1
|
de Melo Cordeiro Eulálio M, de Lima AM, Brant RSC, Francisco AF, Santana HM, Paloschi MV, da Silva Setúbal S, da Silva CP, Silva MDS, Boeno CN, Kayano AM, Rita PHS, de Azevedo Calderon L, Soares AM, Salvador DPM, Zuliani JP. Characterization of a novel acidic phospholipase A 2 isolated from the venom of Bothrops mattogrossensis: From purification to structural modeling. Int J Biol Macromol 2024; 292:139217. [PMID: 39732268 DOI: 10.1016/j.ijbiomac.2024.139217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Phospholipases A2 (PLA2s) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLA2s from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA2 from BmV, designated BmPLA2-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment. BmPLA2-A was isolated through a multi-step chromatographic procedure, involving cation exchange (CM-Sepharose), hydrophobic interaction (n-butyl-Sepharose-HP), and reversed-phase (C-18) chromatography. SDS-PAGE analysis revealed a single protein band of approximately 15 kDa. The primary structure of BmPLA2-A was determined by LC-MS/MS, while its tertiary structure was modeled using AlphaFold. Enzymatic activity was verified with the synthetic substrate 4N3OBA. Molecular dynamics simulations were conducted to further investigate the catalytic mechanism of BmPLA2-A at the molecular level. In vitro assays on HUVECs revealed that BmPLA2-A neither induce cytokine release (IL-6, IL-8, IL-1β, TNF) nor affected cell viability, adhesion, or detachment. The characteristics of BmPLA2-A are consistent with those of acidic Asp-49 PLA2 enzymes, highlighting its potential involvement in the cytotoxic and inflammatory effects of the venom.
Collapse
Affiliation(s)
- Micaela de Melo Cordeiro Eulálio
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Maciel de Lima
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Aleff Ferreira Francisco
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Carolina Pereira da Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Center for Research in Tropical Medicine (CEPEM/SESAU-RO), Porto Velho, RO, Brazil
| | | | - Leonardo de Azevedo Calderon
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; National Institute of Science and Technology of Epidemiology of Western Amazon, INCT-EpiAmO, Brazil
| | | | - Juliana Pavan Zuliani
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil.
| |
Collapse
|
2
|
Xu H, Mastenbroek J, Krikke NTB, El-Asal S, Mutlaq R, Casewell NR, Slagboom J, Kool J. Nanofractionation Analytics for Comparing MALDI-MS and ESI-MS Data of Viperidae Snake Venom Toxins. Toxins (Basel) 2024; 16:370. [PMID: 39195780 PMCID: PMC11360109 DOI: 10.3390/toxins16080370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Worldwide, it is estimated that there are 1.8 to 2.7 million cases of envenoming caused by snakebites. Snake venom is a complex mixture of protein toxins, lipids, small molecules, and salts, with the proteins typically responsible for causing pathology in snakebite victims. For their chemical characterization and identification, analytical methods are required. Reversed-phase liquid chromatography coupled with electrospray ionization mass spectrometry (RP-LC-ESI-MS) is a widely used technique due to its ease of use, sensitivity, and ability to be directly coupled after LC separation. This method allows for the efficient separation of complex mixtures and sensitive detection of analytes. On the other hand, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is also sometimes used, and though it typically requires additional sample preparation steps, it offers desirable suitability for the analysis of larger biomolecules. In this study, seven medically important viperid snake venoms were separated into their respective venom toxins and measured by ESI-MS. In parallel, using nanofractionation analytics, post-column high-resolution fractionation was used to collect the eluting toxins for further processing for MALDI-MS analysis. Our comparative results showed that the deconvoluted snake venom toxin masses were observed with good sensitivity from both ESI-MS and MALDI-MS approaches and presented overlap in the toxin masses recovered (between 25% and 57%, depending on the venom analyzed). The mass range of the toxins detected in high abundance was between 4 and 28 kDa. In total, 39 masses were found in both the ESI-MS and/or MALDI-MS analyses, with most being between 5 and 9 kDa (46%), 13 and 15 kDa (38%), and 24 and 28 kDa (13%) in size. Next to the post-column MS analyses, additional coagulation bioassaying was performed to demonstrate the parallel post-column assessment of venom activity in the workflow. Most nanofractionated venoms exhibited anticoagulant activity, with three venoms additionally exhibiting toxins with clear procoagulant activity (Bothrops asper, Crotalus atrox, and Daboia russelii) observed post-column. The results of this study highlight the complementarity of ESI-MS and MALDI-MS approaches for characterizing snake venom toxins and provide a complementary overview of defined toxin masses found in a diversity of viper snake venoms.
Collapse
Affiliation(s)
- Haifeng Xu
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jesse Mastenbroek
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Natascha T. B. Krikke
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Susan El-Asal
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Rama Mutlaq
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Julien Slagboom
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
3
|
Fu K, Zhao J, Zhong L, Xu H, Yu X, Bi X, Huang C. Dual therapy with phospholipase and metalloproteinase inhibitors from Sinonatrix annularis alleviated acute kidney and liver injury caused by multiple snake venoms. Biomed Pharmacother 2024; 177:116967. [PMID: 38908206 DOI: 10.1016/j.biopha.2024.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Snakebite envenomation often induces acute kidney injury (AKI) and acute liver injury (ALI), leading to augmented injuries and poor rehabilitation. Phospholipase A2 (PLA2) and metalloproteinase (SVMP) present in venom are responsible for the envenomation-associated events. In this study, mice envenomed with Deinagkistrodon acutus, Naja atra, or Agkistrodon halys pallas venom exhibited typical AKI and ALI symptoms, including significantly increased plasma levels of myoglobin, free hemoglobin, uric acid, aspartate aminotransferase, and alanine aminotransferase and upregulated expression of kidney NGAL and KIM-1. These effects were significantly inhibited when the mice were pretreated with natural inhibitors of PLA2 and SVMP isolated from Sinonatrix annularis (SaPLIγ and SaMPI). The inhibitors protected the physiological structural integrity of the renal tubules and glomeruli, alleviating inflammatory infiltration and diffuse hemorrhage in the liver. Furthermore, the dual therapy alleviated oxidative stress and apoptosis in the kidneys and liver by mitigating mitochondrial damage, thereby effectively reducing the lethal effect of snake venom in the inhibitor-treated mouse model. This study showed that dual therapy with inhibitors of metalloproteinase and phospholipase can effectively prevent ALI and AKI caused by snake bites. Our findings suggest that intrinsic inhibitors present in snakes are prospective therapeutic agents for multi-organ injuries caused by snake envenoming.
Collapse
Affiliation(s)
- Kepu Fu
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianqi Zhao
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lipeng Zhong
- Clinical Laboratory Center, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330209, China
| | - Haiyan Xu
- Blood Transfusion Department, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Xinhui Yu
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowen Bi
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunhong Huang
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
5
|
Nandana MB, Bharatha M, Praveen R, Nayaka S, Vishwanath BS, Rajaiah R. Dimethyl ester of bilirubin ameliorates Naja naja snake venom-induced lung toxicity in mice via inhibiting NLRP3 inflammasome and MAPKs activation. Toxicon 2024; 244:107757. [PMID: 38740099 DOI: 10.1016/j.toxicon.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Naja naja snake bite causes thousands of deaths worldwide in a year. N. naja envenomed victims exhibit both local and systemic reactions that potentially lead to death. In clinical practice, pulmonary complications in N. naja envenomation are commonly encountered. However, the molecular mechanisms underlying N. naja venom-induced lung toxicity remain unknown. Here, we reasoned that N. naja venom-induced lung toxicity is prompted by NLRP3 inflammasome and MAPKs activation in mice. Treatment with dimethyl ester of bilirubin (BD1), significantly inhibited the N. naja venom-induced activation of NLRP3 inflammasome and MAPKs both in vivo and in vitro (p < 0.05). Further, BD1 reduced N. naja venom-induced recruitment of inflammatory cells, and hemorrhage in the lung toxicity examined by histopathology. BD1 also diminished N. naja venom-induced local toxicities in paw edema and myotoxicity in mice. Furthermore, BD1 was able to enhance the survival time against N. naja venom-induced mortality in mice. In conclusion, the present data showed that BD1 alleviated N. naja venom-induced lung toxicity by inhibiting NLRP3 inflammasome and MAPKs activation. Small molecule inhibitors that intervene in venom-induced toxicities may have therapeutic applications complementing anti-snake venom.
Collapse
Affiliation(s)
- Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Spandan Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| |
Collapse
|
6
|
Kramer S, Kotapati C, Cao Y, Fry BG, Palpant NJ, King GF, Cardoso FC. High-content fluorescence bioassay investigates pore formation, ion channel modulation and cell membrane lysis induced by venoms. Toxicon X 2024; 21:100184. [PMID: 38389571 PMCID: PMC10882159 DOI: 10.1016/j.toxcx.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Venoms comprise highly sophisticated bioactive molecules modulating ion channels, receptors, coagulation factors, and the cellular membranes. This array of targets and bioactivities requires advanced high-content bioassays to facilitate the development of novel envenomation treatments and biotechnological and pharmacological agents. In response to the existing gap in venom research, we developed a cutting-edge fluorescence-based high-throughput and high-content cellular assay. This assay enables the simultaneous identification of prevalent cellular activities induced by venoms such as membrane lysis, pore formation, and ion channel modulation. By integrating intracellular calcium with extracellular nucleic acid measurements, we have successfully distinguished these venom mechanisms within a single cellular assay. Our high-content bioassay was applied across three cell types exposed to venom components representing lytic, ion pore-forming or ion channel modulator toxins. Beyond unveiling distinct profiles for these action mechanisms, we found that the pore-forming latrotoxin α-Lt1a prefers human neuroblastoma to kidney cells and cardiomyocytes, while the lytic bee peptide melittin is not selective. Furthermore, evaluation of snake venoms showed that Elapid species induced rapid membrane lysis, while Viper species showed variable to no activity on neuroblastoma cells. These findings underscore the ability of our high-content bioassay to discriminate between clades and interspecific traits, aligning with clinical observations at venom level, beyond discriminating among ion pore-forming, membrane lysis and ion channel modulation. We hope our research will expedite the comprehension of venom biology and the diversity of toxins that elicit cytotoxic, cardiotoxic and neurotoxic effects, and assist in identifying venom components that hold the potential to benefit humankind.
Collapse
Affiliation(s)
- Simon Kramer
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Charan Kotapati
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Bryan G Fry
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| |
Collapse
|
7
|
Lai R, Yan S, Wang S, Yang S, Yan Z, Lan P, Wang Y, Li Q, Wang J, Wang W, Ma Y, Liang Z, Zhang J, Zhou N, Han X, Zhang X, Zhang M, Zhao X, Zhang G, Zhu H, Yu X, Lyu C. The Chinese guideline for management of snakebites. World J Emerg Med 2024; 15:333-355. [PMID: 39290598 PMCID: PMC11402871 DOI: 10.5847/wjem.j.1920-8642.2024.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
In 2009, the World Health Organization included snakebite on the list of neglected tropical diseases, acknowledging it as a common occupational hazard for farmers, plantation workers, and others, causing tens of thousands of deaths and chronic physical disabilities every year. This guideline aims to provide practical information to help clinical professionals evaluate and treat snakebite victims. These recommendations are based on clinical experience and clinical research evidence. This guideline focuses on the following topics: snake venom, clinical manifestations, auxiliary examination, diagnosis, treatments, and prevention.
Collapse
Affiliation(s)
- Rongde Lai
- Emergency Department, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shijiao Yan
- School of Public Health, Hainan Medical University, Haikou 571199, China
| | - Shijun Wang
- Surgery Department of Traditional Chinese Medicine, the Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Shuqing Yang
- Emergency Department, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Zhangren Yan
- Department of Surgery of Traditional Chinese Medicine, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Pin Lan
- Department of Emergency Medicine, the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Yonggao Wang
- General Surgery Department, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Qi Li
- Emergency Department, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Jinlong Wang
- Emergency Department, Chongqing University Fuling Hospital, Chongqing University, Chongqing 408000, China
| | - Wei Wang
- Emergency Department, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuefeng Ma
- Emergency Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zijing Liang
- Emergency Department, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianfeng Zhang
- Emergency Department , Wuming Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ning Zhou
- Emergency Department, Central People's Hospital of Zhanjiang, Zhanjiang 524037, China
| | - Xiaotong Han
- Emergency Department, Hunan Provincial People's Hospital, Changsha 410005, China
| | - Xinchao Zhang
- Emergency Department, National Geriatrics Center of Beijing Hospital, Beijing 100020, China
| | - Mao Zhang
- Emergency Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaodong Zhao
- Emergency Department, the Fourth Medical Center of the PLA General Hospital, Beijing 100048, China
| | - Guoqiang Zhang
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Huadong Zhu
- Emergency Department, Peking Union Medical College Hospital, BeiJing 100730, China
| | - Xuezhong Yu
- Emergency Department, Peking Union Medical College Hospital, BeiJing 100730, China
| | - Chuanzhu Lyu
- Emergency Department, Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital, Chengdu 610072, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou 571199, China
| |
Collapse
|
8
|
Abd El-Azim MM, Mousa MK, Abdelmaaboud RM, Rezq NN, Mohammed SS. Evaluation of the role of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and mean platelet volume (MPV) time series as predictors of diagnosis and prognosis of hemotoxic snakebite. Biomarkers 2023; 28:652-662. [PMID: 37902066 DOI: 10.1080/1354750x.2023.2277668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND This study aimed to assess the predictive value of NLR, PLR, and MPV time series for diagnosis and prognosis of hemotoxic snakebite envenomation. METHODS This is a prospective study among snakebite patients admitted to the Poison Control Center of Ain Shams University Hospitals and Assiut University Hospitals from the beginning of July 2019 to the end of October 2021. Patients were classified according to their clinical severity into three groups: mild, moderate, and severe. RESULTS The maximum incidence of snakebite was found in males (95%) from rural areas (80%); at lower limbs (70%); at night (51%); and during the autumn season (43.3%). The admission NLR and PLR can predict hemotoxic snakebite envenomation with an AUC of 0.940 and 0.569. The combination of NLR with PLR can develop a more predominant prediction of snakebite envenomation with an area under the curve (AUC) of 0.979. Furthermore, higher admission NLR and PLR levels are associated with prolonged hospital stays. CONCLUSION While NLR and PLR levels may be helpful in the diagnosis of snakebite, MPV plays no part in the prognosis of snakebite patients. Serial NLR, PLR initially, at 24 hours, and predischarge can be used to evaluate the early treatment response.
Collapse
Affiliation(s)
- Mariam M Abd El-Azim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mona K Mousa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ragaa M Abdelmaaboud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nabil N Rezq
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sarah S Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Luo P, Ji Y, Liu X, Zhang W, Cheng R, Zhang S, Qian X, Huang C. Affected inflammation-related signaling pathways in snake envenomation: A recent insight. Toxicon 2023; 234:107288. [PMID: 37703930 DOI: 10.1016/j.toxicon.2023.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Snake envenomation is well known to cause grievous pathological signs, including haemorrhagic discharge, necrosis, and respiratory distress. However, inflammatory reactions are also common envenoming manifestations that lead to successive damage, such as oedema, ulceration, lymphadenectasis, systemic inflammatory response syndrome (SIRS) and even multiple organ dysfunction syndrome (MODS). Interference with the inflammatory burst is hence important in the clinical treatment of snake envenomation. Here, we summarize the typical snake toxins (or venoms) that cause inflammatory reactions and the underlying signaling pathways. In brief, inflammatory reactions are usually triggered by snake venom phospholipase A2 (svPLA2), snake venom metalloprotease (SVMP), snake venom serine protease (SVSP) and C-type lectin/snaclec (CTL) as well as disintegrin (DIS) via multiple signaling pathways. They are nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3), nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), janus kinase/signal transducer and activator of transcription (JAK-STAT) and phosphoinositide 3-Kinase/protein kinase B (PI3K/PKB also called PI3K-AKT) signaling pathways. Activation of these pathways promotes the expression of pro-inflammatory molecules such as cytokines, especially interleukin-1β (IL-1β) which causes further inflammatory cascades and manifestations, such as swelling, fever, pain, and severe complications. Remarkably, almost half of introduced snake toxins (or venoms) have anti-inflammatory effects through blocking these pathways and suppressing the expression of pro-inflammatory molecules. Investigation of affected inflammation-related signaling pathways is meaningful to achieve better clinical treatment.
Collapse
Affiliation(s)
- Peiyi Luo
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Yuxin Ji
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Xiaohan Liu
- Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| | - Weiyun Zhang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Ruoxi Cheng
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Shuxian Zhang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Xiao Qian
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| |
Collapse
|
10
|
Liao T, Gan M, Qiu Y, Lei Y, Chen Q, Wang X, Yang Y, Chen L, Zhao Y, Niu L, Wang Y, Zhang S, Zhu L, Shen L. miRNAs derived from cobra venom exosomes contribute to the cobra envenomation. J Nanobiotechnology 2023; 21:356. [PMID: 37777744 PMCID: PMC10544165 DOI: 10.1186/s12951-023-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Currently, there is an increasing amount of evidence indicating that exosomes and the miRNAs they contain are crucial players in various biological processes. However, the role of exosomes and miRNAs in snake venom during the envenomation process remains largely unknown. In this study, fresh venom from Naja atra of different ages (2-month-old, 1-year-old, and 5-year-old) was collected, and exosomes were isolated through ultracentrifugation. The study found that exosomes with inactivated proteins and enzymes can still cause symptoms similar to cobra envenomation, indicating that substances other than proteins and enzymes in exosomes may also play an essential role in cobra envenomation. Furthermore, the expression profiles of isolated exosome miRNAs were analyzed. The study showed that a large number of miRNAs were co-expressed and abundant in cobra venom exosomes (CV-exosomes) of different ages, including miR-2904, which had high expression abundance and specific sequences. The specific miR-2094 derived from CV-exosomes (CV-exo-miR-2904) was overexpressed both in vitro and in vivo. As a result, CV-exo-miR-2904 induced symptoms similar to cobra envenomation in mice and caused liver damage, demonstrating that it plays a crucial role in cobra envenomation. These results reveal that CV-exosomes and the miRNAs they contain play a significant regulatory role in cobra envenomation. Our findings provide new insights for the treatment of cobra bites and the development of snake venom-based medicines.
Collapse
Affiliation(s)
- Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yanhao Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yuhang Lei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiuyang Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xingyu Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yiting Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
11
|
Nielsen VG. Novel Toxicodynamic Model of Subcutaneous Envenomation to Characterize Snake Venom Coagulopathies and Assess the Efficacy of Site-Directed Inorganic Antivenoms. Int J Mol Sci 2023; 24:13939. [PMID: 37762243 PMCID: PMC10530349 DOI: 10.3390/ijms241813939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Venomous snake bite adversely affects millions of people yearly, but few animal models allow for the determination of toxicodynamic timelines with hemotoxic venoms to characterize the onset and severity of coagulopathy or assess novel, site-directed antivenom strategies. Thus, the goals of this investigation were to create a rabbit model of subcutaneous envenomation to assess venom toxicodynamics and efficacy of ruthenium-based antivenom administration. New Zealand White rabbits were sedated with midazolam via the ear vein and had viscoelastic measurements of whole blood and/or plasmatic coagulation kinetics obtained from ear artery samples. Venoms derived from Crotalus scutulatus scutulatus, Bothrops moojeni, or Calloselasma rhodostoma were injected subcutaneously, and changes in coagulation were determined over three hours and compared to samples obtained prior to envenomation. Other rabbits had ruthenium-based antivenoms injected five minutes after venom injection. Viscoelastic analyses demonstrated diverse toxicodynamic patterns of coagulopathy consistent with the molecular composition of the proteomes of the venoms tested. The antivenoms tested attenuated venom-mediated coagulopathy. A novel rabbit model can be used to characterize the onset and severity of envenomation by diverse proteomes and to assess site-directed antivenoms. Future investigation is planned involving other medically important venoms and antivenom development.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
12
|
Gilliam LL, Gilliam J, Samuel SP, Carter RW, Ritchey J, Bulfone T, Gutiérrez JM, Williams DJ, Durkin DM, Stephens SI, Lewin MR. Oral and IV Varespladib Rescue Experiments in Juvenile Pigs with Weakness Induced by Australian and Papuan Oxyuranus scutellatus Venoms. Toxins (Basel) 2023; 15:557. [PMID: 37755983 PMCID: PMC10537020 DOI: 10.3390/toxins15090557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Antivenom is currently the standard-of-care treatment for snakebite envenoming, but its efficacy is limited by treatment delays, availability, and in many cases, species specificity. Many of the rapidly lethal effects of envenoming are caused by venom-derived toxins, such as phospholipase A2 (sPLA2); therefore, small molecule direct toxin inhibitors targeting these toxins may have utility as initial and adjunct therapies after envenoming. Varespladib (intravenous, IV) and varespladib-methyl (oral) have been shown to potently inhibit sPLA2s from snake venoms in murine and porcine models, thus supporting their further study as potential treatments for snakebite envenoming. In this pilot study, we tested the ability of these compounds to reverse neurotoxic effects of venom from the Australian and Papuan taipan (Oxyuranus scutellatus) subspecies in juvenile pigs (Sus domesticus). The mean survival time for control animals receiving Australian taipan venom (0.03 mg/kg, n = 3) was 331 min ± 15 min; for those receiving Papuan taipan venom (0.15 mg/kg, n = 3) it was 178 ± 31 min. Thirteen pigs received Australian taipan venom and treatment with either IV or oral varespladib (or with IV to oral transition) and all 13 survived the duration of the study (≥96 h). Eight pigs received Papuan taipan venom followed by treatment: Briefly: Two animals received antivenom immediately and survived to the end of the study. Two animals received antivenom treatment delayed 45 min from envenoming and died within 4 h. Two animals received similarly delayed antivenom treatment and were rescued by varespladib. Two animals were treated with varespladib alone after a 45-min delay. Treatment with varespladib only was effective but required repeat dosing over the course of the study. Findings highlight both the importance of early treatment and, as well, a half-life for the investigational inhibitors now in Phase II clinical trials for snakebite. Varespladib rapidly reversed weakness even when administered many hours post-envenoming and, overall, our results suggest that varespladib and varespladib-methyl could be efficacious tools in the treatment of sPLA2-induced weakness from Oxyuranus envenoming. Further clinical study as initial therapy and as potential method of rescue from some types of antivenom-resistant envenomings are supported by these data.
Collapse
Affiliation(s)
- Lyndi L. Gilliam
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (L.L.G.); (J.G.); (J.R.)
| | - John Gilliam
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (L.L.G.); (J.G.); (J.R.)
| | - Stephen P. Samuel
- Division of Research Ophirex, Inc., Corte Madera, CA 94925, USA; (S.P.S.); (R.W.C.); (S.I.S.)
| | - Rebecca W. Carter
- Division of Research Ophirex, Inc., Corte Madera, CA 94925, USA; (S.P.S.); (R.W.C.); (S.I.S.)
| | - Jerry Ritchey
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (L.L.G.); (J.G.); (J.R.)
| | - Tommaso Bulfone
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA; (T.B.)
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - David J. Williams
- Regulation and Prequalification Department (RPQ) at the World Health Organization (WHO), 1211 Geneva, Switzerland;
| | - Daniela M. Durkin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA; (T.B.)
| | - Sally I. Stephens
- Division of Research Ophirex, Inc., Corte Madera, CA 94925, USA; (S.P.S.); (R.W.C.); (S.I.S.)
| | - Matthew R. Lewin
- Division of Research Ophirex, Inc., Corte Madera, CA 94925, USA; (S.P.S.); (R.W.C.); (S.I.S.)
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA; (T.B.)
| |
Collapse
|
13
|
Cavalcante JS, de Almeida DEG, Santos-Filho NA, Sartim MA, de Almeida Baldo A, Brasileiro L, Albuquerque PL, Oliveira SS, Sachett JAG, Monteiro WM, Ferreira RS. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int J Mol Sci 2023; 24:11508. [PMID: 37511277 PMCID: PMC10380640 DOI: 10.3390/ijms241411508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Denis Emanuel Garcia de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Norival A Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP-Univ Estadual Paulista), Araraquara 14800-900, São Paulo, Brazil
| | - Marco Aurélio Sartim
- Laboratory of Bioprospection, University Nilton Lins, Manaus 69058-030, Amazonas, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Amanda de Almeida Baldo
- Institute of Biosciences, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Lisele Brasileiro
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Polianna L Albuquerque
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza 60025-061, Ceará, Brazil
- Faculty of Medicine, University of Fortaleza, Fortaleza 60430-140, Ceará, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-001, Amazonas, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu 18610-307, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| |
Collapse
|
14
|
Reyes A, Hatcher JD, Salazar E, Galan J, Iliuk A, Sanchez EE, Suntravat M. Proteomic Profiling of Extracellular Vesicles Isolated from Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP). Toxins (Basel) 2023; 15:434. [PMID: 37505703 PMCID: PMC10467150 DOI: 10.3390/toxins15070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Increased vascular permeability is a frequent outcome of viperid snakebite envenomation, leading to local and systemic complications. We reported that snake venom cysteine-rich secretory proteins (svCRiSPs) from North American pit vipers increase vascular permeability both in vitro and in vivo. They also induce acute activation of several adhesion and signaling molecules that may play a critical role in the pathophysiology of snakebites. Extracellular vesicles (EVs) have gained interest for their diverse functions in intercellular communication, regulating cellular processes, blood-endothelium interactions, vascular permeability, and immune modulation. They also hold potential as valuable biomarkers for diagnosing, predicting, and monitoring therapeutic responses in different diseases. This study aimed to identify proteins in peritoneal exudate and plasma EVs isolated from BALB/c mice following a 30 min post-injection of Crotalus scutulatus scutulatus venom and its purified CRiSP (Css-CRiSP). EVs were isolated from these biofluids using the EVtrap method. Proteomic analysis of exudate- and plasma-derived EVs was performed using LC-MS/MS. We observed significant upregulation or downregulation of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. These findings suggest that svCRiSPs play a crucial role in the acute effects of venom and contribute to the local and systemic toxicity of snakebites.
Collapse
Affiliation(s)
- Armando Reyes
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Joseph D. Hatcher
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Jacob Galan
- Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA;
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN 47906, USA;
| | - Elda E. Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| |
Collapse
|
15
|
Khochare S, Senji Laxme RR, Jaikumar P, Kaur N, Attarde S, Martin G, Sunagar K. Fangs in the Ghats: Preclinical Insights into the Medical Importance of Pit Vipers from the Western Ghats. Int J Mol Sci 2023; 24:ijms24119516. [PMID: 37298463 DOI: 10.3390/ijms24119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 06/12/2023] Open
Abstract
The socioeconomic impact of snakebites in India is largely attributed to a subset of snake species commonly known as the 'big four'. However, envenoming by a range of other clinically important yet neglected snakes, a.k.a. the 'neglected many', also adds to this burden. The current approach of treating bites from these snakes with the 'big four' polyvalent antivenom is ineffective. While the medical significance of various species of cobras, saw-scaled vipers, and kraits is well-established, the clinical impact of pit vipers from regions such as the Western Ghats, northeastern India, and the Andaman and Nicobar Islands remains poorly understood. Amongst the many species of snakes found in the Western Ghats, the hump-nosed (Hypnale hypnale), Malabar (Craspedocephalus malabaricus), and bamboo (Craspedocephalus gramineus) pit vipers can potentially inflict severe envenoming. To evaluate the severity of toxicity inflicted by these snakes, we characterised their venom composition, biochemical and pharmacological activities, and toxicity- and morbidity-inducing potentials, including their ability to damage kidneys. Our findings highlight the therapeutic inadequacies of the Indian and Sri Lankan polyvalent antivenoms in neutralising the local and systemic toxicity resulting from pit viper envenomings.
Collapse
Affiliation(s)
- Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - R R Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Priyanka Jaikumar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Navneet Kaur
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Saurabh Attarde
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Gerard Martin
- The Liana Trust, Survey #1418/1419, Rathnapuri, Hunsur 571189, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Bickler PE, Abouyannis M, Bhalla A, Lewin MR. Neuromuscular Weakness and Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for Clinical Assessment. Toxins (Basel) 2023; 15:49. [PMID: 36668869 PMCID: PMC9861841 DOI: 10.3390/toxins15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Respiratory and airway-protective muscle weakness caused by the blockade of neuromuscular transmission is a major cause of early mortality from snakebite envenoming (SBE). Once weakness is manifest, antivenom appears to be of limited effectiveness in improving neuromuscular function. Herein, we review the topic of venom-induced neuromuscular blockade and consider the utility of adopting clinical management methods originally developed for the safe use of neuromuscular blocking agents by anesthesiologists in operating rooms and critical care units. Failure to quantify neuromuscular weakness in SBE is predicted to cause the same significant morbidity that is associated with failure to do so in the context of using a clinical neuromuscular block in surgery and critical care. The quantitative monitoring of a neuromuscular block, and an understanding of its neurophysiological characteristics, enables an objective measurement of weakness that may otherwise be overlooked by traditional clinical examination at the bedside. This is important for the initial assessment and the monitoring of recovery from neurotoxic envenoming. Adopting these methods will also be critical to the conduct of future clinical trials of toxin-inhibiting drugs and antivenoms being tested for the reversal of venom-induced neuromuscular block.
Collapse
Affiliation(s)
- Philip E. Bickler
- Center for Exploration and Travel Health, California Academy of Science, San Francisco, CA 94118, USA
- Anesthesia and Perioperative Care, University of California at San Francisco, 513 Parnassus Ave, Medical Science Room S-257, San Francisco, CA 94143-0542, USA
| | - Michael Abouyannis
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ashish Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Matthew R. Lewin
- Center for Exploration and Travel Health, California Academy of Science, San Francisco, CA 94118, USA
- Ophirex, Inc., Corte Madera, CA 94925, USA
| |
Collapse
|
17
|
Carter RW, Gerardo CJ, Samuel SP, Kumar S, Kotehal SD, Mukherjee PP, Shirazi FM, Akpunonu PD, Bammigatti C, Bhalla A, Manikath N, Platts-Mills TF, Lewin MR. The BRAVO Clinical Study Protocol: Oral Varespladib for Inhibition of Secretory Phospholipase A2 in the Treatment of Snakebite Envenoming. Toxins (Basel) 2022; 15:22. [PMID: 36668842 PMCID: PMC9862656 DOI: 10.3390/toxins15010022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Snakebite is an urgent, unmet global medical need causing significant morbidity and mortality worldwide. Varespladib is a potent inhibitor of venom secretory phospholipase A2 (sPLA2) that can be administered orally via its prodrug, varespladib-methyl. Extensive preclinical data support clinical evaluation of varespladib as a treatment for snakebite envenoming (SBE). The protocol reported here was designed to evaluate varespladib-methyl for SBE from any snake species in multiple geographies. METHODS AND ANALYSIS BRAVO (Broad-spectrum Rapid Antidote: Varespladib Oral for snakebite) is a multicenter, randomized, double-blind, placebo-controlled, phase 2 study to evaluate the safety, tolerability, and efficacy of oral varespladib-methyl plus standard of care (SoC) vs. SoC plus placebo in patients presenting with acute SBE by any venomous snake species. Male and female patients 5 years of age and older who meet eligibility criteria will be randomly assigned 1:1 to varespladib-methyl or placebo. The primary outcome is the Snakebite Severity Score (SSS) that has been modified for international use. This composite outcome is based on the sum of the pulmonary, cardiovascular, nervous, hematologic, and renal systems components of the updated SSS. ETHICS AND DISSEMINATION This protocol was submitted to regulatory authorities in India and the US. A Clinical Trial No Objection Certificate from the India Central Drugs Standard Control Organisation, Drug Controller General-India, and a Notice to Proceed from the US Food and Drug Administration have been obtained. The study protocol was approved by properly constituted, valid institutional review boards or ethics committees at each study site. This study is being conducted in compliance with the April 1996 ICH Guidance for Industry GCP E6, the Integrated Addendum to ICH E6 (R2) of November 2016, and the applicable regulations of the country in which the study is conducted. The trial is registered on Clinical trials.gov, NCT#04996264 and Clinical Trials Registry-India, 2021/07/045079 000062.
Collapse
Affiliation(s)
| | - Charles J. Gerardo
- Department of Emergency Medicine, Duke University, Durham, NC 27708, USA
| | | | - Surendra Kumar
- Department of Medicine, Sardar Patel Medical College, PBM Hospital, Bikaner 334001, India
| | - Suneetha D. Kotehal
- Department of Medicine, Mysore Medical College and Research Institute, Mysore 570001, India
| | - Partha P. Mukherjee
- Department of General Medicine, Calcutta National Medical College, Kolkata 700014, India
| | - Farshad M. Shirazi
- Arizona Poison & Drug Information Center, College of Pharmacy and University of Arizona College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Peter D. Akpunonu
- Department of Emergency Medicine and Medical Toxicology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Chanaveerappa Bammigatti
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Ashish Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Neeraj Manikath
- Department of Emergency Medicine, Government Medical College, Kozhikode 673008, India
| | | | | |
Collapse
|
18
|
Lian Q, Zhong L, Fu K, Ji Y, Zhang X, Liu C, Huang C. Hepatic inhibitors expression profiling of venom-challenged Sinonatrix annularis and antidotal activities. Biomed Pharmacother 2022; 156:113900. [DOI: 10.1016/j.biopha.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
19
|
Resiere D, Mehdaoui H, Neviere R. Inflammation and Oxidative Stress in Snakebite Envenomation: A Brief Descriptive Review and Clinical Implications. Toxins (Basel) 2022; 14:toxins14110802. [PMID: 36422976 PMCID: PMC9694585 DOI: 10.3390/toxins14110802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Snakebite envenoming is a pathological condition which may occur in response to the injection of venom. Snake venoms contain a complex mixture of biologically active molecules which are responsible for a broad spectrum of clinical manifestations, ranging from local tissue injuries to fatal complications. Snake venom administration commonly provokes local tissue injury often associated with systemic effects, including neurotoxic and cardiotoxic manifestations, bleeding, acute kidney injury, and rhabdomyolysis. An important spectrum of pathogenesis of snake envenomation is the generation of reactive oxygen species (ROS), which can directly provoke tissue damage and also potentiate the deleterious consequences of inflammation at the bite site. Snake venom components known to induce oxidative stress include phospholipases A2, metalloproteinases, three-finger toxins, and L-amino acid oxidase. Clear evidence is mounting suggesting that inflammation and oxidative stress participate in the destructive effects of envenoming, including acute renal failure, tissue necrosis, and unusual susceptibility to bleed (hemorrhage), mostly due to hypocoagulability, neuro/cardio toxicity, and myonecrosis. Impaired regulation of oxidative stress may also set the stage for secondary/long-term complications of snakebite envenomation such as musculoskeletal disabilities. Some aspects of natural antioxidant therapeutic options are discussed in this review.
Collapse
Affiliation(s)
- Dabor Resiere
- Cardiovascular Research Team EA7525, University of the French West Indies, 97157 Fort de France, France
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Hossein Mehdaoui
- Cardiovascular Research Team EA7525, University of the French West Indies, 97157 Fort de France, France
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Remi Neviere
- Cardiovascular Research Team EA7525, University of the French West Indies, 97157 Fort de France, France
- Correspondence:
| |
Collapse
|
20
|
Lewin MR, Carter RW, Matteo IA, Samuel SP, Rao S, Fry BG, Bickler PE. Varespladib in the Treatment of Snakebite Envenoming: Development History and Preclinical Evidence Supporting Advancement to Clinical Trials in Patients Bitten by Venomous Snakes. Toxins (Basel) 2022; 14:783. [PMID: 36422958 PMCID: PMC9695340 DOI: 10.3390/toxins14110783] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
The availability of effective, reliably accessible, and affordable treatments for snakebite envenoming is a critical and long unmet medical need. Recently, small, synthetic toxin-specific inhibitors with oral bioavailability used in conjunction with antivenom have been identified as having the potential to greatly improve outcomes after snakebite. Varespladib, a small, synthetic molecule that broadly and potently inhibits secreted phospholipase A2 (sPLA2s) venom toxins has renewed interest in this class of inhibitors due to its potential utility in the treatment of snakebite envenoming. The development of varespladib and its oral dosage form, varespladib-methyl, has been accelerated by previous clinical development campaigns to treat non-envenoming conditions related to ulcerative colitis, rheumatoid arthritis, asthma, sepsis, and acute coronary syndrome. To date, twenty-nine clinical studies evaluating the safety, pharmacokinetics (PK), and efficacy of varespladib for non-snakebite envenoming conditions have been completed in more than 4600 human subjects, and the drugs were generally well-tolerated and considered safe for use in humans. Since 2016, more than 30 publications describing the structure, function, and efficacy of varespladib have directly addressed its potential for the treatment of snakebite. This review summarizes preclinical findings and outlines the scientific support, the potential limitations, and the next steps in the development of varespladib's use as a snakebite treatment, which is now in Phase 2 human clinical trials in the United States and India.
Collapse
Affiliation(s)
- Matthew R. Lewin
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Isabel A. Matteo
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Sunita Rao
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip E. Bickler
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Wase N, Gutiérrez JM, Rucavado A, Fox JW. Longitudinal Metabolomics and Lipidomics Analyses Reveal Alterations Associated with Envenoming by Bothrops asper and Daboia russelii in an Experimental Murine Model. Toxins (Basel) 2022; 14:657. [PMID: 36287926 PMCID: PMC9610966 DOI: 10.3390/toxins14100657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/26/2023] Open
Abstract
Longitudinal metabolomics and lipidomics analyses were carried out on the blood plasma of mice injected intramuscularly with venoms of the viperid species Bothrops asper or Daboia russelii. Blood samples were collected 1, 3, 6, and 24 h after venom injection, and a control group of non-envenomed mice was included. Significant perturbations in metabolomics and lipidomics were observed at 1, 3, and 6 h, while values returned close to those of control mice by 24 h, hence reflecting a transient pattern of metabolic disturbance. Both venoms induced significant changes in amino acids, as well as in several purines and pyrimidines, and in some metabolites of the tricarboxylic acid cycle. KEGG analysis of metabolic pathways that showed those with the greatest change included aminoacyl tRNA synthesis and amino acid biosynthesis and metabolism pathways. With regard to lipid metabolism, there was an increase in triglycerides and some acyl carnitines and a concomitant drop in the levels of some phospholipids. In addition, envenomed mice had higher levels of cortisol, heme, and some oxidative stress markers. The overall pattern of metabolic changes in envenomed mice bears similarities with the patterns described in several traumatic injuries, thus underscoring a metabolic response/adaptation to the injurious action of the venoms.
Collapse
Affiliation(s)
- Nishikant Wase
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
22
|
Experimental Bothrops atrox Envenomation: Blood Plasma Proteome Effects after Local Tissue Damage and Perspectives on Thromboinflammation. Toxins (Basel) 2022; 14:toxins14090613. [PMID: 36136550 PMCID: PMC9503785 DOI: 10.3390/toxins14090613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023] Open
Abstract
The clinical manifestations of Bothrops atrox envenoming involve local and systemic changes, among which edema requires substantial attention due to its ability to progress to compartmental syndromes and sometimes cause tissue loss and amputations. However, the impact of edema on the poisoned body’s system has not been explored. Thus, the present study aimed to explore the systemic pathological and inflammatory events that are altered by intraplantar injection of B. atrox venom in a mouse model through hematologic, lipidic, and shotgun proteomics analysis. Plasma samples collected showed a greater abundance of proteins related to complement, coagulation, lipid system, platelet and neutrophil degranulation, and pathways related to cell death and ischemic tolerance. Interestingly, some proteins, in particular, Prdx2 (peroxiredoxin 2), Hba (hemoglobin subunit alpha), and F9 (Factor IX), increased according to the amount of venom injected. Our findings support that B. atrox venom activates multiple blood systems that are involved in thromboinflammation, an observation that may have implications for the pathophysiological progression of envenomations. Furthermore, we report for the first time a potential role of Prdx2, Hba, and F9 as potential markers of the severity of edema/inflammation in mice caused by B. atrox.
Collapse
|
23
|
Rodríguez-Vargas A, Vega N, Reyes-Montaño E, Corzo G, Neri-Castro E, Clement H, Ruiz-Gómez F. Intraspecific Differences in the Venom of Crotalus durissus cumanensis from Colombia. Toxins (Basel) 2022; 14:toxins14080532. [PMID: 36006194 PMCID: PMC9416679 DOI: 10.3390/toxins14080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Biochemical and biological differences in the venom of Crotalus durissus cumanensis from three ecoregions of Colombia were evaluated. Rattlesnakes were collected from the geographic areas of Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR). All three regionally distributed venoms contain proteases, PLA2s and the basic subunit of crotoxin. However, only crotamine was detected in the CA venom. The highest lethality, coagulant, phospholipase A2 and hyaluronidase activities were found in the MM venom. Also, some differences, observed by western blot and immunoaffinity, were found in all three venoms when using commercial antivenoms. Furthermore, all three eco-regional venoms showed intraspecific variability, considering the differences in the abundance and intensity of their components, in addition to the activity and response to commercial antivenoms.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
- Correspondence:
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| |
Collapse
|
24
|
Senthilkumaran S, Miller SW, Williams HF, Savania R, Thirumalaikolundusubramanian P, Patel K, Vaiyapuri S. Development of Wunderlich syndrome following a Russell's viper bite. Toxicon 2022; 215:11-16. [PMID: 35691405 DOI: 10.1016/j.toxicon.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022]
Abstract
Snakebite envenomation is a high priority neglected tropical disease that predominantly affects rural communities living in developing countries. Due to myriad of complications including coagulopathies, neurotoxicity, nephrotoxicity and local tissue destruction, treating snakebite victims is a major challenge for clinicians. Russell's viper (Daboia russelii) is one of the 'Big Four' venomous snakes in India, and it is responsible for the most snakebite-induced deaths and disabilities. Acute kidney injury occurs frequently following Russell's viper bites and it is a critical factor contributing to disabilities, deaths and excessive treatment costs. In addition to commonly observed envenomation effects, Russell's viper bites induce some rare complications such as priapism, sialolithiasis and splenic rupture. Here, we report a case of Wunderlich syndrome that developed in a 22-year-old male following a Russell's viper bite. The patient displayed severe coagulopathies, abdominal tenderness, and hypotension. Notably, a peri-nephric haematoma was identified through ultrasound and computerised tomographic imaging. The haemorrhage was successfully treated using angioembolisation, and the patient recovered without any difficulties. Although a clinical condition such as this is rare, it is important to create awareness among treating clinicians about its occurrence, diagnosis and clinical management.
Collapse
Affiliation(s)
| | - Stephen W Miller
- The Poison Control Center, Children's Hospital of Philadelphia, USA
| | | | | | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
25
|
Silva MCS, Pereira SS, Gouveia MP, Luiz MB, Sousa RMO, Kayano AM, Francisco AF, Prado NDR, Dill LSM, Fontes MRM, Zanchi FB, Stabeli RG, Soares AM, Zuliani JP, Fernandes CFC. Anti-Metalloprotease P-I Single-Domain Antibodies: Tools for Next-Generation Snakebite Antivenoms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2748962. [PMID: 35909472 PMCID: PMC9325618 DOI: 10.1155/2022/2748962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
In order to address the global antivenom crisis, novel antivenoms need to present high therapeutic efficacy, broad neutralization ability against systemic and local damage, sufficient safety, and cost-effectiveness. Due to biological characteristics of camelid single-domain antibodies (VHH) such as high affinity, their ability to penetrate dense tissues, and facility for genetic manipulation, their application in antivenoms has expanded considerably. VHHs that are active against the metalloprotease BjussuMP-II from the snake Bothrops jararacussu were selected. After isolation of BjussuMP-II, a camelid was immunized with the purified toxin in order to construct the recombinant phage library. Following a round of biopanning, 52% of the selected clones were able to recognize BjussuMP-II in an ELISA assay. After sequencing, seven sequence profiles were identified. One selected clone (VHH61) showed cross-reactivity to B. brazili venom, but did not recognize the Crotalus and Lachesis genera, indicating specificity for the Bothrops genus. Through in vitro tests, the capacity to neutralize the toxicity triggered by BjussuMP-II was observed. Circular dichroism spectroscopy indicated a robust secondary structure for VHH61, and the calculated melting temperature (T M) for the clone was 56.4°C. In silico analysis, through molecular docking of anti-BjussuMP-II VHHs with metalloprotease, revealed their potential interaction with amino acids present in regions critical for the toxin's conformation and stability. The findings suggest that anti-BjussuMP-II VHHs may be beneficial in the development of next-generation antivenoms.
Collapse
Affiliation(s)
- Marcela C. S. Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Centro de Pesquisa em Medicina Tropical, Porto Velho, 76812-329 Rondônia, Brazil
| | - Soraya S. Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marilia P. Gouveia
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marcos B. Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Rosa M. O. Sousa
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Anderson M. Kayano
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Aleff F. Francisco
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, UNESP, Botucatu, 18618-689 São Paulo, Brazil
| | - Nidiane D. R. Prado
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Leandro S. M. Dill
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marcos R. M. Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, UNESP, Botucatu, 18618-689 São Paulo, Brazil
| | - Fernando B. Zanchi
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Rodrigo G. Stabeli
- Plataforma Bi-Institucional Fiocruz-USP, Ribeirão Preto, 14040-030 São Paulo, Brazil
| | - Andreimar M. Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Brazil
| | - Juliana P. Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho, 76801-974 Rondônia, Brazil
| | | |
Collapse
|
26
|
Cano-Sanchez M, Ben-Hassen K, Louis OP, Dantin F, Gueye P, Roques F, Mehdaoui H, Resiere D, Neviere R. Bothrops lanceolatus snake venom impairs mitochondrial respiration and induces DNA release in human heart preparation. PLoS Negl Trop Dis 2022; 16:e0010523. [PMID: 35727836 PMCID: PMC9249236 DOI: 10.1371/journal.pntd.0010523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Envenomations by Bothrops snakebites can induce overwhelming systemic inflammation ultimately leading to multiple organ system failure and death. Release of damage-associated molecular pattern molecules (DAMPs), in particular of mitochondrial origin, has been implicated in the pathophysiology of the deregulated innate immune response. Objective To test whether whole Bothrops lanceolatus venom would induce mitochondrial dysfunction and DAMPs release in human heart preparations. Methods Human atrial trabeculae were obtained during cannulation for cardiopulmonary bypass from patients who were undergoing routine coronary artery bypass surgery. Cardiac fibers were incubated with vehicle and whole Bothrops lanceolatus venom for 24hr before high-resolution respirometry, mitochondrial membrane permeability evaluation and quantification of mitochondrial DNA. Results Compared with vehicle, incubation of human cardiac muscle with whole Bothrops lanceolatus venom for 24hr impaired respiratory control ratio and mitochondrial membrane permeability. Levels of mitochondrial DNA increased in the medium of cardiac cell preparation incubated with venom of Bothrops lanceolatus. Conclusion Our study suggests that whole venom of Bothrops lanceolatus impairs mitochondrial oxidative phosphorylation capacity and increases mitochondrial membrane permeability. Cardiac mitochondrial dysfunction associated with mitochondrial DAMPs release may alter myocardium function and engage the innate immune response, which may both participate to the cardiotoxicity occurring in patients with severe envenomation. Despite initial symptomatic management and adequate antivenin strategy, highly venomous Bothrops snakebites frequently induce overwhelming inflammation leading to multiple organ system failure and death. We state that recognition of venom-associated molecular patterns and cellular damage-associated molecular pattern molecules (DAMPs) by pattern-recognition receptors will engage inflammation and cell-mediated immune response. Due to endosymbiotic bacterial origin of mitochondria, mitochondrial DAMPs released from injured envenomed tissues are recognized as danger signals and exacerbate the innate inflammatory host response. Hence, mitochondrial DAMPs will engage a vicious circle, which deregulates inflammation via aberrant mitochondrial signaling, impaired mitophagy and disruption of mitochondrial dynamics. Delineating critical factors that elicit mtDAMPs release will generate hypothesis for new treatments.
Collapse
Affiliation(s)
- Mariola Cano-Sanchez
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), Fort de France, France
| | - Kais Ben-Hassen
- Department of Cardiovascular Surgery, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - Olivier Pierre Louis
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), Fort de France, France
| | - Fabienne Dantin
- Department of Biology, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - Papa Gueye
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - Francois Roques
- Department of Cardiovascular Surgery, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - Hossein Mehdaoui
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - Dabor Resiere
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - Remi Neviere
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), Fort de France, France
- * E-mail:
| |
Collapse
|
27
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
28
|
Senthilkumaran S, Miller SW, Williams HF, Vaiyapuri R, Savania R, Elangovan N, Thirumalaikolundusubramanian P, Patel K, Vaiyapuri S. Ultrasound-Guided Compression Method Effectively Counteracts Russell's Viper Bite-Induced Pseudoaneurysm. Toxins (Basel) 2022; 14:260. [PMID: 35448869 PMCID: PMC9032084 DOI: 10.3390/toxins14040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Russell's viper (Daboia russelii), one of the 'Big Four' venomous snakes in India, is responsible for the majority of snakebite-induced deaths and permanent disabilities. Russell's viper bites are known to induce bleeding/clotting abnormalities, as well as myotoxic, nephrotoxic, cytotoxic and neurotoxic envenomation effects. In addition, they have been reported to induce rare envenomation effects such as priapism, sialolithiasis and splenic rupture. However, Russell's viper bite-induced pseudoaneurysm (PA) has not been previously reported. PA or false aneurysm is a rare phenomenon that occurs in arteries following traumatic injuries including some animal bites, and it can become a life-threatening condition if not treated promptly. Here, we document two clinical cases of Russell's viper bites where PA has developed, despite antivenom treatment. Notably, a non-surgical procedure, ultrasound-guided compression (USGC), either alone, or in combination with thrombin was effectively used in both the cases to treat the PA. Following this procedure and additional measures, the patients made complete recoveries without the recurrence of PA which were confirmed by subsequent examination and ultrasound scans. These data demonstrate the development of PA as a rare complication following Russell's viper bites and the effective use of a simple, non-surgical procedure, USGC for the successful treatment of PA. These results will create awareness among healthcare professionals on the development of PA and the use of USGC in snakebite victims following bites from Russell's vipers, as well as other viper bites.
Collapse
Affiliation(s)
| | - Stephen W. Miller
- The Poison Control Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Harry F. Williams
- Research and Development Department, Toxiven Biotech Private Limited, Coimbatore 641042, India; (H.F.W.); (R.V.)
| | - Rajendran Vaiyapuri
- Research and Development Department, Toxiven Biotech Private Limited, Coimbatore 641042, India; (H.F.W.); (R.V.)
| | - Ravi Savania
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK;
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636011, India;
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | | |
Collapse
|
29
|
Lian Q, Zhang D, Fu K, Liu C, Cao L, Xiong K, Huang C. The molecular basis of venom resistance in the non-venomous snake Sinonatrix annularis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123182. [DOI: 10.1016/j.jchromb.2022.123182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
|
30
|
Cavalcante JDS, de Almeida CAS, Clasen MA, da Silva EL, de Barros LC, Marinho AD, Rossini BC, Marino CL, Carvalho PC, Jorge RJB, Dos Santos LD. A fingerprint of plasma proteome alteration after local tissue damage induced by Bothrops leucurus snake venom in mice. J Proteomics 2022; 253:104464. [PMID: 34954398 DOI: 10.1016/j.jprot.2021.104464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Bothrops spp. is responsible for about 70% of snakebites in Brazil, causing a diverse and complex pathophysiological condition. Bothrops leucurus is the main species of medical relevance found in the Atlantic coast in the Brazilian Northeast region. The pathophysiological effects involved B. leucurus snakebite as well as the organism's reaction in response to this envenoming, it has not been explored yet. Thus, edema was induced in mice paw using 1.2, 2.5, and 5.0 μg of B. leucurus venom, the percentage of edema was measured 30 min after injection and the blood plasma was collected and analyzed by shotgun proteomic strategy. We identified 80 common plasma proteins with differential abundance among the experimental groups and we can understand the early aspects of this snake envenomation, regardless of the suggestive severity of an ophidian accident. The results showed B. leucurus venom triggers a thromboinflammation scenario where family's proteins of the Serpins, Apolipoproteins, Complement factors and Component subunits, Cathepsins, Kinases, Oxidoreductases, Proteases inhibitors, Proteases, Collagens, Growth factors are related to inflammation, complement and coagulation systems, modulators platelets and neutrophils, lipid and retinoid metabolism, oxidative stress and tissue repair. Our findings set precedents for future studies in the area of early diagnosis and/or treatment of snakebites. SIGNIFICANCE: The physiopathological effects that the snake venoms can cause have been investigated through classical and reductionist tools, which allowed, so far, the identification of action mechanisms of individual components associated with specific tissue damage. The currently incomplete limitations of this knowledge must be expanded through new approaches, such as proteomics, which may represent a big leap in understanding the venom-modulated pathological process. The exploration of the complete protein set that suffer modifications by the simultaneous action of multiple toxins, provides a map of the establishment of physiopathological phenotypes, which favors the identification of multiple toxin targets, that may or may not act in synergy, as well as favoring the discovery of biomarkers and therapeutic targets for manifestations that are not neutralized by the antivenom.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Milan Avila Clasen
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Emerson Lucena da Silva
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Luciana Curtolo de Barros
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Aline Diogo Marinho
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Bruno Cesar Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso Luís Marino
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Paulo Costa Carvalho
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil; Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
31
|
Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:143. [PMID: 35187603 PMCID: PMC8858600 DOI: 10.1007/s00018-021-04102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.
Collapse
|
32
|
Korah MC, Hima SP, V SR, Anil A, Harikrishnan VS, Krishnan LK. Pharmacokinetics and pharmacodynamics of avian egg-yolk derived pure anti-snake venom in healthy and disease animal-model. J Pharm Sci 2022; 111:1565-1576. [DOI: 10.1016/j.xphs.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
33
|
Moreira V, Leiguez E, Janovits PM, Maia-Marques R, Fernandes CM, Teixeira C. Inflammatory Effects of Bothrops Phospholipases A 2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins (Basel) 2021; 13:toxins13120868. [PMID: 34941706 PMCID: PMC8709003 DOI: 10.3390/toxins13120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Rodrigo Maia-Marques
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
- Correspondence:
| |
Collapse
|
34
|
Sarkar S, Sinha R, Chaudhury AR, Maduwage K, Abeyagunawardena A, Bose N, Pradhan S, Bresolin NL, Garcia BA, McCulloch M. Snake bite associated with acute kidney injury. Pediatr Nephrol 2021; 36:3829-3840. [PMID: 33559706 DOI: 10.1007/s00467-020-04911-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
Acute kidney injury (AKI) is a well-known life-threatening systemic effect of snake envenomation which commonly happens secondary to snake bites from families of Viperidae and Elapidae. Enzymatic toxins in snake venom result in injuries to all kidney cell types including glomerular, tubulo-interstitial and kidney vasculature. Pathogenesis of kidney injury due to snake envenomation includes ischaemia secondary to decreased kidney blood flow caused by systemic bleeding and vascular leakage, proteolytic degradation of the glomerular basement membrane by snake venom metalloproteinases (SVMPs), deposition of microthrombi in the kidney microvasculature (thrombotic microangiopathy), direct cytotoxic action of venom, systemic myotoxicity (rhabdomyolysis) and accumulation of large amounts of myoglobin in kidney tubules. Clinical features of AKI include fatigue, loss of appetite, headache, nausea, vomiting, oliguria and anuria. Monitoring of blood pressure, fluid balance, serum creatinine, blood urea nitrogen and serum electrolytes is useful in managing AKI induced by snake envenomation. Early initiation of anti-snake venom and early diagnosis of AKI are always desirable. Biomarkers which will help in early prediction of AKI are being explored, and current studies suggest that urinary clusterin, urinary neutrophil gelatinase-associated lipocalin, and serum cystatin C may play an important clinical role in the future. Apart from fluid and electrolyte management, kidney support including early and prompt initiation of kidney replacement therapy when indicated forms the bedrock in managing snake bite-associated AKI. Long-term follow-up is important because of chances of progression towards CKD.
Collapse
Affiliation(s)
- Subhankar Sarkar
- Division of Pediatric Nephrology, Institute of Child Health, Kolkata, 11, Dr Biresh Guha Street, Kolkata, West Bengal, 700017, India
| | - Rajiv Sinha
- Division of Pediatric Nephrology, Institute of Child Health, Kolkata, 11, Dr Biresh Guha Street, Kolkata, West Bengal, 700017, India. .,Department of Pediatrics, Apollo Gleneagles Hospital, Kolkata, India.
| | | | - Kalana Maduwage
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Asiri Abeyagunawardena
- Department of Pediatrics, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Niladri Bose
- Department of Pediatrics, Apollo Gleneagles Hospital, Kolkata, India
| | - Subal Pradhan
- Department of Pediatrics, Sardar Vallabhbai Patel Post Graduate Institute of Pediatrics (SVPPGIP), Cuttack, India
| | | | | | - Mignon McCulloch
- Pediatric Renal and Solid Organ Transplant Unit, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
35
|
Gimenes SNC, Sachett JAG, Colombini M, Freitas-de-Sousa LA, Ibiapina HNS, Costa AG, Santana MF, Park JJ, Sherman NE, Ferreira LCL, Wen FH, Monteiro WM, Moura-da-Silva AM, Fox JW. Observation of Bothrops atrox Snake Envenoming Blister Formation from Five Patients: Pathophysiological Insights. Toxins (Basel) 2021; 13:toxins13110800. [PMID: 34822585 PMCID: PMC8618272 DOI: 10.3390/toxins13110800] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
In the Brazilian Amazon, Bothrops atrox snakebites are frequent, and patients develop tissue damage with blisters sometimes observed in the proximity of the wound. Antivenoms do not seem to impact blister formation, raising questions regarding the mechanisms underlying blister formation. Here, we launched a clinical and laboratory-based study including five patients who followed and were treated by the standard clinical protocols. Blister fluids were collected for proteomic analyses and molecular assessment of the presence of venom and antivenom. Although this was a small patient sample, there appeared to be a correlation between the time of blister appearance (shorter) and the amount of venom present in the serum (higher). Of particular interest was the biochemical identification of both venom and antivenom in all blister fluids. From the proteomic analysis of the blister fluids, all were observed to be a rich source of damage-associated molecular patterns (DAMPs), immunomodulators, and matrix metalloproteinase-9 (MMP-9), suggesting that the mechanisms by which blisters are formed includes the toxins very early in envenomation and continue even after antivenom treatment, due to the pro-inflammatory molecules generated by the toxins in the first moments after envenomings, indicating the need for local treatments with anti-inflammatory drugs plus toxin inhibitors to prevent the severity of the wounds.
Collapse
Affiliation(s)
- Sarah N. C. Gimenes
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (S.N.C.G.); (M.C.); (L.A.F.-d.-S.)
| | - Jacqueline A. G. Sachett
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Dermatologia Alfredo da Matta, Manaus 69065-130, AM, Brazil
| | - Mônica Colombini
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (S.N.C.G.); (M.C.); (L.A.F.-d.-S.)
| | - Luciana A. Freitas-de-Sousa
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (S.N.C.G.); (M.C.); (L.A.F.-d.-S.)
| | - Hiochelson N. S. Ibiapina
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
| | - Allyson G. Costa
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Hematologia e Hemoterapia do Amazonas, Manaus 69040-010, AM, Brazil
| | - Monique F. Santana
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
- Departamento de Ensino e Pesquisa, Fundação de Hematologia e Hemoterapia do Amazonas, Manaus 69040-010, AM, Brazil
| | - Jeong-Jin Park
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (J.-J.P.); (N.E.S.)
| | - Nicholas E. Sherman
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (J.-J.P.); (N.E.S.)
| | - Luiz C. L. Ferreira
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
| | - Fan H. Wen
- Núcleo de Produção de Soros, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Wuelton M. Monteiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
| | - Ana M. Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (S.N.C.G.); (M.C.); (L.A.F.-d.-S.)
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
- Correspondence: (A.M.M.-d.-S.); (J.W.F.)
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (J.-J.P.); (N.E.S.)
- Correspondence: (A.M.M.-d.-S.); (J.W.F.)
| |
Collapse
|
36
|
House LM, Lewin MR, Naidu RK, Beqaj H. Complex regional pain syndrome following southern pacific rattlesnake ( C. oreganus helleri) envenoming. Clin Case Rep 2021; 9:e05019. [PMID: 34804529 PMCID: PMC8587178 DOI: 10.1002/ccr3.5019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Complex regional pain syndrome (CRPS) has rarely been reported in the setting of snakebite but might be more common than previously reported. We present the third case of CRPS reported in North America and the first resulting from a pit-viper's bite.
Collapse
Affiliation(s)
- Lawrence McLean House
- University of California San Francisco, Pain Management, Anesthesia & Perioperative CareSan FranciscoCaliforniaUSA
| | - Matthew R Lewin
- Center for Exploration and Travel Health & Ophirex, Inc.California Academy of SciencesSan FranciscoCaliforniaUSA
| | - Ramana K. Naidu
- Marin Health, Medical Director of Pain Management for Marin Health Medical CenterGreenbraeCaliforniaUSA
| | - Halil Beqaj
- Columbia Presbyterian Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
37
|
Maciel FV, Ramos Pinto ÊK, Valério Souza NM, Gonçalves de Abreu TA, Ortolani PL, Fortes-Dias CL, Garrido Cavalcante WL. Varespladib (LY315920) prevents neuromuscular blockage and myotoxicity induced by crotoxin on mouse neuromuscular preparations. Toxicon 2021; 202:40-45. [PMID: 34562493 DOI: 10.1016/j.toxicon.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Varespladib (LY315920) is a synthetic phospholipase A2 (PLA2) inhibitor that has been demonstrating antiophidic potential against snake venoms that present PLA2 neurotoxins. In this study, we evaluate the capacity of Varespladib to inhibit the neuromuscular effects of crotoxin (CTX), the main toxic component of Crotalus durissus terrificus snake venom, and its PLA2 subunit (CB). We performed a myographic study to compare the neuromuscular effects of CTX or CB and the mixture of these substances plus Varespladib in mice phrenic nerve-diaphragm muscle preparations. CTX (5 μg/mL), CB (20 μg/mL), or toxin-inhibitor mixtures pre-incubated with different concentration ratios of Varespladib (1:0.25; 1:0.5; 1:1; w/w) were added to the preparations and maintained throughout the experimentation period. Myotoxicity was assessed by light microscopic analysis of diaphragm muscle after myographic study. CTX and CB blocked the nerve-evoked twitches, and only CTX induced histological alterations in diaphragm muscle. Pre-incubation with Varespladib abolished the muscle-paralyzing activity of CTX and CB, and also the muscle-damaging activity of CTX. These findings emphasize the clinical potential of Varespladib in mitigating the toxic effects of C. d. terrificus snakebites and as a research tool to advance the knowledge of the mechanism of action of snake toxins.
Collapse
Affiliation(s)
- Fernanda Valadares Maciel
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais (UFMG), Brazil
| | - Êmylle Karoline Ramos Pinto
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais (UFMG), Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Local inflammatory mediators alterations induced by Daboia siamensis venom. Toxicon X 2021; 12:100085. [PMID: 34693275 PMCID: PMC8517603 DOI: 10.1016/j.toxcx.2021.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/15/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022] Open
Abstract
The ability of Russell's viper (Daboia siamensis) venom (total RVV) and phospholipase A2 (purified PLA2) to induce the local pathological effects were investigated by the local inflammatory events and the release of inflammatory mediators. Both 0.5 μg of total RVV/mouse and 0.15 μg of purified PLA2/mouse were administered via intra-peritoneal injection. After 30 min, 1 h, 2 h, and 4 h incubation time, the peritoneal cavity was flooded with normal saline and the total leukocytes were collected. The eicosanoids (lipid mediators) and the leukocyte expression of cyclooxygenase (COX-1 and COX-2) were investigated by ELISA assay and western blotting, respectively. The amounts of total leukocytes were increased from 30 min to 2 h, then decreased at 4 h, by both total RVV and purified PLA2. Both treatments also induced the expression of COX-2 which was increased at 2 h and then decreased at 4 h, whereas only purified PLA2 induced the expression level of a COX-1 protein which was increased at 30 min, then constantly expressed until 4 h. In addition, total RVV and purified PLA2 caused the release of the eicosanoids; PGE2, TXB2, and LTB4, which reached the peak after 2 h. The findings of this study indicate that purified PLA2 has the potential effects to induce the local inflammation relating the amounts of leukocytes cells, lipid mediators and COX-2 more than the total RVV. Purified phospholipase A2 or the venom could induce eicosanoids and cyclooxygenase-2 expression relating to leukocytes cells. Thromboxane B2 could be the important mediator induced by Russell's viper venom and purified phospholipase A2. Russell's viper venom and purified phospholipase A2 involved the cyclooxygenase-2 expression, but not cyclooxygenase-1. The purified phospholipase A2 showed more predominant inflammatory response at site than total Russell's viper venom.
Collapse
|
39
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
40
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
41
|
Gerardo CJ, Silvius E, Schobel S, Eppensteiner JC, McGowan LM, Elster EA, Kirk AD, Limkakeng AT. Association of a Network of Immunologic Response and Clinical Features With the Functional Recovery From Crotalinae Snakebite Envenoming. Front Immunol 2021; 12:628113. [PMID: 33790901 PMCID: PMC8006329 DOI: 10.3389/fimmu.2021.628113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 11/26/2022] Open
Abstract
Background The immunologic pathways activated during snakebite envenoming (SBE) are poorly described, and their association with recovery is unclear. The immunologic response in SBE could inform a prognostic model to predict recovery. The purpose of this study was to develop pre- and post-antivenom prognostic models comprised of clinical features and immunologic cytokine data that are associated with recovery from SBE. Materials and Methods We performed a prospective cohort study in an academic medical center emergency department. We enrolled consecutive patients with Crotalinae SBE and obtained serum samples based on previously described criteria for the Surgical Critical Care Initiative (SC2i)(ClinicalTrials.gov Identifier: NCT02182180). We assessed a standard set of clinical variables and measured 35 unique cytokines using Luminex Cytokine 35-Plex Human Panel pre- and post-antivenom administration. The Patient-Specific Functional Scale (PSFS), a well-validated patient-reported outcome of functional recovery, was assessed at 0, 7, 14, 21 and 28 days and the area under the patient curve (PSFS AUPC) determined. We performed Bayesian Belief Network (BBN) modeling to represent relationships with a diagram composed of nodes and arcs. Each node represents a cytokine or clinical feature and each arc represents a joint-probability distribution (JPD). Results Twenty-eight SBE patients were enrolled. Preliminary results from 24 patients with clinical data, 9 patients with pre-antivenom and 11 patients with post-antivenom cytokine data are presented. The group was mostly female (82%) with a mean age of 38.1 (SD ± 9.8) years. In the pre-antivenom model, the variables most closely associated with the PSFS AUPC are predominantly clinical features. In the post-antivenom model, cytokines are more fully incorporated into the model. The variables most closely associated with the PSFS AUPC are age, antihistamines, white blood cell count (WBC), HGF, CCL5 and VEGF. The most influential variables are age, antihistamines and EGF. Both the pre- and post-antivenom models perform well with AUCs of 0.87 and 0.90 respectively. Discussion Pre- and post-antivenom networks of cytokines and clinical features were associated with functional recovery measured by the PSFS AUPC over 28 days. With additional data, we can identify prognostic models using immunologic and clinical variables to predict recovery from SBE.
Collapse
Affiliation(s)
| | | | - Seth Schobel
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Lauren M McGowan
- Department of Surgery, Duke University, Durham, NC, United States
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC, United States
| | | |
Collapse
|
42
|
Gutiérrez JM, Vargas M, Segura Á, Herrera M, Villalta M, Solano G, Sánchez A, Herrera C, León G. In Vitro Tests for Assessing the Neutralizing Ability of Snake Antivenoms: Toward the 3Rs Principles. Front Immunol 2021; 11:617429. [PMID: 33505403 PMCID: PMC7829219 DOI: 10.3389/fimmu.2020.617429] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need to strengthen the implementation of the 3Rs principle (Replacement, Reduction and Refinement) in the use of experimental animals in toxinological research and in the assessment of the neutralizing efficacy of snake antivenoms. This is a challenging task owing to the inherent complexity of snake venoms. The state of the art on this topic is hereby reviewed, with emphasis on the studies in which a correlation has been observed between in vivo toxicity tests and in vitro surrogate assays, particularly in the study of lethal activity of venoms and its neutralization. Correlations have been described with some venoms-antivenoms when using: (a) enzyme immunoassays, (b) hemagglutination, (c) enzyme assays (proteinase, phospholipase A2), (d) in vitro coagulant effect on plasma, (e) cell culture assays for cytotoxicity, (f) functional assays for assessing neurotoxicity in vitro, (g) use of hens' eggs, and (h) antivenomics. Additionally, the routine introduction of analgesia in these assays and the design of more 'humane' protocols for the lethality test are being pursued. It is expected that the next years will witness a growing awareness of the relevance of the 3Rs principles in antivenom testing, and that new in vitro alternatives and more 'humane' experimental designs will emerge in this field.
Collapse
Affiliation(s)
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| |
Collapse
|
43
|
Tan MS, Carranza MS, Linis V, Malabed R, Reyes YA, Franco F, Oyong G. Antioxidant, cytotoxic, and anti-venom activity of Alstonia parvifolia Merr. Bark. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.326100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
44
|
Crotalus Neutralizing Factor (CNF) inhibits the toxic effects of Crotoxin at mouse neuromuscular preparations. Toxicon 2020; 191:48-53. [PMID: 33387548 DOI: 10.1016/j.toxicon.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Abstract
Crotalus Neutralizing Factor (CNF) was the first phospholipase A2 inhibitor isolated from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Previous biochemical and biophysical studies demonstrate an interaction of CNF with Crotoxin (CTX), the main toxic component in the venom of these snakes. CTX promotes the blockade of neuromuscular transmission by a sum of neurotoxic and myotoxic activities. However, the ability of CNF to inhibit these activities has not been shown until the present study. We performed a myographic study to compare the neuromuscular effects of CTX and the mixture CTX plus CNF in mice phrenic nerve-diaphragm muscle preparations. CTX (5 μg/mL) alone, or pre-incubated with CNF (5, 20 or 50 μg/mL) for 15 min was added to the preparations and maintained throughout the experimentation period. Myotoxicity was assessed by light microscopic analysis of diaphragm muscle after myographic study. CTX (5 μg/mL) blocked both indirectly and directly evoked twitches in neuromuscular preparations. In addition, CTX induced histological alterations in diaphragm muscle. Pre-incubation with CNF (50 μg/mL) abolished both the muscle-paralyzing and muscle-damaging activities of CTX. Therefore, the present study confirms, through functional studies, the antiophidic potential of CNF.
Collapse
|
45
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
46
|
Miller SW, Osterhoudt KC, Korenoski AS, Patel K, Vaiyapuri S. Exotic Snakebites Reported to Pennsylvania Poison Control Centers: Lessons Learned on the Demographics, Clinical Effects, and Treatment of These Cases. Toxins (Basel) 2020; 12:toxins12120755. [PMID: 33260454 PMCID: PMC7760318 DOI: 10.3390/toxins12120755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/27/2023] Open
Abstract
Exotic snakebites (i.e. from non-native species) are a rare occurrence, but they present a unique challenge to clinicians treating these patients. Poison control centers are often contacted to assist in the management and care of these medical emergencies. In this study, we analyzed case records of the two Pennsylvania poison control centers from 2004 to 2018 to describe clinical features reported as a result of exotic snakebite envenomation. For the 15-year period reviewed, 18 exotic snakebites were reported with effects ranging from mild local tissue injury to patients who were treated with mechanical ventilation due to respiratory failure. The mean age of the patients was 35 years and males accounted for 83% of the cases. Antivenom, the only specific treatment, was administered in seven of 18 patients within an average of four h of envenomation. The procurement of antivenom against these exotic species may require substantial logistical efforts due to limited stocking of this rarely used treatment. Newer, targeted, small molecule treatments that are being currently investigated may aid in the treatment of snakebites in general. However, people should be cautious when handling these exotic species, and clinicians should be aware of these bites and relevant clinical effects in order to manage these when reported.
Collapse
Affiliation(s)
- Stephen W. Miller
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
- The Poison Control Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Correspondence: (S.W.M.); (S.V.)
| | - Kevin C. Osterhoudt
- The Poison Control Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Amanda S. Korenoski
- Pittsburgh Poison Center, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
- Correspondence: (S.W.M.); (S.V.)
| |
Collapse
|
47
|
Gimenez BT, Cezarette GN, Bomfim ADS, Monteiro WM, Russo EMDS, Frantz FG, Sampaio SV, Sartim MA. Role of crotoxin in coagulation: novel insights into anticoagulant mechanisms and impairment of inflammation-induced coagulation. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200076. [PMID: 33293940 PMCID: PMC7702976 DOI: 10.1590/1678-9199-jvatitd-2020-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Snake venom phospholipases A2 (svPLA2) are
biologically active toxins, capable of triggering and modulating a wide
range of biological functions. Among the svPLA2s, crotoxin (CTX)
has been in the spotlight of bioprospecting research due to its role in
modulating immune response and hemostasis. In the present study, novel
anticoagulant mechanisms of CTX, and the modulation of inflammation-induced
coagulation were investigated. Methods: CTX anticoagulant activity was evaluated using platelet poor plasma (PPP)
and whole blood (WB), and also using isolated coagulation factors and
complexes. The toxin modulation of procoagulant and pro-inflammatory effects
was evaluated using the expression of tissue factor (TF) and cytokines in
lipopolysaccharide (LPS)-treated peripheral blood mononuclear cells (PBMC)
and in WB. Results: The results showed that CTX impaired clot formation in both PPP and WB, and
was responsible for the inhibition of both intrinsic (TF/factor VIIa) and
extrinsic (factor IXa/factor VIIIa) tenase complexes, but not for factor Xa
and thrombin alone. In addition, the PLA2 mitigated the
prothrombinase complex by modulating the coagulation phospholipid role in
the complex. In regards to the inflammation-coagulation cross talk, the
toxin was capable of reducing the production of the pro-inflammatory
cytokines IL-1β, IL-6 and TNF-α, and was followed by decreased levels of TF
and procoagulant activity from LPS-treated PBMC either isolated or in
WB. Conclusion: The results obtained in the present study recognize the toxin as a novel
medicinal candidate to be applied in inflammatory diseases with coagulation
disorders.
Collapse
Affiliation(s)
- Bruna Terada Gimenez
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Neves Cezarette
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Aline de Sousa Bomfim
- Center for Cell-Based Therapy and Regional Blood Center of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University, Manaus, AM, Brazil.,Carlos Borborema Clinical Research Institute, Doutor Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Elisa Maria de Sousa Russo
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy and Regional Blood Center of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Marco Aurelio Sartim
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Basic and Applied Immunology Graduate Program, Institute of Biological Sciences, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
48
|
Chiang LC, Tsai WJ, Liu PY, Ho CH, Su HY, Lai CS, Lai KL, Lin WL, Lee CH, Yang YY, Doan UV, Maharani T, Mao YC. Envenomation by Trimeresurus stejnegeri stejnegeri: clinical manifestations, treatment and associated factors for wound necrosis. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200043. [PMID: 32983233 PMCID: PMC7500479 DOI: 10.1590/1678-9199-jvatitd-2020-0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Trimeresurus stejnegeri stejnegeri bite induces tissue swelling, pain, thrombocytopenia, rhabdomyolysis, and acute renal failure. However, the incidence of coagulopathy, factors associated with wound necrosis, and the appropriate management of this condition have not been well characterized yet. Materials This study included patients bitten by T. s. stejnegeri that were admitted to the study hospitals from 2001 to 2016. Patient characteristics, laboratory data, and management approaches were compared in victims with and without wound necrosis. Results A total of 185 patients were evaluated: three patients (1.6%) were asymptomatic; whereas tissue swelling and pain, local ecchymosis, wound necrosis, coagulopathy, thrombocytopenia, rhabdomyolysis, and renal impairment were present in 182, 53, 13, 15, 10, 1, and 3 patients, respectively. One patient died from coagulopathy and hemorrhagic shock. Antivenom was administered to all envenomed patients at a median time of 1.8 h after the bite. The median total dose of antivenom was five vials. Chi-square analysis showed that bitten fingers, using cold packs during first aid, presence of bullae or blisters, lymphangitis or lymphadenitis, local numbness and suspected infection to be significantly associated with wound necrosis. After adjustment using a multivariate logistic regression model, only cold packs as first aid, bulla or blister formation, and wound infection remained significant. Conclusions The main effects of T. s. stejnegeri envenomation are tissue swelling, pain, and local ecchymosis. We do not recommend the use of cold packs during first aid to reduce wound pain, as this may be a risk factor for wound necrosis. In addition, patients with bulla or blister formation should be carefully examined for subsequent wound necrosis. Antiplatelet use may worsen systemic bleeding. No severe rhabdomyolysis or renal failure was observed in this large case series, we therefore considered that they were not prominent effects of T. s. stejnegeri bite.
Collapse
Affiliation(s)
- Liao-Chun Chiang
- National Tsing Hua University, College of Life Sciences, Hsinchu, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Clinical Toxicology and Occupational Medicine, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Jen Tsai
- Division of Clinical Toxicology and Occupational Medicine, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Hsuan Ho
- School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Emergency Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Hung-Yuan Su
- Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan.,The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Sheng Lai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Loung Lin
- Taichung Wildlife Conservation Group, Taichung, Taiwan
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Uyen Vy Doan
- Department of Clinical Toxicology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tri Maharani
- Department of Emergency Medicine, Daha Husada Hospital, Kediri, East Java, Indonesia
| | - Yan-Chiao Mao
- School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Clinical Toxicology and Occupational Medicine, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
49
|
Okumu MO, Mbaria JM, Gikunju JK, Mbuthia PG, Madadi VO, Ochola FO. Enzymatic activity and brine shrimp lethality of venom from the large brown spitting cobra (Naja ashei) and its neutralization by antivenom. BMC Res Notes 2020; 13:325. [PMID: 32631407 PMCID: PMC7339482 DOI: 10.1186/s13104-020-05167-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Naja ashei is a snake of medical importance in Kenya, Ethiopia, Somalia, Uganda, and Tanzania. Little is known about the enzymatic (snake venom phospholipases A2; svPLA2's) and toxic (lethal) activities of N. ashei venom and crucially, the safety and capacity of available antivenom to neutralize these effects. This study aimed to determine the enzymatic and toxic activities of N. ashei venom and the capacity of Indian and Mexican manufactured antivenoms to neutralize these effects. The protein content of the venom and the test antivenoms were also evaluated. A 12-point log concentration-response curve (0.5-22.5 µg/mL) was generated on an agarose-egg yolk model to predict the svPLA2 activity of the venom. The toxicity profiles of the venom and antivenoms were evaluated in the brine shrimp lethality assay. Lowry's method was used for protein estimation. RESULTS Low and intermediate concentrations of the venom exhibited similar svPLA2 activities. The same was true for concentrations > 15 µg/mL. Intermediate and high doses of the venom exhibited similar mortalities in brine shrimp and test antivenoms were generally non-toxic but poorly neutralized svPLA2 activity. Mexican manufactured antivenom had lower protein content but neutralized venom-induced brine shrimp lethality much more effectively than Indian manufactured antivenom.
Collapse
Affiliation(s)
- Mitchel Otieno Okumu
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, Nairobi, Kenya
| | - James Mucunu Mbaria
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, Nairobi, Kenya
| | - Joseph Kangangi Gikunju
- Department of Medical Laboratory Science, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Paul Gichohi Mbuthia
- Department of Veterinary Pathology, Microbiology, and Parasitology, University of Nairobi, Nairobi, Kenya
| | | | | |
Collapse
|