1
|
Tessier E, Cheutin L, Garnier A, Vigne C, Tournier JN, Rougeaux C. Early Circulating Edema Factor in Inhalational Anthrax Infection: Does It Matter? Microorganisms 2024; 12:308. [PMID: 38399712 PMCID: PMC10891819 DOI: 10.3390/microorganisms12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Anthrax toxins are critical virulence factors of Bacillus anthracis and Bacillus cereus strains that cause anthrax-like disease, composed of a common binding factor, the protective antigen (PA), and two enzymatic proteins, lethal factor (LF) and edema factor (EF). While PA is required for endocytosis and activity of EF and LF, several studies showed that these enzymatic factors disseminate within the body in the absence of PA after intranasal infection. In an effort to understand the impact of EF in the absence of PA, we used a fluorescent EF chimera to facilitate the study of endocytosis in different cell lines. Unexpectedly, EF was found inside cells in the absence of PA and showed a pole-dependent endocytosis. However, looking at enzymatic activity, PA was still required for EF to induce an increase in intracellular cAMP levels. Interestingly, the sequential delivery of EF and then PA rescued the rise in cAMP levels, indicating that PA and EF may functionally associate during intracellular trafficking, as well as it did at the cell surface. Our data shed new light on EF trafficking and the potential location of PA and EF association for optimal cytosolic delivery.
Collapse
Affiliation(s)
- Emilie Tessier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Laurence Cheutin
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Annabelle Garnier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Clarisse Vigne
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Jean-Nicolas Tournier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
- Institut Pasteur, 75015 Paris, France
| | - Clémence Rougeaux
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| |
Collapse
|
2
|
Metzger D, Miller K, Lyon W, Migliozzi R, Pangburn HA, Saldanha R. Host Cell Transcriptional Tuning with CRISPR/dCas9 to Mitigate the Effects of Toxin Exposure. ACS Synth Biol 2022; 11:3657-3668. [PMID: 36318971 DOI: 10.1021/acssynbio.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anthrax infection is caused byBacillus anthracis, a bacterium that once established within the host releases lethal toxin (LeTx). Anthrax LeTx is internalized by the capillary morphogenesis protein 2/anthrax toxin receptor 2 (CMG2/ANTXR2) cell surface receptor on mammalian cells. Once inside the cell, LeTx cleaves mitogen-activated protein kinases (MAPKs), ultimately leading to cell death. Previous reports have shown that decreased expression of ANTXR2 reduces cell susceptibility to LeTx. By ablating the ANTXR2 gene in cells in vitro, we observed complete resistance to LeTx-induced cell death. Here, we directed CRISPR/dCas9-based tools to the ANTXR2 promoter to modulate ANTXR2 expression without altering the underlying gene sequence in human cell lines that express the receptor at high levels. We hypothesized that downregulating the expression of the ANTXR2 gene at the genomic level would mitigate the impact of toxin exposure. In one epigenetic editing approach, we employed the fusion of DNMT3A DNA methyltransferase and dCas9 (dCas9-DNMT3A) to methylate CpGs within the CpG island of the ANTXR2 promoter and found this repressed ANTXR2 gene expression resulting in significant resistance to LeTx-induced cell death. Furthermore, by multiplexing gRNAs to direct dCas9-DNMT3A to multiple sites in the ANTXR2 promoter, we applied a broader distribution of CpG methylation along the gene promoter resulting in enhanced repression and resistance to LeTx. In parallel, we directed the dCas9-KRAB-MeCP2 transcriptional repressor to the ANTXR2 promoter to quickly and robustly repress ANTXR2 expression. With this approach, in as little as two weeks, we created resistance to LeTx at a similar level to ANTXR2 gene-ablated cells. Overall, we present a transcriptional tuning approach to inhibit the effects of LeTx and provide a framework to repress toxin-binding cell surface receptors.
Collapse
Affiliation(s)
- David Metzger
- UES, Inc., assigned to 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45432, United States
| | - Kennedy Miller
- UES, Inc., assigned to 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45432, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Wanda Lyon
- Airman Bioengineering Division, 711 Human Performance Wing, Air Force Research Lab, Wright-Patterson AFB, Ohio 45433, United States
| | - Rebecca Migliozzi
- UES, Inc., assigned to 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45432, United States
| | - Heather A Pangburn
- Airman Bioengineering Division, 711 Human Performance Wing, Air Force Research Lab, Wright-Patterson AFB, Ohio 45433, United States
| | - Roland Saldanha
- Airman Bioengineering Division, 711 Human Performance Wing, Air Force Research Lab, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
3
|
Corbett V, Hallenbeck P, Rychahou P, Chauhan A. Evolving role of seneca valley virus and its biomarker TEM8/ANTXR1 in cancer therapeutics. Front Mol Biosci 2022; 9:930207. [PMID: 36090051 PMCID: PMC9458967 DOI: 10.3389/fmolb.2022.930207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have made a significant inroad in cancer drug development. Numerous clinical trials are currently investigating oncolytic viruses both as single agents or in combination with various immunomodulators. Oncolytic viruses (OV) are an integral pillar of immuno-oncology and hold potential for not only delivering durable anti-tumor responses but also converting “cold” tumors to “hot” tumors. In this review we will discuss one such promising oncolytic virus called Seneca Valley Virus (SVV-001) and its therapeutic implications. SVV development has seen seismic evolution over the past decade and now boasts of being the only OV with a practically applicable biomarker for viral tropism. We discuss relevant preclinical and clinical data involving SVV and how bio-selecting for TEM8/ANTXR1, a negative tumor prognosticator can lead to first of its kind biomarker driven oncolytic viral cancer therapy.
Collapse
Affiliation(s)
- Virginia Corbett
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Piotr Rychahou
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Aman Chauhan
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Aman Chauhan,
| |
Collapse
|
4
|
Duru N, Pawar NR, Martin EW, Buzza MS, Conway GD, Lapidus RG, Liu S, Reader J, Rao GG, Roque DM, Leppla SH, Antalis TM. Selective targeting of metastatic ovarian cancer using an engineered anthrax prodrug activated by membrane-anchored serine proteases. Proc Natl Acad Sci U S A 2022; 119:e2201423119. [PMID: 35867758 PMCID: PMC9282395 DOI: 10.1073/pnas.2201423119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 01/19/2023] Open
Abstract
Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.
Collapse
Affiliation(s)
- Nadire Duru
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Erik W. Martin
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gregory D. Conway
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rena G. Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shihui Liu
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jocelyn Reader
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gautam G. Rao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dana M. Roque
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Stephen H. Leppla
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201
| |
Collapse
|
5
|
Cryan LM, Tsang TM, Stiles J, Bazinet L, Lee SL, Garrard S, Madrian E, Roberts C, Payne J, Jensen A, Frankel AE, Ackroyd PC, Christensen KA, Rogers MS. Capillary morphogenesis gene 2 (CMG2) mediates growth factor-induced angiogenesis by regulating endothelial cell chemotaxis. Angiogenesis 2022; 25:397-410. [PMID: 35212873 PMCID: PMC9250616 DOI: 10.1007/s10456-022-09833-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
Anthrax protective antigen (PA) is a potent inhibitor of pathological angiogenesis with an unknown mechanism. In anthrax intoxication, PA interacts with capillary morphogenesis gene 2 (CMG2) and tumor endothelial marker 8 (TEM8). Here, we show that CMG2 mediates the antiangiogenic effects of PA and is required for growth-factor-induced chemotaxis. Using specific inhibitors of CMG2 and TEM8 interaction with natural ligand, as well as mice with the CMG2 or TEM8 transmembrane and intracellular domains disrupted, we demonstrate that inhibiting CMG2, but not TEM8 reduces growth-factor-induced angiogenesis in the cornea. Furthermore, the antiangiogenic effect of PA was abolished when the CMG2, but not the TEM8, gene was disrupted. Binding experiments demonstrated a broad ligand specificity for CMG2 among extracellular matrix (ECM) proteins. Ex vivo experiments demonstrated that CMG2 (but not TEM8) is required for PA activity in human dermal microvascular endothelial cell (HMVEC-d) network formation assays. Remarkably, blocking CMG2-ligand binding with PA or CRISPR knockout abolishes endothelial cell chemotaxis but not chemokinesis in microfluidic migration assays. These effects are phenocopied by Rho inhibition. Because CMG2 mediates the chemotactic response of endothelial cells to peptide growth factors in an ECM-dependent fashion, CMG2 is well-placed to integrate growth factor and ECM signals. Thus, CMG2 targeting is a novel way to inhibit angiogenesis.
Collapse
Affiliation(s)
- Lorna M Cryan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Tsz-Ming Tsang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Jessica Stiles
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Lauren Bazinet
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Sai Lun Lee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Samuel Garrard
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.,Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Erika Madrian
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Cody Roberts
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Jessie Payne
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Andrew Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Arthur E Frankel
- Department of Medicine, West Palm Beach VA Medical Center, 7305 N Military Trail, West Palm Beach, FL, 33410, USA
| | - P Christine Ackroyd
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Kenneth A Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Michael S Rogers
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Liu W, Nestorovich EM. Anthrax toxin channel: What we know based on over 30 years of research. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183715. [PMID: 34332985 DOI: 10.1016/j.bbamem.2021.183715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Protective antigen channel is the central component of the deadly anthrax exotoxin responsible for binding and delivery of the toxin's enzymatic lethal and edema factor components into the cytosol. The channel, which is more than three times longer than the lipid bilayer membrane thickness and has a 6-Å limiting diameter, is believed to provide a sophisticated unfoldase and translocase machinery for the foreign protein transport into the host cell cytosol. The tripartite toxin can be reengineered, one component at a time or collectively, to adapt it for the targeted cancer therapeutic treatments. In this review, we focus on the biophysical studies of the protective antigen channel-forming activity, small ion transport properties, enzymatic factor translocation, and blockage comparing it with the related clostridial binary toxin channels. We address issues linked to the anthrax toxin channel structural dynamics and lipid dependence, which are yet to become generally recognized as parts of the toxin translocation machinery.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA.
| |
Collapse
|
7
|
van Rijn JM, Werner L, Aydemir Y, Spronck JM, Pode-Shakked B, van Hoesel M, Shimshoni E, Polak-Charcon S, Talmi L, Eren M, Weiss B, H.J. Houwen R, Barshack I, Somech R, Nieuwenhuis EE, Sagi I, Raas-Rothschild A, Middendorp S, Shouval DS. Enhanced Collagen Deposition in the Duodenum of Patients with Hyaline Fibromatosis Syndrome and Protein Losing Enteropathy. Int J Mol Sci 2020; 21:E8200. [PMID: 33147779 PMCID: PMC7662532 DOI: 10.3390/ijms21218200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022] Open
Abstract
Hyaline fibromatosis syndrome (HFS), resulting from ANTXR2 mutations, is an ultra-rare disease that causes intestinal lymphangiectasia and protein-losing enteropathy (PLE). The mechanisms leading to the gastrointestinal phenotype in these patients are not well defined. We present two patients with congenital diarrhea, severe PLE and unique clinical features resulting from deleterious ANTXR2 mutations. Intestinal organoids were generated from one of the patients, along with CRISPR-Cas9 ANTXR2 knockout, and compared with organoids from two healthy controls. The ANTXR2-deficient organoids displayed normal growth and polarity, compared to controls. Using an anthrax-toxin assay we showed that the c.155C>T mutation causes loss-of-function of ANTXR2 protein. An intrinsic defect of monolayer formation in patient-derived or ANTXR2KO organoids was not apparent, suggesting normal epithelial function. However, electron microscopy and second harmonic generation imaging showed abnormal collagen deposition in duodenal samples of these patients. Specifically, collagen VI, which is known to bind ANTXR2, was highly expressed in the duodenum of these patients. In conclusion, despite resistance to anthrax-toxin, epithelial cell function, and specifically monolayer formation, is intact in patients with HFS. Nevertheless, loss of ANTXR2-mediated signaling leads to collagen VI accumulation in the duodenum and abnormal extracellular matrix composition, which likely plays a role in development of PLE.
Collapse
Affiliation(s)
- Jorik M. van Rijn
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
- Regenerative Medicine Center, UMCU, UU, 3584 CT Utrecht, The Netherlands
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel; (L.W.); (B.W.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
| | - Yusuf Aydemir
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir 26040, Turkey; (Y.A.); (M.E.)
| | - Joey M.A. Spronck
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
- Regenerative Medicine Center, UMCU, UU, 3584 CT Utrecht, The Netherlands
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- The Institute for Rare Diseases, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Marliek van Hoesel
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
- Regenerative Medicine Center, UMCU, UU, 3584 CT Utrecht, The Netherlands
| | - Elee Shimshoni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.S.); (I.S.)
| | - Sylvie Polak-Charcon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- Institute of Pathology, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Liron Talmi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- Pediatric Department A, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Makbule Eren
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir 26040, Turkey; (Y.A.); (M.E.)
| | - Batia Weiss
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel; (L.W.); (B.W.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
| | - Roderick H.J. Houwen
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- Institute of Pathology, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- Pediatric Department A, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
- Immunology Service, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.S.); (I.S.)
| | - Annick Raas-Rothschild
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- The Institute for Rare Diseases, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Sabine Middendorp
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
- Regenerative Medicine Center, UMCU, UU, 3584 CT Utrecht, The Netherlands
| | - Dror S. Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel; (L.W.); (B.W.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
| |
Collapse
|
8
|
Liu J, Zuo Z, Sastalla I, Liu C, Jang JY, Sekine Y, Li Y, Pirooznia M, Leppla SH, Finkel T, Liu S. Sequential CRISPR-Based Screens Identify LITAF and CDIP1 as the Bacillus cereus Hemolysin BL Toxin Host Receptors. Cell Host Microbe 2020; 28:402-410.e5. [PMID: 32544461 PMCID: PMC7486266 DOI: 10.1016/j.chom.2020.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Bacteria and their toxins are associated with significant human morbidity and mortality. While a few bacterial toxins are well characterized, the mechanism of action for most toxins has not been elucidated, thereby limiting therapeutic advances. One such example is the highly potent pore-forming toxin, hemolysin BL (HBL), produced by the gram-positive pathogen Bacillus cereus. However, how HBL exerts its effects and whether it requires any host factors is unknown. Here, we describe an unbiased genome-wide CRISPR-Cas9 knockout screen that identified LPS-induced TNF-α factor (LITAF) as the HBL receptor. Using LITAF-deficient cells, a second, subsequent whole-genome CRISPR-Cas9 screen identified the LITAF-like protein CDIP1 as a second, alternative receptor. We generated LITAF-deficient mice, which exhibit marked resistance to lethal HBL challenges. This work outlines and validates an approach to use iterative genome-wide CRISPR-Cas9 screens to identify the complement of host factors exploited by bacterial toxins to exert their myriad biological effects.
Collapse
Affiliation(s)
- Jie Liu
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Zehua Zuo
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Inka Sastalla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji Yong Jang
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Yusuke Sekine
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toren Finkel
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Shihui Liu
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
9
|
Patel VI, Booth JL, Dozmorov M, Brown BR, Metcalf JP. Anthrax Edema and Lethal Toxins Differentially Target Human Lung and Blood Phagocytes. Toxins (Basel) 2020; 12:toxins12070464. [PMID: 32698436 PMCID: PMC7405021 DOI: 10.3390/toxins12070464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of inhalation anthrax, is a serious concern as a bioterrorism weapon. The vegetative form produces two exotoxins: Lethal toxin (LT) and edema toxin (ET). We recently characterized and compared six human airway and alveolar-resident phagocyte (AARP) subsets at the transcriptional and functional levels. In this study, we examined the effects of LT and ET on these subsets and human leukocytes. AARPs and leukocytes do not express high levels of the toxin receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). Less than 20% expressed surface TEM8, while less than 15% expressed CMG2. All cell types bound or internalized protective antigen, the common component of the two toxins, in a dose-dependent manner. Most protective antigen was likely internalized via macropinocytosis. Cells were not sensitive to LT-induced apoptosis or necrosis at concentrations up to 1000 ng/mL. However, toxin exposure inhibited B. anthracis spore internalization. This inhibition was driven primarily by ET in AARPs and LT in leukocytes. These results support a model of inhalation anthrax in which spores germinate and produce toxins. ET inhibits pathogen phagocytosis by AARPs, allowing alveolar escape. In late-stage disease, LT inhibits phagocytosis by leukocytes, allowing bacterial replication in the bloodstream.
Collapse
Affiliation(s)
- Vineet I. Patel
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - J. Leland Booth
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Brent R. Brown
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Jordan P. Metcalf
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
10
|
Briggs DC, Langford-Smith AWW, Birchenough HL, Jowitt TA, Kielty CM, Enghild JJ, Baldock C, Milner CM, Day AJ. Inter-α-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation. J Biol Chem 2020; 295:5278-5291. [PMID: 32144206 PMCID: PMC7170535 DOI: 10.1074/jbc.ra119.011916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin β-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor β, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.
Collapse
Affiliation(s)
- David C Briggs
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Alexander W W Langford-Smith
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Holly L Birchenough
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Cay M Kielty
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology & Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Caroline M Milner
- Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
11
|
Flori L, Moazami-Goudarzi K, Alary V, Araba A, Boujenane I, Boushaba N, Casabianca F, Casu S, Ciampolini R, Coeur D'Acier A, Coquelle C, Delgado JV, El-Beltagi A, Hadjipavlou G, Jousselin E, Landi V, Lauvie A, Lecomte P, Ligda C, Marinthe C, Martinez A, Mastrangelo S, Menni D, Moulin CH, Osman MA, Pineau O, Portolano B, Rodellar C, Saïdi-Mehtar N, Sechi T, Sempéré G, Thévenon S, Tsiokos D, Laloë D, Gautier M. A genomic map of climate adaptation in Mediterranean cattle breeds. Mol Ecol 2019; 28:1009-1029. [PMID: 30593690 DOI: 10.1111/mec.15004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Domestic species such as cattle (Bos taurus taurus and B. t. indicus) represent attractive biological models to characterize the genetic basis of short-term evolutionary response to climate pressure induced by their post-domestication history. Here, using newly generated dense SNP genotyping data, we assessed the structuring of genetic diversity of 21 autochtonous cattle breeds from the whole Mediterranean basin and performed genome-wide association analyses with covariables discriminating the different Mediterranean climate subtypes. This provided insights into both the demographic and adaptive histories of Mediterranean cattle. In particular, a detailed functional annotation of genes surrounding variants associated with climate variations highlighted several biological functions involved in Mediterranean climate adaptation such as thermotolerance, UV protection, pathogen resistance or metabolism with strong candidate genes identified (e.g., NDUFB3, FBN1, METTL3, LEF1, ANTXR2 and TCF7). Accordingly, our results suggest that main selective pressures affecting cattle in Mediterranean area may have been related to variation in heat and UV exposure, in food resources availability and in exposure to pathogens, such as anthrax bacteria (Bacillus anthracis). Furthermore, the observed contribution of the three main bovine ancestries (indicine, European and African taurine) in these different populations suggested that adaptation to local climate conditions may have either relied on standing genomic variation of taurine origin, or adaptive introgression from indicine origin, depending on the local breed origins. Taken together, our results highlight the genetic uniqueness of local Mediterranean cattle breeds and strongly support conservation of these populations.
Collapse
Affiliation(s)
- Laurence Flori
- SELMET, INRA, CIRAD, University of Montpellier, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | | | - Véronique Alary
- SELMET, INRA, CIRAD, University of Montpellier, Montpellier SupAgro, University of Montpellier, Montpellier, France.,CIRAD, UMR SELMET, ICARDA, Rabat, Morocco
| | - Abdelillah Araba
- Institut Agronomique et Vétérinaire Hassan II, Département de Productions et de Biotechnologies Animales, Rabat, Morocco
| | - Ismaïl Boujenane
- Institut Agronomique et Vétérinaire Hassan II, Département de Productions et de Biotechnologies Animales, Rabat, Morocco
| | - Nadjet Boushaba
- Université d'Oran "Mohamed Boudiaf", Département de Génétique Moléculaire Appliquée, Oran, Algeria
| | | | - Sara Casu
- Agris-Sardegna Servizio Ricerca per la Zootecnica, Olmedo, Italy
| | | | | | | | | | | | | | | | - Vincenzo Landi
- Animal Breeding Consulting SL, Laboratorio de Genetica Molecular Aplicada, Cordoba, Spain
| | - Anne Lauvie
- SELMET, INRA, CIRAD, University of Montpellier, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Philippe Lecomte
- SELMET, INRA, CIRAD, University of Montpellier, Montpellier SupAgro, University of Montpellier, Montpellier, France.,CIRAD, UMR SELMET, Montpellier, France
| | - Christina Ligda
- HAO-Demeter, Veterinary Research Institute, Thessaloniki, Greece
| | | | - Amparo Martinez
- Animal Breeding Consulting SL, Laboratorio de Genetica Molecular Aplicada, Cordoba, Spain
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Dalal Menni
- Institut Agronomique et Vétérinaire Hassan II, Département de Productions et de Biotechnologies Animales, Rabat, Morocco
| | - Charles-Henri Moulin
- SELMET, INRA, CIRAD, University of Montpellier, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | | | | | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Clementina Rodellar
- LAGENBIO, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Nadhira Saïdi-Mehtar
- Université d'Oran "Mohamed Boudiaf", Département de Génétique Moléculaire Appliquée, Oran, Algeria
| | - Tiziana Sechi
- Agris-Sardegna Servizio Ricerca per la Zootecnica, Olmedo, Italy
| | - Guilhem Sempéré
- INTERTRYP, University of Montpellier, CIRAD, IRD, Montpellier, France.,CIRAD, UMR INTERTRYP, Montpellier, France
| | - Sophie Thévenon
- INTERTRYP, University of Montpellier, CIRAD, IRD, Montpellier, France.,CIRAD, UMR INTERTRYP, Montpellier, France
| | | | - Denis Laloë
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, University of Montpellier, Montferrier-sur-Lez, France.,Institut de Biologie Computationnelle (IBC), Montpellier, France
| |
Collapse
|
12
|
Paliga D, Raudzus F, Leppla SH, Heumann R, Neumann S. Lethal Factor Domain-Mediated Delivery of Nurr1 Transcription Factor Enhances Tyrosine Hydroxylase Activity and Protects from Neurotoxin-Induced Degeneration of Dopaminergic Cells. Mol Neurobiol 2018; 56:3393-3403. [PMID: 30121937 PMCID: PMC6476859 DOI: 10.1007/s12035-018-1311-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022]
Abstract
The orphan transcription factor nuclear receptor-related 1 protein (Nurr1, also known as NR4A2) plays a key role in embryonic development and maintenance of mesencephalic dopaminergic neurons in the substantia nigra. Nurr1 deficiency is associated with Parkinson’s disease where dopaminergic neurons degenerate suggesting that counter-regulation of Nurr1 activity may have therapeutic effects. Here, we bacterially expressed and isolated a human Nurr1 fusion protein containing a N-terminal cell delivery domain derived from detoxified anthrax lethal factor followed by wild type ubiquitin with deubiquitinating enzyme recognition site for intracellular cleavage. Addition of the Nurr1 fusion protein to dopaminergic SH-SY5Y cells generated a cleaved, cytosolic Nurr1-containing fragment which was associated with increased levels of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Promoter-activity assays confirmed that exposure of cells to full-length Nurr1 fusion protein activated not only its cognate human tyrosine hydroxylase promoter but also the corresponding mouse sequence, although at a reduced efficiency. Using 6-hydroxydopamine as a dopaminergic cell specific neurotoxin, we demonstrate that full-length Nurr1 fusion protein promotes a concentration-dependent protection from this toxic insult. Altogether, the enhancement of tyrosine hydroxylase in naïve dopaminergic cells and the protective effects in a cellular model of Parkinson’s disease suggest that full-length Nurr1 fusion protein may contribute to the development of a novel concept of protein-based therapy.
Collapse
Affiliation(s)
- Dennis Paliga
- Department of Biochemistry II - Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Fabian Raudzus
- Department of Biochemistry II - Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rolf Heumann
- Department of Biochemistry II - Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany.
| | - Sebastian Neumann
- Department of Biochemistry II - Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany
| |
Collapse
|
13
|
Pilo P, Frey J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. INFECTION GENETICS AND EVOLUTION 2018; 64:115-125. [PMID: 29935338 DOI: 10.1016/j.meegid.2018.06.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Abstract
Bacillus anthracis, the etiological agent of anthrax, procures its particular virulence by a capsule and two AB type toxins: the lethal factor LF and the edema factor EF. These toxins primarily disable immune cells. Both toxins are translocated to the host cell by the adhesin-internalin subunit called protective antigen PA. PA enables LF to reach intra-luminal vesicles, where it remains active for long periods. Subsequently, LF translocates to non-infected cells, leading to inefficient late therapy of anthrax. B. anthracis undergoes slow evolution because it alternates between vegetative and long spore phases. Full genome sequence analysis of a large number of worldwide strains resulted in a robust evolutionary reconstruction of this bacterium, showing that B. anthracis is split in three main clades: A, B and C. Clade A efficiently disseminated worldwide underpinned by human activities including heavy intercontinental trade of goat and sheep hair. Subclade A.Br.WNA, which is widespread in the Northern American continent, is estimated to have split from clade A reaching the Northern American continent in the late Pleistocene epoch via the former Bering Land Bridge and further spread from Northwest southwards. An alternative hypothesis is that subclade A.Br.WNA. evolved from clade A.Br.TEA tracing it back to strains from Northern France that were assumingly dispatched by European explorers that settled along the St. Lawrence River. Clade B established mostly in Europe along the alpine axis where it evolved in association with local cattle breeds and hence displays specific geographic subclusters. Sequencing technologies are also used for forensic applications to trace unintended or criminal acts of release of B. anthracis. Under natural conditions, B. anthracis generally affects domesticated and wild ruminants in arid ecosystems. The more recently discovered B. cereus biovar anthracis spreads in tropical forests, where it threatens particularly endangered primate populations.
Collapse
Affiliation(s)
- Paola Pilo
- Institute of Veterinary Bacteriology, Vetsuisse, University of Bern, Bern, Switzerland.
| | - Joachim Frey
- Dean's Office, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Letarov AV, Biryukova YK, Epremyan AS, Shevelev AB. Prospects of the use of bacteriophage-based virus-like particles in the creation of anthrax vaccines. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816090040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Chen KH, Liu S, Leysath CE, Miller-Randolph S, Zhang Y, Fattah R, Bugge TH, Leppla SH. Anthrax Toxin Protective Antigen Variants That Selectively Utilize either the CMG2 or TEM8 Receptors for Cellular Uptake and Tumor Targeting. J Biol Chem 2016; 291:22021-22029. [PMID: 27555325 DOI: 10.1074/jbc.m116.753301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates the translocation of the two enzymatic moieties of the toxin to the cytosol. Two PA receptors are known, with capillary morphogenesis protein 2 (CMG2) being the more important for pathogenesis and tumor endothelial marker 8 (TEM8) playing a minor role. The C-terminal PA domain 4 (PAD4) has extensive interactions with the receptors and is required for binding. Our previous study identified PAD4 variants having enhanced TEM8 binding specificity. To obtain PA variants that selectively bind to CMG2, here we performed phage display selections using magnetic beads having bound CMG2. We found that PA residue isoleucine 656 plays a critical role in PA binding to TEM8 but has a much lesser effect on PA binding to CMG2. We further characterized the role of residue 656 in distinguishing PA binding to CMG2 versus TEM8 by substituting it with the other 19 amino acids. Of the resulting variants, PA I656Q and PA I656V had significantly reduced activity on TEM8-expressing CHO cells but maintained their activity on CMG2-expressing CHO cells. The preference of these PA mutants for CMG2 over TEM8 was further demonstrated using mouse embryonic fibroblast cells and mice deficient in the CMG2 and/or the TEM8 receptors. The structural basis of the alterations in the receptor binding activities of these mutants is also discussed.
Collapse
Affiliation(s)
- Kuang-Hua Chen
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Shihui Liu
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Clinton E Leysath
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Sharmina Miller-Randolph
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Yi Zhang
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Rasem Fattah
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Thomas H Bugge
- the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen H Leppla
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| |
Collapse
|
17
|
Bachran C, Leppla SH. Tumor Targeting and Drug Delivery by Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8070197. [PMID: 27376328 PMCID: PMC4963830 DOI: 10.3390/toxins8070197] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022] Open
Abstract
Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.
Collapse
Affiliation(s)
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Friebe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8030069. [PMID: 26978402 PMCID: PMC4810214 DOI: 10.3390/toxins8030069] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
19
|
Sun J, Jacquez P. Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation. Toxins (Basel) 2016; 8:34. [PMID: 26805886 PMCID: PMC4773787 DOI: 10.3390/toxins8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/04/2022] Open
Abstract
Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA) binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2) plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig)-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Pedro Jacquez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
20
|
Li L, Guo Q, Liu J, Zhang J, Yin Y, Dong D, Fu L, Xu J, Chen W. Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor. Toxins (Basel) 2016; 8:toxins8010028. [PMID: 26805881 PMCID: PMC4728550 DOI: 10.3390/toxins8010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/25/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA) is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2), can effectively block anthrax intoxication. The recombinant, soluble von Willebrand factor type A (vWA) domain of CMG2 (sCMG2) has demonstrated potency against anthrax toxin. However, the short half-life of sCMG2 in vivo is a disadvantage for its development as a new anthrax drug. In the present study, we report that HSA-CMG2, a protein combining human serum albumin (HSA) and sCMG2, produced in the Pichia pastoris expression system prolonged the half-life of sCMG2 while maintaining PA binding ability. The IC50 of HSA-CMG2 is similar to those of sCMG2 and CMG2-Fc in in vitro toxin neutralization assays, and HSA-CMG2 completely protects rats from lethal doses of anthrax toxin challenge; these same challenge doses exceed sCMG2 at a sub-equivalent dose ratio and overwhelm CMG2-Fc. Our results suggest that HSA-CMG2 is a promising inhibitor of anthrax toxin and may contribute to the development of novel anthrax drugs.
Collapse
Affiliation(s)
- Liangliang Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
- Center for Disease Control and Prevention of Navy, Beijing 101113, China.
| | - Qiang Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ju Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Dayong Dong
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
21
|
Zhang Z, Zhang Y, Shi M, Ye B, Shen W, Li P, Xing L, Zhang X, Hou L, Xu J, Zhao Z, Chen W. Anthrax Susceptibility: Human Genetic Polymorphisms Modulating ANTXR2 Expression. Toxins (Basel) 2015; 8:toxins8010001. [PMID: 26703731 PMCID: PMC4728523 DOI: 10.3390/toxins8010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/29/2015] [Accepted: 12/09/2015] [Indexed: 01/03/2023] Open
Abstract
Anthrax toxin causes anthrax pathogenesis and expression levels of ANTXR2 (anthrax toxin receptor 2) are strongly correlated with anthrax toxin susceptibility. Previous studies found that ANTXR2 transcript abundance varies considerably in individuals of different ethnic/geographical groups, but no eQTLs (expression quantitative trait loci) have been identified. By using 3C (chromatin conformation capture), CRISPR-mediated genomic deletion and dual-luciferase reporter assay, gene loci containing cis-regulatory elements of ANTXR2 were localized. Two SNPs (single nucleotide polymorphism) at the conserved CREB-binding motif, rs13140055 and rs80314910 in the promoter region of the gene, modulating ANTXR2 promoter activity were identified. Combining these two regulatory SNPs with a previously reported SNP, rs12647691, for the first time, a statistically significant correlation between human genetic variations and anthrax toxin sensitivity was observed. These findings further our understanding of human variability in ANTXR2 expression and anthrax toxin susceptibility.
Collapse
Affiliation(s)
- Zhang Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Yan Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Minglei Shi
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Bingyu Ye
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Wenlong Shen
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Ping Li
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Lingyue Xing
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Xiaopeng Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Lihua Hou
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Junjie Xu
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| | - Wei Chen
- Beijing Institute of Biotechnology, No. 20, Dongdajie str., Fengtai District, Beijing 100071, China.
| |
Collapse
|
22
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
23
|
Ye L, Sun PH, Sanders AJ, Martin TA, Lane J, Mason MD, Jiang WG. Therapeutic potential of capillary morphogenesis gene 2 extracellular vWA domain in tumour‑related angiogenesis. Int J Oncol 2014; 45:1565-73. [PMID: 24993339 DOI: 10.3892/ijo.2014.2533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/14/2014] [Indexed: 11/05/2022] Open
Abstract
Capillary morphogenesis gene 2 (CMG2) is a receptor of anthrax toxin and plays an important role in angiogenesis. It has been shown to be involved in the cell adhesion and motility of various cell types, including epithelia and endothelia. The present study aimed to examine the therapeutic potential of targeting CMG2 to prevent tumour‑related new vasculature. The full-length coding sequence of the human CMG2 gene and different fragments of the CMG2 vWA domain were amplified and constructed into a mammalian expression plasmid vector. The effect of CMG2 and its vWA domain on endothelial cells and angiogenesis was assessed using relevant in vitro, ex vivo and in vivo models. The overexpression of CMG2 enhanced the adhesion of endothelial cells to extracellular matrix, but was negatively associated with cell migration. Overexpression of CMG2 and the vWA domain fragments inhibited the tubule formation and migration of endothelial cells. Small peptides based on the amino acid sequence of the CMG2 vWA domain fragments potently inhibited in vitro tubule formation and ex vivo angiogenesis. One of the polypeptides, LG20, showed an inhibitory effect on in vivo tumour growth of cancer cells which were co-inoculated with the vascular endothelial cells. CMG2 is a potential target for treating tumour‑related angiogenesis. The polypeptides based on the CMG2 vWA domain can potently inhibit in vitro and ex vivo angiogenesis, which may contribute to the inhibitory effect on in vivo tumour growth. Further investigations are required to shed light on the machinery and may provide a novel therapeutic approach for inhibition of angiogenesis in cancer management.
Collapse
Affiliation(s)
- Lin Ye
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Ping-Hui Sun
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew J Sanders
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Tracey A Martin
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Jane Lane
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Malcolm D Mason
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Wen G Jiang
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
24
|
Arévalo MT, Navarro A, Arico CD, Li J, Alkhatib O, Chen S, Diaz-Arévalo D, Zeng M. Targeted silencing of anthrax toxin receptors protects against anthrax toxins. J Biol Chem 2014; 289:15730-8. [PMID: 24742682 DOI: 10.1074/jbc.m113.538587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.
Collapse
Affiliation(s)
- Maria T Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Ashley Navarro
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Chenoa D Arico
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Junwei Li
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Omar Alkhatib
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Shan Chen
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Diana Diaz-Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Mingtao Zeng
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
25
|
Liu S, Moayeri M, Leppla SH. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol 2014; 22:317-25. [PMID: 24684968 DOI: 10.1016/j.tim.2014.02.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use capillary morphogenesis protein 2 (CMG2) as the major toxin receptor and play essential roles in pathogenesis during the entire course of the disease. This review focuses on the activities of anthrax toxins and their roles in initial and late stages of anthrax infection.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Jeong SY, Martchenko M, Cohen SN. Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis. Proc Natl Acad Sci U S A 2013; 110:E4007-15. [PMID: 24085852 PMCID: PMC3801034 DOI: 10.1073/pnas.1316852110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The protective antigen component of Bacillus anthracis toxins can interact with at least three distinct proteins on the host cell surface, capillary morphogenesis gene 2 (CMG2), tumor endothelial marker 8, and β1-integrin, and, with the assistance of other host proteins, enters targeted cells by receptor-mediated endocytosis. Using an antisense-based phenotypic screen, we discovered the role of calpains in this process. We show that functions of a ubiquitous Ca(2+)-dependent cysteine protease, calpain-2, and of the calpain substrate talin-1 are exploited for association of anthrax toxin and its principal receptor, CMG2, with higher-order actin filaments and consequently for toxin entry into host cells. Down-regulated expression of calpain-2 or talin-1, or pharmacological interference with calpain action, did not affect toxin binding but reduced endocytosis and increased the survival of cells exposed to anthrax lethal toxin. Adventitious expression of wild-type talin-1 promoted toxin endocytosis and lethality, whereas expression of a talin-1 mutant (L432G) that is insensitive to calpain cleavage did not. Disruption of talin-1, which links integrin-containing focal adhesion complexes to the actin cytoskeleton, facilitated association of toxin bound to its principal cell-surface receptor, CMG2, with higher-order actin filaments undergoing dynamic disassembly and reassembly during endocytosis. Our results reveal a mechanism by which a bacterial toxin uses constitutively occurring calpain-mediated cytoskeletal rearrangement for internalization.
Collapse
Affiliation(s)
| | | | - Stanley N. Cohen
- Departments of Genetics and
- Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
27
|
Remy KE, Qiu P, Li Y, Cui X, Eichacker PQ. B. anthracis associated cardiovascular dysfunction and shock: the potential contribution of both non-toxin and toxin components. BMC Med 2013; 11:217. [PMID: 24107194 PMCID: PMC3851549 DOI: 10.1186/1741-7015-11-217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 09/13/2013] [Indexed: 01/31/2023] Open
Abstract
The development of cardiovascular dysfunction and shock in patients with invasive Bacillus anthracis infection has a particularly poor prognosis. Growing evidence indicates that several bacterial components likely play important pathogenic roles in this injury. As with other pathogenic Gram-positive bacteria, the B. anthracis cell wall and its peptidoglycan constituent produce a robust inflammatory response with its attendant tissue injury, disseminated intravascular coagulation and shock. However, B. anthracis also produces lethal and edema toxins that both contribute to shock. Growing evidence suggests that lethal toxin, a metalloprotease, can interfere with endothelial barrier function as well as produce myocardial dysfunction. Edema toxin has potent adenyl cyclase activity and may alter endothelial function, as well as produce direct arterial and venous relaxation. Furthermore, both toxins can weaken host defense and promote infection. Finally, B. anthracis produces non-toxin metalloproteases which new studies show can contribute to tissue injury, coagulopathy and shock. In the future, an understanding of the individual pathogenic effects of these different components and their interactions will be important for improving the management of B. anthracis infection and shock.
Collapse
Affiliation(s)
- Kenneth E Remy
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
28
|
D'Agnillo F, Williams MC, Moayeri M, Warfel JM. Anthrax lethal toxin downregulates claudin-5 expression in human endothelial tight junctions. PLoS One 2013; 8:e62576. [PMID: 23626836 PMCID: PMC3633853 DOI: 10.1371/journal.pone.0062576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/22/2013] [Indexed: 01/22/2023] Open
Abstract
Vascular leakage pathologies such as pleural effusion and hemorrhage are hallmarks of anthrax pathogenesis. We previously reported that anthrax lethal toxin (LT), the major virulence factor of anthrax, reduces barrier function in cultured primary human microvascular endothelial cells. Here, we show that LT-induced barrier dysfunction is accompanied by the reduced expression of the endothelial tight junction (TJ) protein claudin-5 but no change in the expression of other TJ components occludin, ZO-1, ZO-2, or the adherens junction (AJ) protein VE-cadherin. The downregulation of claudin-5 correlated temporally and dose-dependently with the reduction of transendothelial electrical resistance. LT-induced loss of claudin-5 was independent of cell death and preceded the appearance of actin stress fibers and altered AJ morphology. Pharmacological inhibition of MEK-1/2, two kinases that are proteolytically inactivated by LT, showed a similar reduction in claudin-5 expression. We found that LT reduced claudin-5 mRNA levels but did not accelerate the rate of claudin-5 degradation. Mice challenged with LT also showed significant reduction in claudin-5 expression. Together, these findings support a possible role for LT disruption of endothelial TJs in the vascular leakage pathologies of anthrax.
Collapse
Affiliation(s)
- Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
29
|
Studies in mice reveal a role for anthrax toxin receptors in matrix metalloproteinase function and extracellular matrix homeostasis. Toxins (Basel) 2013; 5:315-26. [PMID: 23389402 PMCID: PMC3640537 DOI: 10.3390/toxins5020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/31/2013] [Indexed: 02/07/2023] Open
Abstract
The genes encoding Anthrax Toxin Receptors (ANTXRs) were originally identified based on expression in endothelial cells suggesting a role in angiogenesis. The focus of this review is to discuss what has been learned about the physiological roles of these receptors through evaluation of the Antxr knockout mouse phenotypes. Mice mutant in Antxr genes have defects in extracellular matrix homeostasis. We discuss how knowledge of physiological ANTXR function relates to what is already known about anthrax intoxication.
Collapse
|