1
|
Merrick R, Song J, Fina L, Sawyer C, Jenkins C, King G, Turner D, Thomas D, Williams C. Long-term health outcomes of Shiga toxin-producing Escherichia coli O157 (STEC O157) infection and STEC-associated haemolytic uraemic syndrome (STEC-HUS), Wales, 1990-2020. Pediatr Nephrol 2025:10.1007/s00467-024-06640-x. [PMID: 39904896 DOI: 10.1007/s00467-024-06640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Information on sequelae of Shiga toxin-producing Escherichia coli (STEC) O157 infection is limited to follow-up of paediatric haemolytic uraemic syndrome (HUS) cases. We investigate recorded long-term health outcomes experienced by individuals exposed to STEC O157 and STEC-HUS up to three decades on. METHODS We compared acute or new onset of chronic outcomes in individuals ≥ 1 year after STEC O157 or STEC-HUS to unexposed general population comparators between 01/01/1990-01/01/2019. The unexposed were their age- and sex-equivalents (4:1 matching ratio) and assigned the same study entry date. Outcomes were identified in primary and secondary care and categorised as kidney, neurological, cardiac, gastrointestinal, respiratory, or endocrine. Hazard ratios (HRs) and 95% confidence intervals (95% CI) were calculated using Cox regression. RESULTS Of 1,245 individuals with STEC O157, 65 developed HUS (5.2%). Individuals with STEC O157 were more likely to experience kidney (adjusted (a)HR: 1.9, 95% CI: 1.1-3.3), gastrointestinal (aHR: 1.7, 95% CI: 1.1-2.5) and respiratory (aHR: 1.4, 95% CI: 1.2-1.6) outcomes compared to the unexposed, on average between 3.4-11 years after exposure. Gastrointestinal (HR: 7.7, 95% CI: 2.6-23), kidney (HR: 5.5, 95% CI: 1.6-19), cardiac (HR: 5.1, 95% CI: 1.1-23) and respiratory (HR: 1.9, 95% CI: 1.1-3.1) outcomes were more common in the STEC-HUS cohort and occurred sooner, on average after 2.7-4.8 years. CONCLUSIONS Long-term complications were nearly twice as likely in the STEC O157 cohort, and as many as eight times more likely following STEC-HUS. We recommend that those exposed to STEC be monitored for at least five years for late-emerging kidney and extrarenal complications.
Collapse
|
2
|
Hanson KL, Weiss AA. Intestinal tissue response to Shiga toxin exposure. mBio 2024; 15:e0123224. [PMID: 39136441 PMCID: PMC11389414 DOI: 10.1128/mbio.01232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 09/12/2024] Open
Abstract
Shiga toxin (Stx) is produced by some pathogenic strains of Escherichia coli. To study the impact of Stx on the human intestine, we utilized human intestinal organoids and human intestinal enteroids grown as human intestinal enteroid monolayers (HIEMs) in transwells. To establish optimal experimental conditions, HIEMs were grown with or without mesenchymal cells added to the basolateral wells to recapitulate the interactions between the intestinal epithelium and the underlying mesenchyme. Monolayer barrier integrity was determined through transepithelial electrical resistance (TEER) readings. Apical saline was used on the apical surface since growth medium caused uneven development of the TEER. The medium used for epithelial cells contains added growth factors, while the mesenchymal medium lacks these growth factors. We have shown that mesenchymal cells can maintain the epithelial monolayer in the medium lacking growth factors, suggesting they produce these factors. Furthermore, growth factors produced by mesenchymal cells need to build up in the medium over time, since daily medium changes were not as effective as medium changes performed every 3 days. We have also shown that addition of growth factors is toxic to mesenchymal cells. Epithelial cells were more resistant to Stx2 than the mesenchymal cells, and mesenchymal cells contributed to epithelial cell death. Epithelial cells tolerated luminal exposure better than basolateral exposure. These studies demonstrate the importance of understanding tissue interactions in a disease state when using in vitro and in vitro models. IMPORTANCE These studies have cemented the need for complex cell culture models when studying host-pathogen interactions. Common animal models such as mice are resistant to E. coli O157:H7 infections and intestinal delivery of Stx2, while humans appear to be sensitive to both. It has been proposed that in humans, shiga toxin-producing E. coli-mediated intestinal damage destroys the intestinal barrier and allows basolateral access to Stx2. In mice, there is no epithelial damage; therefore, they are resistant to epithelial delivery of Stx2 while remaining sensitive to Stx2 injection. Our studies show that like mice, the human epithelial layer is quite resistant to Stx2, and it is the sensitivity of the mesenchymal cells that kills the epithelial cells. We have shown that Stx2 is transported through the intact epithelium without causing damage to the resistant epithelial layer. Understanding tissue interactions during infections is therefore critical in determining the effects of pathogens on human tissues.
Collapse
Affiliation(s)
- Kendal L Hanson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alison Ann Weiss
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Tucker SK, McHugh RE, Roe AJ. One problem, multiple potential targets: Where are we now in the development of small molecule inhibitors against Shiga toxin? Cell Signal 2024; 121:111253. [PMID: 38852937 DOI: 10.1016/j.cellsig.2024.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a group of enteric pathogens which carry phage-encoded Shiga toxins (Stx). STEC infections begin with severe abdominal pain and non-bloody diarrhoea, which can progress to bloody diarrhoea after approximately 4-days post-infection. In high-risk groups such as children and the elderly, patients may develop haemolytic uremic syndrome (HUS). HUS is characterised by microangiopathic haemolytic anaemia, thrombocytopenia, and in severe disease acute renal failure. Traditional antibiotics have been linked with increased toxin production due to the activation of recA-mediated bacterial stress response, resulting in poorer patient outcomes. Therefore, treatment relies on supportive therapies. Antivirulence strategies have been explored as an alternative treatment for bacterial infections and blockers of virulence factors such as the Type III Secretion System. Recent improvements in the mechanistic understanding of the Stx pathway have led to the design of inhibitors to disrupt the pathway, leading to toxin-mediated ribosome damage. However, compounds have yet to progress beyond Phase III clinical trials successfully. This review explores the progress in developing small molecule inhibitors by collating lead compounds derived from in-silico and experimental approaches.
Collapse
Affiliation(s)
- Samantha K Tucker
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Rebecca E McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Andrew J Roe
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
4
|
Bowen EE, Hurcombe JA, Barrington F, Keir LS, Farmer LK, Wherlock MD, Ortiz-Sandoval CG, Bruno V, Bohorquez-Hernandez A, Diatlov D, Rostam-Shirazi N, Wells S, Stewart M, Teboul L, Lay AC, Butler MJ, Pope RJP, Larkai EMS, Morgan BP, Moppett J, Satchell SC, Welsh GI, Walker PD, Licht C, Saleem MA, Coward RJM. Shiga toxin targets the podocyte causing hemolytic uremic syndrome through endothelial complement activation. MED 2023; 4:761-777.e8. [PMID: 37863058 DOI: 10.1016/j.medj.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).
Collapse
Affiliation(s)
- Emily E Bowen
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK; The Hospital for Sick Children, Toronto, ON MG5 1X8, Canada; University of Manchester, Manchester M13 9PT, UK.
| | - Jennifer A Hurcombe
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Lindsay S Keir
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Louise K Farmer
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Matthew D Wherlock
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | | | | | | | - Daniel Diatlov
- The Hospital for Sick Children, Toronto, ON MG5 1X8, Canada
| | | | - Sara Wells
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michelle Stewart
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Lydia Teboul
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK; University of Manchester, Manchester M13 9PT, UK
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Robert J P Pope
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Eva M S Larkai
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF144XN. UK
| | - John Moppett
- Bristol Royal Hospital for Sick Children, Bristol BS2 8BJ, UK
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | | | | | - Moin A Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK; Bristol Royal Hospital for Sick Children, Bristol BS2 8BJ, UK
| | - Richard J M Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK; Bristol Royal Hospital for Sick Children, Bristol BS2 8BJ, UK.
| |
Collapse
|
5
|
Panda S, Hajra S, Kim HG, Jeong H, Achary PGR, Hong S, Dudem B, Silva SRP, Vivekananthan V, Kim HJ. Carbohydrate-protein interaction-based detection of pathogenic bacteria using a biodegradable self-powered biosensor. J Mater Chem B 2023; 11:10147-10157. [PMID: 37849354 DOI: 10.1039/d3tb01820b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria (E. coli) in the environment is showcased herein. In this system, D-mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect E. coli by a simple carbohydrate-protein interaction mechanism. The adsorption capacity of D-mannose is generally altered by varying the concentration of E. coli resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 μA and 5 μA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening E. coli but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea.
| | - Hang Gyeom Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea.
| | - Haejin Jeong
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea
| | - P G R Achary
- Department of Chemistry, Siksha O Anusandhan University, Bhubaneswar-751030, India
| | - Seonki Hong
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea
| | - Bhaskar Dudem
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, England, UK.
| | - S Ravi P Silva
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, England, UK.
| | - Venkateswaran Vivekananthan
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, England, UK.
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh-522302, India
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea.
- Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, South Korea
| |
Collapse
|
6
|
Krsek D, Yara DA, Hrbáčková H, Daniel O, Mančíková A, Schüller S, Bielaszewska M. Translocation of outer membrane vesicles from enterohemorrhagic Escherichia coli O157 across the intestinal epithelial barrier. Front Microbiol 2023; 14:1198945. [PMID: 37303786 PMCID: PMC10248468 DOI: 10.3389/fmicb.2023.1198945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Outer membrane vesicles (OMVs) carrying virulence factors of enterohemorrhagic Escherichia coli (EHEC) are assumed to play a role in the pathogenesis of life-threatening hemolytic uremic syndrome (HUS). However, it is unknown if and how OMVs, which are produced in the intestinal lumen, cross the intestinal epithelial barrier (IEB) to reach the renal glomerular endothelium, the major target in HUS. We investigated the ability of EHEC O157 OMVs to translocate across the IEB using a model of polarized Caco-2 cells grown on Transwell inserts and characterized important aspects of this process. Using unlabeled or fluorescently labeled OMVs, tests of the intestinal barrier integrity, inhibitors of endocytosis, cell viability assay, and microscopic techniques, we demonstrated that EHEC O157 OMVs translocated across the IEB. OMV translocation involved both paracellular and transcellular pathways and was significantly increased under simulated inflammatory conditions. In addition, translocation was not dependent on OMV-associated virulence factors and did not affect viability of intestinal epithelial cells. Importantly, translocation of EHEC O157 OMVs was confirmed in human colonoids thereby supporting physiological relevance of OMVs in the pathogenesis of HUS.
Collapse
Affiliation(s)
- Daniel Krsek
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| | | | - Hana Hrbáčková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| | - Ondřej Daniel
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| | - Andrea Mančíková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Martina Bielaszewska
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| |
Collapse
|
7
|
Rodwell EV, Simpson A, Chan YW, Godbole G, McCarthy ND, Jenkins C. The epidemiology of Shiga toxin-producing Escherichia coli O26:H11 (clonal complex 29) in England, 2014-2021. J Infect 2023; 86:552-562. [PMID: 37060924 DOI: 10.1016/j.jinf.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
OBJECTIVES We aimed to describe the genomic epidemiology of the foodborne gastrointestinal pathogen, Shiga toxin-producing Escherichia coli (STEC) serotype O26:H11 belonging to clonal complex 29 (CC29) in England. METHODS Between 01 January 2014 and 31 December 2021, 834 human isolates belonging to CC29 were sequenced at the UK Health Security Agency, and the genomic data was integrated with epidemiological data. RESULTS Diagnoses of STEC O26:H11 in England have increased each year from 19 in 2014 to 144 in 2021. Most isolates had the Shiga toxin subtype profiles stx1a (47%), stx1a,stx2a (n=24%) or stx2a (n=28%). Most cases were female (57%), and the highest proportion of cases belonged to the 0-5 age group (38%). Clinical symptoms included diarrhoea (93%), blood-stained stool (48%), and abdominal pain (74%). Haemolytic Uraemic Syndrome (HUS) was diagnosed in 40/459 (9%) cases and three children died. All isolates causing STEC-HUS had stx2a either alone (n=33) or in combination with stx1a (n=7). CONCLUSIONS STEC O26:H11 are a clinically significant, emerging threat to public health in England. Determining the true incidence and prevalence is challenging due to inconsistent national surveillance strategies. Improved diagnostics and surveillance algorithms are required to monitor the true burden, detect outbreaks and to implement effective interventions.
Collapse
Affiliation(s)
- Ella V Rodwell
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK; NIHR HPRU in Gastrointestinal Infections at University of Liverpool, UK
| | - Alex Simpson
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Yung-Wai Chan
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Gauri Godbole
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Noel D McCarthy
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, UK
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK; NIHR HPRU in Gastrointestinal Infections at University of Liverpool, UK
| |
Collapse
|
8
|
Rodwell EV, Chan YW, Sawyer C, Carroll A, McNamara E, Allison L, Browning L, Holmes A, Godbole G, McCarthy N, Jenkins C. Shiga toxin-producing Escherichia coli clonal complex 32, including serotype O145:H28, in the UK and Ireland. J Med Microbiol 2022; 71. [PMID: 35984744 DOI: 10.1099/jmm.0.001579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. Shiga toxin-producing Escherichia coli (STEC) O157:H7 has been the most clinically significant STEC serotype in the UK for over four decades. Over the last 10 years we have observed a decrease in STEC O157:H7 and an increase in non-O157 STEC serotypes, such as O145:H28.Gap Statement. Little is known about the microbiology and epidemiology of STEC belonging to CC32 (including O145:H28) in the UK. The aim of this study was to integrate genomic data with patient information to gain a better understanding of the virulence, disease severity, epidemic risk assessment and population structure of this clinically significant clonal complex.Methodology. Isolates of E. coli belonging to CC32 (n=309) in the archives of public health agencies in the UK and Ireland were whole-genome-sequenced, virulence-profiled and integrated with enhanced surveillance questionnaire (ESQ) data, including exposures and disease severity.Results. Overall, diagnoses of STEC belonging to CC32 (290/309, 94 %) in the UK have increased every year since 2014. Most cases were female (61 %), and the highest proportion of cases belonged to the 0-4 age group (53/211,25 %). The frequency of symptoms of diarrhoea (92 %), abdominal pain (84 %), blood in stool (71 %) and nausea (51 %) was similar to that reported in cases of STEC O157:H7, although cases of STEC CC32 were more frequently admitted to hospital (STEC CC32 48 % vs O157:H7 34 %) and/or developed haemolytic uraemic syndrome (HUS) (STEC CC32 9 % vs O157:H7 4 %).The majority of STEC isolates (268/290, 92 %) had the stx2a/eae virulence gene combination, most commonly associated with progression to STEC HUS. There was evidence of person-to-person transmission and small, temporally related, geographically dispersed outbreaks, characteristic of foodborne outbreaks linked to nationally distributed products.Conclusion. We recommend more widespread use of polymerase chain reaction (PCR) for the detection of all STEC serogroups, the development of consistent strategies for the follow-up testing of PCR-positive faecal specimens, the implementation of more comprehensive and standardized collection of epidemiological data, and routine sharing of sequencing data between public health agencies worldwide.
Collapse
Affiliation(s)
- Ella V Rodwell
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool L69 3BX, UK
| | - Yung-Wai Chan
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Clare Sawyer
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Anne Carroll
- Public Health Laboratory, Health Service Executive, Cherry Orchard Hospital, Ballyfermot, Dublin, Ireland
| | - Eleanor McNamara
- Public Health Laboratory, Health Service Executive, Cherry Orchard Hospital, Ballyfermot, Dublin, Ireland
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK
| | | | - Anne Holmes
- Scottish E. coli O157/STEC Reference Laboratory, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK
| | - Gauri Godbole
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Noel McCarthy
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool L69 3BX, UK
- Public Health and Primary Care, Trinity College Dublin, Dublin, Ireland
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
9
|
Henrique IDM, Sacerdoti F, Ferreira RL, Henrique C, Amaral MM, Piazza RMF, Luz D. Therapeutic Antibodies Against Shiga Toxins: Trends and Perspectives. Front Cell Infect Microbiol 2022; 12:825856. [PMID: 35223548 PMCID: PMC8866733 DOI: 10.3389/fcimb.2022.825856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.
Collapse
Affiliation(s)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| |
Collapse
|
10
|
Improving Care for Children with Bloody Diarrhea at Risk for Hemolytic Uremic Syndrome. Pediatr Qual Saf 2022; 7:e517. [PMID: 35071957 PMCID: PMC8782105 DOI: 10.1097/pq9.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022] Open
|
11
|
Rosso DA, Rosato M, Gómez FD, Álvarez RS, Shiromizu CM, Keitelman IA, Ibarra C, Amaral MM, Jancic CC. Human Glomerular Endothelial Cells Treated With Shiga Toxin Type 2 Activate γδ T Lymphocytes. Front Cell Infect Microbiol 2021; 11:765941. [PMID: 34900753 PMCID: PMC8656354 DOI: 10.3389/fcimb.2021.765941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
The hemolytic uremic syndrome associated with diarrhea, a consequence of Shiga toxin (Stx)-producing Escherichia coli infection, is a common cause of pediatric acute renal failure in Argentina. Stx type 2a (Stx2a) causes direct damage to renal cells and induces local inflammatory responses that involve secretion of inflammatory mediators and the recruitment of innate immune cells. γδ T cells constitute a subset of T lymphocytes, which act as early sensors of cellular stress and infection. They can exert cytotoxicity against infected and transformed cells, and produce cytokines and chemokines. In this study, we investigated the activation of human peripheral γδ T cells in response to the incubation with Stx2a-stimulated human glomerular endothelial cells (HGEC) or their conditioned medium, by analyzing in γδ T lymphocytes, the expression of CD69, CD107a, and perforin, and the production of TNF-α and IFN-γ. In addition, we evaluated by confocal microscopy the contact between γδ T cells and HGEC. This analysis showed an augmentation in cellular interactions in the presence of Stx2a-stimulated HGEC compared to untreated HGEC. Furthermore, we observed an increase in cytokine production and CD107a expression, together with a decrease in intracellular perforin when γδ T cells were incubated with Stx2a-treated HGEC or their conditioned medium. Interestingly, the blocking of TNF-α by Etanercept reversed the changes in the parameters measured in γδ T cells incubated with Stx2a-treated HGEC supernatants. Altogether, our results suggest that soluble factors released by Stx2a-stimulated HGEC modulate the activation of γδ T cells, being TNF-α a key player during this process.
Collapse
Affiliation(s)
- David Antonio Rosso
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Micaela Rosato
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Fernando Daniel Gómez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Soledad Álvarez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Irene Angélica Keitelman
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Cristina Jancic
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Treatment of Shiga-Toxin Hus with Severe Neurologic Features with Eculizumab. Case Rep Pediatr 2021; 2021:8053246. [PMID: 34812294 PMCID: PMC8605924 DOI: 10.1155/2021/8053246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Hemolytic Uremic Syndrome (HUS) is a constellation of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Shiga toxin-producing Escherichia coli- (STEC-) mediated HUS is a common cause of acute renal failure in children and can rarely result in severe neurological complications such as encephalopathy, seizures, cerebrovascular accidents, and coma. Current literature supports use of eculizumab, a monoclonal antibody that blocks complement activation, in atypical HUS (aHUS). However, those with neurologic complications from STEC-HUS have complement activation and deposition of aggregates in microvasculature and may be treated with eculizumab. In this case report, we describe a 3-year-old boy with diarrhea-positive STEC-HUS who developed severe neurologic involvement in addition to acute renal failure requiring renal replacement therapy. He was initiated on eculizumab therapy, with clinical improvement and organ recovery. This case highlights systemic complications of STEC-HUS in a pediatric patient. The current literature is limited but has suggested a role for complement mediation in cases with severe complications. We review the importance of early recognition of complications, use of eculizumab, and current data available.
Collapse
|
13
|
Luz D, Gómez FD, Ferreira RL, Melo BS, Guth BEC, Quintilio W, Moro AM, Presta A, Sacerdoti F, Ibarra C, Chen G, Sidhu SS, Amaral MM, Piazza RMF. The Deleterious Effects of Shiga Toxin Type 2 Are Neutralized In Vitro by FabF8:Stx2 Recombinant Monoclonal Antibody. Toxins (Basel) 2021; 13:toxins13110825. [PMID: 34822608 PMCID: PMC8621789 DOI: 10.3390/toxins13110825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Fernando D. Gómez
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Raíssa L. Ferreira
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Bruna S. Melo
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Beatriz E. C. Guth
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sāo Paulo, Sao Paulo 04023-062, Brazil;
| | - Wagner Quintilio
- Laboratório de Biofármacos, Instituto Butantan, Sao Paulo 05503-900, Brazil; (W.Q.); (A.M.M.)
| | - Ana Maria Moro
- Laboratório de Biofármacos, Instituto Butantan, Sao Paulo 05503-900, Brazil; (W.Q.); (A.M.M.)
| | - Agostina Presta
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Gang Chen
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, OT M5S 3E1, Canada; (G.C.); (S.S.S.)
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, OT M5S 3E1, Canada; (G.C.); (S.S.S.)
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
- Correspondence: (M.M.A.); (R.M.F.P.)
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
- Correspondence: (M.M.A.); (R.M.F.P.)
| |
Collapse
|
14
|
Bai X, Scheutz F, Dahlgren HM, Hedenström I, Jernberg C. Characterization of Clinical Escherichia coli Strains Producing a Novel Shiga Toxin 2 Subtype in Sweden and Denmark. Microorganisms 2021; 9:microorganisms9112374. [PMID: 34835499 PMCID: PMC8625421 DOI: 10.3390/microorganisms9112374] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin (Stx) is the key virulence factor in the Shiga Toxin-Producing Escherichia coli (STEC), which can cause diarrhea and hemorrhagic colitis with potential life-threatening complications. There are two major types of Stx: Stx1 and Stx2. Several Stx1/Stx2 subtypes have been identified in E. coli, varying in sequences, toxicity and host specificity. Here, we report a novel Stx2 subtype (designated Stx2m) from three clinical E. coli strains isolated from diarrheal patients and asymptomatic carriers in Sweden and Denmark. The Stx2m toxin was functional and exhibited cytotoxicity in vitro. The two Swedish Stx2m-producing strains belonged to the same serotype O148:H39 and Multilocus Sequencing Typing (MLST) Sequence Type (ST) 5825, while the Danish strain belonged to the O96:H19 serotype and ST99 type. Whole-genome sequencing (WGS) data analysis revealed that the three Stx2m-producing strains harbored additional virulence genes and the macrolide resistance gene mdf (A). Our findings expand the pool of Stx2 subtypes and highlight the clinical significance of emerging STEC variants. Given the clinical relevance of the Stx2m-producing strains, we propose to include Stx2m in epidemiological surveillance of STEC infections and clinical diagnosis.
Collapse
Affiliation(s)
- Xiangning Bai
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, 141 52 Stockholm, Sweden;
- Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Flemming Scheutz
- The International Escherichia and Klebsiella Centre, Statens Serum Institut, 2300 Copenhagen, Denmark;
| | - Henrik Mellström Dahlgren
- County Council Department of Communicable Disease Control and Prevention, Region Västra Götaland, 411 18 Gothenburg, Sweden;
| | | | - Cecilia Jernberg
- Public Health Agency of Sweden, 171 82 Solna, Sweden;
- Correspondence:
| |
Collapse
|
15
|
Li D, Mukhopadhyay S. A three-pocket model for substrate coordination and selectivity by the nucleotide sugar transporters SLC35A1 and SLC35A2. J Biol Chem 2021; 297:101069. [PMID: 34384782 PMCID: PMC8411240 DOI: 10.1016/j.jbc.2021.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/25/2022] Open
Abstract
The CMP-sialic acid transporter SLC35A1 and UDP-galactose transporter SLC35A2 are two well-characterized nucleotide sugar transporters with distinctive substrate specificities. Mutations in either induce congenital disorders of glycosylation. Despite the biomedical relevance, mechanisms of substrate specificity are unclear. To address this critical issue, we utilized a structure-guided mutagenesis strategy and assayed a series of SLC35A2 and SLC35A1 mutants using a rescue approach. Our results suggest that three pockets in the central cavity of each transporter provide substrate specificity. The pockets comprise (1) nucleobase (residues E52, K55, and Y214 of SLC35A1; E75, K78, N235, and G239 of SLC35A2); (2) middle (residues Q101, N102, and T260 of SLC35A1; Q125, N126, Q129, Y130, and Q278 of SLC35A2); and (3) sugar (residues K124, T128, S188, and K272 of SLC35A1; K148, T152, S213, and K297 of SLC35A2) pockets. Within these pockets, two components appear to be especially critical for substrate specificity. Y214 (for SLC35A1) and G239 (for SLC35A2) in the nucleobase pocket appear to discriminate cytosine from uracil. Furthermore, Q129 and Q278 of SLC35A2 in the middle pocket appear to interact specifically with the β-phosphate of UDP while the corresponding A105 and A253 residues in SLC35A1 do not interact with CMP, which lacks a β-phosphate. Overall, our findings contribute to a molecular understanding of substrate specificity and coordination in SLC35A1 and SLC35A2, and have important implications for the understanding and treatment of diseases associated with mutations or dysregulations of these two transporters.
Collapse
Affiliation(s)
- Danyang Li
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712.
| |
Collapse
|
16
|
Selyunin AS, Nieves-Merced K, Li D, McHardy SF, Mukhopadhyay S. Tamoxifen Derivatives Alter Retromer-Dependent Endosomal Tubulation and Sorting to Block Retrograde Trafficking of Shiga Toxins. Toxins (Basel) 2021; 13:toxins13060424. [PMID: 34203879 PMCID: PMC8232625 DOI: 10.3390/toxins13060424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Shiga toxin 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol of cells where they target ribosomes. As retrograde trafficking is essential for disease, inhibiting STx1/STx2 trafficking is therapeutically promising. Recently, we discovered that the chemotherapeutic drug tamoxifen potently inhibits the trafficking of STx1/STx2 at the critical early endosome-to-Golgi step. We further reported that the activity of tamoxifen against STx1/STx2 is independent of its selective estrogen receptor modulator (SERM) property and instead depends on its weakly basic chemical nature, which allows tamoxifen to increase endolysosomal pH and alter the recruitment of retromer to endosomes. The goal of the current work was to obtain a better understanding of the mechanism of action of tamoxifen against the more disease-relevant toxin STx2, and to differentiate between the roles of changes in endolysosomal pH and retromer function. Structure activity relationship (SAR) analyses revealed that a weakly basic amine group was essential for anti-STx2 activity. However, ability to deacidify endolysosomes was not obligatorily necessary because a tamoxifen derivative that did not increase endolysosomal pH exerted reduced, but measurable, activity. Additional assays demonstrated that protective derivatives inhibited the formation of retromer-dependent, Golgi-directed, endosomal tubules, which mediate endosome-to-Golgi transport, and the sorting of STx2 into these tubules. These results identify retromer-mediated endosomal tubulation and sorting to be fundamental processes impacted by tamoxifen; provide an explanation for the inhibitory effect of tamoxifen on STx2; and have important implications for the therapeutic use of tamoxifen, including its development for treating Shiga toxicosis.
Collapse
Affiliation(s)
- Andrey S. Selyunin
- Division of Pharmacology and Toxicology, Institute for Neuroscience, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (A.S.S.); (D.L.)
| | - Karinel Nieves-Merced
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78249, USA;
| | - Danyang Li
- Division of Pharmacology and Toxicology, Institute for Neuroscience, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (A.S.S.); (D.L.)
| | - Stanton F. McHardy
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78249, USA;
- Correspondence: (S.F.M.); (S.M.)
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, Institute for Neuroscience, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (A.S.S.); (D.L.)
- Correspondence: (S.F.M.); (S.M.)
| |
Collapse
|
17
|
Feitz WJC, van Setten PA, van der Velden TJAM, Licht C, van den Heuvel LPJW, van de Kar NCAJ. Cell Biological Responses after Shiga Toxin-1 Exposure to Primary Human Glomerular Microvascular Endothelial Cells from Pediatric and Adult Origin. Int J Mol Sci 2021; 22:ijms22115615. [PMID: 34070679 PMCID: PMC8199108 DOI: 10.3390/ijms22115615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 01/16/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is characterized by a triad of symptoms consisting of hemolytic anemia, thrombocytopenia and acute renal failure. The most common form of HUS is caused by an infection with Shiga toxin (Stx) producing Escherichia coli bacteria (STEC-HUS), and the kidneys are the major organs affected. The development of HUS after an infection with Stx occurs most frequently in children under the age of 5 years. However, the cause for the higher incidence of STEC-HUS in children compared to adults is still not well understood. Human glomerular microvascular endothelial cells (HGMVECs) isolated and cultured from pediatric and adult kidney tissue were investigated with respect to Stx binding and different cellular responses. Shiga toxin-1 (Stx-1) inhibited protein synthesis in both pediatric and adult HGMVECs in a dose-dependent manner at basal conditions. The preincubation of pediatric and adult HGMVECs for 24 hrs with TNFα resulted in increased Stx binding to the cell surface and a 20-40% increase in protein synthesis inhibition in both age groups. A decreased proliferation of cells was found when a bromodeoxyuridine (BrdU) assay was performed. A trend towards a delay in endothelial wound closure was visible when pediatric and adult HGMVECs were incubated with Stx-1. Although minor differences between pediatric HGMVECs and adult HGMVECs were found in the assays applied in this study, no significant differences were observed. In conclusion, we have demonstrated that in vitro primary HGMVECs isolated from pediatric and adult kidneys do not significantly differ in their cell biological responses to Stx-1.
Collapse
Affiliation(s)
- Wouter J. C. Feitz
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (T.J.A.M.v.d.V.); (L.P.J.W.v.d.H.)
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Petra A. van Setten
- Department of Pediatrics, Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Thea J. A. M. van der Velden
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (T.J.A.M.v.d.V.); (L.P.J.W.v.d.H.)
| | - Christoph Licht
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Lambert P. J. W. van den Heuvel
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (T.J.A.M.v.d.V.); (L.P.J.W.v.d.H.)
- Department of Development and Regeneration, Department of Pediatric Nephrology, KU, 3000 Leuven, Belgium
| | - Nicole C. A. J. van de Kar
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (T.J.A.M.v.d.V.); (L.P.J.W.v.d.H.)
- Department of Pediatrics, Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands;
- Correspondence: ; Tel.: +31-24-36-14430
| |
Collapse
|
18
|
Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 2021; 22:366. [PMID: 34011288 PMCID: PMC8136144 DOI: 10.1186/s12864-021-07685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background A total of 179 Shiga toxin-producing Escherichia coli (STEC) complete genomes were analyzed in terms of serotypes, prophage coding regions, and stx gene variants and their distribution. We further examined the genetic diversity of Stx-converting phage genomes (Stx phages), focusing on the lysis-lysogeny decision and lytic cassettes. Results We show that most STEC isolates belong to non-O157 serotypes (73 %), regardless the sources and geographical regions. While the majority of STEC genomes contain a single stx gene (61 %), strains containing two (35 %), three (3 %) and four (1 %) stx genes were also found, being stx2 the most prevalent gene variant. Their location is exclusively found in intact prophage regions, indicating that they are phage-borne. We further demonstrate that Stx phages can be grouped into four clusters (A, B, C and D), three subclusters (A1, A2 and A3) and one singleton, based on their shared gene content. This cluster distribution is in good agreement with their predicted virion morphologies. Stx phage genomes are highly diverse with a vast number of 1,838 gene phamilies (phams) of related sequences (of which 677 are orphams i.e. unique genes) and, although having high mosaicism, they are generally organized into three major transcripts. While the mechanisms that guide lysis–lysogeny decision are complex, there is a strong selective pressure to maintain the stx genes location close to the lytic cassette composed of predicted SAR-endolysin and pin-holin lytic proteins. The evolution of STEC Stx phages seems to be strongly related to acquiring genetic material, probably from horizontal gene transfer events. Conclusions This work provides novel insights on the genetic structure of Stx phages, showing a high genetic diversity throughout the genomes, where the various lysis-lysogeny regulatory systems are in contrast with an uncommon, but conserved, lytic system always adjacent to stx genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07685-0.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
19
|
Flowers LJ, Hu S, Shrestha A, Martinot AJ, Leong JM, Osburne MS. Citrobacter rodentium Lysogenized with a Shiga Toxin-Producing Phage: A Murine Model for Shiga Toxin-Producing E. coli Infection. Methods Mol Biol 2021; 2291:381-397. [PMID: 33704765 DOI: 10.1007/978-1-0716-1339-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Shiga toxin-producing E. coli (STEC) is a common foodborne pathogen in developed countries. STEC generates "attaching and effacing" (AE) lesions on colonic epithelium, characterized by effacement of microvilli and the formation of actin "pedestals" beneath intimately attached bacteria. In addition, STEC are lysogenized with a phage that, upon induction, can produce potent Shiga toxins (Stx), potentially leading to both hemorrhagic colitis and hemolytic uremic syndrome. Investigation of the pathogenesis of this disease has been challenging because STEC does not readily colonize conventional mice.Citrobacter rodentium (CR) is a related mouse pathogen that also generates AE lesions. Whereas CR does not produce Stx, a murine model for STEC utilizes CR lysogenized with an E. coli-derived Stx phage, generating CR(Φstx), which both colonizes conventional mice and readily gives rise to systemic disease. We present here key methods for the use of CR(Φstx) infection as a highly predictable murine model for infection and disease by STEC. Importantly, we detail CR(Φstx) inoculation by feeding, determination of pathogen colonization, production of phage and toxin, and assessment of intestinal and renal pathology. These methods provide a framework for studying STEC-mediated systemic disease that may aid in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Laurice J Flowers
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University Graduate School in Biomedical Sciences, Boston, MA, USA.,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding, Guangzhou, China
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Marcia S Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
20
|
Liu Y, Tian S, Thaker H, Dong M. Shiga Toxins: An Update on Host Factors and Biomedical Applications. Toxins (Basel) 2021; 13:222. [PMID: 33803852 PMCID: PMC8003205 DOI: 10.3390/toxins13030222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Shiga toxins (Stxs) are classic bacterial toxins and major virulence factors of toxigenic Shigella dysenteriae and enterohemorrhagic Escherichia coli (EHEC). These toxins recognize a glycosphingolipid globotriaosylceramide (Gb3/CD77) as their receptor and inhibit protein synthesis in cells by cleaving 28S ribosomal RNA. They are the major cause of life-threatening complications such as hemolytic uremic syndrome (HUS), associated with severe cases of EHEC infection, which is the leading cause of acute kidney injury in children. The threat of Stxs is exacerbated by the lack of toxin inhibitors and effective treatment for HUS. Here, we briefly summarize the Stx structure, subtypes, in vitro and in vivo models, Gb3 expression and HUS, and then introduce recent studies using CRISPR-Cas9-mediated genome-wide screens to identify the host cell factors required for Stx action. We also summarize the latest progress in utilizing and engineering Stx components for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Pesce F, Stea ED, Rossini M, Fiorentino M, Piancone F, Infante B, Stallone G, Castellano G, Gesualdo L. Glomerulonephritis in AKI: From Pathogenesis to Therapeutic Intervention. Front Med (Lausanne) 2021; 7:582272. [PMID: 33738291 PMCID: PMC7960664 DOI: 10.3389/fmed.2020.582272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is increasingly emerging as a global emergency. Sepsis, major surgery, and nephrotoxic drugs are the main causes of AKI in hospitalized patients. However, glomerulonephritis accounts for about 10% of AKI episodes in adults, mainly related to rapidly progressive glomerulonephritis resulting from granulomatous polyangiitis (GPA, Wegener granulomatosis), microscopic polyangiitis (MPA), and anti-glomerular basement membrane (GBM) disease. Also, diffuse proliferative lupus nephritis, immunoglobulin A nephropathy, post-streptococcal glomerulonephritis, mixed cryoglobulinemia, mesangiocapillary glomerulonephritis, membranous nephropathy, hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, and scleroderma can induce acute renal failure. Early diagnosis of AKI due to glomerulonephritis is crucial for prompt, effective management to improve short- and long-term outcomes. Kidney biopsy is the gold standard for the diagnosis of glomerular disease, but it is not frequently performed in critically ill patients because of their clinical conditions. In this setting, a growing number of diagnostic assays can support the working hypothesis, including antineutrophil cytoplasmic antibodies (ANCAs), anti-double-stranded DNA antibodies, anti-GBM antibodies, antistreptolysin O and anti-DNase B antibodies, cryoglobulins, antiphospholipid antibodies, and complement levels. Therapeutic strategies in AKI patients with glomerulonephritis include high-dose corticosteroids, cyclophosphamide, and plasma exchange. This article reviews the wide spectrum of glomerulopathies associated with AKI, describing the immunological mechanisms underlying glomerular diseases and presenting an overview of the therapeutic options.
Collapse
Affiliation(s)
- Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Emma D Stea
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Rossini
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Fausta Piancone
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
22
|
McCarthy SC, Burgess CM, Fanning S, Duffy G. An Overview of Shiga-Toxin Producing Escherichia coli Carriage and Prevalence in the Ovine Meat Production Chain. Foodborne Pathog Dis 2021; 18:147-168. [PMID: 33395551 DOI: 10.1089/fpd.2020.2861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) are zoonotic foodborne pathogens that are capable of causing serious human illness. Ovine ruminants are recognized as an important source of STEC and a notable contributor to contamination within the food industry. This review examined the prevalence of STEC in the ovine food production chain from farm-to-fork, reporting carriage in sheep herds, during abattoir processing, and in raw and ready-to-eat meats and meat products. Factors affecting the prevalence of STEC, including seasonality and animal age, were also examined. A relative prevalence can be obtained by calculating the mean prevalence observed over multiple surveys, weighted by sample number. A relative mean prevalence was obtained for STEC O157 and all STEC serogroups at multiple points along the ovine production chain by using suitable published surveys. A relative mean prevalence (and range) for STEC O157 was calculated: for feces 4.4% (0.2-28.1%), fleece 7.6% (0.8-12.8%), carcass 2.1% (0.2-9.8%), and raw ovine meat 1.9% (0.2-6.3%). For all STEC independent of serotype, a relative mean prevalence was calculated: for feces 33.3% (0.9-90.0%), carcass 58.7% (2.0-81.6%), and raw ovine meat 15.4% (2.7-35.5%). The prevalence of STEC in ovine fleece was reported in only one earlier survey, which recorded a prevalence of 86.2%. Animal age was reported to affect shedding in many surveys, with younger animals typically reported as having a higher prevalence of the pathogen. The prevalence of STEC decreases significantly along the ovine production chain after the application of postharvest interventions. Ovine products pose a small risk of potential STEC contamination to the food supply chain.
Collapse
Affiliation(s)
- Siobhán C McCarthy
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Geraldine Duffy
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
23
|
Virulence Factor Cargo and Host Cell Interactions of Shiga Toxin-Producing Escherichia coli Outer Membrane Vesicles. Methods Mol Biol 2021; 2291:177-205. [PMID: 33704754 DOI: 10.1007/978-1-0716-1339-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Outer membrane vesicles (OMVs), nanoparticles released by Shiga toxin-producing Escherichia coli (STEC), have been identified as novel efficient virulence tools of these pathogens. STEC O157 OMVs carry a cocktail of virulence factors including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, flagellin, and lipopolysaccharide. OMVs are taken up by human intestinal epithelial and microvascular endothelial cells, the major targets during STEC infection, and deliver the virulence factors into host cells. There the toxins separate from OMVs and are trafficked via different pathways to their target compartments, i.e., the cytosol (Stx2a-A subunit), nucleus (CdtV-B subunit), and mitochondria (EHEC hemolysin). This leads to a toxin-specific host cell injury and ultimately apoptotic cell death. Besides their cytotoxic effects, STEC OMVs trigger an inflammatory response via their lipopolysaccharide and flagellin components. In this chapter, we describe methods for the isolation and purification of STEC OMVs, for the detection of OMV-associated virulence factors, and for the analysis of OMV interactions with host cells including OMV cellular uptake and intracellular trafficking of OMVs and OMV-delivered toxins.
Collapse
|
24
|
Andreozzi E, Uhlich GA. PchE Regulation of Escherichia coli O157:H7 Flagella, Controlling the Transition to Host Cell Attachment. Int J Mol Sci 2020; 21:ijms21134592. [PMID: 32605187 PMCID: PMC7369912 DOI: 10.3390/ijms21134592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins and intimate adhesion controlled by the locus of enterocyte effacement are major enterohemorrhagic Escherichia coli (EHEC) virulence factors. Curli fimbriae also contribute to cell adhesion and are essential biofilm components. The transcriptional regulator PchE represses the expression of curli and their adhesion to HEp-2 cells. Past studies indicate that pchE also represses additional adhesins that contribute to HEp-2 cell attachment. In this study, we tested for pchE regulation of several tissue adhesins and their regulators. Three adhesin-encoding genes (eae, lpfA1, fliC) and four master regulators (csgD, stpA, ler, flhDC) were controlled by pchE. pchE over-expression strongly up-regulated fliC but the marked flagella induction reduced the attachment of O157:H7 clinical isolate PA20 to HEp-2 cells, indicating that flagella were blocking cell attachments rather than functioning as an adhesin. Chemotaxis, motor, structural, and regulatory genes in the flagellar operons were all increased by pchE expression, as was PA20 motility. This study identifies new members in the pchE regulon and shows that pchE stimulates flagellar motility while repressing cell adhesion, likely to support EHEC movement to the intestinal surface early in infection. However, induced or inappropriate pchE-dependent flagellar expression could block cell attachments later during disease progression.
Collapse
|
25
|
Munekata PE, Pateiro M, Rodríguez-Lázaro D, Domínguez R, Zhong J, Lorenzo JM. The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorganisms 2020; 8:microorganisms8060924. [PMID: 32570954 PMCID: PMC7356374 DOI: 10.3390/microorganisms8060924] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022] Open
Abstract
Outbreaks related to foodborne diseases are a major concern among health authorities, food industries, and the general public. Escherichia coli (E. coli) is a pathogen associated with causing multiple outbreaks in the last decades linked to several ready to eat products such as meat, fish, dairy products, and vegetables. The ingestion of contaminated food with pathogenic E. coli can cause watery diarrhea, vomiting, and persistent diarrhea as well as more severe effects such as hemorrhagic colitis, end-stage renal disease, and, in some circumstances, hemolytic uremic syndrome. Essential oils (EOs) are natural compounds with broad-spectrum activity against spoilage and pathogenic microorganisms and are also generally recognized as safe (GRAS). Particularly for E. coli, several recent studies have been conducted to study and characterize the effect to inhibit the synthesis of toxins and the proliferation in food systems. Moreover, the strategy used to apply the EO in food plays a crucial role to prevent the development of E. coli. This review encompasses recent studies regarding the protection against pathogenic E. coli by the use of EO with a major focus on inhibition of toxins and proliferation in food systems.
Collapse
Affiliation(s)
- Paulo E.S. Munekata
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Rubén Domínguez
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Jian Zhong
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100125, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jose M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: ; Tel.: +988-548-277
| |
Collapse
|
26
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
27
|
Álvarez RS, Jancic C, Garimano N, Sacerdoti F, Paton AW, Paton JC, Ibarra C, Amaral MM. Crosstalk between Human Microvascular Endothelial Cells and Tubular Epithelial Cells Modulates Pro-Inflammatory Responses Induced by Shiga Toxin Type 2 and Subtilase Cytotoxin. Toxins (Basel) 2019; 11:toxins11110648. [PMID: 31703347 PMCID: PMC6891416 DOI: 10.3390/toxins11110648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a consequence of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection and is the most frequent cause of acute renal failure (ARF) in children. Subtilase cytotoxin (SubAB) has also been associated with HUS pathogenesis. We previously reported that Stx2 and SubAB cause different effects on co-cultures of human renal microvascular endothelial cells (HGEC) and human proximal tubular epithelial cells (HK-2) relative to HGEC and HK-2 monocultures. In this work we have analyzed the secretion of pro-inflammatory cytokines by co-cultures compared to monocultures exposed or not to Stx2, SubAB, and Stx2+SubAB. Under basal conditions, IL-6, IL-8 and TNF-α secretion was different between monocultures and co-cultures. After toxin treatments, high concentrations of Stx2 and SubAB decreased cytokine secretion by HGEC monocultures, but in contrast, low toxin concentrations increased their release. Toxins did not modulate the cytokine secretion by HK-2 monocultures, but increased their release in the HK-2 co-culture compartment. In addition, HK-2 monocultures were stimulated to release IL-8 after incubation with HGEC conditioned media. Finally, Stx2 and SubAB were detected in HGEC and HK-2 cells from the co-cultures. This work describes, for the first time, the inflammatory responses induced by Stx2 and SubAB, in a crosstalk model of renal endothelial and epithelial cells.
Collapse
Affiliation(s)
- Romina S. Álvarez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
| | - Carolina Jancic
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires 1425, Argentina;
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Nicolás Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia; (A.W.P.); (J.C.P.)
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia; (A.W.P.); (J.C.P.)
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
| | - María M. Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
- Correspondence:
| |
Collapse
|
28
|
Barbosa CA, Conceição TA, Baliza MD, Camilo VMA, Juiz PJL, Silva IMM. Virulence genes in Escherichia coli isolates from commercialized saltwater mussels Mytella guyanensis (Lamarck, 1819). BRAZ J BIOL 2019; 79:625-628. [DOI: 10.1590/1519-6984.185930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Abstract The isolation of Escherichia coli from food is a major concern. Pathogenic strains of these bacteria cause diseases which range from diarrhea to hemolytic-uremic syndrome. Therefore the virulence genes in E. coli isolates from the mussel ( Mytella guyanensis) commercialized in Cachoeira, Bahia, Brazil were investigated. Samples were purchased from four vendors: two from supermarkets and two from fair outlets. They were conditioned into isothermal boxes with reusable ice and transported to the laboratory for analysis. E. coli strains were isolated in eosin methylene blue agar, preserved in brain-heart infusion medium with 15% glycerol and stored at -20 °C, after microbiological analysis. Virulence genes in the isolated strains were identified by specific primers, with Polymerase Chain Reaction. Twenty-four isolates were obtained, with a prevalence of elt gene, typical from enterotoxigenic infection, in 75% of the isolates. The stx and bfpA genes, prevalent in enterohemorragic and enteropathogenic E. coli, respectively, were not detected. The occurrence of elt virulence-related gene in the E. coli isolates of Mytella guyanensis reveals urgent improvement in food processing, including good handling practices, adequate storage and cooking before consumption, to ensure consumer’s health.
Collapse
Affiliation(s)
- C. A. Barbosa
- Universidade Federal do Recôncavo da Bahia, Brasil; Universidade Federal do Recôncavo da Bahia, Brasil
| | | | - M. D. Baliza
- Universidade Federal do Recôncavo da Bahia, Brasil
| | | | | | | |
Collapse
|
29
|
Abstract
The thrombotic microangiopathies (TMAs) are a group of diseases characterised by microangiopathic haemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. Traditionally, TMAs have been classified as either thrombotic thrombocytopenic purpura (TTP) or haemolytic uremic syndrome (HUS) based on the clinical presentation, with neurological involvement predominating in the former and acute kidney injury in the latter. However, as our understanding of the pathogenesis of these conditions has increased, it has become clear that this is an over-simplification; there is significant overlap in the clinical presentation of TTP and HUS, there are different forms of HUS, and TMAs can occur in other, diverse clinical scenarios. This review will discuss recent developments in the diagnosis of HUS, focusing on the different forms of HUS and how to diagnose and manage these potentially life-threatening diseases.
Collapse
Affiliation(s)
- Neil S Sheerin
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University and Biomedical Research Centre, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Emily Glover
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University and Biomedical Research Centre, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
30
|
Khanifar J, Salmanian AH, Haji Hosseini R, Amani J, Kazemi R. Chitosan nano-structure loaded with recombinant E. coli O157:H7 antigens as a vaccine candidate can effectively increase immunization capacity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2593-2604. [DOI: 10.1080/21691401.2019.1629947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jaleh Khanifar
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rohoallah Kazemi
- Department of Molecular Biology, Green Gene Company, Tehran, Iran
| |
Collapse
|
31
|
Selyunin AS, Hutchens S, McHardy SF, Mukhopadhyay S. Tamoxifen blocks retrograde trafficking of Shiga toxin 1 and 2 and protects against lethal toxicosis. Life Sci Alliance 2019; 2:2/3/e201900439. [PMID: 31243048 PMCID: PMC6599968 DOI: 10.26508/lsa.201900439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
This study reports an unexpected role of late endosome–lysosome fusion in early endosome-to-Golgi trafficking of Shiga toxins and identifies tamoxifen to be a potent inhibitor of Shiga toxicosis. Shiga toxin 1 (STx1) and 2 (STx2), produced by Shiga toxin–producing Escherichia coli, cause lethal untreatable disease. The toxins invade cells via retrograde trafficking. Direct early endosome-to-Golgi transport allows the toxins to evade degradative late endosomes. Blocking toxin trafficking, particularly at the early endosome-to-Golgi step, is appealing, but transport mechanisms of the more disease-relevant STx2 are unclear. Using data from a genome-wide siRNA screen, we discovered that disruption of the fusion of late endosomes, but not autophagosomes, with lysosomes blocked the early endosome-to-Golgi transport of STx2. A subsequent screen of clinically approved lysosome-targeting drugs identified tamoxifen (TAM) to be a potent inhibitor of the trafficking and toxicity of STx1 and STx2 in cells. The protective effect was independent of estrogen receptors but dependent on the weak base property of TAM, which allowed TAM to increase endolysosomal pH and alter endosomal dynamics. Importantly, TAM treatment enhanced survival of mice injected with a lethal dose of STx1 or STx2. Thus, it may be possible to repurpose TAM for treating Shiga toxin–producing E. coli infections.
Collapse
Affiliation(s)
- Andrey S Selyunin
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Stanton F McHardy
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas San Antonio, San Antonio, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
32
|
Abstract
Proper management of polymicrobial infections in patients with cystic fibrosis (CF) has extended their life span. Information about the composition and dynamics of each patient’s microbial community aids in the selection of appropriate treatment of pulmonary exacerbations. We propose the cystic fibrosis rapid response (CFRR) as a fast approach to determine viral and microbial community composition and activity during CF pulmonary exacerbations. The CFRR potential is illustrated with a case study in which a cystic fibrosis fatal exacerbation was characterized by the presence of shigatoxigenic Escherichia coli. The incorporation of the CFRR within the CF clinic could increase the life span and quality of life of CF patients. Pulmonary exacerbations are the leading cause of death in cystic fibrosis (CF) patients. To track microbial dynamics during acute exacerbations, a CF rapid response (CFRR) strategy was developed. The CFRR relies on viromics, metagenomics, metatranscriptomics, and metabolomics data to rapidly monitor active members of the viral and microbial community during acute CF exacerbations. To highlight CFRR, a case study of a CF patient is presented, in which an abrupt decline in lung function characterized a fatal exacerbation. The microbial community in the patient’s lungs was closely monitored through the multi-omics strategy, which led to the identification of pathogenic shigatoxigenic Escherichia coli (STEC) expressing Shiga toxin. This case study illustrates the potential for the CFRR to deconstruct complicated disease dynamics and provide clinicians with alternative treatments to improve the outcomes of pulmonary exacerbations and expand the life spans of individuals with CF.
Collapse
|
33
|
Brigotti M, Orth-Höller D, Carnicelli D, Porcellini E, Galassi E, Tazzari PL, Ricci F, Manoli F, Manet I, Talasz H, Lindner HH, Speth C, Erbeznik T, Fuchs S, Posch W, Chatterjee S, Würzner R. The structure of the Shiga toxin 2a A-subunit dictates the interactions of the toxin with blood components. Cell Microbiol 2019; 21:e13000. [PMID: 30578712 PMCID: PMC6492301 DOI: 10.1111/cmi.13000] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
Hemolytic uremic syndrome (eHUS) is a severe complication of human infections with Shiga toxins (Stxs)-producing Escherichia coli. A key step in the pathogenesis of eHUS is the interaction of Stxs with blood components before the targeting of renal endothelial cells. Here, we show that a single proteolytic cleavage in the Stx2a A-subunit, resulting into two fragments (A1 and A2) linked by a disulfide bridge (cleaved Stx2a), dictates different binding abilities. Uncleaved Stx2a was confirmed to bind to human neutrophils and to trigger leukocyte/platelet aggregate formation, whereas cleaved Stx2a was ineffective. Conversely, binding of complement factor H was confirmed for cleaved Stx2a and not for uncleaved Stx2a. It is worth noting that uncleaved and cleaved Stx2a showed no differences in cytotoxicity for Vero cells or Raji cells, structural conformation, and contaminating endotoxin. These results have been obtained by comparing two Stx2a batches, purified in different laboratories by using different protocols, termed Stx2a(cl; cleaved toxin, Innsbruck) and Stx2a(uncl; uncleaved toxin, Bologna). Stx2a(uncl) behaved as Stx2a(cl) after mild trypsin treatment. In this light, previous controversial results obtained with purified Stx2a has to be critically re-evaluated; furthermore, characterisation of the structure of circulating Stx2a is mandatory to understand eHUS-pathogenesis and to develop therapeutic approaches.
Collapse
Affiliation(s)
- Maurizio Brigotti
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Domenica Carnicelli
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Elisa Porcellini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Elisabetta Galassi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Tazzari
- Servizio di Immunoematologia e Trasfusionale, Ospedale S. Orsola-Malpighi, Bologna, Italy
| | - Francesca Ricci
- Servizio di Immunoematologia e Trasfusionale, Ospedale S. Orsola-Malpighi, Bologna, Italy
| | - Francesco Manoli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Heribert Talasz
- Division of Clinical Biochemistry, Biocentre, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert H Lindner
- Division of Clinical Biochemistry, Biocentre, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Erbeznik
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Fuchs
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sneha Chatterjee
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
O'Sullivan L, Bolton D, McAuliffe O, Coffey A. Bacteriophages in Food Applications: From Foe to Friend. Annu Rev Food Sci Technol 2019; 10:151-172. [PMID: 30633564 DOI: 10.1146/annurev-food-032818-121747] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages (phages) have traditionally been considered troublesome in food fermentations, as they are an important cause of starter-culture failure and trigger significant financial losses. In addition, from an evolutionary perspective, phages have contributed to the pathogenicity of many bacteria through transduction of virulence genes. In contrast, phages have played an important positive role in molecular biology. Moreover, these agents are increasingly being recognized as a potential solution to the detection and biocontrol of various undesirable bacteria, which cause either spoilage of food materials, decreased microbiological safety of foods, or infectious diseases in food animals and crops. The documented successful applications of phages and various phage-derived molecules are discussed in this review, as are many promising new uses that are currently under development.
Collapse
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland;
| | | | | | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland; .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Balasubramanian S, Osburne MS, BrinJones H, Tai AK, Leong JM. Prophage induction, but not production of phage particles, is required for lethal disease in a microbiome-replete murine model of enterohemorrhagic E. coli infection. PLoS Pathog 2019; 15:e1007494. [PMID: 30629725 PMCID: PMC6328086 DOI: 10.1371/journal.ppat.1007494] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/01/2018] [Indexed: 12/12/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) colonize intestinal epithelium by generating characteristic attaching and effacing (AE) lesions. They are lysogenized by prophage that encode Shiga toxin 2 (Stx2), which is responsible for severe clinical manifestations. As a lysogen, prophage genes leading to lytic growth and stx2 expression are repressed, whereas induction of the bacterial SOS response in response to DNA damage leads to lytic phage growth and Stx2 production both in vitro and in germ-free or streptomycin-treated mice. Some commensal bacteria diminish prophage induction and concomitant Stx2 production in vitro, whereas it has been proposed that phage-susceptible commensals may amplify Stx2 production by facilitating successive cycles of infection in vivo. We tested the role of phage induction in both Stx production and lethal disease in microbiome-replete mice, using our mouse model encompassing the murine pathogen Citrobacter rodentium lysogenized with the Stx2-encoding phage Φstx2dact. This strain generates EHEC-like AE lesions on the murine intestine and causes lethal Stx-mediated disease. We found that lethal mouse infection did not require that Φstx2dact infect or lysogenize commensal bacteria. In addition, we detected circularized phage genomes, potentially in the early stage of replication, in feces of infected mice, confirming that prophage induction occurs during infection of microbiota-replete mice. Further, C. rodentium (Φstx2dact) mutants that do not respond to DNA damage or express stx produced neither high levels of Stx2 in vitro or lethal infection in vivo, confirming that SOS induction and concomitant expression of phage-encoded stx genes are required for disease. In contrast, C. rodentium (Φstx2dact) mutants incapable of prophage genome excision or of packaging phage genomes retained the ability to produce Stx in vitro, as well as to cause lethal disease in mice. Thus, in a microbiome-replete EHEC infection model, lytic induction of Stx-encoding prophage is essential for lethal disease, but actual phage production is not.
Collapse
Affiliation(s)
- Sowmya Balasubramanian
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Haley BrinJones
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Albert K. Tai
- Department of Immunology at Tufts University School of Medicine, Boston, MA, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
36
|
Luz D, Amaral MM, Sacerdoti F, Bernal AM, Quintilio W, Moro AM, Palermo MS, Ibarra C, Piazza RMF. Human Recombinant Fab Fragment Neutralizes Shiga Toxin Type 2 Cytotoxic Effects in vitro and in vivo. Toxins (Basel) 2018; 10:E508. [PMID: 30513821 PMCID: PMC6315604 DOI: 10.3390/toxins10120508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) is responsible for causing hemolytic uremic syndrome (HUS), a life-threatening thrombotic microangiopathy characterized by thrombocytopenia, hemolytic anemia, and acute renal failure after bacterially induced hemorrhagic diarrhea. Until now, there has been neither an effective treatment nor method of prevention for the deleterious effects caused by Stx intoxication. Antibodies are well recognized as affinity components of therapeutic drugs; thus, a previously obtained recombinant human FabC11:Stx2 fragment was used to neutralize Stx2 in vitro in a Vero cell viability assay. Herein, we demonstrated that this fragment neutralized, in a dose-dependent manner, the cytotoxic effects of Stx2 on human glomerular endothelial cells, on human proximal tubular epithelial cells, and prevented the morphological alterations induced by Stx2. FabC11:Stx2 protected mice from a lethal dose of Stx2 by toxin-antibody pre-incubation. Altogether, our results show the ability of a new encouraging molecule to prevent Stx-intoxication symptoms during STEC infection.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503900, Brasil.
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | - Alan Mauro Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires C1425, Argentina.
| | - Wagner Quintilio
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Ana Maria Moro
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires C1425, Argentina.
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | | |
Collapse
|
37
|
Almasian P, Amani J, Arani FB, Nazarian S, Kazemi R, Tabrizi NM. Preparation of chitosan nanoparticle containing recombinant StxB antigen of EHEC and evaluation its immunogenicity in BALB/c mice. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:361-370. [PMID: 30873263 PMCID: PMC6414748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Escherichia coli O157:H7 is one of the most important food pathogens that produces colitis and bloody urine in humans. The Stx2B subunit is considered as one of the candidates for vaccine due to its immunogenic and adjuvant properties. Designing a mucosal vaccine using nanoparticles for protecting the antigen against degradation and controlling the release of antigen are important. The objective of the current study was to prepare nanoparticles containing the Stx2B subunit of E. coli O157:H7 and evaluation of its immunogenicity in the mouse model. MATERIALS AND METHODS E. coli BL21 DE3 and pET28a-stxB were used for expression of the stx2b gene. After inducing gene expression, purification of the Stx2b protein was performed. Then, chitosan nanoparticle containing recombinant Stx2B was prepared and administered to BALB/c mice. IgA and IgG titers in serum and IgA titers in feces of immunized and control mice were evaluated by the ELISA method. RESULTS After expression and purification of the Stx2B recombinant protein, an expected band of 13 kDa was observed on the SDS-PAGE gel and confirmed by Western Blot analysis. The size of the nanoparticle containing Stx2B was 290 nm. In the immunized mice, IgG and IgA titers were significantly increased. The immunized mice were challenged against E. coli O157:H7 Stx+ and the shedding analysis showed that colonization of bacteria in the intestinal tract decreased. CONCLUSION Oral administration of nanoparticles containing Stx2B as a candidate for the vaccine can induce a systemic and mucosal immune response against Stx2 toxin and can provide acceptable protection.
Collapse
Affiliation(s)
- Pegah Almasian
- Department of Genetics and Biotechnology, School of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fahimeh Baghban Arani
- Department of Genetics and Biotechnology, School of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Sciences, Imam Hossein University, Tehran, Iran
| | - Rouhollah Kazemi
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Niloufar Mirzaee Tabrizi
- Department of Genetics and Biotechnology, School of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
38
|
Exeni RA, Fernandez-Brando RJ, Santiago AP, Fiorentino GA, Exeni AM, Ramos MV, Palermo MS. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol 2018; 33:2057-2071. [PMID: 29372302 DOI: 10.1007/s00467-017-3876-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/01/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.
Collapse
Affiliation(s)
- Ramon Alfonso Exeni
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Romina Jimena Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Patricia Santiago
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Gabriela Alejandra Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
- Laboratorio, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Andrea Mariana Exeni
- Servicio de Nefrología, Hospital Austral, Pilar, Provincia de Buenos Aires, Argentina
| | - Maria Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
40
|
Nagy E, Nagy G, Power CA, Badarau A, Szijártó V. Anti-bacterial Monoclonal Antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:119-153. [PMID: 29549638 DOI: 10.1007/978-3-319-72077-7_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The failing efficacy of antibiotics and the high mortality rate among high-risk patients calls for new treatment modalities for bacterial infections. Due to the vastly divergent pathogenesis of human pathogens, each microbe requires a tailored approach. The main modes of action of anti-bacterial antibodies are virulence factor neutralization, complement-mediated bacterial lysis and enhancement of opsonophagocytic uptake and killing (OPK). Gram-positive bacteria cannot be lysed by complement and their pathogenesis often involves secreted toxins, therefore typically toxin-neutralization and OPK activity are required to prevent and ameliorate disease. In fact, the success stories in terms of approved products, in the anti-bacterial mAb field are based on toxin neutralization (Bacillus anthracis, Clostridium difficile). In contrast, Gram-negative bacteria are vulnerable to antibody-dependent complement-mediated lysis, while their pathogenesis rarely relies on secreted exotoxins, and involves the pro-inflammatory endotoxin (lipopolysaccharide). Given the complexity of bacterial pathogenesis, antibody therapeutics are expected to be most efficient upon targeting more than one virulence factor and/or combining different modes of action. The improved understanding of bacterial pathogenesis combined with the versatility and maturity of antibody discovery technologies available today are pivotal for the design of novel anti-bacterial therapeutics. The intensified research generating promising proof-of-concept data, and the increasing number of clinical programs with anti-bacterial mAbs, indicate that the field is ready to fulfill its promise in the coming years.
Collapse
Affiliation(s)
- Eszter Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria.
| | - Gábor Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria
| | | | | | | |
Collapse
|
41
|
Kuo CJ, Wang ST, Chen CS. Detection of Enterohemorrhagic Escherichia Coli Colonization in Murine Host by Non-invasive In Vivo Bioluminescence System. J Vis Exp 2018. [PMID: 29683443 DOI: 10.3791/56169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) O157:H7, which is a foodborne pathogen that causesdiarrhea, hemorrhagic colitis (HS), and hemolytic uremic syndrome (HUS), colonize to the intestinal tract of humans. To study the detailed mechanism of EHEC colonization in vivo, it is essential to have animal models to monitor and quantify EHEC colonization. We demonstrate here a mouse-EHEC colonization model by transforming the bioluminescent expressing plasmid to EHEC to monitor and quantify EHEC colonization in living hosts. Animals inoculated with bioluminescence-labeled EHEC show intense bioluminescent signals in mice by detection with a non-invasive in vivo imaging system. After 1 and 2 days post infection, bioluminescent signals could still be detected in infected animals, which suggests that EHEC colonize in hosts for at least 2 days. We also demonstrate that these bioluminescent EHEC locate to mouse intestine, specifically in the cecum and colon, from ex vivo images. This mouse-EHEC colonization model may serve as a tool to advance the current knowledge of the EHEC colonization mechanism.
Collapse
Affiliation(s)
- Cheng-Ju Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University
| | - Sin-Tian Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University;
| |
Collapse
|
42
|
Abstract
Thrombotic microangiopathy can manifest in a diverse range of diseases and is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and organ injury, including AKI. It can be associated with significant morbidity and mortality, but a systematic approach to investigation and prompt initiation of supportive management and, in some cases, effective specific treatment can result in good outcomes. This review considers the classification, pathology, epidemiology, characteristics, and pathogenesis of the thrombotic microangiopathies, and outlines a pragmatic approach to diagnosis and management.
Collapse
Affiliation(s)
- Vicky Brocklebank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne, Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and
| | - Katrina M. Wood
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne, Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and
| |
Collapse
|
43
|
Bowen EE, Coward RJ. Advances in our understanding of the pathogenesis of hemolytic uremic syndromes. Am J Physiol Renal Physiol 2017; 314:F454-F461. [PMID: 29167171 DOI: 10.1152/ajprenal.00376.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is major global health care issue as it is the leading cause of acute kidney injury in children. It is a triad of acute kidney injury, microangiopathic hemolytic anemia, and thrombocytopenia. In recent years, major advances in our understanding of complement-driven inherited rare forms of HUS have been achieved. However, in children 90% of cases of HUS are associated with a Shiga toxin-producing enteric pathogen. The precise pathological mechanisms in this setting are yet to be elucidated. The purpose of this review is to discuss advances in our understanding of the pathophysiology underlying HUS and identify the key questions yet to be answered by the scientific community.
Collapse
Affiliation(s)
- E E Bowen
- Academic Renal Unit, School of Clinical Sciences, University of Bristol , Bristol , United Kingdom
| | - R J Coward
- Academic Renal Unit, School of Clinical Sciences, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
44
|
Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Toxins (Basel) 2017; 9:toxins9110338. [PMID: 29068380 PMCID: PMC5705953 DOI: 10.3390/toxins9110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.
Collapse
|
45
|
Brocklebank V, Kavanagh D. Complement C5-inhibiting therapy for the thrombotic microangiopathies: accumulating evidence, but not a panacea. Clin Kidney J 2017; 10:600-624. [PMID: 28980670 PMCID: PMC5622895 DOI: 10.1093/ckj/sfx081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Thrombotic microangiopathy (TMA), characterized by organ injury occurring consequent to severe endothelial damage, can manifest in a diverse range of diseases. In complement-mediated atypical haemolytic uraemic syndrome (aHUS) a primary defect in complement, such as a mutation or autoantibody leading to over activation of the alternative pathway, predisposes to the development of disease, usually following exposure to an environmental trigger. The elucidation of the pathogenesis of aHUS resulted in the successful introduction of the complement inhibitor eculizumab into clinical practice. In other TMAs, although complement activation may be seen, its role in the pathogenesis remains to be confirmed by an interventional trial. Although many case reports in TMAs other than complement-mediated aHUS hint at efficacy, publication bias, concurrent therapies and in some cases the self-limiting nature of disease make broader interpretation difficult. In this article, we will review the evidence for the role of complement inhibition in complement-mediated aHUS and other TMAs.
Collapse
Affiliation(s)
- Vicky Brocklebank
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
46
|
Ouabain Protects Human Renal Cells against the Cytotoxic Effects of Shiga Toxin Type 2 and Subtilase Cytotoxin. Toxins (Basel) 2017; 9:toxins9070226. [PMID: 28718802 PMCID: PMC5535173 DOI: 10.3390/toxins9070226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/17/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in children. The majority of cases are associated with Shiga toxin (Stx)-producing Escherichia coli (STEC). In Argentina, HUS is endemic and presents the highest incidence rate in the world. STEC strains expressing Stx type 2 (Stx2) are responsible for the most severe cases of this pathology. Subtilase cytotoxin (SubAB) is another STEC virulence factor that may contribute to HUS pathogenesis. To date, neither a licensed vaccine nor effective therapy for HUS is available for humans. Considering that Ouabain (OUA) may prevent the apoptosis process, in this study we evaluated if OUA is able to avoid the damage caused by Stx2 and SubAB on human glomerular endothelial cells (HGEC) and the human proximal tubule epithelial cell (HK-2) line. HGEC and HK-2 were pretreated with OUA and then incubated with the toxins. OUA protected the HGEC viability from Stx2 and SubAB cytotoxic effects, and also prevented the HK-2 viability from Stx2 effects. The protective action of OUA on HGEC and HK-2 was associated with a decrease in apoptosis and an increase in cell proliferation. Our data provide evidence that OUA could be considered as a therapeutic strategy to avoid the renal damage that precedes HUS.
Collapse
|
47
|
Stein RA, Katz DE. Escherichia coli, cattle and the propagation of disease. FEMS Microbiol Lett 2017; 364:3059138. [PMID: 28333229 PMCID: PMC7108533 DOI: 10.1093/femsle/fnx050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Several early models describing host–pathogen interaction have assumed that each individual host has approximately the same likelihood of becoming infected or of infecting others. More recently, a concept that has been increasingly emphasized in many studies is that for many infectious diseases, transmission is not homogeneous but highly skewed at the level of populations. In what became known as the ‘20/80 rule’, about 20% of the hosts in a population were found to contribute to about 80% of the transmission potential. These heterogeneities have been described for the interaction between many microorganisms and their human or animal hosts. Several epidemiological studies have reported transmission heterogeneities for Escherichia coli by cattle, a phenomenon with far-reaching agricultural, medical and public health implications. Focusing on E. coli as a case study, this paper will describe super-spreading and super-shedding by cattle, review the main factors that shape these transmission heterogeneities and examine the interface with human health. Escherichia coli super-shedding and super-spreading by cattle are shaped by microorganism-specific, cattle-specific and environmental factors. Understanding the factors that shape heterogeneities in E. coli dispersion by cattle and the implications for human health represent key components that are critical for targeted infection control initiatives.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Department of Natural Sciences, LaGuardia Community College, City University of New York, Long Island City, NY 11101, USA
| | - David E Katz
- Department of Internal Medicine, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem 91031, Israel
| |
Collapse
|
48
|
Flowers LJ, Bou Ghanem EN, Leong JM. Synchronous Disease Kinetics in a Murine Model for Enterohemorrhagic E. coli Infection Using Food-Borne Inoculation. Front Cell Infect Microbiol 2016; 6:138. [PMID: 27857935 PMCID: PMC5093121 DOI: 10.3389/fcimb.2016.00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/07/2016] [Indexed: 11/29/2022] Open
Abstract
Upon colonization of the intestinal epithelium, the attaching and effacing (AE) pathogen Enterohemorrhagic Escherichia coli (EHEC) effaces microvilli and forms pedestal-like structures beneath the adherent bacterium. The production of one of its virulence factors, the phage-encoded Shiga toxin (Stx) results in systemic disease, including the development of renal failure. Although EHEC does not productively infect conventional mice, EHEC infection can be modeled in mice utilizing a derivative of the natural murine AE pathogen Citrobacter rodentium (CR). Gavage of mice with CR(ΦStx2dact), a C. rodentium lysogenized by a phage encoding an Stx variant with high potency in mice, features AE lesion formation on intestinal epithelium and Stx-mediated systemic disease, including renal damage. This model is somewhat limited by mouse-to-mouse variation in the course of disease, with the time to severe morbidity (and required euthanasia) varying by as many as 5 days, a feature that limits pathological analysis at defined stages of disease. In the current study, we altered and optimized the preparation, dose, and mode of delivery of CR(ΦStx2dact), using food-borne route of infection to generate highly synchronous disease model. We found that food-borne inoculation of as few as 3 × 104 CR(ΦStx2dact) resulted in productive colonization and severe systemic disease. Upon inoculation of 1 × 108 bacteria, the majority of infected animals suffered weight loss beginning 5 days post-infection and all required euthanasia on day 6 or 7. This enhanced murine model for EHEC infection should facilitate characterization of the pathology associated with specific phases of Stx-mediated disease.
Collapse
Affiliation(s)
- Laurice J Flowers
- Molecular Biology and Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
49
|
Wu SY, Park GY, Kim SH, Hulme J, An SSA. Diminazene aceturate: an antibacterial agent for Shiga-toxin-producing Escherichia coli O157:H7. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3363-3378. [PMID: 27789937 PMCID: PMC5072558 DOI: 10.2147/dddt.s114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the bacteriostatic and bactericidal effects of diminazene aceturate (DA) against five strains of pathogenic bacteria and two strains of nonpathogenic bacteria. The results showed that 5 μg/mL of DA suppressed the growth of pathogenic Escherichia coli by as much as 77% compared with the controls. Enterohemorrhagic E. coli EDL933 (an E. coli O157:H7 strain) was the most sensitive to DA with a minimum inhibitory concentration of 20 μg/mL. Additional investigations showed that DA induced the highest level of intracellular reactive oxygen species in EDL933. A positive correlation between the reactive oxygen species levels and DA concentration was demonstrated. DA (5 μg/mL) was also a potent uncoupler, inducing a stationary phase collapse (70%–75%) in both strains of E. coli O157:H7. Further investigation showed that the collapse was due to the NaCl:DA ratio in the broth and was potassium ion dependent. A protease screening assay was conducted to elucidate the underlying mechanism. It was found that at neutral pH, the hydrolysis of H-Asp-pNA increased by a factor of 2–3 in the presence of DA, implying that DA causes dysregulation of the proton motive force and a decrease in cellular pH. Finally, a commercial verotoxin test showed that DA did not significantly increase toxin production in EDL933 and was a suitable antibacterial agent for Shiga-toxin-producing E. coli.
Collapse
Affiliation(s)
- Si-Ying Wu
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam-si
| | - Gil-Yong Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam-si
| | - So-Hee Kim
- Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - John Hulme
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam-si
| | - Seong Soo A An
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam-si
| |
Collapse
|
50
|
Human mannose-binding lectin inhibitor prevents Shiga toxin-induced renal injury. Kidney Int 2016; 90:774-82. [PMID: 27378476 DOI: 10.1016/j.kint.2016.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 01/22/2023]
Abstract
Hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli (STEC HUS) is a worldwide endemic problem, and its pathophysiology is not fully elucidated. Here we tested whether the mannose-binding lectin (MBL2), an initiating factor of lectin complement pathway activation, plays a crucial role in STEC HUS. Using novel human MBL2-expressing mice (MBL2 KI) that lack murine Mbls (MBL2(+/+)Mbl1(-/-)Mbl2(-/-)), a novel STEC HUS model consisted of an intraperitoneal injection with Shiga toxin-2 (Stx-2) with or without anti-MBL2 antibody (3F8, intraperitoneal). Stx-2 induced weight loss, anemia, and thrombocytopenia and increased serum creatinine, free serum hemoglobin, and cystatin C levels, but a significantly decreased glomerular filtration rate compared with control/sham mice. Immunohistochemical staining revealed renal C3d deposition and fibrin deposition in glomeruli in Stx-2-injected mice. Treatment with 3F8 completely inhibited serum MBL2 levels and significantly attenuated Stx-2 induced-renal injury, free serum hemoglobin levels, renal C3d, and fibrin deposition and preserved the glomerular filtration rate. Thus, MBL2 inhibition significantly protected against complement activation and renal injury induced by Stx-2. This novel mouse model can be used to study the role of complement, particularly lectin pathway-mediated complement activation, in Stx-2-induced renal injury.
Collapse
|