1
|
Martiniakova M, Mondockova V, Kovacova V, Babikova M, Zemanova N, Biro R, Penzes N, Omelka R. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr 2024; 16:217. [PMID: 39238022 PMCID: PMC11378428 DOI: 10.1186/s13098-024-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obesity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipocalin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus: T2DM; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases mentioned above. In this context, particular emphasis was given on available clinical studies. According to the latest knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs. The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-density lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS and MetS-related diseases negatively affecting bone quality.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
2
|
Benli S, Yesil E, Tazeoglu D, Ozcan C, Ozcan IT, Dag A. Changes in cardiac functions in patients treated with parathyroidectomy for secondary hyperparathyroidism. Updates Surg 2024; 76:1443-1452. [PMID: 38530609 PMCID: PMC11341577 DOI: 10.1007/s13304-024-01812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Our study aims to investigate the changes in cardiac functions, especially myocardial performance index (MPI), in patients who underwent parathyroidectomy for secondary hyperparathyroidism. Patients who underwent parathyroidectomy for secondary hyperparathyroidism between June 2010 and September 2021 were analyzed retrospectively. The patients were divided into two groups: those who underwent total parathyroidectomy (group 1) and those who underwent subtotal parathyroidectomy (group 2). The groups were compared according to the echocardiogram findings performed in the preoperative period and the postoperative sixth month. In addition, cardiac structure, and systolic and diastolic functions, especially myocardial performance index, were evaluated by echocardiography and Doppler imaging. Thirty-seven patients were examined; 16 (43.2%) underwent total parathyroidectomy, and 21 (56.8%) had subtotal parathyroidectomy performed. Group 1's mean left ventricular end-systolic diameter (LVES) decreased from 2.53 ± 0.57 to 2.35 ± 0.37 cm after parathyroidectomy. In Group 1, the postoperative value of LVES and end-systolic volume decreased significantly compared to the preoperative period (p = 0.042, p = 0.008, respectively). EF increased from 59.25 ± 0.05 to 67.81 ± 4.04. In Group 1, EF and EV postoperatively increased significantly compared to the preoperative period (p = 0.023, p = 0.021, respectively). The mean MPI decreased from 0.45 ± 0.07 to 0.39 ± 0.04 after parathyroidectomy in group 1. In group 2, it decreased from 0.46 ± 0.06 to 0.40 ± 0.04 (p < 0.001). The present study provides an improvement in myocardial functions after parathyroidectomy. While LVES, EF, ejection volume, end-systolic volume, and MPI improved in both groups, the MPI improvement was more evident in the total parathyroidectomy group.
Collapse
Affiliation(s)
- Sami Benli
- Department of General Surgery, Division of Surgical Oncology, Mersin University Medical Faculty, Mersin, Turkey.
| | - Emrah Yesil
- Department of Cardiology, Mersin University Medical Faculty, Mersin, Turkey
| | - Deniz Tazeoglu
- Department of General Surgery, Division of Surgical Oncology, Mersin University Medical Faculty, Mersin, Turkey
| | - Cumhur Ozcan
- Department of General Surgery, Division of Endocrine Surgery, Mersin University Medical Faculty, Mersin, Turkey
| | | | - Ahmet Dag
- Department of General Surgery, Division of Endocrine Surgery, Mersin University Medical Faculty, Mersin, Turkey
| |
Collapse
|
3
|
Martínez-Heredia L, Canelo-Moreno JM, García-Fontana B, Muñoz-Torres M. Non-Classical Effects of FGF23: Molecular and Clinical Features. Int J Mol Sci 2024; 25:4875. [PMID: 38732094 PMCID: PMC11084844 DOI: 10.3390/ijms25094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism. Although it was traditionally thought that phosphate-calcium homeostasis was controlled exclusively by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular, immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis. Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses challenges due to its potential side effects. However, the approval of drugs such as burosumab represents a milestone in the treatment of FGF23-related diseases.
Collapse
Affiliation(s)
- Luis Martínez-Heredia
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
4
|
Kallmeyer A, Pello A, Cánovas E, Aceña Á, González‐Casaus ML, Tarín N, Cristóbal C, Gutiérrez‐Landaluce C, Huelmos A, Rodríguez‐Valer A, González‐Lorenzo Ó, Alonso J, López‐Bescós L, Egido J, Mahillo I, Lorenzo Ó, Tuñón J. Fibroblast growth factor 23 independently predicts adverse outcomes after an acute coronary syndrome. ESC Heart Fail 2024; 11:240-250. [PMID: 37950429 PMCID: PMC10804179 DOI: 10.1002/ehf2.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023] Open
Abstract
AIMS Abnormalities of mineral metabolism (MM) have been related to cardiovascular disorders. There are no reports on the prognostic role of MM after an acute coronary syndrome (ACS). We aim to assess the prognostic role of MM after an ACS. METHODS AND RESULTS Plasma levels of components of MM [fibroblast growth factor 23 (FGF23), calcidiol, parathormone, klotho, and phosphate], high-sensitivity C-reactive protein, and N-terminal-pro-brain natriuretic peptide were measured in 1190 patients at discharge from an ACS. The primary outcome was a combination of acute ischaemic events, heart failure (HF) and death. Secondary outcomes were the separate components of the primary outcome. Age was 61.7 ± 12.2 years, and 77.1% were men. Median follow-up was 5.44 (3.03-7.46) years. Two hundred and ninety-four patients developed the primary outcome. At multivariable analysis FGF23 (hazard ratio, HR 1.18 [1.08-1.29], P < 0.001), calcidiol (HR 0.86 [0.74-1.00], P = 0.046), previous coronary or cerebrovascular disease, and hypertension were independent predictors of the primary outcome. The predictive power of FGF23 was homogeneous across different subgroups of population. FGF23 (HR 1.45 [1.28-1.65], P < 0.001) and parathormone (HR 1.06 1.01-1.12]; P = 0.032) resulted as independent predictors of HF. FGF23 (HR 1.21 [1.07-1.37], P = 0.002) and calcidiol (HR 0.72 [0.54-0.97), P = 0.028) were independent predictors of death. No biomarker predicted acute ischaemic events. FGF23 predicted independently the primary outcome in patients with estimated glomerular filtration rate > 60 mL/min/1.73 m2 . CONCLUSIONS FGF23 and other components of MM are independent predictors of HF and death after an ACS. This effect is homogeneous across different subgroups of population, and it is not limited to patients with chronic kidney disease.
Collapse
Affiliation(s)
- Andrea Kallmeyer
- Department of CardiologyIIS‐Fundación Jiménez DíazMadridSpain
- Faculty of MedicineAutónoma UniversityMadridSpain
| | - Ana Pello
- Department of CardiologyIIS‐Fundación Jiménez DíazMadridSpain
- Faculty of MedicineAutónoma UniversityMadridSpain
| | - Ester Cánovas
- Department of CardiologyIIS‐Fundación Jiménez DíazMadridSpain
| | - Álvaro Aceña
- Department of CardiologyIIS‐Fundación Jiménez DíazMadridSpain
- Faculty of MedicineAutónoma UniversityMadridSpain
| | | | - Nieves Tarín
- Department of CardiologyHospital Universitario de MóstolesMadridSpain
- Faculty of MedicineRey Juan Carlos UniversityMadridSpain
| | - Carmen Cristóbal
- Faculty of MedicineRey Juan Carlos UniversityMadridSpain
- Department of CardiologyHospital Universitario de FuenlabradaMadridSpain
| | | | - Ana Huelmos
- Department of CardiologyHospital Universitario Fundación AlcorcónMadridSpain
| | | | - Óscar González‐Lorenzo
- Department of CardiologyIIS‐Fundación Jiménez DíazMadridSpain
- Faculty of MedicineAutónoma UniversityMadridSpain
| | | | | | - Jesús Egido
- CIBERDEMMadridSpain
- Department of NephrologyIIS‐Fundación Jiménez DíazMadridSpain
- Laboratory of Vascular PathologyIIS‐Fundación Jiménez DíazMadridSpain
| | - Ignacio Mahillo
- Laboratory of EpidemiologyIIS‐Fundación Jiménez DíazMadridSpain
| | - Óscar Lorenzo
- Faculty of MedicineAutónoma UniversityMadridSpain
- CIBERDEMMadridSpain
- Laboratory of Vascular PathologyIIS‐Fundación Jiménez DíazMadridSpain
| | - José Tuñón
- Department of CardiologyIIS‐Fundación Jiménez DíazMadridSpain
- Faculty of MedicineAutónoma UniversityMadridSpain
- Laboratory of Vascular PathologyIIS‐Fundación Jiménez DíazMadridSpain
- CIBERCV, ISCIIIMadridSpain
| |
Collapse
|
5
|
Shaik SP, Karan HH, Singh A, Attuluri SK, Khan AAN, Zahid F, Patil D. HFpEF: New biomarkers and their diagnostic and prognostic value. Curr Probl Cardiol 2024; 49:102155. [PMID: 37866418 DOI: 10.1016/j.cpcardiol.2023.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Heart failure characterized by preserved ejection fraction (HFpEF) poses a substantial challenge to healthcare systems worldwide and the diagnostic algorithms used currently mirror those utilized for reduced Ejection Fraction (HFrEF). This literature review aims to explore the diagnostic and prognostic credibility of numerous emerging biomarkers associated with HFpEF. We conducted a thorough analysis of the available medical literature and selected the biomarkers which yielded the maximum amount of published information. After reviewing the current literature we conclude that there are no biomarkers at present which are superior to natriuretic peptides in terms of diagnosis and prognosis of HFpEF. However biomarkers like Suppression of tumorigenicity2, Galectin3 and microRNAs are promising and can be researched further for future use. Although newer individual biomarkers may not be useful in diagnosing and prognosis of HFpEF, we believe that a specific biomarker profile may be identified in each phenotype,which can be used in future.
Collapse
Affiliation(s)
- Shahanaz Parveen Shaik
- Junior Resident, Internal Medicine, DR. Y.S.R University of Health Sciences, Andhra Pradesh, India.
| | - Hasnain Hyder Karan
- Resident, Internal Medicine, San Joaquin General Hospital,French Camp, CA, United States
| | - Arkaja Singh
- Junior Resident, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Sai Kiran Attuluri
- Junior Resident, Internal Medicine, DR. Y.S.R University of Health Sciences, Andhra Pradesh, India
| | - Afnan Akram Nawaz Khan
- Junior Resident, Internal Medicine, Vydehi Institute of Medical Sciences, Bangalore, India
| | - Fazila Zahid
- Resident, Internal Medicine, OSF St Francis Hospital, University of Illinois College of Medicine; IL; USA
| | - Dhrumil Patil
- Postdoctoral Research fellow, Cardiology department, Beth Israel Deaconess Medical Center, Harvard University, USA
| |
Collapse
|
6
|
Widmann L, Keranov S, Jafari L, Liebetrau C, Keller T, Troidl C, Kriechbaum S, Voss S, Arsalan M, Richter MJ, Tello K, Gall H, Ghofrani HA, Guth S, Seeger W, Hamm CW, Dörr O, Nef H. Fibroblast growth factor 23 as a biomarker of right ventricular dysfunction in pulmonary hypertension. Clin Res Cardiol 2023; 112:1382-1393. [PMID: 36790465 PMCID: PMC10562503 DOI: 10.1007/s00392-023-02162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF-23) has been associated with left ventricular hypertrophy (LVH) and heart failure. However, its role in right ventricular (RV) remodeling and RV failure is unknown. This study analyzed the utility of FGF-23 as a biomarker of RV function in patients with pulmonary hypertension (PH). METHODS In this observational study, FGF-23 was measured in the plasma of patients with PH (n = 627), dilated cardiomyopathy (DCM, n = 59), or LVH with severe aortic stenosis (n = 35). Participants without LV or RV abnormalities served as controls (n = 36). RESULTS Median FGF-23 plasma levels were higher in PH patients than in healthy controls (p < 0.001). There were no significant differences between PH, DCM, and LVH patients. Analysis across tertiles of FGF-23 levels in PH patients revealed an association between higher FGF-23 levels and higher levels of NT-proBNP and worse renal function. Furthermore, patients in the high-FGF-23 tertile had a higher pulmonary vascular resistance (PVR), mean pulmonary artery pressure, and right atrial pressure and a lower cardiac index (CI) than patients in the low tertile (p < 0.001 for all comparisons). Higher FGF-23 levels were associated with higher RV end-diastolic diameter and lower tricuspid annular plane systolic excursions (TAPSE) and TAPSE/PASP. Receiver operating characteristic analysis revealed FGF-23 as a good predictor of RV maladaptation, defined as TAPSE < 17 mm and CI < 2.5 L/min/m2. Association of FGF-23 with parameters of RV function was independent of the glomerular filtration rate in regression analysis. CONCLUSION FGF-23 may serve as a biomarker for maladaptive RV remodeling in patients with PH.
Collapse
Affiliation(s)
- Laila Widmann
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Stanislav Keranov
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany.
| | - Leili Jafari
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | | | - Till Keller
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Christian Troidl
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Steffen Kriechbaum
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Sandra Voss
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Mani Arsalan
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Manuel J Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein A Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christian W Hamm
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Oliver Dörr
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
| | - Holger Nef
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
| |
Collapse
|
7
|
Mattinzoli D, Molinari P, Romero-González G, Bover J, Cicero E, Pesce F, Abinti M, Conti C, Castellano G, Alfieri C. Is there a role in acute kidney injury for FGF23 and Klotho? Clin Kidney J 2023; 16:1555-1562. [PMID: 37779849 PMCID: PMC10539225 DOI: 10.1093/ckj/sfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Indexed: 10/03/2023] Open
Abstract
Cardio-renal syndrome is a clinical condition that has recently been well defined. In acute kidney disease, this interaction might trigger chronic processes determining the onset of cardiovascular events and the progression of chronic kidney disease. Moreover, the high mortality rate of acute kidney injury (AKI) is also linked to the fact that this condition is often complicated by dysfunctions of other organs such as lungs or heart, or is associated with septic episodes. In this context the role and the potential link between bone, heart and kidney is becoming an important topic of research. The aim of this review is to describe the cardiac alterations in the presence of AKI (cardiorenal syndrome type 3) and explore how bone can interact with heart and kidney in determining and influencing the trend of AKI in the short and long term. The main anomalies of mineral metabolism in patients with AKI will be reported, with specific reference to the alterations of fibroblast growth factor 23 and Klotho as a link between the bone-kidney-heart axis.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milan, Italy
| | - Paolo Molinari
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milan, Italy
- Post-Graduate School of Specialization in Nephrology, University of Milan, Milan, Italy
| | - Gregorio Romero-González
- Department of Nephrology, Germans Trias i Pujol University Hospital, Research Group on Renal Diseases (REMAR), Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Jordi Bover
- Department of Nephrology, Germans Trias i Pujol University Hospital, Research Group on Renal Diseases (REMAR), Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Elisa Cicero
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milan, Italy
- Post-Graduate School of Specialization in Nephrology, University of Milan, Milan, Italy
| | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) University of Bari “Aldo Moro”
| | - Matteo Abinti
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milan, Italy
- Post-Graduate School of Specialization in Nephrology, University of Milan, Milan, Italy
| | - Costanza Conti
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milan, Italy
- Post-Graduate School of Specialization in Nephrology, University of Milan, Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Li X, Ding W, Zhang H. Cinacalcet use in secondary hyperparathyroidism: a machine learning-based systematic review. Front Endocrinol (Lausanne) 2023; 14:1146955. [PMID: 37538795 PMCID: PMC10395090 DOI: 10.3389/fendo.2023.1146955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction This study aimed to systematically review research on cinacalcet and secondary hyperparathyroidism (SHPT) using machine learning-based statistical analyses. Methods Publications indexed in the Web of Science Core Collection database on Cinacalcet and SHPT published between 2000 and 2022 were retrieved. The R package "Bibliometrix," VOSviewer, CiteSpace, meta, and latent Dirichlet allocation (LDA) in Python were used to generate bibliometric and meta-analytical results. Results A total of 959 articles were included in our bibliometric analysis. In total, 3753 scholars from 54 countries contributed to this field of research. The United States, Japan, and China were found to be among the three most productive countries worldwide. Three Japanese institutions (Showa University, Tokai University, and Kobe University) published the most articles on Cinacalcet and SHPT. Fukagawa, M.; Chertow, G.M.; Goodman W.G. were the three authors who published the most articles in this field. Most articles were published in Nephrology Dialysis Transplantation, Kidney International, and Therapeutic Apheresis and Dialysis. Research on Cinacalcet and SHPT has mainly included three topics: 1) comparative effects of various treatments, 2) the safety and efficacy of cinacalcet, and 3) fibroblast growth factor-23 (FGF-23). Integrated treatments, cinacalcet use in pediatric chronic kidney disease, and new therapeutic targets are emerging research hotspots. Through a meta-analysis, we confirmed the effects of Cinacalcet on reducing serum PTH (SMD = -0.56, 95% CI = -0.76 to -0.37, p = 0.001) and calcium (SMD = -0.93, 95% CI = -1.21to -0.64, p = 0.001) and improving phosphate (SMD = 0.17, 95% CI = -0.33 to -0.01, p = 0.033) and calcium-phosphate product levels (SMD = -0.49, 95% CI = -0.71 to -0.28, p = 0.001); we found no difference in all-cause mortality (RR = 0.97, 95% CI = 0.90 to 1.05, p = 0.47), cardiovascular mortality (RR = 0.69, 95% CI = 0.36 to 1.31, p = 0.25), and parathyroidectomy (RR = 0.36, 95% CI = 0.09 to 1.35, p = 0.13) between the Cinacalcet and non-Cinacalcet users. Moreover, Cinacalcet was associated with an increased risk of nausea (RR = 2.29, 95% CI = 1.73 to 3.05, p = 0.001), hypocalcemia (RR = 4.05, 95% CI = 2.33 to 7.04, p = 0.001), and vomiting (RR = 1.90, 95% CI = 1.70 to 2.11, p = 0.001). Discussion The number of publications indexed to Cinacalcet and SHPT has increased rapidly over the past 22 years. Literature distribution, research topics, and emerging trends in publications on Cinacalcet and SHPT were analyzed using a machine learning-based bibliometric review. The findings of this meta-analysis provide valuable insights into the efficacy and safety of cinacalcet for the treatment of SHPT, which will be of interest to both clinical and researchers.
Collapse
Affiliation(s)
| | | | - Hong Zhang
- Department of Thyroid Surgery, The Second hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Myrou A, Aslanidis T, Makedou K, Mitsianis A, Thisiadou A, Karalazou P, Chatzopoulos G, Papadopoulos A, Kalis A, Giagkoulis D, Lezgidis F, Savopoulos C. Fibroblast Growth Factor 23 in COVID-19: An Observational Study. Cureus 2023; 15:e42561. [PMID: 37637614 PMCID: PMC10460241 DOI: 10.7759/cureus.42561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Fibroblast growth factor 23 (FGF23) belongs structurally to the endocrine FGF protein family, which also includes FGF19 and FGF21. In the past decade, FGF23 has emerged as a possible diagnostic, prognostic biomarker, and therapeutic target in several conditions. Data about COVID-19 and FGF23 is still limited, yet they suggest interesting interactions. OBJECTIVE In the present study, the levels of FGF23 were investigated in COVID-19 patients. These levels were also correlated with other inflammatory markers. MATERIALS AND METHODS In our prospective observational study, blood samples were collected from 81 patients admitted with COVID-19 (31 males and 50 females). We analyzed the relation of serum FGF23 levels with biochemistry, total blood count, coagulation parameters, and demographic data. RESULTS The distribution of FGF23 serum levels according to sex and age (n28-40=8, n41-60=28, n65-75= 25, n75+=20) was similar. No significant correlation between FGF23 and any other biochemistry, total blood count, and coagulation parameter was revealed in the whole sample. Nevertheless, there was a variation in the results among different age groups. CONCLUSION FGF23 levels seem to vary in symptomatic COVID-19 infection, but well-organized studies with larger numbers of patients in each group are needed to determine any reliable correlation between FGF23 and other laboratory parameters.
Collapse
Affiliation(s)
- Athena Myrou
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Theodoros Aslanidis
- Department of Intensive Care Unit, St. Paul Agios Pavlos General Hospital, Thessaloniki, GRC
| | - Keli Makedou
- Department of Biochemistry, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Athanasios Mitsianis
- Department of Internal Medicine, Mpodosakeio General Prefecture Hospital, Ptolemaida, GRC
| | - Aikaterini Thisiadou
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Paraskevi Karalazou
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Georgios Chatzopoulos
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Anastasios Papadopoulos
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Antonios Kalis
- Department of Internal Medicine, Mpodosakeio General Prefecture Hospital, Ptolemaida, GRC
| | - Dimitrios Giagkoulis
- Department of Internal Medicine, Mpodosakeio General Prefecture Hospital, Ptolemaida, GRC
| | - Fotios Lezgidis
- Department of Internal Medicine, Mpodosakeio General Prefecture Hospital, Ptolemaida, GRC
| | - Christos Savopoulos
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| |
Collapse
|
10
|
Parente EB, Ahola AJ, Kumar A, Lehto M, Groop PH. The relationship between FGF23 and body composition according to albuminuria stage in type 1 diabetes. Diabetes Res Clin Pract 2023; 198:110620. [PMID: 36914006 DOI: 10.1016/j.diabres.2023.110620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
AIMS Fibroblast growth factor 23 (FGF23) and obesity are linked to kidney disease. However, the relationship between FGF23 and body composition is unclear. Associations between FGF23 and body composition were investigated in type 1 diabetes from the Finnish Diabetic Nephropathy Study according to albuminuria stages. METHODS Data were available from 306 adults with type 1 diabetes (229 normal albumin excretion rate, T1Dnormo; 38 microalbuminuria, T1Dmicro; 39 macroalbuminuria, T1Dmacro), and 36 controls. Serum FGF23 was measured by ELISA. Body composition was assessed with dual-energy X-ray absorptiometry. Associations between body composition and serum FGF23 were investigated using linear regression models. RESULTS Compared with T1Dnormo, individuals with more advanced kidney disease were older, had longer diabetes duration, higher serum hsCRP, and higher FGF23 concentration. However, FGF23 concentration was comparable between T1Dnormo and controls. Adjusted for potential confounders, in T1Dmicro, FGF23 was positively associated with the percentages of total fat, visceral fat, and android fat tissues, while negative associations between FGF23 and lean tissue were observed. FGF23 was not associated with body composition in T1Dnormo, T1Dmacro, and controls. CONCLUSIONS In type 1 diabetes, the relationship between FGF23 and body composition is dependent on albuminuria stages.
Collapse
Affiliation(s)
- Erika B Parente
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Aila J Ahola
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Anmol Kumar
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Differential Expression of Dickkopf 1 and Periostin in Mouse Strains with High and Low Bone Mass. BIOLOGY 2022; 11:biology11121840. [PMID: 36552348 PMCID: PMC9775221 DOI: 10.3390/biology11121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
By expressing different genes and proteins that regulate osteoclast as well as osteoblast formation, osteocytes orchestrate bone metabolism. The aim of this project was the evaluation of the differences in the osteocytes’ secretory activity in the low bone mass mouse strain C57BL/6J and the high bone mass strain C3H/J. The femura of eight- and sixteen-week-old male C57BL/6J and C3H/J mice—six animals per group—were analyzed. Using immunohistochemistry, osteocytes expressing dickkopf 1, sclerostin, periostin, fibroblast growth factor 23 (FGF23), and osteoprotegerin were detected. By means of the OsteoMeasure-System, 92.173 osteocytes were counted. At the age of eight weeks, approximately twice as many cortical and trabecular osteocytes from the C57BL/6J mice compared to the C3H/J mice expressed dickkopf 1 (p < 0.005). The number of cortical osteocytes expressing sclerostin was also higher in the C57BL/6J mice (p < 0.05). In contrast, the cortical and trabecular osteocytes expressing periostin were twice as high in the C3H/J mice (p < 0.005). The dickkopf 1 expressing osteocytes of the C57BL/6J mice decreased with age and showed a strain-specific difference only in cortical bone by 16 weeks of age (p < 0.05). In the C3H/J mice, the amount of osteocytes expressing periostin tended to increase with age. Thus, strain-related differences were maintained in 16-week-old rodents (p < 0.005). No strain-specific differences in the expression of FGF23 or osteoprotegerin in the cortical compartment could be detected. This experimental study showed that the osteocytes’ protein expression reflects differences in bone characteristics and strain-related differences during skeletal maturation. Besides the osteocytes’ expression of sclerostin, their expression of dickkopf 1 and periostin seems to be important for bone properties as well.
Collapse
|
12
|
Mattinzoli D, Li M, Castellano G, Ikehata M, Armelloni S, Elli FM, Molinari P, Tsugawa K, Alfieri CM, Messa P. Fibroblast growth factor 23 level modulates the hepatocyte's alpha-2-HS-glycoprotein transcription through the inflammatory pathway TNFα/NFκB. Front Med (Lausanne) 2022; 9:1038638. [PMID: 36569120 PMCID: PMC9769965 DOI: 10.3389/fmed.2022.1038638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction High serum levels of fibroblast growth factor 23 (FGF23) characterize chronic kidney disease (CKD) since its early stages and have been suggested to contribute to inflammation and cardiovascular disease. However, the mechanisms linking FGF23 with these pathological conditions remain still incompletely defined. The alpha-2-HS-glycoprotein (AHSG), a liver-produced anti-inflammatory cytokine, is highly modulated by inflammation itself, also through the TNFα/NFκB signaling pathway. In our previous study, we found that FGF23 modulates the production of AHSG in the liver in a bimodal way, with stimulation and inhibition at moderately and highly increased FGF23 concentrations, respectively. Methods The present study, aiming to gain further insights into this bimodal behavior, was performed in hepatocyte human cells line (HepG2), using the following methods: immunochemistry, western blot, chromatin immunoprecipitation, fluorescence in situ hybridization (FISH), qRT-PCR, and gene SANGER sequencing. Results We found that FGF23 at 400 pg/ml activates nuclear translocation of NFκB, possibly increasing AHSG transcription. At variance, at 1,200 pg/ml, FGF23 inactivates NFκB through the activation of two specific NFκB inhibitors (IκBα and NKIRAS2) and induces its detachment from the AHSG promoter, reducing AHSG transcription. Conclusion These results add another piece to the puzzle of FGF23 involvement in the multifold interactions between CKD, inflammation, and cardiovascular disease, suggesting the involvement of the NFκB pathway, which might represent a potential therapeutic target in CKD.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy,*Correspondence: Deborah Mattinzoli,
| | - Min Li
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy
| | - Giuseppe Castellano
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Masami Ikehata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy
| | - Silvia Armelloni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy,Silvia Armelloni,
| | - Francesca Marta Elli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| | - Paolo Molinari
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Carlo Maria Alfieri
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Piergiorgio Messa
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Miyakawa H, Hsu HH, Ogawa M, Akabane R, Miyagawa Y, Takemura N. Association between serum fibroblast growth factor-23 concentrations and blood calcium levels in chronic kidney disease cats with upper urolithiasis. J Feline Med Surg 2022; 24:1245-1252. [PMID: 35133180 PMCID: PMC10812369 DOI: 10.1177/1098612x221075278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study investigated whether serum fibroblast growth factor (FGF)-23 concentrations are associated with serum total calcium (tCa) and blood ionised calcium (iCa) concentrations in cats with chronic kidney disease (CKD) and upper urolithiasis. METHODS Serum samples and the medical records of cats with CKD with nephroliths, ureteroliths or both were investigated retrospectively. Cats with a serum creatinine concentration >250 μmol/l and/or a serum phosphorus concentration ⩾1.50 mmol/l were excluded. Based on cut-offs for serum tCa (2.70 mmol/l) or blood iCa (1.40 mmol/l), cats were divided into the following groups: total hypercalcaemia (H-tCa) (>2.70 mmol/l) and total normocalcaemia (N-tCa) (⩽2.70 mmol/l) groups, or ionised hypercalcaemia (H-iCa) (>1.40 mmol/l) and ionised normocalcaemia (N-iCa) (⩽1.40 mmol/l) groups, respectively. Serum FGF-23 concentrations were compared between groups and correlation analysis was performed. RESULTS Thirty-two cats with CKD and upper urolithiasis were included. Serum FGF-23 concentrations in the H-tCa group (median 573 pg/ml [range 125-3888]; n = 12) were significantly higher compared with the N-tCa group (median 245 pg/ml [range 94-627]; n = 20) (P = 0.001). Serum FGF-23 concentrations in the H-iCa group (median 1479 pg/ml [range 509-3888]; n = 6) increased significantly compared with the N-iCa group (median 245 pg/ml [range 94-637]; n = 26) (P <0.001). Serum FGF-23 concentrations significantly correlated with serum tCa (r = 0.511, P = 0.003) and blood iCa concentrations (r = 0.425, P = 0.015) but not serum creatinine (r = 0.279, P = 0.122) or phosphorus concentrations (r = 0.208, P = 0.253).Conclusions and relevance Increased serum FGF-23 concentrations were associated with hypercalcaemia independently of creatinine and phosphate status in cats with CKD and upper urolithiasis.
Collapse
Affiliation(s)
- Hirosumi Miyakawa
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Huai-Hsun Hsu
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Mizuki Ogawa
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Ryota Akabane
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Yuichi Miyagawa
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Naoyuki Takemura
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| |
Collapse
|
14
|
Karampatsou SI, Paltoglou G, Genitsaridi SM, Kassari P, Charmandari E. The Effect of a Comprehensive Life-Style Intervention Program of Diet and Exercise on Four Bone-Derived Proteins, FGF-23, Osteopontin, NGAL and Sclerostin, in Overweight or Obese Children and Adolescents. Nutrients 2022; 14:3772. [PMID: 36145151 PMCID: PMC9505283 DOI: 10.3390/nu14183772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The adipose and bone tissues demonstrate considerable interconnected endocrine function. In the present study, we determined the concentrations of fibroblast growth factor-23 (FGF-23), osteopontin, neutrophil gelatinase-associated lipocalin (NGAL) and sclerostin in 345 children and adolescents who were overweight or obese (mean age ± SD mean: 10.36 ± 0.16 years; 172 males, 173 females; 181 prepubertal; and 164 pubertal) before and after their participation in a comprehensive life-style intervention program of diet and exercise for one year. Following the one-year life-style interventions, there was a significant decrease in BMI (p < 0.01), FGF-23 (p < 0.05), osteopontin (p < 0.01) and NGAL (p < 0.01), and an increase in sclerostin (p < 0.01) concentrations. BMI z-score (b = 0.242, p < 0.05) and fat mass (b = 0.431, p < 0.05) were the best positive predictors and waist-to-height ratio (WHtR) (b = −0.344, p < 0.05) was the best negative predictor of the change of osteopontin. NGAL concentrations correlated positively with HbA1C (b = 0.326, p < 0.05), WHtR (b = 0.439, p < 0.05) and HOMA-IR (b = 0.401, p < 0.05), while BMI (b = 0.264, p < 0.05), fat mass (b = 1.207, p < 0.05), HDL (b = 0.359, p < 0.05) and waist circumference (b = 0.263, p < 0.05) were the best positive predictors of NGAL. These results indicate that FGF-23, osteopontin, NGAL and sclerostin are associated with being overweight or obese and are altered in relation to alterations in BMI. They also indicate a crosstalk between adipose tissue and bone tissue and may play a role as potential biomarkers of glucose metabolism. Further studies are required to delineate the physiological mechanisms underlying this association in children and adolescents.
Collapse
Affiliation(s)
- Sofia I. Karampatsou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Sofia M. Genitsaridi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Penio Kassari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Gronskaia SA, Belaya ZE, Melnichenko GA. [FGF23 tumor induced osteomalacia]. PROBLEMY ENDOKRINOLOGII 2022; 68:56-66. [PMID: 36337019 DOI: 10.14341/probl13130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Tumor induced osteomalacia is a rare acquired disease. The cause is a mesenchymal tumor secreting fibroblast growth factor 23 (FGF23). An excessive amount of FGF 23 disrupts the metabolism of phosphorus and vitamin D, which leads to severe paraneoplastic syndrome, manifested in the form of multiple fractures, severe pain in the bones and generalized myopathy. With oncogenic osteomalacia, a complete cure is possible with radical resection of the tumor. Unfortunately, localization, small size of formations and rare frequency of occurrence lead to the fact that the disease remains unrecognized for a long time and leads to severe, disabling consequences. A step-by-step approach to diagnosis improves treatment outcomes. First, a thorough anamnesis is collected, then functional visualization is performed and the diagnosis is confirmed by anatomical visualization of the tumor. After that, the method of choice is a surgical treatment. If resection is not possible, then conservative therapy with active metabolites of vitamin D and phosphorus salts is indicated. New therapeutic approaches, such as the antibody to FGF23 or the pan-inhibitor of receptors to FGF, are actively developing. This article provides an overview of modern approaches to the diagnosis and treatment of this disease.
Collapse
|
16
|
Foroni MZ, Cendoroglo MS, Costa AG, Marin-Mio RV, do Prado Moreira PF, Maeda SS, Bilezikian JP, Lazaretti-Castro M. FGF23 levels as a marker of physical performance and falls in community-dwelling very old individuals. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:333-344. [PMID: 35612845 PMCID: PMC9832858 DOI: 10.20945/2359-3997000000488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
Abstract
Objective The fibroblast growth factor 23 (FGF23) has been related to biological aging, but data in elderly individuals are scant. We determined the profile of serum FGF23 levels in a population of very-old individuals and studied their correlations with parameters of bone metabolism and health markers, as functional performance. Methods This cross-sectional study was performed on 182 community dwellers aged ≥ 80 years. Serum levels of FGF23, PTH, calcium, albumin, phosphorus, creatinine, bone markers, and bone mineral density data were analyzed. Physical performance was evaluated with the stationary march (Step), Flamingo, and functional reach tests, along with questionnaires to assess falls and fractures in the previous year, energy expenditure (MET), and the Charlson index (CI). Physical activity was evaluated with the International Physical Activity Questionnaire (IPAQ). Results Most participants (75%) had FGF23 levels between 30-120 RU/mL (range: 6.0-3,170.0 RU/mL). FGF23 levels correlated with estimated glomerular filtration rate (eGFR; r = -0.335; p = 0.001) and PTH (r = 0.318; p < 0.0001). Individuals with FGF23 in the highest tertile had more falls in the previous year (p = 0.032), worse performance in the Flamingo (p = 0.009) and Step (p < 0.001) tests, worse CI (p = 0.009) and a trend toward sedentary lifestyle (p = 0.056). On multiple regression, FGF23 tertiles remained significant, independently of eGFR, for falls in the previous year, performance in the Flamingo and stationary march tests, lean mass index, and IPAQ classification. Conclusion In a population of very elderly individuals, FGF23 levels were inversely associated with neuromuscular and functional performances. Higher concentrations were related to more falls, lower muscle strength and aerobic capacity, and poorer balance, regardless of renal function, suggesting a potentially deleterious role of high FGF23 concentrations in musculoskeletal health.
Collapse
Affiliation(s)
- Mariana Zuccolotto Foroni
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil,
| | - Maysa Seabra Cendoroglo
- Divisão de Geriatria, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Aline Granja Costa
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Rosangela Villa Marin-Mio
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | | | - Sergio Setsuo Maeda
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - John P Bilezikian
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Marise Lazaretti-Castro
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| |
Collapse
|
17
|
Kusumi K, Kremsdorf R, Kakajiwala A, Mahan JD. Pediatric Mineral and Bone Disorder of Chronic Kidney Disease and Cardiovascular Disease. Adv Chronic Kidney Dis 2022; 29:275-282. [PMID: 36084974 DOI: 10.1053/j.ackd.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease is common and causes significant morbidity including shortened lifespans and decrease in quality of life for patients. The major cause of mortality in chronic kidney disease is cardiovascular disease. Cardiovascular disease within the chronic kidney disease population is closely tied with disordered calcium and phosphorus metabolism and driven in part by renal bone disease. The complex nature of renal, bone, and cardiovascular diseases was renamed as mineral and bone disorder of chronic kidney disease to encompass how bone disease drives vascular calcification and contributes to the development of long-term cardiovascular disease, and recent data suggest that managing bone disease well can augment and improve cardiovascular disease status. Pediatric nephrologists have additional obstacles in optimal mineral and bone disorder of chronic kidney disease management such as linear growth and skeletal maturation. In this article, we will discuss cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.
Collapse
Affiliation(s)
- Kirsten Kusumi
- Department of Pediatric Nephrology, Akron Children's Hospital, Akron, OH.
| | - Robin Kremsdorf
- Pediatric Nephrology and Hypertension, Hasbro Children's Hospital, Providence, RI
| | - Aadil Kakajiwala
- Departments of Pediatric Critical Care Medicine and Nephrology, Children's National Hospital, Washington, DC
| | - John D Mahan
- Division of Nephrology and Hypertension at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
18
|
Fargaly H, Mathew S, Rossi NF. Hyperglycinuria: diagnosis in middle age. BMJ Case Rep 2022; 15:e246252. [PMID: 35236679 PMCID: PMC8895892 DOI: 10.1136/bcr-2021-246252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/04/2022] Open
Abstract
Isolated hyperglycinuria is a rare disorder that is associated with osteoporosis and renal calculi. We report findings in a middle-aged, black woman who presented for renal function evaluation with a history of transient hypobicarbonataemia associated with topiramate therapy. She displayed the full triad of high urinary glycine, early-onset osteopenia despite normal reproductive hormones, and renal calculus with high urinary oxalate, phosphate and uric acid. Parathyroid hormone and fibroblast growth factor 23 were both normal. Formal genetic testing did not reveal mutations in SLC6A20, SLC6A18, SLC6A19, SLC36A2, the known genes associated with glycinuria; however, black individuals are poorly represented in the genetic databases. It may well be that otherwise unidentified mutations may be present or that topiramate may result in a lingering proximal tubule defect even after cessation of the drug.
Collapse
Affiliation(s)
- Hithem Fargaly
- Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
- Internal Medicine, Detroit Medical Center, Detroit, Michigan, USA
| | - Shobi Mathew
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Noreen F Rossi
- Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
19
|
Shigematsu T, Asada S, Endo Y, Kawata T, Fukagawa M, Akizawa T. Evocalcet with vitamin D receptor activator treatment for secondary hyperparathyroidism. PLoS One 2022; 17:e0262829. [PMID: 35176038 PMCID: PMC8853539 DOI: 10.1371/journal.pone.0262829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
This ad hoc analysis of a previously conducted phase 3 head-to-head comparison study of evocalcet and cinacalcet in secondary hyperparathyroidism patients undergoing maintenance hemodialysis evaluated the efficacy and safety of combined once-daily oral evocalcet and intravenous vitamin D receptor activator treatment stratified by weekly vitamin D receptor activator dose (117, 45, and 91 patients in no, low [< 1.5 μg], and high [≥ 1.5 μg] dose groups, respectively). Effects of vitamin D receptor activator were assessed on the basis of intact parathyroid hormone, corrected calcium, phosphorus, and fibroblast growth factor-23 levels; percent changes from baseline; proportions of patients who achieved target intact parathyroid hormone, corrected calcium, and phosphorus at Weeks 28–30; and adverse drug reactions. Intact parathyroid hormone, corrected calcium, phosphorus, and fibroblast growth factor-23 levels decreased in all groups; phosphorus and fibroblast growth factor-23 levels remained high in the high dose group. In the low and high dose groups, greater proportions of patients achieved the corrected calcium target compared with the no dose group (p = 0.043). Ratios of intact-to-C-terminal fibroblast growth factor-23 decreased in all groups. In low and high dose groups, hypocalcemia was less common than in the no dose group (p = 0.014). Evocalcet with concomitant vitamin D receptor activator demonstrated benefits such that more patients achieved the corrected calcium target and exhibited decreased fibroblast growth factor-23 synthesis; the incidence of hypocalcemia also decreased.
Clinical trial registration: ClinicalTrials.gov (NCT02549391) and JAPIC (JapicCTI-153013).
Collapse
Affiliation(s)
- Takashi Shigematsu
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| | - Shinji Asada
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Yuichi Endo
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Takehisa Kawata
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology, and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Tadao Akizawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Bowry SK, Kotanko P, Himmele R, Tao X, Anger M. The membrane perspective of uraemic toxins: which ones should, or can, be removed? Clin Kidney J 2021; 14:i17-i31. [PMID: 34987783 PMCID: PMC8711755 DOI: 10.1093/ckj/sfab202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/15/2022] Open
Abstract
Informed decision-making is paramount to the improvement of dialysis therapies and patient outcomes. A cornerstone of delivery of optimal dialysis therapy is to delineate which substances (uraemic retention solutes or 'uraemic toxins') contribute to the condition of uraemia in terms of deleterious biochemical effects they may exert. Thereafter, decisions can be made as to which of the accumulated compounds need to be targeted for removal and by which strategies. For haemodialysis (HD), the non-selectivity of membranes is sometimes considered a limitation. Yet, considering that dozens of substances with potential toxicity need to be eliminated, and targeting removal of individual toxins explicitly is not recommended, current dialysis membranes enable elimination of several molecules of a broad size range within a single therapy session. However, because HD solute removal is based on size-exclusion principles, i.e. the size of the substances to be removed relative to the mean size of the 'pores' of the membrane, only a limited degree of selectivity of removal is possible. Removal of unwanted substances during HD needs to be weighed against the unavoidable loss of substances that are recognized to be necessary for bodily functions and physiology. In striving to improve the efficiency of HD by increasing the porosity of membranes, there is a greater potential for the loss of substances that are of benefit. Based on this elementary trade-off and availability of recent guidance on the relative toxicity of substances retained in uraemia, we propose a new evidence-linked uraemic toxin elimination (ELUTE) approach whereby only those clusters of substances for which there is a sufficient body of evidence linking them to deleterious biological effects need to be targeted for removal. Our approach involves correlating the physical properties of retention solutes (deemed to express toxicity) with key determinants of membranes and separation processes. Our analysis revealed that in attempting to remove the relatively small number of 'larger' substances graded as having only moderate toxicity, uncontrolled (and efficient) removal of several useful compounds would take place simultaneously and may compromise the well-being or outcomes of patients. The bulk of the uraemic toxin load comprises uraemic toxins below <30 000 Da and are adequately removed by standard membranes. Further, removal of a few difficult-to-remove-by-dialysis (protein-bound) compounds that express toxicity cannot be achieved by manipulation of pore size alone. The trade-off between the benefits of effective removal of the bulk of the uraemic toxin load and risks (increased loss of useful substances) associated with targeting the removal of a few larger substances in 'high-efficiency' HD treatment strategies needs to be recognized and better understood. The removability during HD of substances, be they toxic, inert or beneficial, needs be revised to establish the pros and cons of current dialytic elimination strategies. .
Collapse
Affiliation(s)
- Sudhir K Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Bad Nauheim, Germany
| | | | - Rainer Himmele
- Global Medical Information and Education, Fresenius Medical Care, Charlotte, NC, USA
| | - Xia Tao
- Renal Research Institute, New York, NY, USA
| | - Michael Anger
- Global Medical Office, Fresenius Medical Care, Waltham, MA, USA
| |
Collapse
|
21
|
Kužmová Z, Kužma M, Gažová A, Kovářová M, Jackuliak P, Killinger Z, Kyselovič J, Payer J. Fibroblast Growth Factor 23 and Klotho Are Associated With Trabecular Bone Score but Not Bone Mineral Density in the Early Stages of Chronic Kidney Disease: Results of the Cross-Sectional Study. Physiol Res 2021; 70:S43-S51. [PMID: 34918528 DOI: 10.33549/physiolres.934773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study evaluates bone mineral density (BMD) and trabecular bone score (TBS) in relationship with new markers of chronic kidney disease (CKD), fibroblast growth factor 23 (FGF23), and klotho. The patients in this cross-sectional study were divided as follows: group A -patients in stages G1-3; group B -patients in stages G4 - 5 according to KDIGO. Plasma levels of soluble klotho and FGF23 were determined by ELISA. Bone mineral density (BMD) and trabecular bone score (TBS) were measured. 74 patients with CKD (mean age 68.8 years) were included in the study. Higher levels of FGF23 were observed in group B (N=15) compared to group A (N=59; p=0.001) were observed. FGF23 was higher in group A compared to group B. Significant difference in TBS within the first 3 stages of CKD was observed (mean TBS in G1=1.375 vs. G2=1.340 vs. G3a=1.24; p<0.05) and negative correlation of FGF23 and TBS (R=-0.33; p=0.05) and positive correlation between klotho and TBS (R=0.419; p=0.04) was observed. This study confirmed that FGF23 and klotho are associated with TBS, but TBS reflects a decrease in kidney function only in the first 3 stages of CKD. Thus, FGF23 and klotho together with TBS are promising markers of early trabecular bone impairment in CKD.
Collapse
Affiliation(s)
- Z Kužmová
- 5th Department of Internal Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Deng J, Liu Y, Liu Y, Li W, Nie X. The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy. J Inflamm Res 2021; 14:5273-5290. [PMID: 34703268 PMCID: PMC8524061 DOI: 10.2147/jir.s334996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication in the late stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. Even so, available evidence shows its development is associated with metabolism, oxidative stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic nephropathy can lead to proteinuria, edema and hypertension, among other complications. In severe cases, it can cause life-threatening complications such as renal failure. Patients with type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of developing DN. Fibroblast growth factor (FGF) regulates several human processes essential for normal development. Even though FGF has been implicated in the pathological development of DN, the underlying mechanisms are not well understood. This review summarizes the role of FGF in the development of DN. Moreover, the association of FGF with metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. Findings of this review are expected to deepen our understanding of DN and generate ideas for developing effective prevention and treatments for the disease.
Collapse
Affiliation(s)
- Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Key Laboratory of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Institute of Materia Medica, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| |
Collapse
|
23
|
Miyakawa H, Hsu HH, Ogawa M, Akabane R, Miyagawa Y, Takemura N. Association between serum fibroblast growth factor-23 concentration and development of hyperphosphatemia in normophosphatemic dogs with chronic kidney disease. J Vet Intern Med 2021; 35:2296-2305. [PMID: 34418162 PMCID: PMC8478064 DOI: 10.1111/jvim.16237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fibroblast growth factor (FGF)-23 is increased first in the sequence of changes associated with chronic kidney disease (CKD)-mineral and bone disorder. Thus, its measurement may serve as a predictive indicator of incident hyperphosphatemia. OBJECTIVES To investigate whether serum FGF-23 concentration in normophosphatemic dogs with CKD is associated with the risk of the subsequent development of hyperphosphatemia and CKD progression. ANIMALS Forty-two normophosphatemic dogs with CKD. METHODS Blood samples and medical records were retrospectively investigated. Hyperphosphatemia was defined as a serum phosphorous concentration >5.0 mg/dL. Progression was defined as a >1.5-fold increase in serum creatinine concentration. The time periods and hazard ratios for these outcomes were assessed using Kaplan-Meier analysis, log-rank test, and univariate Cox regression analysis. The variables associated with the outcomes in the univariate analysis were included in the multivariate Cox regression model with backward selection. RESULTS Serum FGF-23 concentration >528 pg/mL was associated with a shorter time to development of hyperphosphatemia (P < .001) and CKD progression (P < .001). In multiple Cox regression analysis, increased FGF-23 concentration remained a significant variable associated with these outcomes (P < .05). CONCLUSIONS AND CLINICAL IMPORTANCE Increased FGF-23 concentration in normophosphatemic dogs with CKD was associated with significant risk of development of hyperphosphatemia, independent of CKD stage, and of the progression of CKD. Future research focusing on whether interventions that decrease FGF-23 secretion will slow the development of hyperphosphatemia and CKD progression is needed.
Collapse
Affiliation(s)
- Hirosumi Miyakawa
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Huai-Hsun Hsu
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Mizuki Ogawa
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ryota Akabane
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuichi Miyagawa
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Naoyuki Takemura
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
24
|
Guo N, Chen X, Cao Y, Lu G. Associations of serum soluble klotho and fibroblast growth factor 23 with carotid artery calcification in patients undergoing continuous ambulatory peritoneal dialysis: A retrospective study. Medicine (Baltimore) 2021; 100:e26620. [PMID: 34398017 PMCID: PMC8294899 DOI: 10.1097/md.0000000000026620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT This study aimed to assess the associations of serum soluble klotho and fibroblast growth factor 23 (FGF-23) with the occurrence of carotid artery calcification. Peritoneal dialysis patients treated from June 2018 to June 2019 were retrospectively analyzed. They were divided into the carotid artery calcification and non-carotid artery calcification groups according to color Doppler ultrasound findings. Basic indicators in both groups were compared, and the influencing factors of carotid artery calcification were analyzed by logistic regression. Among the 73 continuous ambulatory peritoneal dialysis (CAPD) patients enrolled, 40 (54.8%) had carotid artery calcification. Significant differences were found in age (68.85 ± 7.45 vs 46.62 ± 5.51 years), dialysis time (8.15 ± 1.42 vs 6.02 ± 1.14 months), klotho amounts (325.56 ± 41.15 vs 436.65 ± 45.58 pg/mL) and FGF-23 levels (114.45 ± 15.56 vs 70.15 ± 12.23 pg/mL) between the carotid artery calcification and non-carotid artery calcification groups (all P < .001). The above factors were associated with carotid artery calcification occurrence in univariate analysis. Multivariate analysis showed that elevated age (odds ratio [OR] = 1.55, 95% confidence interval [CI] 1.13-1.74; P = .025) and FGF-23 (OR = 2.16, 95% CI 2.01-2.44; P = .042), and lower klotho (OR = 0.66, 95% CI 0.47-0.85; P = .036) were independent risk factors for carotid artery calcification in CAPD. Serum FGF-23 and age are risk factors for carotid artery calcification in patients with CAPD, whereas klotho is a protective factor.
Collapse
Affiliation(s)
- Naifeng Guo
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xu Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yingjie Cao
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Rodelo-Haad C, Muñoz-Castañeda JR, Santamaria R, Martín-Malo A. Iron repletion and FGF23 regulation. A potentially dangerous combination. Nefrologia 2021; 41:367-372. [PMID: 36165105 DOI: 10.1016/j.nefroe.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 06/16/2023] Open
Affiliation(s)
- Cristian Rodelo-Haad
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain; Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain; Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Juan R Muñoz-Castañeda
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain; Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain; Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain
| | - Rafael Santamaria
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain; Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain; Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain
| | - Alejandro Martín-Malo
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain; Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain; Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain
| |
Collapse
|
26
|
Sanz B, Arrieta H, Rezola-Pardo C, Fernández-Atutxa A, Garin-Balerdi J, Arizaga N, Rodriguez-Larrad A, Irazusta J. Low serum klotho concentration is associated with worse cognition, psychological components of frailty, dependence, and falls in nursing home residents. Sci Rep 2021; 11:9098. [PMID: 33907242 PMCID: PMC8079365 DOI: 10.1038/s41598-021-88455-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/13/2021] [Indexed: 01/13/2023] Open
Abstract
Serum alpha-klotho (s-klotho) protein has been linked with lifespan, and low concentrations of s-klotho have been associated with worse physical and cognitive outcomes. Although its significance in aging remains unclear, s-klotho has been proposed as a molecular biomarker of frailty and dependence. This study is a secondary analysis of data from a clinical trial performed in a population of 103 older individuals living in 10 nursing homes in Gipuzkoa (Spain). We aimed to elucidate associations between s-klotho (as measured by enzyme-linked immunosorbent assay) and body composition, physical fitness, and cognition, as well as frailty and dependence (determined using validated tests and scales). In addition, we investigated the association of s-klotho concentration with falls in the six months following the initial assessment. Low s-klotho levels were associated with a lower score in the psychological component of the Tilburg Frailty Indicator, a worse score in the Coding Wechsler Adult Intelligence Scale, and a greater dependence in activities of daily living. Moreover, participants with lower s-klotho concentrations suffered more falls during the 6 months after the assessment. Future translational research should aim to validate klotho's putative role as a biomarker that could identify the risk of aging-related adverse events in clinical practice.
Collapse
Affiliation(s)
- Begoña Sanz
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 489040, Leioa, Bizkaia, Spain.
| | - Haritz Arrieta
- Department of Nursing II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 20014, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Chloe Rezola-Pardo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 489040, Leioa, Bizkaia, Spain
- Department of Didactics of Musical, Plastic and Corporal Expression, Faculty of Education, University of the Basque Country (UPV/EHU), 489040, Leioa, Bizkaia, Spain
| | - Ainhoa Fernández-Atutxa
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 489040, Leioa, Bizkaia, Spain
| | - Jon Garin-Balerdi
- Caser Residencial Anaka, Fundación Caser, 20301, Irun, Gipuzkoa, Spain
| | - Nagore Arizaga
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 489040, Leioa, Bizkaia, Spain
- Intensive Care Unit, Donostia University Hospital, 20014, Donostia, Spain
| | - Ana Rodriguez-Larrad
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 489040, Leioa, Bizkaia, Spain
| | - Jon Irazusta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 489040, Leioa, Bizkaia, Spain
| |
Collapse
|
27
|
Rodelo-Haad C, Muñoz-Castañeda JR, Santamaria R, Martín-Malo A. Iron repletion and FGF23 regulation. A potentially dangerous combination. Nefrologia 2021. [PMID: 33888349 DOI: 10.1016/j.nefro.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Cristian Rodelo-Haad
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain; Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain; Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Juan R Muñoz-Castañeda
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain; Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain; Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain
| | - Rafael Santamaria
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain; Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain; Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain
| | - Alejandro Martín-Malo
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain; Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain; Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain
| |
Collapse
|
28
|
Takkavatakarn K, Wuttiputhanun T, Phannajit J, Praditpornsilpa K, Eiam-Ong S, Susantitaphong P. Effectiveness of fibroblast growth factor 23 lowering modalities in chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol 2021; 54:309-321. [PMID: 33797709 DOI: 10.1007/s11255-021-02848-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The heightened fibroblast growth factor 23 (FGF23) level in patients with chronic kidney disease (CKD) is associated with increased cardiovascular disease and mortality. We performed a systematic review and meta-analysis to synthesize the available strategies to reduce FGF23 in CKD patients. METHODS We conducted a meta-analysis by searching the databases of MEDLINE, Scopus, and Cochrane Central Register of Controlled Trials for randomized controlled trials (RCTs) and single-arm studies that examined the effects of dietary phosphate restriction, phosphate binders, iron supplements, calcimimetics, parathyroidectomy, dialysis techniques, and the outcome of preservation of residual renal function (RRF) on FGF23 levels in CKD patients. Random-effects model meta-analyses were used to compute changes in the outcome of interests. RESULTS A total of 41 articles (7590 patients), comprising 36 RCTs, 5 prospective studies were included in this meta-analysis. Dietary phosphate restriction less than 800 mg per day yielded insignificant effect on FGF23 reduction. Interestingly sevelamer, lanthanum, iron-based phosphate binders, and iron supplement significantly lowered FGF23 levels. In CKD patients with secondary hyperparathyroidism, calcimimetics prescription could significantly reduce FGF23 levels, while surgical parathyroidectomy had no significant effect. In dialysis patients, preservation of RRF and hemoperfusion as well as hemodiafiltration provided a significant decrease in FGF23 levels. CONCLUSIONS The present meta-analysis demonstrated that non-calcium-based phosphate binders including sevelamer, lanthanum, and iron-based phosphate binders, iron supplements, calcimimetics, hemoperfusion, and preservation of RRF could effectively reduce FGF23 in CKD patients.
Collapse
Affiliation(s)
- Kullaya Takkavatakarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, 1873 RAMA IV, Bangkok, 10330, Thailand
| | - Thunyatorn Wuttiputhanun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, 1873 RAMA IV, Bangkok, 10330, Thailand
| | - Jeerath Phannajit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, 1873 RAMA IV, Bangkok, 10330, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, 1873 RAMA IV, Bangkok, 10330, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, 1873 RAMA IV, Bangkok, 10330, Thailand
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, 1873 RAMA IV, Bangkok, 10330, Thailand.
- Research Unit for Metabolic Bone Disease in CKD Patients, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
29
|
The muscle to bone axis (and viceversa): An encrypted language affecting tissues and organs and yet to be codified? Pharmacol Res 2021; 165:105427. [PMID: 33453372 DOI: 10.1016/j.phrs.2021.105427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 12/15/2022]
Abstract
Skeletal muscles and bone tissue form the musculoskeletal apparatus, a complex system essential for the voluntary movement. The loss of muscle mass and muscle strength is often associated with a loss of bone mass, in a "hazardous duet" which implies the co-existence of sarcopenia-osteoporosis and exposes patients to a deterioration in quality of life and increased mortality. From the mechanostat theory to the recent definition of the osteosarcopenia syndrome, many aspects of muscle-bone interaction have been investigated in recent decades. The mechanical interaction is now accepted, considering the close anatomical relationship between the two tissues, however, much remains to be discovered regarding the biochemical muscle-bone interaction. Skeletal muscle has been defined as an endocrine organ capable of exerting an action on other tissues. Myokines, bioactive polypeptides released by the muscle, could represent the encrypted message in the communication between muscle and bone. These two tissues have a reciprocal influence on their metabolisms and respond in a similar way to the multiple external factors. The aim of this review is to stimulate the understanding of the encrypted language between muscle and bone, highlighting the role of catabolic pathways and oxidative stress in the musculoskeletal apparatus to elucidate the shared mechanisms and the similarity of response to the same stimuli by different tissues. Our understanding of muscle-bone interactions it could be useful to identify and develop new strategies to treat musculoskeletal diseases, together with pharmacological, nutritional and exercise-based approaches, which are already in use for the treatment of these pathologies.
Collapse
|
30
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
31
|
Wang H, Zheng X, Zhang Y, Huang J, Zhou W, Li X, Tian H, Wang B, Xing D, Fu W, Chen T, Wang X, Zhang X, Wu A. The endocrine role of bone: Novel functions of bone-derived cytokines. Biochem Pharmacol 2020; 183:114308. [PMID: 33137323 DOI: 10.1016/j.bcp.2020.114308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Bone-derived cytokines refer to various proteins and peptides that are released from the skeleton and can distribute in organisms to regulate homeostasis by targeting many organs, such as the pancreas, brain, testicles, and kidneys. In addition to providing support and movement, many studies have disclosed the novel endocrine function of bone, and bone can modulate glucose and energy metabolism as well as phosphate metabolism by versatile bone-derived cytokines. However, this specific exoskeletonfunction of bone-derived cytokines in the regulation of homeostasis and the pathological response caused by skeletal dysfunction are still not very clear, and elucidation of the above mechanisms is of great significance for understanding the pathological processes of metabolic disorders and in the search for novel therapeutic measures for maintaining organ stability and physical fitness.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinfeng Huang
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenxian Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xunlin Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Haijun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Weili Fu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
32
|
Thongprayoon C, Neyra JA, Hansrivijit P, Medaura J, Leeaphorn N, Davis PW, Kaewput W, Bathini T, Salim SA, Chewcharat A, Aeddula NR, Vallabhajosyula S, Mao MA, Cheungpasitporn W. Serum Klotho in Living Kidney Donors and Kidney Transplant Recipients: A Meta-Analysis. J Clin Med 2020; 9:jcm9061834. [PMID: 32545510 PMCID: PMC7355868 DOI: 10.3390/jcm9061834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
α-Klotho is a known anti-aging protein that exerts diverse physiological effects, including phosphate homeostasis. Klotho expression occurs predominantly in the kidney and is significantly decreased in patients with chronic kidney disease. However, changes in serum klotho levels and impacts of klotho on outcomes among kidney transplant (KTx) recipients and kidney donors remain unclear. A literature search was conducted using MEDLINE, EMBASE, and Cochrane Database from inception through October 2019 to identify studies evaluating serum klotho levels and impacts of klotho on outcomes among KTx recipients and kidney donors. Study results were pooled and analyzed utilizing a random-effects model. Ten cohort studies with a total of 431 KTx recipients and 5 cohort studies with a total of 108 living kidney donors and were identified. After KTx, recipients had a significant increase in serum klotho levels (at 4 to 13 months post-KTx) with a mean difference (MD) of 243.11 pg/mL (three studies; 95% CI 67.41 to 418.81 pg/mL). Although KTx recipients had a lower serum klotho level with a MD of = -234.50 pg/mL (five studies; 95% CI -444.84 to -24.16 pg/mL) compared to healthy unmatched volunteers, one study demonstrated comparable klotho levels between KTx recipients and eGFR-matched controls. Among kidney donors, there was a significant decrease in serum klotho levels post-nephrectomy (day 3 to day 5) with a mean difference (MD) of -232.24 pg/mL (three studies; 95% CI -299.41 to -165.07 pg/mL). At one year following kidney donation, serum klotho levels remained lower than baseline before nephrectomy with a MD of = -110.80 pg/mL (two studies; 95% CI 166.35 to 55.24 pg/mL). Compared to healthy volunteers, living kidney donors had lower serum klotho levels with a MD of = -92.41 pg/mL (two studies; 95% CI -180.53 to -4.29 pg/mL). There is a significant reduction in serum klotho levels after living kidney donation and an increase in serum klotho levels after KTx. Future prospective studies are needed to assess the impact of changes in klotho on clinical outcomes in KTx recipients and living kidney donors.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
- Correspondence: (C.T.); (W.C.)
| | - Javier A. Neyra
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA;
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, TX 75390, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Panupong Hansrivijit
- Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA 17105, USA;
| | - Juan Medaura
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.M.); (P.W.D.); (S.A.S.)
| | - Napat Leeaphorn
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke’s Health System, Kansas City, MO 64110, USA;
| | - Paul W. Davis
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.M.); (P.W.D.); (S.A.S.)
| | - Wisit Kaewput
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Sohail Abdul Salim
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.M.); (P.W.D.); (S.A.S.)
| | - Api Chewcharat
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
| | - Narothama Reddy Aeddula
- Division of Nephrology, Department of Medicine, Deaconess Health System, Evansville, IN 47710, USA;
| | | | - Michael A. Mao
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.M.); (P.W.D.); (S.A.S.)
- Correspondence: (C.T.); (W.C.)
| |
Collapse
|
33
|
Kondo Y, Komaba H, Fukagawa M. Endocrine fibroblast growth factors as potential biomarkers for chronic kidney disease. Expert Rev Mol Diagn 2020; 20:715-724. [PMID: 32513031 DOI: 10.1080/14737159.2020.1780918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Among the family of fibroblast growth factors (FGFs), FGF19, FGF21, and FGF23 act as circulating hormones and are called endocrine FGFs. FGF19 and FGF21 regulate bile acid and energy homeostasis, respectively, whereas FGF23 regulates vitamin D and phosphate homeostasis. Accumulating evidence suggests that FGF23 plays a critical role in disturbed mineral metabolisms, left ventricular hypertrophy, immunosuppression, inflammation, among others in patients with chronic kidney disease (CKD), highlighting the potential both as a biomarker and a therapeutic target. Several studies have also examined the potential role of FGF19 and FGF21 in CKD patients. AREAS COVERED In this review, we present a brief overview of the biology of FGF19, FGF21, and FGF23, and summarize recent clinical and experimental studies on the pathophysiological roles of endocrine FGFs, mainly FGF23, in CKD patients. EXPERT OPINION Among the endocrine FGFs, FGF23 represents the most promising biomarker in CKD patients. If future studies confirm that FGF23 is directly toxic in CKD patients, FGF23 could be regarded as a therapeutic target and its measurement would be valuable if applied in clinical practice. Despite their potentially important roles, the clinical relevance of FGF19 and FGF21 in CKD patients is unclear, and much more studies are required.
Collapse
Affiliation(s)
- Yuichiro Kondo
- Interactive Translational Research Center for Kidney Diseases, Tokai University School of Medicine , Isehara, Japan
| | - Hirotaka Komaba
- Interactive Translational Research Center for Kidney Diseases, Tokai University School of Medicine , Isehara, Japan.,Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine , Isehara, Japan.,The Institute of Medical Sciences, Tokai University , Isehara, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine , Isehara, Japan
| |
Collapse
|
34
|
Meng F, Bertucci C, Gao Y, Li J, Luu S, LeBoff MS, Glowacki J, Zhou S. Fibroblast growth factor 23 counters vitamin D metabolism and action in human mesenchymal stem cells. J Steroid Biochem Mol Biol 2020; 199:105587. [PMID: 32004706 DOI: 10.1016/j.jsbmb.2020.105587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/15/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is associated with elevated circulating fibroblast growth factor 23 (FGF23), impaired renal biosynthesis of 1α,25-dihydroxyvitamin D (1α,25(OH)2D), low bone mass, and increased fracture risk. Our previous data with human mesenchymal stem cells (hMSCs) indicated that vitamin D metabolism in hMSCs is regulated as it is in the kidney and promotes osteoblastogenesis in an autocrine/paracrine manner. In this study, we tested the hypothesis that FGF23 inhibits vitamin D metabolism and action in hMSCs. hMSCs were isolated from discarded marrow during hip arthroplasty, including two subjects receiving hemodialysis and a series of 20 subjects (aged 49-83 years) with estimated glomerular filtration rate (eGFR) data. The direct in vitro effects of rhFGF23 on hMSCs were analyzed by RT-PCR, Western immunoblot, and biochemical assays. Ex vivo analyses showed positive correlations for both secreted and membrane-bound αKlotho gene expression in hMSCs with eGFR of the subjects from whom hMSCs were isolated. There was downregulated constitutive expression of αKlotho, but not FGFR1 in hMSCs obtained from two hemodialysis subjects. In vitro, rhFGF23 countered vitamin D-stimulated osteoblast differentiation of hMSCs by reducing the vitamin D receptor, CYP27B1/1α-hydroxylase, biosynthesis of 1α,25(OH)2D3, and signaling through BMP-7. These data demonstrate that dysregulated vitamin D metabolism in hMSCs may contribute to impaired osteoblastogenesis and altered bone and mineral metabolism in CKD subjects due to elevated FGF23. This supports the importance of intracellular vitamin D metabolism in autocrine/paracrine regulation of osteoblast differentiation in hMSCs.
Collapse
Affiliation(s)
- Fangang Meng
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Christopher Bertucci
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuan Gao
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Li
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Endocrinology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Simon Luu
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meryl S LeBoff
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Rodríguez-Ortiz ME, Alcalá-Díaz JF, Canalejo A, Torres-Peña JD, Gómez-Delgado F, Muñoz-Castañeda JR, Delgado-Lista J, Rodríguez M, López-Miranda J, Almadén Y. Fibroblast growth factor 23 predicts carotid atherosclerosis in individuals without kidney disease. The CORDIOPREV study. Eur J Intern Med 2020; 74:79-85. [PMID: 31899053 DOI: 10.1016/j.ejim.2019.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) is a major determinant of mineral metabolism derangements and emerges as a possible risk factor underlying the negative cardiovascular outcome in CKD patients. However, its contribution in non-CKD individuals is less clear. This cross-sectional study investigated the associations between FGF23 and mineral metabolism parameters and with carotid atherosclerosis in a population at high cardiovascular risk with preserved renal function. METHODS We employed 939 subjects with coronary heart disease enrolled in the CORDIOPREV study (mean eGFR=93.0 ± 0.7 ml/min/1.73 m2 and median FGF23=44.9 (IQR=13.1) pg/ml), in which intima-media thickness of both common carotid arteries (IMT-CC) was measured. RESULTS Adjusted for anthropometric factors, FGF23 associated positively with creatinine, phosphate, calcium and 25(OH)-vitaminD and negatively with eGFR and calcitriol. In multivariable-adjusted models all of them were independent contributors to FGF23 levels. FGF23 showed a positive relationship with IMT-CC; both the higher third and fourth quartiles associated significantly with IMT-CC (Beta= 0.135 and 0.187, respectively) and after additional adjustment for established cardiovascular risk factors and morbidities FGF23 remained as a significant contributor to IMT-CC. Logistic regression analysis confirmed its predictive ability to differentiate patients at higher atherosclerotic risk defined by an IMT-CC≥0.7 mm (OR for FGF23 quartiles 3 and 4 vs. 1: 1.860; 95%CI 1.209-2.862 and 2.114; 95%CI 1.339-3.337, respectively). CONCLUSION Even in the setting of a normally functioning phosphate-FGF23-calcitriol system, FGF23 independently associated with IMT-CC, a surrogate of atherosclerotic vascular dysfunction. This supports the notion of FGF23 as a predictor of cardiovascular risk independent of renal failure.
Collapse
Affiliation(s)
- Maria E Rodríguez-Ortiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Spain
| | - Juan F Alcalá-Díaz
- Lipid and Atherosclerosis Unit, Department of Internal Medicine (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Avda. Menéndez Pidal s/n. C.P., 14004 Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Antonio Canalejo
- Department of Integrated Sciences/Centro de investigacion RENSMA, University of Huelva, Spain
| | - José D Torres-Peña
- Lipid and Atherosclerosis Unit, Department of Internal Medicine (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Avda. Menéndez Pidal s/n. C.P., 14004 Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Francisco Gómez-Delgado
- Lipid and Atherosclerosis Unit, Department of Internal Medicine (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Avda. Menéndez Pidal s/n. C.P., 14004 Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Juan R Muñoz-Castañeda
- Unidad de Gestión Clinica Nefrología, Instituto Maimonides de Investigacion Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Spain
| | - Javier Delgado-Lista
- Lipid and Atherosclerosis Unit, Department of Internal Medicine (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Avda. Menéndez Pidal s/n. C.P., 14004 Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Mariano Rodríguez
- Unidad de Gestión Clinica Nefrología, Instituto Maimonides de Investigacion Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Spain
| | - José López-Miranda
- Lipid and Atherosclerosis Unit, Department of Internal Medicine (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Avda. Menéndez Pidal s/n. C.P., 14004 Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain.
| | - Yolanda Almadén
- Unidad de Gestión Clinica Medicina Interna, Instituto de Biomedicina de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba/Universidad de Córdoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
36
|
Protective Role of Vitamin D in Renal Tubulopathies. Metabolites 2020; 10:metabo10030115. [PMID: 32204545 PMCID: PMC7142711 DOI: 10.3390/metabo10030115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is tightly linked with renal tubular homeostasis: the mitochondria of proximal convoluted tubule cells are the production site of 1α,25-dihydroxyvitamin D3. Patients with renal impairment or tubular injury often suffer from chronic inflammation. This alteration comes from oxidative stress, acidosis, decreased clearance of inflammatory cytokines and stimulation of inflammatory factors. The challenge is to find the right formula for each patient to correctly modulate the landscape of treatment and preserve the essential functions of the organism without perturbating its homeostasis. The complexity of the counter-regulation mechanisms and the different axis involved in the Vitamin D equilibrium pose a major issue on Vitamin D as a potential effective anti-inflammatory drug. The therapeutic use of this compound should be able to inhibit the development of inflammation without interfering with normal homeostasis. Megalin-Cubilin-Amnionless and the FGF23-Klotho axis represent two Vitamin D-linked mechanisms that could modulate and ameliorate the damage response at the renal tubular level, balancing Vitamin D therapy with an effect potent enough to contrast the inflammatory cascades, but which avoids potential severe side effects.
Collapse
|
37
|
Ewendt F, Hirche F, Feger M, Föller M. Peroxisome proliferator-activated receptor α (PPARα)-dependent regulation of fibroblast growth factor 23 (FGF23). Pflugers Arch 2020; 472:503-511. [PMID: 32189072 DOI: 10.1007/s00424-020-02363-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
Bone cells secrete fibroblast growth factor 23 (FGF23), a hormone that inhibits the synthesis of active vitamin D (1,25(OH)2D3) and induces phosphate excretion in the kidney. In addition, it exerts paracrine effects on other cells including hepatocytes, cardiomyocytes, and immune cells. The production of FGF23 is controlled by different factors including parathyroid hormone, 1,25(OH)2D3, alimentary phosphate, insulin, inflammation, and AMP-dependent kinase (AMPK) regulation of store-operated Ca2+ entry (SOCE). Peroxisome proliferator-activated receptor α (PPARα) is a transcription factor with anti-inflammatory properties regulating lipid metabolism. Fibrates, PPARα agonists, are used in the treatment of dyslipidemia and activate AMPK. Here, we tested whether PPARα is a regulator of FGF23. Fgf23 gene expression was analyzed in UMR106 rat osteoblast-like cells by qRT-PCR, AMPK phosphorylation by Western blotting, and SOCE assessed by fluorescence optics. PPARα agonists fenofibrate and WY-14643 suppressed, whereas PPARα antagonist GW6471 and siRNA-mediated knockdown of PPARα induced Fgf23 gene expression. Fenofibrate induced AMPK activity in UMR106 cells and lowered SOCE. AMPK inhibitor compound C abrogated the PPARα effect on FGF23 in large part. Silencing of Orai-1 resulted in failure of PPARα to significantly influence Fgf23 expression. Taken together, PPARα is a potent regulator of FGF23. PPARα agonists down-regulate FGF23 formation at least in part through AMPK-mediated suppression of SOCE.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
38
|
Muñoz-Castañeda JR, Rodelo-Haad C, Pendon-Ruiz de Mier MV, Martin-Malo A, Santamaria R, Rodriguez M. Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins (Basel) 2020; 12:E185. [PMID: 32188018 PMCID: PMC7150840 DOI: 10.3390/toxins12030185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Fibroblast Growth Factor 23 (FGF23) and Klotho play an essential role in the regulation of mineral metabolism, and both are altered as a consequence of renal failure. FGF23 increases to augment phosphaturia, which prevents phosphate accumulation at the early stages of chronic kidney disease (CKD). This effect of FGF23 requires the presence of Klotho in the renal tubules. However, Klotho expression is reduced as soon as renal function is starting to fail to generate a state of FGF23 resistance. Changes in these proteins directly affect to other mineral metabolism parameters; they may affect renal function and can produce damage in other organs such as bone, heart, or vessels. Some of the mechanisms responsible for the changes in FGF23 and Klotho levels are related to modifications in the Wnt signaling. This review examines the link between FGF23/Klotho and Wnt/β-catenin in different organs: kidney, heart, and bone. Activation of the canonical Wnt signaling produces changes in FGF23 and Klotho and vice versa; therefore, this pathway emerges as a potential therapeutic target that may help to prevent CKD-associated complications.
Collapse
Affiliation(s)
- Juan Rafael Muñoz-Castañeda
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Cristian Rodelo-Haad
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Pendon-Ruiz de Mier
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alejandro Martin-Malo
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rafael Santamaria
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Mariano Rodriguez
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
39
|
Kaesler N, Babler A, Floege J, Kramann R. Cardiac Remodeling in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12030161. [PMID: 32150864 PMCID: PMC7150902 DOI: 10.3390/toxins12030161] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac remodeling occurs frequently in chronic kidney disease patients and affects quality of life and survival. Current treatment options are highly inadequate. As kidney function declines, numerous metabolic pathways are disturbed. Kidney and heart functions are highly connected by organ crosstalk. Among others, altered volume and pressure status, ischemia, accelerated atherosclerosis and arteriosclerosis, disturbed mineral metabolism, renal anemia, activation of the renin-angiotensin system, uremic toxins, oxidative stress and upregulation of cytokines stress the sensitive interplay between different cardiac cell types. The fatal consequences are left-ventricular hypertrophy, fibrosis and capillary rarefaction, which lead to systolic and/or diastolic left-ventricular failure. Furthermore, fibrosis triggers electric instability and sudden cardiac death. This review focuses on established and potential pathophysiological cardiorenal crosstalk mechanisms that drive uremia-induced senescence and disease progression, including potential known targets and animal models that might help us to better understand the disease and to identify novel therapeutics.
Collapse
Affiliation(s)
- Nadine Kaesler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Anne Babler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Jürgen Floege
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
40
|
Vogt I, Haffner D, Leifheit-Nestler M. FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins (Basel) 2019; 11:E647. [PMID: 31698866 PMCID: PMC6891626 DOI: 10.3390/toxins11110647] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Elevated levels of fibroblast growth factor 23 (FGF23) and phosphate are highly associated with increased cardiovascular disease and mortality in patients suffering from chronic kidney disease (CKD). As the kidney function declines, serum phosphate levels rise and subsequently induce the secretion of the phosphaturic hormone FGF23. In early stages of CKD, FGF23 prevents the increase of serum phosphate levels and thereby attenuates phosphate-induced vascular calcification, whereas in end-stage kidney disease, FGF23 fails to maintain phosphate homeostasis. Both hyperphosphatemia and elevated FGF23 levels promote the development of hypertension, vascular calcification, and left ventricular hypertrophy by distinct mechanisms. Therefore, FGF23 and phosphate are considered promising therapeutic targets to improve the cardiovascular outcome in CKD patients. Previous therapeutic strategies are based on dietary and pharmacological reduction of serum phosphate, and consequently FGF23 levels. However, clinical trials proving the effects on the cardiovascular outcome are lacking. Recent publications provide evidence for new promising therapeutic interventions, such as magnesium supplementation and direct targeting of phosphate and FGF receptors to prevent toxicity of FGF23 and hyperphosphatemia in CKD patients.
Collapse
Affiliation(s)
| | | | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases Hannover Medical School, 30625 Hannover, Germany; (I.V.); (D.H.)
| |
Collapse
|