executive Department of Laboratories, Research and Laboratories SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| | - Rayan Alhamidi
- Department of Monitoring and Risk Assessment, Food SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| | - Bandar Alowais
- Department of Monitoring and Risk Assessment, Food SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| | - Saqer Alhussain
- Department of Monitoring and Risk Assessment, Food SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| | - Abdullah Aldakheelallah
- Department of Monitoring and Risk Assessment, Food SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| | - Majid Alkhalaf
- Department of Monitoring and Risk Assessment, Food SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
- National Nutrition CommitteeSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| | - Mohammed Bineid
- Department of Monitoring and Risk Assessment, Food SectorSaudi Food and Drug AuthorityRiyadhSaudi Arabia
| |
Collapse
|
7
|
Topi D, Babič J, Jakovac-Strajn B, Tavčar-Kalcher G. Incidence of Aflatoxins and Ochratoxin A in Wheat and Corn from Albania. Toxins (Basel) 2023; 15:567. [PMID: 37755993 PMCID: PMC10537406 DOI: 10.3390/toxins15090567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
In this study, aflatoxins (AFs) and ochratoxin A (OTA) were analyzed in grains, specifically wheat and corn, from Albania. To summarize, 71 wheat and 45 corn samples from different growing areas were collected. The multi-toxin analytical procedure involved sample extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The incidence of AF was 18% in the analyzed wheat and 71% in the corn samples. The concentration of AFs was much higher in the corn samples than in the wheat samples. The maximum permitted levels for aflatoxin B1 (AFB1) and total AFs were not exceeded in the wheat samples, while they were exceeded in 36% of the corn samples. In the wheat samples, the AFB1 concentration varied between 0.2 and 0.4 µg kg-1. However, the highest concentrations in the corn samples were 2057, 2944, and 3550 µg kg-1. OTA was present in only three corn samples and one wheat sample. However, all contaminated samples exceeded the maximum permitted levels. This report reveals the presence of AFs and OTA in grain commodities, specifically wheat and corn, grown in Albania.
Collapse
Affiliation(s)
- Dritan Topi
- Veterinary Faculty, Institute of Food Safety, Feed and Environment, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Boulevard Zogu 1, 25/1, 1000 Tirana, Albania
| | - Janja Babič
- Veterinary Faculty, Institute of Food Safety, Feed and Environment, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| | - Breda Jakovac-Strajn
- Veterinary Faculty, Institute of Food Safety, Feed and Environment, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| | - Gabrijela Tavčar-Kalcher
- Veterinary Faculty, Institute of Food Safety, Feed and Environment, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| |
Collapse
|
8
|
Lavkor I, Ay T, Sobucovali S, Var I, Saghrouchni H, Salamatullah AM, Mekonnen AB. Non-Aflatoxigenic Aspergillus flavus: A Promising Biological Control Agent against Aflatoxin Contamination of Corn. ACS OMEGA 2023; 8:16779-16788. [PMID: 37214674 PMCID: PMC10193414 DOI: 10.1021/acsomega.3c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
Aflatoxins (AFs) are a family of mycotoxins produced by molds in agricultural products. To deal with this problem, one of the control methods is the biological solution using a non-pathogenic strain Aspergillus flavus NRRL 21882 (Afla-Guard). This study was conducted to evaluate the potential of A. flavus NRRL 21882 to control the AF contamination of corn in the field and during storage in 2018 and 2019. The experimental design consists of treatment at different vegetative stages of infested corn in the field trial. After the field has been harvested, half the corn kernels from both treated and control plots were treated with biopesticide; the other half of the kernels from each group were not treated and used as the control of the storage. Consequently, storage applications consisted of kernels: (1) not treated at all; (2) treated prior to storage; (3) field-treated; and (4) treated both in the field and prior to storage. After field trials, the AF content was very low in the treated plots, ranging from 0.50 to 1.04 μg/kg and from 0.50 to 0.73 μg/kg in 2018 and 2019, respectively, while the AF content in the control was 98.3 and 73.9 μg/kg in 2018 and 2019, respectively. After storage, corn kernels from field plots that were treated with the biopesticide (treated/control) showed low levels of AFs, even after they have been stored under conditions conducive to AF contamination. The biopesticide effect ranged from 98 to 99% and from 69 to 99% in the field and during storage, respectively. This paper has provided the first indications on AF biocontrol based on a competitive exclusion in the corn-growing region of Turkey. The data showed that spraying during the storage period did not provide any further prevention of AF contamination, and only treatment in the field had a significant effect on AFs that occurred in storage.
Collapse
Affiliation(s)
- Isilay Lavkor
- Biological
Control Research Institute, Kisla Cad., 01321 Yüregir, Adana, Türkiye
| | - Tahsin Ay
- Biological
Control Research Institute, Kisla Cad., 01321 Yüregir, Adana, Türkiye
| | - Suat Sobucovali
- Sunar
Mısır Entegre Tesisleri San. ve Tic. A.Ş, Turhan
Cemal Beriker Blv. Yolgeçen mh., Seyhan, 565 01355 Adana, Türkiye
| | - Isil Var
- Molecular
Biology Department, Sussex University, BN1 9RH Brighton, U.K.
| | - Hamza Saghrouchni
- Department
of Biotechnology, Graduate School of Natural and Applied Sciences, Çukurova University, Balcalı, 01250 Adana, Türkiye
| | - Ahmad Mohammad Salamatullah
- Department
of Food Science & Nutrition, College of Food and Agricultural
Sciences, King Saud University, 11 P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | | |
Collapse
|
9
|
Aflatoxin Susceptible Food Consumption Frequency, Prevalence, and Levels in Household Foodstuffs in Southwestern Uganda. J FOOD QUALITY 2023. [DOI: 10.1155/2023/4769432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Contamination of household foodstuffs by aflatoxins has been associated with many illnesses, especially hepatocellular cancer and malnutrition. Aflatoxins are toxins produced by fungi, especially Aspergillus flavus and Aspergillus parasiticus, usually found in food. Literature concerning the S.W. Ugandan foods that are the main aflatoxicosis route and therefore need most aflatoxin preventive measure is scanty. The current study determined the aflatoxin-susceptible food consumption frequency, prevalence, and levels of aflatoxins in selected foodstuffs in households in S.W. Uganda to establish the main food route of aflatoxicosis. Following a food frequency questionnaire, flour samples of common foodstuffs, namely, groundnuts, maize, millet, and sorghum, were randomly picked from seven districts of Southwest Uganda and analyzed for the presence and levels of aflatoxins using competitive ELISA. On average, maize and groundnut were found to be the most frequently consumed foods (seven times a week) by every family. Groundnuts had the highest mean aflatoxin level (96.5 ± 13.37 μg/kg), ranging from 6.2 to 297.3 μg/kg. Over 90% of the groundnut samples had mean aflatoxin levels greater than 10 μg/kg, the East African regulatory limit. Maize flour had a mean aflatoxin level of 34.1 ± 14.1 μg/kg, with one sample registering 336.5 μg/kg. This study found that groundnuts were the main food-route for aflatoxicosis followed by maize flour. In addition, the study re-affirmed the high prevalence and levels of aflatoxins in common food stuff in households in S.W. Uganda reported by previous studies. This study recommends further studies to elucidate its association with the observed recent increase in diseases like hepatocellular cancer and malnutrition in the region.
Collapse
|
10
|
ŞAHIN S, EYUPOĞLU OE, YAMAN M, DOĞAN TÇ, KORKMAZ BİO, OMURTAG GZ. Investigation of the deoxynivalenol and ochratoxin A levels by high-performance liquid chromatography of cereals sold in the markets in Türkiye. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.89822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Mustafa YAMAN
- Istanbul Sabahattin Zaim University, Türkiye; Istanbul Sabahattin Zaim University, Türkiye
| | | | | | | |
Collapse
|
11
|
Purar B, Djalovic I, Bekavac G, Grahovac N, Krstović S, Latković D, Janić Hajnal E, Živančev D. Changes in Fusarium and Aspergillus Mycotoxin Content and Fatty Acid Composition after the Application of Ozone in Different Maize Hybrids. Foods 2022; 11:2877. [PMID: 36141007 PMCID: PMC9498628 DOI: 10.3390/foods11182877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins in maize represent a great threat to human health. For this reason, novel technics such as ozone treatment are used to reduce the content of maize mycotoxins. However, there is little knowledge about the effect of ozone treatment on maize quality parameters. This study investigated the changes in Fusarium and Aspergillus mycotoxins and the changes in fatty acids during the ozone treatment of maize samples. Sixteen maize hybrids were visually tested for the naturally occurring ear rot severity and treated with three different concentrations of ozone (40, 70, and 85 mg/L). Mycotoxin content in maize samples was determined using a high-performance liquid chromatography (HPLC) system, whereas dominant fatty acids were determined using gas chromatography coupled with a flame ionization detector (GC-FID). Ozone treatments could be successfully applied to reduce the content of mycotoxins in maize below the detection limit. Ozone treatments increased the content of monounsaturated fatty acids (MUFAs) and decreased the content of polyunsaturated fatty acids (PUFAs), i.e., linoleic acid (36.7% in relation to the lowest applied ozone concentration), which negatively affected the nutritional value of maize.
Collapse
Affiliation(s)
- Božana Purar
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Goran Bekavac
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Nada Grahovac
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Saša Krstović
- Faculty of Agriculture, University of Novi Sad, Sq. D. Obradovic 8, 21000 Novi Sad, Serbia
| | - Dragana Latković
- Faculty of Agriculture, University of Novi Sad, Sq. D. Obradovic 8, 21000 Novi Sad, Serbia
| | - Elizabet Janić Hajnal
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Dragan Živančev
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity? Toxins (Basel) 2022; 14:toxins14080574. [PMID: 36006236 PMCID: PMC9412283 DOI: 10.3390/toxins14080574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/29/2023] Open
Abstract
The dangers of population-level mycotoxin exposure have been well documented. Climate-sensitive aflatoxins (AFs) are important food hazards. The continual effects of climate change are projected to impact primary agricultural systems, and consequently food security. This will be due to a reduction in yield with a negative influence on food safety. The African climate and subsistence farming techniques favour the growth of AF-producing fungal genera particularly in maize, which is a food staple commonly associated with mycotoxin contamination. Predictive models are useful tools in the management of mycotoxin risk. Mycotoxin climate risk predictive models have been successfully developed in Australia, the USA, and Europe, but are still in their infancy in Africa. This review aims to investigate whether AFs’ occurrence in African maize can be effectively mitigated in the face of increasing climate change and food insecurity using climate risk predictive studies. A systematic search is conducted using Google Scholar. The complexities associated with the development of these prediction models vary from statistical tools such as simple regression equations to complex systems such as artificial intelligence models. Africa’s inability to simulate a climate mycotoxin risk model in the past has been attributed to insufficient climate or AF contamination data. Recently, however, advancement in technologies including artificial intelligence modelling has bridged this gap, as climate risk scenarios can now be correctly predicted from missing and unbalanced data.
Collapse
|
13
|
Zingales V, Taroncher M, Martino PA, Ruiz MJ, Caloni F. Climate Change and Effects on Molds and Mycotoxins. Toxins (Basel) 2022; 14:toxins14070445. [PMID: 35878185 PMCID: PMC9319892 DOI: 10.3390/toxins14070445] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Earth’s climate is undergoing adverse global changes as an unequivocal result of anthropogenic activity. The occurring environmental changes are slowly shaping the balance between plant growth and related fungal diseases. Climate (temperature, available water, and light quality/quantity; as well as extreme drought, desertification, and fluctuations of humid/dry cycles) represents the most important agroecosystem factor influencing the life cycle stages of fungi and their ability to colonize crops, survive, and produce toxins. The ability of mycotoxigenic fungi to respond to Climate Change (CC) may induce a shift in their geographical distribution and in the pattern of mycotoxin occurrence. The present review examines the available evidence on the impact of CC factors on growth and mycotoxin production by the key mycotoxigenic fungi belonging to the genera Aspergillus, Penicillium, and Fusarium, which include several species producing mycotoxins of the greatest concern worldwide: aflatoxins (AFs), ochratoxins, and fumonisins (FUMs).
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain; (V.Z.); (M.T.); (M.-J.R.)
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain
| | - Mercedes Taroncher
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain; (V.Z.); (M.T.); (M.-J.R.)
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain
| | - Piera Anna Martino
- Department of Biomedical, Surgical and Dental Sciences-One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133 Milan, Italy;
| | - María-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain; (V.Z.); (M.T.); (M.-J.R.)
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
14
|
Dini I, Alborino V, Lanzuise S, Lombardi N, Marra R, Balestrieri A, Ritieni A, Woo SL, Vinale F. Trichoderma Enzymes for Degradation of Aflatoxin B1 and Ochratoxin A. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123959. [PMID: 35745082 PMCID: PMC9231114 DOI: 10.3390/molecules27123959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
The contamination of agricultural products with mycotoxins causes risks to animal and human health and severe economic losses. Mycotoxicoses can be reduced by preventing fungal infection using chemical and biological approaches. The chemical strategies can release toxic molecules; therefore, strategies for biological control are being evaluated, such as using nontoxic fungi and their metabolites. This work evaluated the effect of exoenzymes produced by the beneficial fungus Trichoderma afroharzianum strain T22 in degrading Aflatoxin B1 (AFB1) and Ochratoxin A (OTA). The ability of Trichoderma to produce hydrolases was stimulated by using different inducing substrates. The highest AFB1 and OTA degradation activity was obtained using a medium containing lyophilized mushrooms and crude fiber. The T. afroharzianum T22’s ability to reduce mycotoxins may be attributed to peroxidase enzymes. This study showed that T.afroharzianum strain T22 or its peroxidase supplementation could represent a sustainable strategy for the degradation of AFB1 and OTA in feed and food products.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
- Correspondence: (I.D.); (F.V.)
| | - Vittoria Alborino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
| | - Stefania Lanzuise
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Anna Balestrieri
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Italy;
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Francesco Vinale
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80138 Naples, Italy
- Correspondence: (I.D.); (F.V.)
| |
Collapse
|
15
|
|
16
|
Gagiu V, Mateescu E, Belc N, Oprea OA, Pîrvu GP. Assessment of Fusarium-Damaged Kernels in Common Wheat in Romania in the Years 2015 and 2016 with Extreme Weather Events. Toxins (Basel) 2022; 14:326. [PMID: 35622573 PMCID: PMC9145446 DOI: 10.3390/toxins14050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
This article assesses the occurrence of Fusarium-damaged kernels (FDKs) in common wheat (Triticum aestivum) under the influence of environmental factors and extreme weather events in Romania (exceptionally high air temperatures and extreme pedological drought produced by a dipole block in summer 2015, and extreme precipitation and floods produced by an omega block in spring 2016). Wheat samples (N = 272) were analyzed for FDKs via visual estimation and manual weighing according to ISO 7970 and are statistically evaluated using SPSS. The dipole block in 2015 reduced the effects of environmental factors to non-significant correlations with FDKs, while the omega block in 2016 was non-significantly to very significantly correlated with FDKs in the northwestern and western regions. The occurrence of FDKs was favored for wheat cultivation in acidic soils and inhibited in alkaline soils. Wheat samples with FDKs ≥ 1% were sampled from crops grown in river meadows with high and very high risks of flooding. Knowing the contaminants' geographical and spatial distributions under the influence of regular and extreme weather events is important for establishing measures to mitigate the effects of climate change and to ensure human and animal health.
Collapse
Affiliation(s)
- Valeria Gagiu
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 020323 Bucharest, Romania; (N.B.); (G.-P.P.)
| | - Elena Mateescu
- National Meteorological Administration (METEO—Romania), 013686 Bucharest, Romania; (E.M.); (O.-A.O.)
| | - Nastasia Belc
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 020323 Bucharest, Romania; (N.B.); (G.-P.P.)
| | - Oana-Alexandra Oprea
- National Meteorological Administration (METEO—Romania), 013686 Bucharest, Romania; (E.M.); (O.-A.O.)
| | - Gina-Pușa Pîrvu
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 020323 Bucharest, Romania; (N.B.); (G.-P.P.)
| |
Collapse
|
17
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
18
|
Study on Contamination with Some Mycotoxins in Maize and Maize-Derived Foods. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crops can be contaminated by fungi which produce mycotoxins. Many fungal strains are responsible for producing varied mycotoxins. The research carried out so far has described over 400 different mycotoxins. They have chemical and physical properties that significantly differ, and they are produced by several different existing fungi. The intake of mycotoxins through food can be achieved directly, by feeding on contaminated food, or indirectly from foods of animal origin. The mycotoxin contamination of food and food products for certain animals is a phenomenon studied worldwide, in countries in Europe but also in Asia, Africa and America. The purpose of this study is to develop an evaluation of the mycotoxins prevalent in corn and corn-derived products produced in Romania. A total of 38 maize samples and 19 corn-derivative samples were investigated for the presence of mycotoxins specific to these products, such as deoxynivalenol, zearalenone and fumonisins. Fumonisins had the highest presence and zearalenone had the lowest. The limits determined for the three mycotoxins were always in accordance with legal regulations.
Collapse
|
19
|
A Systematic Review of the Efficacy of Interventions to Control Aflatoxins in the Dairy Production Chain—Feed Production and Animal Feeding Interventions. Toxins (Basel) 2022; 14:toxins14020115. [PMID: 35202142 PMCID: PMC8878089 DOI: 10.3390/toxins14020115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The study presents a systematic review of published scientific articles investigating the effects of interventions aiming at aflatoxin reduction at the feed production and animal feeding phases of the milk value chain in order to identify the recent scientific trends and summarize the main findings available in the literature. The review strategy was designed based on the guidance of the systematic review and knowledge synthesis methodology that is applicable in the field of food safety. The Web of Science and EBSCOhost online databases were searched with predefined algorithms. After title and abstract relevance screening and relevance confirmation with full-text screening, 67 studies remained for data extraction, which were included in the review. The most important identified groups of interventions based on their mode of action and place in the technological process are as follows: low-moisture production using preservatives, acidity regulators, adsorbents and various microbiological additives. The results of the listed publications are summarized and compared for all the identified intervention groups. The paper aimed to help feed producers, farmers and relevant stakeholders to get an overview of the most suitable aflatoxin mitigation options, which is extremely important in the near future as climate change will likely be accompanied by elevated mycotoxin levels.
Collapse
|
20
|
Kos J, Janić-Hajnal E, Malachová A, Krska R, Sulyok M. The natural occurrence of Penicillium spp. metabolites in maize kernels originating from Serbia. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-39606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maize can be contaminated with a wide range of fungal secondary metabolites that decrease the quality and safety of maize and maize-derived products. The increase of natural fungal metabolites occurrence in maize, influenced by climate changes, is recognized as a significant issue in recent years. Therefore, the main aim of this study was to investigate the influence of weather conditions on the natural occurrence of Penicillium spp. metabolites in maize kernel samples. The survey was conducted for two maize vegetation seasons 2016 and 2017. In total 458 maize samples were analyzed by liquid chromatography-tandem mass spectrometry method. The samples originated from the Autonomous Province of Vojvodina, and regions of Bačka, Srem, and Banat. Among 45 Penicillium metabolites investigated 16 and 18 were detected in samples from 2016 and 2017, respectively. The most commonly occurring Penicillium metabolite in both years was oxaline, which was detected in more than 90% of analyzed samples. Questiomycin A, 7hydroxypestalotin, pestalotin, and mycophenolic acid were also very frequently detected Penicillium metabolites. This is one of the unique studies in the Republic of Serbia, as well as in this part of Europe, investigating the occurrence of a great number of Penicillium metabolites in maize samples.
Collapse
|
21
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
22
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
23
|
Kos J, Janić-Hajnal E, Malachová A, Krska R, Sulyok M. The natural occurrence of Penicillium spp. metabolites in maize kernels originating from Serbia. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-39606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Maize can be contaminated with a wide range of fungal secondary metabolites that decrease the quality and safety of maize and maize-derived products. The increase of natural fungal metabolites occurrence in maize, influenced by climate changes, is recognized as a significant issue in recent years. Therefore, the main aim of this study was to investigate the influence of weather conditions on the natural occurrence of Penicillium spp. metabolites in maize kernel samples. The survey was conducted for two maize vegetation seasons 2016 and 2017. In total 458 maize samples were analyzed by liquid chromatography-tandem mass spectrometry method. The samples originated from the Autonomous Province of Vojvodina, and regions of Bačka, Srem, and Banat. Among 45 Penicillium metabolites investigated 16 and 18 were detected in samples from 2016 and 2017, respectively. The most commonly occurring Penicillium metabolite in both years was oxaline, which was detected in more than 90% of analyzed samples. Questiomycin A, 7hydroxypestalotin, pestalotin, and mycophenolic acid were also very frequently detected Penicillium metabolites. This is one of the unique studies in the Republic of Serbia, as well as in this part of Europe, investigating the occurrence of a great number of Penicillium metabolites in maize samples.
Collapse
|
24
|
Dietary Exposure and Risk Assessment of Aflatoxin M1 for Children Aged 1 to 9 Years Old in Serbia. Nutrients 2021; 13:nu13124450. [PMID: 34960002 PMCID: PMC8708110 DOI: 10.3390/nu13124450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 02/08/2023] Open
Abstract
The present study was conducted to estimate the exposure and characterize the risk for the child population of Serbia to Aflatoxin M1 (AFM1) from milk and milk-based food. A total of 3404 samples comprising milk and different milk-based food samples were collected from various regions of Serbia from 2017 to 2019. Evaluation of AFM1 exposure was carried out using the deterministic method, whereas risk characterization was evaluated using the margin of exposure (MOE) and the risk of hepatocellular carcinoma (HCC). Detection rates for AFM1 in milk and milk-based food samples ranged between 2% and 79%, with the highest incidence (79%) and mean level (22.34 ± 0.018 ng kg-1) of AFM1 being detected in pasteurized and UHT milk. According to the three consumption estimates, the values of estimated daily intake (EDI) were higher for toddlers as compared with children aged 3-9 years. Children aged 1-3 years had the highest risk of exposure to AFM1 in milk, with an estimated daily intake of 0.164 and 0.193 ng kg-1 bw day-1 using lower bound (LB) and upper bound (UB) exposure scenarios, respectively. Such difference could result from the higher consumption to weight in younger children. Based on the estimated daily intake (EDI) found in this study, the risk of AFM1 exposure due to consumption of milk and milk-based food was low since the MOE values obtained were >10,000. In addition, the risk of HCC cases/year/105 individuals of different age groups showed that the value of HCC, using potency estimates of 0.0017 (mean), was maximum (0.00034) in the age group 1-3 years, which indicates no health risk for the evaluated groups. The present study revealed the importance of controlling and preventing AFM1 contamination in milk through continuous monitoring and regular inspection to reduce the risk of AFM1 exposure, especially in children.
Collapse
|
25
|
Urinary Biomarkers of Mycotoxin Induced Nephrotoxicity-Current Status and Expected Future Trends. Toxins (Basel) 2021; 13:toxins13120848. [PMID: 34941686 PMCID: PMC8708607 DOI: 10.3390/toxins13120848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
The intensifying world-wide spread of mycotoxigenic fungal species has increased the possibility of mycotoxin contamination in animal feed and the human food chain. Growing evidence shows the deleterious toxicological effects of mycotoxins from infants to adults, while large population-based screening programs are often missing to identify affected individuals. The kidney functions as the major excretory system, which makes it particularly vulnerable to nephrotoxic injury. However, few studies have attempted to screen for kidney injury biomarkers in large, mycotoxin-exposed populations. As a result, there is an urgent need to screen them with sensitive biomarkers for potential nephrotoxicity. Although a plethora of biomarkers have been tested to estimate the harmful effects of a wide spectrum of toxicants, β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are currently the dominant biomarkers employed routinely in environmental toxicology research. Nevertheless, kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as useful and informative markers to reveal mycotoxin induced nephrotoxicity. In this opinion article we consider the nephrotoxic effects of mycotoxins, the biomarkers available to detect and quantify the kidney injuries caused by them, and to recommend biomarkers to screen mycotoxin-exposed populations for renal damage.
Collapse
|
26
|
Efficacy of a Modified Clinoptilolite Based Adsorbent in Reducing Detrimental Effects of Ochratoxin A in Laying Hens. Toxins (Basel) 2021; 13:toxins13070469. [PMID: 34357941 PMCID: PMC8310079 DOI: 10.3390/toxins13070469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: The objective of this study was to evaluate the efficacy of modified clinoptilolite (Minazel Plus®, MZ) as a mycotoxin adsorbent for preventing the negative the effects of ochratoxin A (OTA) on performance, pathohistological changes, and OTA residue in the eggs of laying hens. Methods: Forty eight (n = 48) laying hens (27 weeks old) were equally divided into six groups and depending on the type of addition were allocated to the following experimental treatments for 7 weeks: E-I group-1 mg/kg OTA; E-II group 0.25 mg/kg OTA; E-III group 1 mg/kg OTA + 0.2% of MZ; E-IV group 0.25 mg/kg OTA + 0.2% of MZ; MZ group supplemented with 0.2% of the adsorbent; and control (K, without feed additive). Results: Overall, the addition of 0.2% MZ to laying hen feed mitigated the harmful effects of OTA on target organs and reduced the presence of OTA residue in eggs. The groups that received 0.2% of MZ achieved better production results in terms of body weight, number of eggs, and feed consumption, compared to the other treatments. Conclusions: The current findings confirm the efficacy of MZ in preventing performance losses in laying hens exposed to OTA, as well as for improving the welfare and health of food producing animals.
Collapse
|
27
|
Gagiu V, Mateescu E, Dobre AA, Smeu I, Cucu ME, Oprea OA, Alexandru D, Iorga E, Belc N. Deoxynivalenol Occurrence in Triticale Crops in Romania during the 2012-2014 Period with Extreme Weather Events. Toxins (Basel) 2021; 13:toxins13070456. [PMID: 34210066 PMCID: PMC8310060 DOI: 10.3390/toxins13070456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
This article aims to evaluate deoxynivalenol occurrence in triticale crops in Romania in years with extreme weather events (2012: Siberian anticyclone with cold waves and heavy snowfall; 2013 and 2014: “Vb” cyclones with heavy precipitation and floods in spring). The deoxynivalenol level in triticale samples (N = 236) was quantified by ELISA. In Romania, the extreme weather events favoured deoxynivalenol occurrence in triticale in Transylvania and the Southern Hilly Area (44–47° N, 22–25° E) with a humid/balanced-humid temperate continental climate, luvisols and high/very high risk of floods. Maximum deoxynivalenol contamination was lower in the other regions, although heavy precipitation in May–July 2014 was higher, with chernozems having higher aridity. Multivariate analysis of the factors influencing deoxynivalenol occurrence in triticale showed at least a significant correlation for all components of variation source (agricultural year, agricultural region, average of deoxynivalenol, average air temperature, cumulative precipitation, soil moisture reserve, aridity indices) (p-value < 0.05). The spatial and geographic distribution of deoxynivalenol in cereals in the countries affected by the 2012–2014 extreme weather events revealed a higher contamination in Central Europe compared to southeastern and eastern Europe. Deoxynivalenol occurrence in cereals was favoured by local and regional agroclimatic factors and was amplified by extreme weather events.
Collapse
Affiliation(s)
- Valeria Gagiu
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 5 Baneasa Ancuta Street, 2nd District, 020323 Bucharest, Romania; (A.A.D.); (I.S.); (M.E.C.); (E.I.); (N.B.)
- Correspondence:
| | - Elena Mateescu
- National Meteorological Administration (METEO—Romania), 97 Bucuresti-Ploiesti Street, 1st District, 013686 Bucharest, Romania; (E.M.); (O.A.O.); (D.A.)
| | - Alina Alexandra Dobre
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 5 Baneasa Ancuta Street, 2nd District, 020323 Bucharest, Romania; (A.A.D.); (I.S.); (M.E.C.); (E.I.); (N.B.)
| | - Irina Smeu
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 5 Baneasa Ancuta Street, 2nd District, 020323 Bucharest, Romania; (A.A.D.); (I.S.); (M.E.C.); (E.I.); (N.B.)
| | - Mirela Elena Cucu
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 5 Baneasa Ancuta Street, 2nd District, 020323 Bucharest, Romania; (A.A.D.); (I.S.); (M.E.C.); (E.I.); (N.B.)
| | - Oana Alexandra Oprea
- National Meteorological Administration (METEO—Romania), 97 Bucuresti-Ploiesti Street, 1st District, 013686 Bucharest, Romania; (E.M.); (O.A.O.); (D.A.)
| | - Daniel Alexandru
- National Meteorological Administration (METEO—Romania), 97 Bucuresti-Ploiesti Street, 1st District, 013686 Bucharest, Romania; (E.M.); (O.A.O.); (D.A.)
| | - Enuța Iorga
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 5 Baneasa Ancuta Street, 2nd District, 020323 Bucharest, Romania; (A.A.D.); (I.S.); (M.E.C.); (E.I.); (N.B.)
| | - Nastasia Belc
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 5 Baneasa Ancuta Street, 2nd District, 020323 Bucharest, Romania; (A.A.D.); (I.S.); (M.E.C.); (E.I.); (N.B.)
| |
Collapse
|
28
|
Risk assessment of dietary exposure to aflatoxin B1 in Serbia. Food Chem Toxicol 2021; 151:112116. [DOI: 10.1016/j.fct.2021.112116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
|
29
|
Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins (Basel) 2021; 13:toxins13050323. [PMID: 33946240 PMCID: PMC8145492 DOI: 10.3390/toxins13050323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. Their occurrence in the food chain, especially in beverages, can pose a serious risk to human health, due to their toxicity, even at low concentrations. Mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), patulin (PAT), fumonisins (FBs), trichothecenes (TCs), zearalenone (ZEN), and the alternaria toxins including alternariol, altenuene, and alternariol methyl ether have largely been identified in fruits and their derived products, such as beverages and drinks. The presence of mycotoxins in beverages is of high concern in some cases due to their levels being higher than the limits set by regulations. This review aims to summarize the toxicity of the major mycotoxins that occur in beverages, the methods available for their detection and quantification, and the strategies for their control. In addition, some novel techniques for controlling mycotoxins in the postharvest stage are highlighted.
Collapse
|
30
|
Leggieri MC, Toscano P, Battilani P. Predicted Aflatoxin B 1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins (Basel) 2021; 13:292. [PMID: 33924246 PMCID: PMC8074758 DOI: 10.3390/toxins13040292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as "actions" because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as "reactions" of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the "reactions" could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Via Giovanni Caproni 8, 50145 Florence, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| |
Collapse
|
31
|
Habschied K, Kanižai Šarić G, Krstanović V, Mastanjević K. Mycotoxins-Biomonitoring and Human Exposure. Toxins (Basel) 2021; 13:113. [PMID: 33546479 PMCID: PMC7913644 DOI: 10.3390/toxins13020113] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species that commonly have a toxic effect on human and animal health. Different foodstuff can be contaminated and are considered the major source of human exposure to mycotoxins, but occupational and environmental exposure can also significantly contribute to this problem. This review aims to provide a short overview of the occurrence of toxigenic fungi and regulated mycotoxins in foods and workplaces, following the current literature and data presented in scientific papers. Biomonitoring of mycotoxins in plasma, serum, urine, and blood samples has become a common method for determining the exposure to different mycotoxins. Novel techniques are more and more precise and accurate and are aiming toward the simultaneous determination of multiple mycotoxins in one analysis. Application of liquid chromatography (LC) methodologies, coupled with tandem mass spectrometry (MS/MS) or high-resolution mass spectrometry (HRMS) has become a common and most reliable method for determining the exposure to mycotoxins. Numerous references confirm the importance of mycotoxin biomonitoring to assess the exposure for humans and animals. The objectives of this paper were to review the general approaches to biomonitoring of different mycotoxins and the occurrence of toxigenic fungi and their mycotoxins, using recent literature sources.
Collapse
Affiliation(s)
- Kristina Habschied
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Gabriella Kanižai Šarić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Vinko Krstanović
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Krešimir Mastanjević
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| |
Collapse
|
32
|
Topi D, Babič J, Pavšič-Vrtač K, Tavčar-Kalcher G, Jakovac-Strajn B. Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules 2020; 26:E172. [PMID: 33396539 PMCID: PMC7796429 DOI: 10.3390/molecules26010172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
In this study, ten Fusarium toxins were analysed in wheat and maize commodities from Albania. In total, 71 samples of wheat and 45 samples of maize were collected from different producing regions. The analytical procedure consisted of a simple one-step sample extraction followed by the determination of toxins using liquid chromatography coupled with tandem mass spectrometry. Fusarium toxins were found in 23% of the analysed wheat samples and in 78% of maize samples. In maize samples, most often fumonisins B1 (FB1) and B2 (FB2) were found. They were present in 76% of samples. They were detected in all positive samples except in one with concentrations ranging from 59.9 to 16,970 μg/kg. The sum of FB1 and FB2 exceeded the EU maximum permitted level (4000 μg/kg) in 31% of maize samples. In wheat samples, the only detected Fusarium mycotoxin was deoxynivalenol (DON), present in 23% of samples. In one sample with the concentration of 1916 μg/kg, the EU maximum permitted level (1250 μg/kg) was exceeded. This is the first report on the presence of Fusarium toxins in wheat and maize grains cultivated in Albania.
Collapse
Affiliation(s)
- Dritan Topi
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Boulevard Zogu 1, 25, 1016 Tirana, Albania
| | - Janja Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Katarina Pavšič-Vrtač
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Gabrijela Tavčar-Kalcher
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Breda Jakovac-Strajn
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| |
Collapse
|
33
|
Rokvić N, Aksentijević K, Kureljušić J, Vasiljević M, Todorović N, Zdravković N, Stojanac N. Occurrence and transfer of mycotoxins from ingredients to fish feed and fish meat of common carp (Cyprinus carpio) in Serbia. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2020.2580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As fish has been known for its high protein content and other health benefits, aquaculture production has started to flourish in Serbia. Common carp is the predominant species being farmed, comprising more than 80% of the total fish production in Serbia. The primary ingredients in fish feed are plant-based products, which present a risk of mycotoxin contamination, posing a potential risk to consumers. Therefore, this study aimed to determine the mycotoxin status of carp aquaculture in Serbia. At the beginning of the feeding season, May to June 2019, 27 samples of feed ingredients, 8 of finished feed and 14 of edible fish meat were analysed. The fish feed and feed ingredients were sampled from local producers, while the fish were sampled from fish farms that were reported to use the sampled feed. The feed ingredients were locally produced maize and maize products, sunflower meal, soybean and soybean products, wheat, bone meal, yeast and distillers dried grains with solubles, which were ground together, mixed and pelleted in different sizes. All samples were tested for the presence of aflatoxins (aflatoxin B1 (AFB1), B2, G1 and G2), ochratoxin A (OTA), zearalenone, deoxynivalenol, fumonisins (fumonisin B1 and B2), HT-2 and T-2 toxins. The most prevalent mycotoxins were OTA (91.4%), fumonisin B1+B2 (68.6%) and AFB1 (48.6%). Only one sample of the plant-based ingredients was below limit of quantification (LOQ), and more than 85% of the samples had more than one mycotoxin detected, ranging from 0.43 μg/kg of AFB1 to 3,168.5 μg/kg of fumonisin B1+B2. However, all the samples of edible fish meat were under the LOQ. We suggest that further research should be conducted on the effects of co-occurring mycotoxins; we also recommend stricter regulations on fish feed to reduce the impacts of mycotoxins on fish health and productivity.
Collapse
Affiliation(s)
- N. Rokvić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - K. Aksentijević
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - J. Kureljušić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - M. Vasiljević
- Patent co., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia
| | - N. Todorović
- Patent co., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia
| | - N. Zdravković
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - N. Stojanac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
34
|
Perrone G, Ferrara M, Medina A, Pascale M, Magan N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020; 8:E1496. [PMID: 33003323 PMCID: PMC7601308 DOI: 10.3390/microorganisms8101496] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Toxigenic fungi and mycotoxins are very common in food crops, with noticeable differences in their host specificity in terms of pathogenicity and toxin contamination. In addition, such crops may be infected with mixtures of mycotoxigenic fungi, resulting in multi-mycotoxin contamination. Climate represents the key factor in driving the fungal community structure and mycotoxin contamination levels pre- and post-harvest. Thus, there is significant interest in understanding the impact of interacting climate change-related abiotic factors (especially increased temperature, elevated CO2 and extremes in water availability) on the relative risks of mycotoxin contamination and impacts on food safety and security. We have thus examined the available information from the last decade on relative risks of mycotoxin contamination under future climate change scenarios and identified the gaps in knowledge. This has included the available scientific information on the ecology, genomics, distribution of toxigenic fungi and intervention strategies for mycotoxin control worldwide. In addition, some suggestions for prediction and prevention of mycotoxin risks are summarized together with future perspectives and research needs for a better understanding of the impacts of climate change scenarios.
Collapse
Affiliation(s)
- Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK;
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK;
| |
Collapse
|
35
|
Peña-Rodas O, Martinez-Lopez R, Pineda-Rivas M, Hernandez-Rauda R. Aflatoxin M 1 in Nicaraguan and locally made hard white cheeses marketed in El Salvador. Toxicol Rep 2020; 7:1157-1163. [PMID: 32983903 PMCID: PMC7494594 DOI: 10.1016/j.toxrep.2020.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 11/26/2022] Open
Abstract
Cheeses marketed in El Salvador have high prevalence of Aflatoxin M1 contamination. Cheese contamination by Aflatoxin M1 is endemic in both El Salvador and Nicaragua. Aflatoxin M1 contamination in cheeses is higher during dry season.
Aflatoxin M1 is a carcinogenic and genotoxic metabolite of Aflatoxins present in food contaminated by fungi for lactating cattle, it is excreted through milk and when used to make cheese, the toxin will also be transferred to the dairy. The contamination of unripened hard white cheese with AFM1 seems to vary according to the season of the year, possibly due to the change of foodstuff, from fresh pasture in the rainy season to dried foods in the dry season and vice versa. This research determined both the prevalence and contents of AFM1 in cheeses of local and Nicaraguan origin marketed in El Salvador, as well as the changes occurred according to the season and the association between levels of AFM1 with meteorological parameters. The significantly higher prevalence of AFM1 contamination in both local cheeses and Nicaraguans, was found in the dry season and the lowest in the rainy season (41 % vs. 20 %; 31 % vs. 0%, respectively), the same trend was observed in AFM1 contents (0.076 vs. 0.036 μg/kg; 0.050 vs. 0.021 μg/kg, respectively). A significant association was demonstrated between levels of AFM1 with the averages of accumulated rainfall and relative humidity according to the sampled season. The prevalence of AFM1 in cheeses indicate that El Salvador and Nicaragua are endemic to dairy contamination by that mycotoxin. Seasonal variation may be due to a lack of rainfall, that promotes the growth of aflatoxigenic fungi in the crops of raw materials, which will be used for feedstuff intended for dairy cattle, thus, the consumption of contaminated food will cause the temporary increase of AFM1 in milk and their derivatives.
Collapse
Affiliation(s)
- Oscar Peña-Rodas
- Laboratorio de Inocuidad de Alimentos, Universidad Doctor Andres Bello, 1a Calle Poniente y 41a Avenida Norte, 2128, Colonia Flor Blanca, San Salvador, El Salvador, América Central
| | - Roxana Martinez-Lopez
- Laboratorio de Inocuidad de Alimentos, Universidad Doctor Andres Bello, 1a Calle Poniente y 41a Avenida Norte, 2128, Colonia Flor Blanca, San Salvador, El Salvador, América Central
| | - Mario Pineda-Rivas
- Laboratorio de Inocuidad de Alimentos, Universidad Doctor Andres Bello, 1a Calle Poniente y 41a Avenida Norte, 2128, Colonia Flor Blanca, San Salvador, El Salvador, América Central
| | - Roberto Hernandez-Rauda
- Laboratorio de Inocuidad de Alimentos, Universidad Doctor Andres Bello, 1a Calle Poniente y 41a Avenida Norte, 2128, Colonia Flor Blanca, San Salvador, El Salvador, América Central
| |
Collapse
|
36
|
Zhang X, Li G, Wu D, Liu J, Wu Y. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Guoliang Li
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast Belfast United Kingdom
| | - Jianghua Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science China National Center for Food Safety Risk Assessment Beijing China
| |
Collapse
|
37
|
Assumaidaee AAM, Ali NM, Ahmed SW. Zearalenone Mycotoxicosis: Pathophysiology and Immunotoxicity. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i1.932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycotoxicosis refers to the deleterious pathological effects of different types of toxins produced by some worldwide distributing fungi. Mycotoxins, as secondary metabolites are affecting different organs and systems both in animals and human beings. Zearalenone (ZEA), the well-known estrogenic mycotoxins, is an immunotoxic agent. This macrocyclic beta-resorcyclic acid lactone is mycotoxin procreated as a secondary metabolic byproduct by several types of Fusarium, encompassing Fusarium roseum, Fusarium culmorum, Fusarium graminearum, and different other types. Attributing to its potent estrogenic activity, ZEA has been incriminated as one of the major causes of female reproductive disorders. Thus, the purpose of the present review article is to appraise the pathophysiological consequences and subsequent explore the progress in the research field of zearalenone immunotoxicities.
Collapse
|
38
|
Pascale M, Logrieco AF, Graeber M, Hirschberger M, Reichel M, Lippolis V, De Girolamo A, Lattanzio VMT, Slettengren K. Aflatoxin Reduction in Maize by Industrial-Scale Cleaning Solutions. Toxins (Basel) 2020; 12:E331. [PMID: 32429556 PMCID: PMC7290569 DOI: 10.3390/toxins12050331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Different batches of biomass/feed quality maize contaminated by aflatoxins were processed at the industrial scale (a continuous process and separate discontinuous steps) to evaluate the effect of different cleaning solutions on toxin reduction. The investigated cleaning solutions included: (i) mechanical size separation of coarse, small and broken kernels, (ii) removal of dust/fine particles through an aspiration channel, (iii) separation of kernels based on gravity and (iv) optical sorting of spatial and spectral kernel defects. Depending on the sampled fraction, dynamic or static sampling was performed according to the Commission Regulation No. 401/2006 along the entire cleaning process lines. Aflatoxin analyses of the water-slurry aggregate samples were performed according to the AOAC Official Method No. 2005.008 based on high-performance liquid chromatography and immunoaffinity column cleanup of the extracts. A significant reduction in aflatoxin content in the cleaned products, ranging from 65% to 84% with respect to the uncleaned products, was observed when continuous cleaning lines were used. Additionally, an overall aflatoxin reduction from 55% to 94% was obtained by combining results from separate cleaning steps. High levels of aflatoxins (up to 490 µg/kg) were found in the rejected fractions, with the highest levels in dust and in the rejected fractions from the aspirator and optical sorting. This study shows that a cleaning line combining both mechanical and optical sorting technologies provides an efficient solution for reducing aflatoxin contamination in maize.
Collapse
Affiliation(s)
- Michelangelo Pascale
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (A.F.L.); (V.L.); (A.D.G.); (V.M.T.L.)
| | - Antonio F. Logrieco
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (A.F.L.); (V.L.); (A.D.G.); (V.M.T.L.)
| | | | | | | | - Vincenzo Lippolis
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (A.F.L.); (V.L.); (A.D.G.); (V.M.T.L.)
| | - Annalisa De Girolamo
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (A.F.L.); (V.L.); (A.D.G.); (V.M.T.L.)
| | - Veronica M. T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (A.F.L.); (V.L.); (A.D.G.); (V.M.T.L.)
| | | |
Collapse
|
39
|
Leggieri MC, Lanubile A, Dall’Asta C, Pietri A, Battilani P. The impact of seasonal weather variation on mycotoxins: maize crop in 2014 in northern Italy as a case study. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2475] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The occurrence of mycotoxins differs greatly from year to year and this variation has been attributed to climate variability. The aim of this study was to consider the variability of fungal infection and mycotoxin contamination on a small geographic scale as a possible result of local weather conditions. The presence of Fusarium spp. and Aspergillus spp. and their related mycotoxins was investigated in 51 maize fields grown in 2014 in the Emilia Romagna region, in northern Italy; information regarding the cropping system was collected for all the fields. Samples collected at harvest were analysed for fumonisins, aflatoxins and trichothecenes. Hourly meteorological data were collected from nine stations and fields were clustered with the stations based on the shortest distance principle. Fusarium spp. and Aspergillus spp. incidence varied between 17.6-46.0% and 0.6-6.3%, respectively. Fumonisins ranged between 1,718 and 106,054 μg/kg and aflatoxin B1 between <limit of quantification and 93.8 μg/kg, with a wide variability also with short distanced fields. Deoxynivalenol was detected with a considerable incidence (59%), but only three samples exceeded 1,750 μg/kg. Therefore, climate variability and related uncertainties, commonly stressed on a large scale, are not only a matter for policymakers, but also for farmers facing every day the impact on fungi and mycotoxin occurrence.
Collapse
Affiliation(s)
- M. Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - A. Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - C. Dall’Asta
- Department of Food Science, Università di Parma, Viale della Scienza 17/A, 43124 Parma, Italy
| | - A. Pietri
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - P. Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
40
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020; 9:E137. [PMID: 32012820 PMCID: PMC7074356 DOI: 10.3390/foods9020137] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are toxic substances that can infect many foods with carcinogenic, genotoxic, teratogenic, nephrotoxic, and hepatotoxic effects. Mycotoxin contamination of foodstuffs causes diseases worldwide. The major classes of mycotoxins that are of the greatest agroeconomic importance are aflatoxins, ochratoxins, fumonisins, trichothecenes, emerging Fusarium mycotoxins, enniatins, ergot alkaloids, Alternaria toxins, and patulin. Thus, in order to mitigate mycotoxin contamination of foods, many control approaches are used. Prevention, detoxification, and decontamination of mycotoxins can contribute in this purpose in the pre-harvest and post-harvest stages. Therefore, the purpose of the review is to elaborate on the recent advances regarding the occurrence of main mycotoxins in many types of important agricultural products, as well as the methods of inactivation and detoxification of foods from mycotoxins in order to reduce or fully eliminate them.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.S.); (T.V.)
| | | | | |
Collapse
|
41
|
Ráduly Z, Szabó L, Madar A, Pócsi I, Csernoch L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front Microbiol 2020; 10:2908. [PMID: 31998250 PMCID: PMC6962185 DOI: 10.3389/fmicb.2019.02908] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to Earth's changing climate, the ongoing and foreseeable spreading of mycotoxigenic Aspergillus species has increased the possibility of mycotoxin contamination in the feed and food production chain. These harmful mycotoxins have aroused serious health and economic problems since their first appearance. The most potent Aspergillus-derived mycotoxins include aflatoxins, ochratoxins, gliotoxin, fumonisins, sterigmatocystin, and patulin. Some of them can be found in dairy products, mainly in milk and cheese, as well as in fresh and especially in dried fruits and vegetables, in nut products, typically in groundnuts, in oil seeds, in coffee beans, in different grain products, like rice, wheat, barley, rye, and frequently in maize and, furthermore, even in the liver of livestock fed by mycotoxin-contaminated forage. Though the mycotoxins present in the feed and food chain are well documented, the human physiological effects of mycotoxin exposure are not yet fully understood. It is known that mycotoxins have nephrotoxic, genotoxic, teratogenic, carcinogenic, and cytotoxic properties and, as a consequence, these toxins may cause liver carcinomas, renal dysfunctions, and also immunosuppressed states. The deleterious physiological effects of mycotoxins on humans are still a first-priority question. In food production and also in the case of acute and chronic poisoning, there are possibilities to set suitable food safety measures into operation to minimize the effects of mycotoxin contaminations. On the other hand, preventive actions are always better, due to the multivariate nature of mycotoxin exposures. In this review, the occurrence and toxicological features of major Aspergillus-derived mycotoxins are summarized and, furthermore, the possibilities of treatments in the medical practice to heal the deleterious consequences of acute and/or chronic exposures are presented.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anett Madar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
42
|
Omara T, Nassazi W, Omute T, Awath A, Laker F, Kalukusu R, Musau B, Nakabuye BV, Kagoya S, Otim G, Adupa E. Aflatoxins in Uganda: An Encyclopedic Review of the Etiology, Epidemiology, Detection, Quantification, Exposure Assessment, Reduction, and Control. Int J Microbiol 2020; 2020:4723612. [PMID: 31998379 PMCID: PMC6970494 DOI: 10.1155/2020/4723612] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Uganda is an agrarian country where farming employs more than 60% of the population. Aflatoxins remain a scourge in the country, unprecedentedly reducing the nutritional and economic value of agricultural foods. This review was sought to synthetize the country's major findings in relation to the mycotoxins' etiology, epidemiology, detection, quantification, exposure assessment, control, and reduction in different matrices. Electronic results indicate that aflatoxins in Uganda are produced by Aspergillus flavus and A. parasiticus and have been reported in maize, sorghum, sesame, beans, sunflower, millet, peanuts, and cassava. The causes and proliferation of aflatoxigenic contamination of Ugandan foods have been largely due to poor pre-, peri-, and postharvest activities, poor government legislation, lack of awareness, and low levels of education among farmers, entrepreneurs, and consumers on this plague. Little diet diversity has exacerbated the risk of exposure to aflatoxins in Uganda because most of the staple foods are aflatoxin-prone. On the detection and control, these are still marginal, though some devoted scholars have devised and validated a sensitive portable device for on-site aflatoxin detection in maize and shown that starter cultures used for making some cereal-based beverages have the potential to bind aflatoxins. More efforts should be geared towards awareness creation and vaccination against hepatitis B and hepatitis A to reduce the risk of development of liver cancer among the populace.
Collapse
Affiliation(s)
- Timothy Omara
- Department of Chemistry and Biochemistry, School of Biological and Physical Sciences, Moi University, Uasin Gishu County, Kesses, P.O. Box 3900-30100, Academic Highway, Eldoret, Kenya
- Department of Quality Control and Quality Assurance, Product Development Directory, AgroWays Uganda Limited, Plot 34-60 Kyabazinga Way, P.O. Box 1924, Jinja, Uganda
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Winfred Nassazi
- Department of Chemistry and Biochemistry, School of Biological and Physical Sciences, Moi University, Uasin Gishu County, Kesses, P.O. Box 3900-30100, Academic Highway, Eldoret, Kenya
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Tom Omute
- Department of Biochemistry, Faculty of Health Sciences, Lira University, P.O. Box 1035, Lira, Uganda
| | - Aburu Awath
- Standards Department, Uganda National Bureau of Standards, Plot 2-12 Bypass Link, Bweyogerere Industrial and Business Park, P.O. Box 6329, Kampala, Uganda
- Department of Food Technology and Nutrition, School of Food Technology, Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Fortunate Laker
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Raymond Kalukusu
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Bashir Musau
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Brenda Victoria Nakabuye
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
- Department of Food Processing Technology, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Sarah Kagoya
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Product Development Directory, Sweets and Confectionaries Section, Kakira Sugar Limited, Jinja-Iganga Highway, P.O. Box 121, Jinja, Uganda
| | - George Otim
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Eddie Adupa
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Abacus Parenteral Drugs Limited, Block 191, Plot 114, Kinga, Mukono, P.O. Box 31376, Kampala, Uganda
| |
Collapse
|
43
|
Peles F, Sipos P, Győri Z, Pfliegler WP, Giacometti F, Serraino A, Pagliuca G, Gazzotti T, Pócsi I. Adverse Effects, Transformation and Channeling of Aflatoxins Into Food Raw Materials in Livestock. Front Microbiol 2019; 10:2861. [PMID: 31921041 PMCID: PMC6917664 DOI: 10.3389/fmicb.2019.02861] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 01/18/2023] Open
Abstract
Aflatoxins are wide-spread harmful carcinogenic secondary metabolites produced by Aspergillus species, which cause serious feed and food contaminations and affect farm animals deleteriously with acute or chronic manifestations of mycotoxicoses. On farm, both pre-harvest and post-harvest strategies are applied to minimize the risk of aflatoxin contaminations in feeds. The great economic losses attributable to mycotoxin contaminations have initiated a plethora of research projects to develop new, effective technologies to prevent the highly toxic effects of these secondary metabolites on domestic animals and also to block the carry-over of these mycotoxins to humans through the food chain. Among other areas, this review summarizes the latest findings on the effects of silage production technologies and silage microbiota on aflatoxins, and it also discusses the current applications of probiotic organisms and microbial products in feeding technologies. After ingesting contaminated foodstuffs, aflatoxins are metabolized and biotransformed differently in various animals depending on their inherent and acquired physiological properties. These mycotoxins may cause primary aflatoxicoses with versatile, species-specific adverse effects, which are also dependent on the susceptibility of individual animals within a species, and will be a function of the dose and duration of aflatoxin exposures. The transfer of these undesired compounds from contaminated feed into food of animal origin and the aflatoxin residues present in foods become an additional risk to human health, leading to secondary aflatoxicoses. Considering the biological transformation of aflatoxins in livestock, this review summarizes (i) the metabolism of aflatoxins in different animal species, (ii) the deleterious effects of the mycotoxins and their derivatives on the animals, and (iii) the major risks to animal health in terms of the symptoms and consequences of acute or chronic aflatoxicoses, animal welfare and productivity. Furthermore, we traced the transformation and channeling of Aspergillus-derived mycotoxins into food raw materials, particularly in the case of aflatoxin contaminated milk, which represents the major route of human exposure among animal-derived foods. The early and reliable detection of aflatoxins in feed, forage and primary commodities is an increasingly important issue and, therefore, the newly developed, easy-to-use qualitative and quantitative aflatoxin analytical methods are also summarized in the review.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Péter Sipos
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giampiero Pagliuca
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Teresa Gazzotti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
44
|
A Polyphasic Approach Aids Early Detection of Potentially Toxigenic Aspergilli in Soil. Microorganisms 2019; 7:microorganisms7090300. [PMID: 31470555 PMCID: PMC6781248 DOI: 10.3390/microorganisms7090300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
Key chili and maize growing areas of Pakistan were selected for a focused baseline study of the levels of Aspergillus spp. Investigations were undertaken using a combination of molecular and culture-based techniques. Samples investigated included soil samples, one-year-old corn cobs, and fresh chili from selected locations. Aspergillus strains obtained from corn cobs were screened using coconut milk agar, resulting in one strain that was positive for aflatoxin production. Whole genome sequencing (WGS) with low coverage techniques were employed to screen the isolates for differences in the ribosomal RNA gene cluster and mitochondrial genome, with the aflatoxigenic strain proving to have a distinctive profile. Finally, strains were subjected to matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry (MALDI-ToF-MS) in order to obtain a proteomic ‘fingerprint’ which was used to distinguish the aflatoxigenic strain from the other isolates. The next generation sequencing (NGS) study was broadened to incorporate metabarcoding with ITS rRNA for determining the microbial biodiversity of the soil samples and presumptive screening for the presence of aflatoxigenic strains. Using information gleaned from the WGS results, a putative aflatoxigenic operational taxonomic unit (OTU) was observed in four of the 15 soil samples screened by metabarcoding. This method may have beneficial applications in early detection and surveillance programs in agricultural soils and commodities.
Collapse
|
45
|
Elaridi J, Yamani O, Al Matari A, Dakroub S, Attieh Z. Determination of Ochratoxin A (OTA), Ochratoxin B (OTB), T-2, and HT-2 Toxins in Wheat Grains, Wheat Flour, and Bread in Lebanon by LC-MS/MS. Toxins (Basel) 2019; 11:E471. [PMID: 31409003 PMCID: PMC6723938 DOI: 10.3390/toxins11080471] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023] Open
Abstract
Cereals are prone to fungal infection during growth, harvesting, transportation, and/or storage. As a result, cereals such as wheat grains and wheat-derived products may be contaminated with mycotoxins leading to acute and chronic health exposure. The current study investigated the presence of the mycotoxins: ochratoxin A (OTA), ochratoxin B (OTB), T-2, and HT-2 toxins in samples of wheat grains (n = 50), wheat flour (n = 50), and bread (n = 37) from the main mills in Lebanon using LC-MS/MS. Accuracy ranged from 98-100%, recoveries from 93-105%, and intraday and interday precision were 5-7% and 9-12%, respectively. The tested wheat grains, wheat flour, and bread samples did not contain detectable levels of T-2 and HT-2 toxins and OTB. Four wheat flour samples (8% of flour samples) showed positive OTA levels ranging from 0.6-3.4 μg·kg-1 with an arithmetic mean of 1.9 ± 0.2 μg·kg-1. Only one sample contained an OTA concentration greater than the limit set by the European Union (3 μg·kg-1) for wheat-derived products. This study suggests that mycotoxin contamination of wheat grains, wheat flour, and bread in Lebanon is currently not a serious public health concern. However, surveillance strategies and monitoring programs must be routinely implemented to ensure minimal mycotoxin contamination of wheat-based products.
Collapse
Affiliation(s)
- Jomana Elaridi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 13-5053, Beirut 1102-2801, Lebanon.
| | - Osama Yamani
- Department of Laboratory Science and Technology, American University of Science and Technology, Achrafieh 16-6452, Lebanon
| | - Amira Al Matari
- Department of Laboratory Science and Technology, American University of Science and Technology, Achrafieh 16-6452, Lebanon
| | - Saada Dakroub
- Department of Laboratory Science and Technology, American University of Science and Technology, Achrafieh 16-6452, Lebanon
| | - Zouhair Attieh
- Department of Laboratory Science and Technology, American University of Science and Technology, Achrafieh 16-6452, Lebanon.
| |
Collapse
|
46
|
Udovicki B, Djekic I, Gajdos Kljusuric J, Papageorgiou M, Skendi A, Djugum J, Rajkovic A. Exposure assessment and risk characterization of aflatoxins intake through consumption of maize products in the adult populations of Serbia, Croatia and Greece. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:940-951. [PMID: 31009320 DOI: 10.1080/19440049.2019.1600748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The main objective of this research was to perform an exposure assessment of aflatoxins intake through consumption of maize products in Serbia, Croatia, and Greece. Food consumption survey of maize-based products has been performed during 2017 in the three countries with at least 1,000 interviewees per country covering their dietary habits and body weight. Values for the concentration of aflatoxins were extracted from available research published in the last ten years. Finally, a Monte Carlo analysis of 100,000 iterations was performed to estimate the intake of aflatoxins from consumption of maize-based products. Results revealed that the estimated average exposure of adults to aflatoxins, from maize consumption, in each of the three countries was between 0.44 ng kg-1 bw day-1 and 5.59 ng kg-1 bw day-1. Margin of exposure values for the mean exposure levels, in all three countries, were between 30 and 389. Estimations for hepatocellular carcinoma cases/year/105 individuals, depending on the HBsAg+ prevalence, were 0.075-0.098, 0.006-0.008 and 0.020-0.026 for Serbia, Croatia and Greece, respectively.
Collapse
Affiliation(s)
- Bozidar Udovicki
- a Department of Food Safety and Quality Management , Faculty of Agriculture, University of Belgrade , Belgrade , Republic of Serbia
| | - Ilija Djekic
- a Department of Food Safety and Quality Management , Faculty of Agriculture, University of Belgrade , Belgrade , Republic of Serbia
| | - Jasenka Gajdos Kljusuric
- b Department of Process Engineering, Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | - Maria Papageorgiou
- c Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Thessaloniki , Greece
| | - Adriana Skendi
- c Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Thessaloniki , Greece
| | - Jelena Djugum
- b Department of Process Engineering, Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia.,d Ministry of Agriculture , Zagreb , Croatia
| | - Andreja Rajkovic
- a Department of Food Safety and Quality Management , Faculty of Agriculture, University of Belgrade , Belgrade , Republic of Serbia.,e Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering , Ghent University , Ghent , Belgium
| |
Collapse
|
47
|
Udovicki B, Djekic I, Kalogianni EP, Rajkovic A. Exposure Assessment and Risk Characterization of Aflatoxin M1 Intake through Consumption of Milk and Yoghurt by Student Population in Serbia and Greece. Toxins (Basel) 2019; 11:toxins11040205. [PMID: 30959754 PMCID: PMC6520882 DOI: 10.3390/toxins11040205] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022] Open
Abstract
The objective of this research was to perform an exposure assessment of aflatoxin M1 (AFM1) intake through the consumption of milk and yoghurt by the student population in Serbia and Greece. A food consumption survey of milk and yoghurt was performed during the first half of 2018 in the two countries with at least 500 interviewees (aged between 18 and 27 years) per country, covering their dietary habits and body weight based on one-day and seven-day recall methods. Values for the concentration of AFM1 were extracted from published research. Finally, a Monte Carlo analysis of 100,000 iterations was performed to estimate the intake of AFM1 from the consumption of the two dairy products. Results revealed that the estimated average exposure of students to AFM1 was in the range of 1.238⁻2.674 ng kg-1 bw day-1 for Serbia, and 0.350⁻0.499 ng kg-1 bw day-1 for Greece, depending on the dietary recall method employed. High estimations for hepatocellular carcinoma (HCC) cases/year/10⁵ individuals, depending on the prevalence of Hepatitis B virus surface antigen positive individuals (HBsAg+), were 0.0036⁻0.0047 and 0.0007⁻0.0009 for Serbia and Greece, respectively. Presented Margin of Exposure (MOE) and Hazard Index (HI) values indicate increased risk from exposure to AFM1, particularly in Serbia.
Collapse
Affiliation(s)
- Bozidar Udovicki
- Department of Food Safety and Quality Management, Faculty of Agriculture, University of Belgrade, 11080 Zemun-Belgrade, Serbia.
| | - Ilija Djekic
- Department of Food Safety and Quality Management, Faculty of Agriculture, University of Belgrade, 11080 Zemun-Belgrade, Serbia.
| | - Eleni P Kalogianni
- Department of Food Technology, Alexander Technological Educational Institute of Thessaloniki, 57400 Thessaloniki, Greece.
| | - Andreja Rajkovic
- Department of Food Safety and Quality Management, Faculty of Agriculture, University of Belgrade, 11080 Zemun-Belgrade, Serbia.
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
48
|
Byakika S, Mukisa IM, Wacoo AP, Kort R, Byaruhanga YB, Muyanja C. Potential application of lactic acid starters in the reduction of aflatoxin contamination in fermented sorghum-millet beverages. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2019. [DOI: 10.1186/s40550-019-0074-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Bailly S, Mahgubi AE, Carvajal-Campos A, Lorber S, Puel O, Oswald IP, Bailly JD, Orlando B. Occurrence and Identification of Aspergillus Section Flavi in the Context of the Emergence of Aflatoxins in French Maize. Toxins (Basel) 2018; 10:E525. [PMID: 30544593 PMCID: PMC6315360 DOI: 10.3390/toxins10120525] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Aflatoxins (AFs) are secondary metabolites produced by Aspergillus section Flavi during their development, particularly in maize. It is widely accepted that AFB1 is a major contaminant in regions where hot climate conditions favor the development of aflatoxigenic species. Global warming could lead to the appearance of AFs in maize produced in Europe. This was the case in 2015, in France, when the exceptionally hot and dry climatic conditions were favorable for AF production. Our survey revealed AF contamination of 6% (n = 114) of maize field samples and of 15% (n = 81) of maize silo samples analyzed. To understand the origin of the contamination, we characterized the mycoflora in contaminated samples and in samples produced in the same geographic and climatic conditions but with no AFs. A special focus was placed on Aspergillus section Flavi. A total of 67 strains of Aspergillus section Flavi were isolated from the samples. As expected, the strains were observed in all AF+ samples and, remarkably, also in almost 40% of AF- samples, demonstrating the presence of these potent toxin producers in fields in France. A. flavus was the most frequent species of the section Flavi (69% of the strains). But surprisingly, A. parasiticus was also a frequent contaminant (28% of the strains), mostly isolated from AF+ samples. This finding is in agreement with the presence of AFG in most of those samples.
Collapse
Affiliation(s)
- Sylviane Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Anwar El Mahgubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Amaranta Carvajal-Campos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Béatrice Orlando
- ARVALIS Institut du Végétal, Station Expérimentale, 91720 Boigneville, France.
| |
Collapse
|
50
|
Peltomaa R, Amaro-Torres F, Carrasco S, Orellana G, Benito-Peña E, Moreno-Bondi MC. Homogeneous Quenching Immunoassay for Fumonisin B 1 Based on Gold Nanoparticles and an Epitope-Mimicking Yellow Fluorescent Protein. ACS NANO 2018; 12:11333-11342. [PMID: 30481972 DOI: 10.1021/acsnano.8b06094] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity, sensitivity, and speed. On the basis of a previously identified epitope-mimicking peptide, or mimotope, we developed a homogeneous fluorescence quenching immunoassay based on gold nanoparticles (AuNPs) and a recombinant epitope-mimicking fusion protein for the detection of mycotoxin fumonisin B1 (FB1). The fumonisin mimotope was cloned as a fusion protein with a yellow fluorescent protein that could be used directly as the tracer for FB1 detection without the need of labeling or a secondary antibody. Furthermore, owing to the fluorescence quenching ability of AuNPs, a homogeneous immunoassay could be performed in a single step without washing steps to separate the unbound tracer. The homogeneous quenching assay showed negligible matrix effects in 5% wheat extract and high sensitivity for FB1 detection, with a dynamic range from 7.3 to 22.6 ng mL-1, a detection limit of 1.1 ng mL-1, and IC50 value of 12.9 ng mL-1, which was significantly lower than the IC50 value of the previously reported assay using the synthetic counterpart of the same mimotope in a microarray format. The homogeneous assay was demonstrated to be specific for fumonisins B1 and B2, as no significant cross-reactivity with other mycotoxins was observed, and acceptable recoveries (86% for FB1 2000 μg kg-1 and 103% for FB1 4000 μg kg-1), with relative standard deviation less than 6.5%, were reported from spiked wheat samples, proving that the method could provide a valuable tool for simple analysis of mycotoxin-contaminated food samples.
Collapse
|