1
|
Yuan Y, Wu S, Day PJR. Primary Sequence and Three-Dimensional Structural Comparison between Malanin and Ricin, a Type II Ribosome-Inactivating Protein. Toxins (Basel) 2024; 16:440. [PMID: 39453216 PMCID: PMC11510761 DOI: 10.3390/toxins16100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Malanin is a new type II ribosome-inactivating protein (RIP) purified from Malania oleifera, a rare, endangered tree is only found in the southwest of Guangxi Province and the southeast of Yunnan Province, China. The gene coding sequence of malanin was found from the cDNA library of M. oleifera seeds by employing the ten N-terminal amino acid sequences of malanin, DYPKLTFTTS for chain-A and DETXTDEEFN (X was commonly C) for chain-B. The results showed a 65% amino acid sequence homology between malanin and ricin by DNAMAN 9.0 software, the active sites of the two proteins were consistent, and the four disulfide bonds were in the same positions. The primary sequence and three-dimensional structures of malanin and ricin are likely to be very similar. Our studies suggest that the mechanism of action of malanin is expected to be analogous to ricin, indicating that it is a member of the type II ribosome-inactivating proteins. This result lays the foundation for further study of the anti-tumor activities of malanin, and for the application of malanin as a therapeutic agent against cancers.
Collapse
Affiliation(s)
- Yan Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Shuxiao Wu
- TELI College, Beijing Institute of Technology, Beijing 100081, China;
| | - Philip J. R. Day
- The Manchester Institute of Biotechnology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, UK
- The Medical Faculty, University of Cape Town, Rondebosch 7925, South Africa
| |
Collapse
|
2
|
Drinkard K, Barr JR, Kalb SR. Mass Spectrometric Detection and Differentiation of Enzymatically Active Abrin and Ricin Combined with a Novel Affinity Enrichment Technique. Chem Res Toxicol 2024; 37:1218-1228. [PMID: 38963334 PMCID: PMC11256886 DOI: 10.1021/acs.chemrestox.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Abrin and ricin are toxic proteins produced by plants. Both proteins are composed of two subunits, an A-chain and a B-chain. The A-chain is responsible for the enzymatic activity, which causes toxicity. The B-chain binds to glycoproteins on the cell surface to direct the A-chain to its target. Both toxins depurinate 28S rRNA, making it impossible to differentiate these toxins based on only their enzymatic activity. We developed an analytical workflow for both ricin and abrin using a single method and sample. We have developed a novel affinity enrichment technique based on the ability of the B-chain to bind a glycoprotein, asialofetuin. After the toxin is extracted with asialofetuin-coated magnetic beads, an RNA substrate is added. Then, depurination is detected by a benchtop matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer to determine the presence or absence of an active toxin. Next, the beads are subjected to tryptic digest. Toxin fingerprinting is done on a benchtop MALDI-TOF MS. We validated the assay through sensitivity and specificity studies and determined the limit of detection for each toxin as nanogram level for enzymatic activity and μg level for toxin fingerprinting. We examined potential cross-reactivity from proteins that are near neighbors of the toxins and examined potential false results in the presence of white powders.
Collapse
Affiliation(s)
- Kaitlyn
K. Drinkard
- National Center for Environmental Health,
Division of Laboratory Sciences, Centers
for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - John R. Barr
- National Center for Environmental Health,
Division of Laboratory Sciences, Centers
for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Suzanne R. Kalb
- National Center for Environmental Health,
Division of Laboratory Sciences, Centers
for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| |
Collapse
|
3
|
Schulze FJ, Asadian-Birjand M, Pradela M, Niesler N, Nagel G, Fuchs H. A cleavable peptide adapter augments the activity of targeted toxins in combination with the glycosidic endosomal escape enhancer SO1861. BMC Biotechnol 2024; 24:24. [PMID: 38685061 PMCID: PMC11057116 DOI: 10.1186/s12896-024-00854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Treatment with tumor-targeted toxins attempts to overcome the disadvantages of conventional cancer therapies by directing a drug's cytotoxic effect specifically towards cancer cells. However, success with targeted toxins has been hampered as the constructs commonly remain bound to the outside of the cell or, after receptor-mediated endocytosis, are either transported back to the cell surface or undergo degradation in lysosomes. Hence, solutions to ensure endosomal escape are an urgent need in treatment with targeted toxins. In this work, a molecular adapter that consists of a cell penetrating peptide and two cleavable peptides was inserted into a targeted toxin between the ribosome-inactivating protein dianthin and the epidermal growth factor. Applying cell viability assays, this study examined whether the addition of the adapter further augments the endosomal escape enhancement of the glycosylated triterpenoid SO1861, which has shown up to more than 1000-fold enhancement in the past. RESULTS Introducing the peptide adapter into the targeted toxin led to an about 12-fold enhancement in the cytotoxicity on target cells while SO1861 caused a 430-fold increase. However, the combination of adapter and glycosylated triterpenoid resulted in a more than 4300-fold enhancement and in addition to a 51-fold gain in specificity. CONCLUSIONS Our results demonstrated that the cleavable peptide augments the endosomal escape mediated by glycosylated triterpenoids while maintaining specificity. Thus, the adapter is a promising addition to glycosylated triterpenoids to further increase the efficacy and therapeutic window of targeted toxins.
Collapse
Affiliation(s)
- Finn J Schulze
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mazdak Asadian-Birjand
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Pradela
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Nicole Niesler
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Gregor Nagel
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
4
|
Iglesias R, Citores L, Gay CC, Ferreras JM. Antifungal Activity of Ribosome-Inactivating Proteins. Toxins (Basel) 2024; 16:192. [PMID: 38668617 PMCID: PMC11054410 DOI: 10.3390/toxins16040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The control of crop diseases caused by fungi remains a major problem and there is a need to find effective fungicides that are environmentally friendly. Plants are an excellent source for this purpose because they have developed defense mechanisms to cope with fungal infections. Among the plant proteins that play a role in defense are ribosome-inactivating proteins (RIPs), enzymes obtained mainly from angiosperms that, in addition to inactivating ribosomes, have been studied as antiviral, fungicidal, and insecticidal proteins. In this review, we summarize and discuss the potential use of RIPs (and other proteins with similar activity) as antifungal agents, with special emphasis on RIP/fungus specificity, possible mechanisms of antifungal action, and the use of RIP genes to obtain fungus-resistant transgenic plants. It also highlights the fact that these proteins also have antiviral and insecticidal activity, which makes them very versatile tools for crop protection.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| | - Claudia C. Gay
- Laboratory of Protein Research, Institute of Basic and Applied Chemistry of Northeast Argentina (UNNE-CONICET), Faculty of Exact and Natural Sciences and Surveying, Av. Libertad 5470, Corrientes 3400, Argentina;
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| |
Collapse
|
5
|
Ragucci S, Russo V, Clemente A, Campanile MG, Oliva MA, Landi N, Pedone PV, Arcella A, Di Maro A. Hortensins, Type 1 Ribosome-Inactivating Proteins from Seeds of Red Mountain Spinach: Isolation, Characterization, and Their Effect on Glioblastoma Cells. Toxins (Basel) 2024; 16:135. [PMID: 38535801 PMCID: PMC10975204 DOI: 10.3390/toxins16030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Ribosome inactivating proteins (RIPs) are specific N-β-glycosylases that are well-characterized in plants. Their enzymatic action is to damage ribosomes, thereby blocking protein translation. Recently, several research groups have been working on the screening for these toxins in edible plants to facilitate the use of RIPs as biotechnological tools and biopesticides and to overcome public prejudice. Here, four novel monomeric (type 1) RIPs have been isolated from the seeds of Atriplex hortensis L. var. rubra, which is commonly known as edible red mountain spinach. These enzymes, named hortensins 1, 2, 4, and 5, are able to release the β-fragment and, like many other RIPs, adenines from salmon sperm DNA, thus, acting as polynucleotide:adenosine glycosidases. Structurally, hortensins have a different molecular weight and are purified with different yields (hortensin 1, ~29.5 kDa, 0.28 mg per 100 g; hortensin 2, ~29 kDa, 0.29 mg per 100 g; hortensin 4, ~28.5 kDa, 0.71 mg per 100 g; and hortensin 5, ~30 kDa, 0.65 mg per 100 g); only hortensins 2 and 4 are glycosylated. Furthermore, the major isoforms (hortensins 4 and 5) are cytotoxic toward human continuous glioblastoma U87MG cell line. In addition, the morphological change in U87MG cells in the presence of these toxins is indicative of cell death triggered by the apoptotic pathway, as revealed by nuclear DNA fragmentation (TUNEL assay).
Collapse
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Veronica Russo
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Angela Clemente
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Giuseppina Campanile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Antonietta Oliva
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonietta Arcella
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
6
|
Bortolotti M, Biscotti F, Zanello A, Polito L, Bolognesi A. Heterophyllin: A New Adenia Toxic Lectin with Peculiar Biological Properties. Toxins (Basel) 2023; 16:1. [PMID: 38276525 PMCID: PMC10820617 DOI: 10.3390/toxins16010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Ribosome-inactivating proteins (RIPs) are plant toxins that were identified for their ability to irreversibly damage ribosomes, thereby causing arrest of protein synthesis and induction of cell death. The RIPs purified from Adenia plants are the most potent ones. Here, we describe a novel toxic lectin from Adenia heterophylla caudex, which has been named heterophyllin. Heterophyllin shows the enzymatic and lectin properties of type 2 RIPs. Interestingly, in immunoreactivity experiments, heterophyllin poorly cross-reacts with sera against all other tested RIPs. The cytotoxic effects and death pathways triggered by heterophyllin were investigated in three human-derived cell lines: NB100, T24, and MCF7, and compared to ricin, the most known and studied type 2 RIP. Heterophyllin was able to completely abolish cell viability at nM concentration. A strong induction of apoptosis, but not necrosis, and the involvement of oxidative stress and necroptosis were observed in all the tested cell lines. Therefore, the enzymatic, immunological, and biological activities of heterophyllin make it an interesting molecule, worthy of further in-depth analysis to verify its possible pharmacological application.
Collapse
|
7
|
Konozy EHE, Osman MEM, Dirar AI. A Comprehensive Review on Euphorbiaceae lectins: Structural and Biological Perspectives. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1956-1969. [PMID: 38105212 DOI: 10.1134/s0006297923110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
Euphorbiaceae, also known as the spurge family, is a large group of flowering plants. Despite being tropical natives, they are now widespread. Due to its medicinal and commercial importance, this family of plants attracted a lot of attention in the scientific community. The distinctive characteristic of the family is production of milky latex, which is a rich source of several lectins, the proteins that bind carbohydrates. Although their function is unclear, they are believed to defend plants against damaging phytopathogenic microorganisms, insects, and predatory animals. Additionally, they serve as crucial metabolic regulators under a variety of stressors. Detection, separation, purification, and characterization of lectins from the Euphorbiaceae family - mostly from the latex of plants - began over 40 years ago. This effort produced over 35 original research papers that were published. However, no systematic review that compiles these published data has been presented yet. This review summarizes and describes several procedures and protocols employed for extraction and purification of lectins belonging to this family. Physicochemical properties and biological activities of the lectins, along with their medicinal and pharmacological properties, have also been analyzed. Additionally, using examples of ricin and ricin agglutinin, we have structurally analyzed characteristics of the lectin known as Ribosome Inactivating Protein Type II (RIP-Type II) that belongs to this family. We anticipate that this review article will offer a useful compendium of information on this important family of lectins, show the scientists involved in lectin research the gaps in our knowledge, and offer insights for future research.
Collapse
Affiliation(s)
- Emadeldin Hassan E Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan.
- Pharmaceutical Research and Development Centre, Faculty of Pharmacy, Karary University, Omdurman, Khartoum State, Sudan
| | | | - Amina I Dirar
- Medicinal, Aromatic Plants, and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Khartoum, Sudan
| |
Collapse
|
8
|
Yang YX, Wang XY, Lin T, Sun Y, Yu YC, Zhu ZH. Opportunities and challenges for ribosome-inactivating proteins in traditional Chinese medicine plants. Toxicon 2023; 234:107278. [PMID: 37683701 DOI: 10.1016/j.toxicon.2023.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic rRNA N-glycosylase, which widely exist in higher plants in different taxonomy, including many traditional Chinese medicinal materials and vegetables and fruits. In this paper, the traditional Chinese medicinal plants containing RIPs protein were sorted out, and their pharmacological effects and clinical applications were analyzed. Since many RIPs in traditional Chinese medicine plants exhibit antiviral and antitumor activities and show great clinical application potential, people's interest in these proteins is on the rise. This paper summarizes the possible mechanism of RIPs's anti-virus and anti-tumor effects, and discusses its potential problems and risks, laying a foundation for subsequent research on how to exert its anti-virus and anti-tumor effects.
Collapse
Affiliation(s)
- Yi-Xuan Yang
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Xin-Yi Wang
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Tong Lin
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Yu Sun
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Yi-Cheng Yu
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Zhen-Hong Zhu
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
9
|
Liu J, Wen D, Song X, Su P, Lou J, Yao D, Zhang C. Evolution and natural selection of ribosome-inactivating proteins in bacteria, fungi, and plants. Int J Biol Macromol 2023; 248:125929. [PMID: 37481176 DOI: 10.1016/j.ijbiomac.2023.125929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are found in bacteria, fungi, and plants, with a wide range of biological resistances such as anti-fungal, anti-viral, anti-insect, and anti-tumor. They can be roughly divided into proactive defense bacterial or fungal types and passive defense plant types. We identified 1592 RIP genes in bacteria, fungi, and plants. Approximately 88 % of the 764 bacterial RIPs were Shiga or Shiga-like toxins which were exotoxins and could rapidly enter cells to possess strong biotoxicity, and about 98 % of fungal RIPs were predicted as secreted proteins. RIPs were not detected in non-seed plants such as algae, bryophytes, and ferns. However, we found RIPs in some flowering and non-flowering seed plants. The existence of plant RIPs might be related to the structure of seeds or fruits, which might be associated with whether seeds are easy to survive and spread. The evolutionary characteristics of RIPs were different between dicotyledons and monocotyledons. In addition, we also found that RIP2 genes might emerge very early and be plant-specific. Some plant RIP1 genes might evolve from RIP2 genes. This study provides new insights into the evolution of RIPs.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China; ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Jianfeng Lou
- ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Danqing Yao
- ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China.
| |
Collapse
|
10
|
Márquez-López A, Fanarraga ML. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int J Mol Sci 2023; 24:11227. [PMID: 37446406 DOI: 10.3390/ijms241311227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins.
Collapse
Affiliation(s)
- Ana Márquez-López
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
11
|
Kocyigit E, Kocaadam-Bozkurt B, Bozkurt O, Ağagündüz D, Capasso R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins (Basel) 2023; 15:356. [PMID: 37368657 PMCID: PMC10303728 DOI: 10.3390/toxins15060356] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolve to synthesize various natural metabolites to protect themselves against threats, such as insects, predators, microorganisms, and environmental conditions (such as temperature, pH, humidity, salt, and drought). Plant-derived toxic proteins are often secondary metabolites generated by plants. These proteins, including ribosome-inactivating proteins, lectins, protease inhibitors, α-amylase inhibitors, canatoxin-like proteins and ureases, arcelins, antimicrobial peptides, and pore-forming toxins, are found in different plant parts, such as the roots, tubers, stems, fruits, buds, and foliage. Several investigations have been conducted to explore the potential applications of these plant proteins by analyzing their toxic effects and modes of action. In biomedical applications, such as crop protection, drug development, cancer therapy, and genetic engineering, toxic plant proteins have been utilized as potentially useful instruments due to their biological activities. However, these noxious metabolites can be detrimental to human health and cause problems when consumed in high amounts. This review focuses on different plant toxic proteins, their biological activities, and their mechanisms of action. Furthermore, possible usage and removal strategies for these proteins are discussed.
Collapse
Affiliation(s)
- Emine Kocyigit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Turkey;
| | - Betul Kocaadam-Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Osman Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, Emek, 06490 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
12
|
Bortolotti M, Biscotti F, Zanello A, Bolognesi A, Polito L. New Insights on Saporin Resistance to Chemical Derivatization with Heterobifunctional Reagents. Biomedicines 2023; 11:biomedicines11041214. [PMID: 37189832 DOI: 10.3390/biomedicines11041214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Saporin is a type 1 ribosome-inactivating protein widely used as toxic payload in the construction of targeted toxins, chimeric molecules formed by a toxic portion linked to a carrier moiety. Among the most used carriers, there are large molecules (mainly antibodies) and small molecules (such as neurotransmitters, growth factors and peptides). Some saporin-containing targeted toxins have been used for the experimental treatment of several diseases, giving very promising results. In this context, one of the reasons for the successful use of saporin lies in its resistance to proteolytic enzymes and to conjugation procedures. In this paper, we evaluated the influence of derivatization on saporin using three heterobifunctional reagents, namely 2-iminothiolane (2-IT), N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and 4-succinimidyloxycarbonyl-α-methyl-α-[2-pyridyldithio]toluene (SMPT). In order to obtain the highest number of inserted -SH groups with the lowest reduction of saporin biological activities, we assessed the residual ability of saporin to inhibit protein synthesis, to depurinate DNA and to induce cytotoxicity after derivatization. Our results demonstrate that saporin maintains an excellent resistance to derivatization processes, especially with SPDP, and permit us to define reaction conditions, in which saporin biological properties may not be altered. Therefore, these findings provide useful information for the construction of saporin-based targeted toxins, especially with small carriers.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Francesco Biscotti
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Andrea Zanello
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Andrea Bolognesi
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Letizia Polito
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
13
|
Sharma A, Gupta S, Sharma NR, Paul K. Expanding role of ribosome-inactivating proteins: From toxins to therapeutics. IUBMB Life 2023; 75:82-96. [PMID: 36121739 DOI: 10.1002/iub.2675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic proteins with N-glycosidase activity. RIPs exert their action by removing a specific purine from 28S rRNA, thereby, irreversibly inhibiting the process of protein synthesis. RIPs can target both prokaryotic and eukaryotic cells. In bacteria, the production of RIPs aid in the process of pathogenesis whereas, in plants, the production of these toxins has been attributed to bolster defense against insects, viral, bacterial and fungal pathogens. In recent years, RIPs have been engineered to target a particular cell type, this has fueled various experiments testing the potential role of RIPs in many biomedical applications like anti-viral and anti-tumor therapies in animals as well as anti-pest agents in engineered plants. In this review, we present a comprehensive study of various RIPs, their mode of action, their significance in various fields involving plants and animals. Their potential as treatment options for plant infections and animal diseases is also discussed.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| | - Shelly Gupta
- Department of Biochemistry, School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| |
Collapse
|
14
|
Niapour A, Miran M, Seyedasli N, Norouzi F. Anti-angiogenic effects of aqueous extract from Agrostemma githago L. seed in human umbilical vein endothelial cells via regulating Notch/VEGF, MMP2/9, ANG2, and VEGFR2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22413-22429. [PMID: 36287364 DOI: 10.1007/s11356-022-23510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Abnormal angiogenesis contributes to the pathogenesis of various diseases. The medicinal usage of Agrostemma githago L. seed (A. githago herein) has been stated in traditional medicine. This study aims to investigate the anti-angiogenic potential of aqueous extract of A. githago. In order to test the effect of A. githago extract, its impact on HUVECs, T98G, and HGF2PI2 cells was assessed by looking at cellular viability, changes in the distribution of cells in different phases of the cell cycle, induction of oxidative stress, and apoptosis. In addition, the release of VEGF, ANG2, and MMP2/9 factors, along with the expressions of the critical Notch signaling pathway players and VEGF receptors (VEGFR), was measured. Furthermore, a γ-secretase inhibitor (LY411575) was applied to determine whether Notch inhibition restores A. githago effects. As a further characterization, total phenolic and flavonoid contents of A. githago were estimated, and five triterpene saponin compounds were identified using LC-ESI-MS. In response to A. githago extract, a reduction in total cell viability, along with the induction of ROS and apoptosis, was detected. Exposure to the A. githago extract could modulate the release of VEGF and ANG2 from T98G and HUVECs, respectively. In addition, A. githago reduced the release of MMP2/9. Furthermore, Notch1, DLL4, and HEY2 transcripts and protein expressions were up-regulated, while VEGFR2 was down-regulated in treated HUVEC cells. Treatment with the A. githago extract resulted in a dose-dependent inhibition of AKT phosphorylation. Inhibition of Notch signaling retrieved the viability loss, reduced intracellular ROS, and alleviated the impaired tube formation in A. githago-treated HUVECs. Overall, these data underscore the anti-angiogenic potential of A. githago via inducing apoptosis, modifying the expression levels of VEGF/VEGFR2, and impacting the release of MMP2/9 and ANG2, effects that are most probably modulated through the Notch/VEGF signaling axis.
Collapse
Affiliation(s)
- Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mansour Miran
- Department of Pharmacognosy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead NSW, Sydney, Australia
- The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead NSW, Sydney, Australia
| | - Firouz Norouzi
- Department of Genetics, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
15
|
Hauf S, Rotrattanadumrong R, Yokobayashi Y. Analysis of the Sequence Preference of Saporin by Deep Sequencing. ACS Chem Biol 2022; 17:2619-2630. [PMID: 35969718 PMCID: PMC9486812 DOI: 10.1021/acschembio.2c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA:adenosine glycosidases that inactivate eukaryotic ribosomes by depurinating the sarcin-ricin loop (SRL) in 28S rRNA. The GAGA sequence at the top of the SRL or at the top of a hairpin loop is assumed to be their target motif. Saporin is a RIP widely used to develop immunotoxins for research and medical applications, but its sequence specificity has not been investigated. Here, we combine the conventional aniline cleavage assay for depurinated nucleic acids with high-throughput sequencing to study sequence-specific depurination of oligonucleotides caused by saporin. Our data reveal the sequence preference of saporin for different substrates and show that the GAGA motif is not efficiently targeted by this protein, neither in RNA nor in DNA. Instead, a preference of saporin for certain hairpin DNAs was observed. The observed sequence-specific activity of saporin may be relevant to antiviral or apoptosis-inducing effects of RIPs. The developed method could also be useful for studying the sequence specificity of depurination by other RIPs or enzymes.
Collapse
Affiliation(s)
- Samuel Hauf
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science
and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Rachapun Rotrattanadumrong
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science
and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science
and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
16
|
Plant-Derived Type I Ribosome Inactivating Protein-Based Targeted Toxins: A Review of the Clinical Experience. Toxins (Basel) 2022; 14:toxins14080563. [PMID: 36006226 PMCID: PMC9412999 DOI: 10.3390/toxins14080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Targeted toxins (TT) for cancer treatment are a class of hybrid biologic comprised of a targeting domain coupled chemically or genetically to a proteinaceous toxin payload. The targeting domain of the TT recognises and binds to a defined target molecule on the cancer cell surface, thereby delivering the toxin that is then required to internalise to an appropriate intracellular compartment in order to kill the target cancer cell. Toxins from several different sources have been investigated over the years, and the two TTs that have so far been licensed for clinical use in humans; both utilise bacterial toxins. Relatively few clinical studies have, however, been undertaken with TTs that utilise single-chain type I ribosome inactivating proteins (RIPs). This paper reviews the clinical experience that has so far been obtained for a range of TTs based on five different type I RIPs and concludes that the majority studied in early phase trials show significant clinical activity that justifies further clinical investigation. A range of practical issues relating to the further clinical development of TT’s are also covered briefly together with some suggested solutions to outstanding problems.
Collapse
|
17
|
van den Berg RM, Joosen MJA, Savransky V, Cochrane L, Noort D. Inactivation of ricin by constituents present in a skin decontamination lotion. Chem Biol Interact 2022; 365:110055. [PMID: 35963314 DOI: 10.1016/j.cbi.2022.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022]
Abstract
Ricin is a proteinaceous toxin, listed on the schedules of both the chemical and biological weapons conventions. The ease of accessibility to the Ricinus communis plant and toxin extraction makes ricin a viable concern for use of intentional release and causal effects. The adverse effects following exposure to the toxin are caused by the bipartite molecular structure of ricin which allows binding to the mammalian cell surface, enter via endocytic uptake, and deliver the catalytically active polypeptide into the cell cytosol where it irreversibly inhibits protein synthesis, causing cell death. In the present study, the inactivation effectiveness of RSDL® (Reactive Skin Decontamination Lotion) and its individual inactivating constituents (Potassium 2,3-butanedione monoximate (KBDO) and 2,3-butanedione (DAM)) was evaluated for ricin using a number of read out systems including a cytotoxicity assay, quantitative sandwich ELISA test, and a mass spectrometry-based assay. The results demonstrate that RSDL is able to abolish ricin activity after an incubation time of 30 min as determined in the cytotoxicity assay, and after 2 min as determined in the ELISA assay. Mass spectrometric analysis provided evidence that RSDL is able to induce cleavage of the disulfide linkage between the A- and B- polypeptide chain of ricin which is crucial to the inactivation of the toxin, but this seems not the only mechanism of inactivation. Follow on studies would assist to elucidate the details of the toxin inactivation because it is possible that additional generic mechanisms are in place for denaturation with the RSDL lotion components. This may also provide a promise for testing and inactivation with RSDL of other protein toxins.
Collapse
Affiliation(s)
- R M van den Berg
- TNO Defense, Safety and Security, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands.
| | - M J A Joosen
- TNO Defense, Safety and Security, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands
| | - V Savransky
- Emergent BioSolutions, Emergent Prod. Dev. Gaithersburg, 300 Professional Drive, Gaithersburg, MD, 20879, USA
| | - L Cochrane
- Emergent BioSolutions, Emergent Prod. Dev. Gaithersburg, 300 Professional Drive, Gaithersburg, MD, 20879, USA
| | - D Noort
- TNO Defense, Safety and Security, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands
| |
Collapse
|
18
|
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
19
|
Lu TL, Sher YP, Chen HC, Cheng WC, Hsu LH, Lee CC. Articulatin B chain induced dendritic cells maturation and driven type I T helper cells and cytotoxic T cells activation. Life Sci 2022; 302:120635. [PMID: 35569571 DOI: 10.1016/j.lfs.2022.120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
AIMS Articulatin (AT), purified from the Chinese mistletoe (Viscum articulatum), belongs to the family of type II ribosome-inactivating proteins (RIPs) that contain two subunits, the A and B chains. The B chain of AT is believed to function by means of interacting with the galactose moiety of glycoproteins or glycolipids on the cell membrane and is internalized into cells through endocytosis. In the study, we aim to investigate the immunomodulatory effects of recombinant articulatin B chain (rATB) on mouse bone marrow-derived dendritic cells (BM-DCs). MAIN METHODS Detection of surface markers expression on BM-DCs by flow cytometry. Analysis of RNA and protein expression by RNAseq and Western blotting assays. Assessment of the adaptive immune responses using an in vivo mouse model. KEY FINDING Our study presents novel results showing the activation of mouse BM-DCs by rATB, which leads to the induction of CD80, CD86, and MHC II expression as well as primed type I CD4+ T cell differentiation and CD8+ T cell activation. RNAseq and Western blotting assays revealed rATB-induced BM-DC activation to be dependent on the MAPK and NF-κB signaling pathways. In a mouse model, rATB was observed to have adjuvant effects that induced an antigen-specific Th1 immune response. SIGNIFICANCE Based on in vitro and in vivo assays, this study shows rATB acting as a potential adjuvant that induces BM-DC activation and antigen-specific Th1 related immune response. rATB might have potential applicability in the development of vaccines against pathogens and tumors.
Collapse
Affiliation(s)
- Tzu-Li Lu
- Department of Medical Laboratory Science and Biotechnology, Taichung, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, Taichung, Taiwan
| | - Hui-Chen Chen
- Graduate Institute of Biomedical Sciences, Taichung, Taiwan; Department of Microbiology and Immunology, School of Medicine, Taichung, Taiwan
| | | | - Ling-Heng Hsu
- Graduate Institute of Biomedical Sciences, Taichung, Taiwan
| | - Chen-Chen Lee
- Graduate Institute of Biomedical Sciences, Taichung, Taiwan; Department of Microbiology and Immunology, School of Medicine, Taichung, Taiwan; Center of Drug Development, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Panjideh H, Niesler N, Weng A, Fuchs H. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins (Basel) 2022; 14:toxins14070478. [PMID: 35878216 PMCID: PMC9318199 DOI: 10.3390/toxins14070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction of tumor volume and overall survival was also improved. Taken together, our results substantially contribute to the development of a combination therapy with SO1861 as a platform technology to enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.
Collapse
Affiliation(s)
- Hossein Panjideh
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Nicole Niesler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany;
| | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
- Correspondence:
| |
Collapse
|
21
|
Schlaak L, Weise C, Kuropka B, Weng A. Sapovaccarin-S1 and -S2, Two Type I RIP Isoforms from the Seeds of Saponaria vaccaria L. Toxins (Basel) 2022; 14:toxins14070449. [PMID: 35878187 PMCID: PMC9324600 DOI: 10.3390/toxins14070449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Type I ribosome-inactivating proteins (RIPs) are plant toxins that inhibit protein synthesis by exerting rRNA N-glycosylase activity (EC 3.2.2.22). Due to the lack of a cell-binding domain, type I RIPs are not target cell-specific. However once linked to antibodies, so called immunotoxins, they are promising candidates for targeted anti-cancer therapy. In this study, sapovaccarin-S1 and -S2, two newly identified type I RIP isoforms differing in only one amino acid, were isolated from the seeds of Saponaria vaccaria L. Sapovaccarin-S1 and -S2 were purified using ammonium sulfate precipitation and subsequent cation exchange chromatography. The determined molecular masses of 28,763 Da and 28,793 Da are in the mass range typical for type I RIPs and the identified amino acid sequences are homologous to known type I RIPs such as dianthin 30 and saporin-S6 (79% sequence identity each). Sapovaccarin-S1 and -S2 showed adenine-releasing activity and induced cell death in Huh-7 cells. In comparison to other type I RIPs, sapovaccarin-S1 and -S2 exhibited a higher thermostability as shown by nano-differential scanning calorimetry. These results suggest that sapovaccarin-S1 and -S2 would be optimal candidates for targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Louisa Schlaak
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Alexander Weng
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
- Correspondence: ; Tel.: +49-30-838-51265
| |
Collapse
|
22
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
23
|
Ribotoxic Proteins, Known as Inhibitors of Protein Synthesis, from Mushrooms and Other Fungi According to Endo's Fragment Detection. Toxins (Basel) 2022; 14:toxins14060403. [PMID: 35737065 PMCID: PMC9227437 DOI: 10.3390/toxins14060403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
rRNA N-glycosylases (EC 3.2.2.22) remove a specific adenine (A4324, rat 28S rRNA) in the sarcin ricin loop (SRL) involved into ribosome interaction with elongation factors, causing the inhibition of translation, for which they are known as plant 'ribosome inactivating proteins' (RIPs). However, protein synthesis inactivation could be the result of other enzymes, which often have rRNA as the target. In this scenario, Endo's assay is the most used method to detect the enzymes that are able to hydrolyze a phosphodiester bond or cleave a single N-glycosidic bond (rRNA N-glycosylases). Indeed, the detection of a diagnostic fragment from rRNA after enzymatic action, with or without acid aniline, allows one to discriminate between the N-glycosylases or hydrolases, which release the β-fragment after acid aniline treatment or α-fragment without acid aniline treatment, respectively. This assay is of great importance in the mushroom kingdom, considering the presence of enzymes that are able to hydrolyze phosphodiester bonds (e.g., ribonucleases, ribotoxins and ribotoxin-like proteins) or to remove a specific adenine (rRNA N-glycosylases). Thus, here we used the β-fragment experimentally detected by Endo's assay as a hallmark to revise the literature available on enzymes from mushrooms and other fungi, whose action consists of protein biosynthesis inhibition.
Collapse
|
24
|
Hedayati A, Naseri F, Nourozi E, Hosseini B, Honari H, Hemmaty S. Response of Saponaria officinalis L. hairy roots to the application of TiO 2 nanoparticles in terms of production of valuable polyphenolic compounds and SO6 protein. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:80-92. [PMID: 35276598 DOI: 10.1016/j.plaphy.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Saponaria officinalis L. is a perennial plant from the Caryophyllaceae family whose various parts are used in traditional medicine as the treatment agent of skin diseases, blood purifier, diuretic, sudorific, and bile purifier. The cultivation system of hairy roots is a proper alternative for improving the valuable pharmaceutical compounds production compared to other in-vitro methods. The extensive nanotechnology applications in hairy roots cultivation is a sustainable production foundation to produce such active elements. In this study, the effect of various concentrations of titanium dioxide nanoparticles (TiO2 NPs) (0, 10, 20, 30, 50 mg L-1) with two treatments (24 and 48 h) was examined on the growth level, antioxidant capacity, total phenol and flavonoid contents, antioxidant enzyme activities, certain polyphenol compounds and SO6 protein in hairy roots of S. officinalis. According to the results, the maximum (3.09 g) and minimum (0.96 g) fresh weight (FW) of hairy roots were observed in treated culture media with 10 and 20 mg L-1 of TiO2 NPs after 24 and 48 h of exposure times, respectively. The highest rate of total phenol (9.79 mg GLA g-1 FW) and total flavonoid contents (1.06 mg QE g-1 FW) were obtained in the treated hairy roots with 50 and 30 mg L-1 of nano elicitor in 24 and 48 h of treatments, respectively. The maximum level of most polyphenols, such as rosmarinic acid, cinnamic acid, and rutin, was produced in 24 h of treatment. The use of TiO2 NP for 48 h with 50 mg L-1 concentration showed the highest production level of SO6 protein.
Collapse
Affiliation(s)
- Ahad Hedayati
- Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, Urmia, Iran.
| | - Fatemeh Naseri
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Elnaz Nourozi
- Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, Urmia, Iran
| | - Bahman Hosseini
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hossein Honari
- Biology Science and Technology Center, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Syavash Hemmaty
- Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, Urmia, Iran
| |
Collapse
|
25
|
Barkhordari F, Rismani E, Tabasinezhad M, Asgari S, Nematollahi L, Talebkhan Y. Computational analysis of fusion protein of anti-HER2 scFv and alpha luffin: A new immunotoxin protein for HER2 positive cancers. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Sonntag A, Mitdank H, Weng A. Construction of Minicircle Suicide Genes Coding for Ribosome-Inactivating Proteins. Methods Mol Biol 2022; 2521:157-171. [PMID: 35732997 DOI: 10.1007/978-1-0716-2441-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the lower risks of adverse effects, nonviral gene therapy is a suitable alternative to transfect cancer cells with a suicide gene to let them kill themselves by expressing toxic ribosome-inactivating proteins. Plasmids are stable and easy-to-produce vectors, but they have some disadvantages due to the bacterial backbone. Applying the minicircle technology, this problem can be solved with manageable effort in a well-equipped laboratory. With the described methodology, minicircle-DNA can be produced at low costs. The cell killing properties are monitored following transfection using the CytoSMART® Omni system-a camera based live cell imaging device.
Collapse
Affiliation(s)
| | - Hardy Mitdank
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Alexander Weng
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
27
|
Mejía-Morales C, Rodríguez-Macías R, Salcedo-Pérez E, Zamora-Natera JF, Rodríguez-Zaragoza FA, Molina-Torres J, Délano-Frier JP, Zañudo-Hernández J. Contrasting Metabolic Fingerprints and Seed Protein Profiles of Cucurbita foetidissima and C. radicans Fruits from Feral Plants Sampled in Central Mexico. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112451. [PMID: 34834814 PMCID: PMC8617929 DOI: 10.3390/plants10112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Cucurbita foetidissima and C. radicans are scarcely studied wild pumpkin species that grow in arid and semi-arid areas of Mexico and the United States. This study describes the morphological, proximal composition, metabolic finger-prints and seed protein profiles of C. foetidissima and C. radicans fruits collected in the wild during a one-year period in different locations of central-western Mexico. The results obtained complement the limited information concerning the fruit composition of C. foetidissima and greatly expand information in this respect regarding C. radicans. Morphology and proximal composition of their fruits varied significantly. Different metabolic fingerprints and seed protein profiles were detected between them and also with the chemical composition of domesticated Cucurbita fruits. The neutral lipids in seed, pulp and peels were rich in wax content and in unsaturated compounds, probably carotenoids and tocopherols, in addition to tri-, di- and mono-acylglycerols. The tri- and diacylglycerol profiles of their seed oils were different from commercial seed oils and between each other. They also showed unusual fatty acid compositions. Evidence of a possible alkaloid in the pulp and peel of both species was obtained in addition to several putative cucurbitacins. An abundance of phenolic acids was found in all fruit parts, whereas flavonoids were only detected in the peels. Unlike most cucurbits, globulins were not the main protein fraction in the seeds of C. radicans, whereas the non-structural carbohydrate and raffinose oligosaccharide content in their fruit parts was lower than in other wild cucurbit species. These results emphasize the significantly different chemical composition of these two marginally studied Cucurbita species, which was more discrepant in C. radicans, despite the notion regarding C. foetidissima as an aberrant species with no affinity to any other Cucurbita species.
Collapse
Affiliation(s)
- Claudia Mejía-Morales
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico; (C.M.-M.); (F.A.R.-Z.)
| | - Ramón Rodríguez-Macías
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico; (R.R.-M.); (E.S.-P.); (J.F.Z.-N.)
| | - Eduardo Salcedo-Pérez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico; (R.R.-M.); (E.S.-P.); (J.F.Z.-N.)
| | - Juan Francisco Zamora-Natera
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico; (R.R.-M.); (E.S.-P.); (J.F.Z.-N.)
| | - Fabián Alejandro Rodríguez-Zaragoza
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico; (C.M.-M.); (F.A.R.-Z.)
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico;
| | - John Paul Délano-Frier
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico;
| | - Julia Zañudo-Hernández
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico; (C.M.-M.); (F.A.R.-Z.)
| |
Collapse
|
28
|
Phatak P, Chauhan V, Dhaked RK, Pathak U, Saxena N. E-N-(2-acetyl-phenyl)-3-phenyl-acrylamide targets abrin and ricin toxicity: Hitting two toxins with one stone. Biomed Pharmacother 2021; 143:112134. [PMID: 34479018 DOI: 10.1016/j.biopha.2021.112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
The efficacy of small molecule inhibitors (SMIs) against the enzymatic activity of Shiga toxin prompted the evaluation of their efficacy on related toxins viz. ricin and abrin. Ricin, like Shiga toxin, is listed as a category B bioweapon and belongs to the type II family of ribosome inactivating proteins (RIPs). Abrin though structurally and functionally similar to ricin, is considerably more toxic. In the present study, 35 compounds were evaluated in A549 cells in in vitro assays, of which 5 offered protection against abrin and 2 against ricin, with IC50 values ranging between 30.5-1379 μM and 300-341 μM, respectively. These findings are substantiated by fluorescence based thermal shift assay. Moreover, the binding of the promising compounds to the toxin components has been validated by Surface Plasmon Resonance assay and in vitro protein synthesis assay. In vivo studies reveal complete protection of mice with compound 4 E-N-(2-acetyl-phenyl)-3-phenyl-acrylamide against orally administered lethal doses of, both, abrin and ricin. The present study thus proposes the emergence of E-N-(2-acetyl-phenyl)-3-phenyl-acrylamide as a lead compound against RIPs.
Collapse
Affiliation(s)
- Pooja Phatak
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Vinita Chauhan
- Biotechnology Division, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Uma Pathak
- Synthetic Chemistry Division, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Nandita Saxena
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India.
| |
Collapse
|
29
|
Lu JQ, Shi WW, Xiao MJ, Tang YS, Zheng YT, Shaw PC. Lyophyllin, a Mushroom Protein from the Peptidase M35 Superfamily Is an RNA N-Glycosidase. Int J Mol Sci 2021; 22:ijms222111598. [PMID: 34769028 PMCID: PMC8584072 DOI: 10.3390/ijms222111598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.
Collapse
Affiliation(s)
- Jia-Qi Lu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei-Wei Shi
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518107, China;
| | - Meng-Jie Xiao
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms, National Kunming High Level Biosafety Research Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
30
|
Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021; 13:1391. [PMID: 34575464 PMCID: PMC8470549 DOI: 10.3390/pharmaceutics13091391] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse amino acid sequences with the ability to cross cellular membranes. CPPs can deliver several bioactive cargos, including proteins, peptides, nucleic acids and chemotherapeutics, into cells. Ever since their discovery, synthetic and natural CPPs have been utilized in therapeutics delivery, gene editing and cell imaging in fundamental research and clinical experiments. Over the years, CPPs have gained significant attention due to their low cytotoxicity and high transduction efficacy. In the last decade, multiple investigations demonstrated the potential of CPPs as carriers for the delivery of therapeutics to treat various types of cancer. Besides their remarkable efficacy owing to fast and efficient delivery, a crucial benefit of CPP-based cancer treatments is delivering anticancer agents selectively, rather than mediating toxicities toward normal tissues. To obtain a higher therapeutic index and to improve cell and tissue selectivity, CPP-cargo constructions can also be complexed with other agents such as nanocarriers and liposomes to obtain encouraging outcomes. This review summarizes various types of CPPs conjugated to anticancer cargos. Furthermore, we present a brief history of CPP utilization as delivery systems for anticancer agents in the last decade and evaluate several reports on the applications of CPPs in basic research and preclinical studies.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Raheleh Tooyserkani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mehdi Tahmasebi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
| | - Dennis W. P. M. Löwik
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
31
|
Mitdank H, Sama S, Tröger M, Testa MF, Ferrarese M, Balestra D, Pinotti M, Weng A. An advanced method for the small-scale production of high-quality minicircle DNA. Int J Pharm 2021; 605:120830. [PMID: 34214654 DOI: 10.1016/j.ijpharm.2021.120830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022]
Abstract
Minicircle DNA is a promising tool in the field of gene therapy, whose products are increasingly gaining market access. Greater transfection efficiency and longer expression time as well as lower immunogenicity contrast with cost-intensive production, which also stands in the way of a broader use of the advantages of this technology in research. Starting from a commercial minicircle production kit a simple protocol for the cost-effective small-scale production of high-quality minicircle DNA to be used at a research scale has been developed by combining and improving procedures of various publications. An optimized size-exclusion chromatography method led to almost pure minicircle DNA with a superior proportion of the desired supercoiled plasmid conformation. The pharmaceutical potential of the produced minicircle DNA was investigated in vitro by real-time impedance assays in a tumor cell model in case of coded suicide genes as well as by ELISA of the translation product in case of coded human coagulation factor IX.
Collapse
Affiliation(s)
- Hardy Mitdank
- Institute of Pharmacy, Free University of Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Simko Sama
- Institute of Pharmacy, Free University of Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Meike Tröger
- Institute of Pharmacy, Free University of Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnologies, University of Ferrara, Via Luigi Borsari 64, 44121 Ferrara, Italy
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnologies, University of Ferrara, Via Luigi Borsari 64, 44121 Ferrara, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnologies, University of Ferrara, Via Luigi Borsari 64, 44121 Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnologies, University of Ferrara, Via Luigi Borsari 64, 44121 Ferrara, Italy
| | - Alexander Weng
- Institute of Pharmacy, Free University of Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
32
|
Yang J, Wang C, Luo L, Li Z, Xu B, Guo L, Xie J. Highly sensitive MALDI-MS measurement of active ricin: insight from more potential deoxynucleobase-hybrid oligonucleotide substrates. Analyst 2021; 146:2955-2964. [PMID: 33949380 DOI: 10.1039/d0an02205e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report an improved MALDI-MS method for active ricin to contribute toward countermeasures against its real threat to the public. Compared with commonly used DNA or RNA substrates, the deoxynucleobase-hybrid oligonucleotide (RNA_dA, Rd) substrate containing functional Gd[combining low line]A[combining low line]GA loop was revealed as a substrate with more potential and used for the first time in ricin measurement via MALDI-MS. The Rd sequence greatly prompted ricin to exhibit its catalytic activity as rRNA N-glycosylase in ex vitro condition, which was supported by molecular docking simulation and enzymatic parameters depicted in MALDI-MS. Furthermore, we discovered that a highly pure matrix was the most crucial parameter for enhancing the sensitivity, which addressed the major obstacle encountered in the oligo(deoxy)nucleotide measurement, i.e., the interfering alkali metal ion-adducted signals in MALDI-MS. After the optimization of pH and enzymatic reaction buffer composition in this ex vitro condition, this method can provide a wide linearity of up to three orders of magnitude, i.e., 1-5000 ng mL-1, and a high sensitivity of 1 ng mL-1 without any enrichment. Denatured and active ricin could be distinctly differentiated, and the application to practical samples from one international exercise and a soft drink proved the feasibility of this new method. We believe this MALDI-MS method can contribute to the first response to ricin occurrence events in public safety and security, as well as pave a new way for a deep understanding of ricin and other type II ribosome inactivating proteins involved toxicology.
Collapse
Affiliation(s)
- Jiewei Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Chenyu Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China. and School of Pharmacy, Minzu University, Beijing, 100081, China
| | - Li Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China. and School of Public Health, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Zhi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
33
|
Muronga M, Quispe C, Tshikhudo PP, Msagati TAM, Mudau FN, Martorell M, Salehi B, Abdull Razis AF, Sunusi U, Kamal RM, Sharifi-Rad J. Three Selected Edible Crops of the Genus Momordica as Potential Sources of Phytochemicals: Biochemical, Nutritional, and Medicinal Values. Front Pharmacol 2021; 12:625546. [PMID: 34054516 PMCID: PMC8155620 DOI: 10.3389/fphar.2021.625546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Momordica species (Family Cucurbitaceae) are cultivated throughout the world for their edible fruits, leaves, shoots and seeds. Among the species of the genus Momordica, there are three selected species that are used as vegetable, and for medicinal purposes, Momordica charantia L (Bitter melon), Momordica foetida Schumach (Bitter cucumber) and Momordica balsamina L (African pumpkin). The fruits and leaves of these Momordica species are rich in primary and secondary metabolites such as proteins, fibers, minerals (calcium, iron, magnesium, zinc), β-carotene, foliate, ascorbic acid, among others. The extracts from Momordica species are used for the treatment of a variety of diseases and ailments in traditional medicine. Momordica species extracts are reputed to possess anti-diabetic, anti-microbial, anthelmintic bioactivity, abortifacient, anti-bacterial, anti-viral, and play chemo-preventive functions. In this review we summarize the biochemical, nutritional, and medicinal values of three Momordica species (M. charantia, M. foetida and M. balsamina) as promising and innovative sources of natural bioactive compounds for future pharmaceutical usage.
Collapse
Affiliation(s)
- Mashudu Muronga
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Cristina Quispe
- Facultad de Ciencias De La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Phumudzo P. Tshikhudo
- Pest Risk Analysis, Directorate Plant Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - Titus A. M Msagati
- Nanotechnology and Water Sustainability Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Florida, South Africa
| | - Fhatuwani N. Mudau
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano P M B, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad Del Azuay, Cuenca, Ecuador
| |
Collapse
|
34
|
Worbs S, Kampa B, Skiba M, Hansbauer EM, Stern D, Volland H, Becher F, Simon S, Dorner MB, Dorner BG. Differentiation, Quantification and Identification of Abrin and Abrus precatorius Agglutinin. Toxins (Basel) 2021; 13:toxins13040284. [PMID: 33919561 PMCID: PMC8073929 DOI: 10.3390/toxins13040284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Bettina Kampa
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Eva-Maria Hansbauer
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Hervé Volland
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - François Becher
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Correspondence: ; Tel.: +49-30-18754-2500
| |
Collapse
|
35
|
A Simple, Fast and Portable Method for Electrochemical Detection of Adenine Released by Ricin Enzymatic Activity. Toxins (Basel) 2021; 13:toxins13040238. [PMID: 33810228 PMCID: PMC8066795 DOI: 10.3390/toxins13040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
International authorities classify ricin toxin present in castor seed as a potential agent for use in bioterrorism. Therefore, the detection, identification, and characterization of ricin in various sample matrices are considered necessary actions for risk assessment during a suspected exposure. This study reports a portable electrochemical assay for detecting active ricin based on the adenine electro-oxidation released from herring sperm DNA substrate by its catalytic action. Also, kinetic parameters were calculated, and the values were Km of 3.14 µM and Kcat 2107 min−1. A linear response was found in optimized experimental conditions for ricin concentrations ranging from 8 to 120 ng/mL, and with a detection limit of 5.14 ng/mL. This proposed detection strategy emphasizes the possibility of field detection of active ricin in food matrices and can be applied to other endonucleolytic activities.
Collapse
|
36
|
Mucoricin is a ricin-like toxin that is critical for the pathogenesis of mucormycosis. Nat Microbiol 2021; 6:313-326. [PMID: 33462434 PMCID: PMC7914224 DOI: 10.1038/s41564-020-00837-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/20/2020] [Indexed: 01/28/2023]
Abstract
Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis. Inhibition of the toxin in Rhizopus delemar through RNA interference compromises the ability of the fungus to damage host cells and attenuates virulence in mice. This 17 kDa toxin has structural and functional features of the plant toxin ricin, including the ability to inhibit protein synthesis through its N-glycosylase activity, the existence of a motif that mediates vascular leak and a lectin sequence. Antibodies against the toxin inhibit R. delemar- or toxin-mediated vascular permeability in vitro and cross react with ricin. A monoclonal anti-ricin B chain antibody binds to the toxin and also inhibits its ability to cause vascular permeability. Therefore, we propose the name 'mucoricin' for this toxin. Not only is mucoricin important in the pathogenesis of mucormycosis but our data suggest that a ricin-like toxin is produced by organisms beyond the plant and bacterial kingdoms. Importantly, mucoricin should be a promising therapeutic target.
Collapse
|
37
|
Iglesias R, Ferreras JM, Llorente A, Citores L. Ebulin l Is Internalized in Cells by Both Clathrin-Dependent and -Independent Mechanisms and Does Not Require Clathrin or Dynamin for Intoxication. Toxins (Basel) 2021; 13:toxins13020102. [PMID: 33573355 PMCID: PMC7911328 DOI: 10.3390/toxins13020102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Ebulin l is an A-B toxin, and despite the presence of a B chain, this toxin displays much less toxicity to cells than the potent A-B toxin ricin. Here, we studied the binding, mechanisms of endocytosis, and intracellular pathway followed by ebulin l and compared it with ricin. COS-1 cells and HeLa cells with inducible synthesis of a mutant dynamin (K44A) were used in this study. The transport of these toxins was measured using radioactively or fluorescently labeled toxins. The data show that ebulin l binds to cells to a lesser extent than ricin. Moreover, the expression of mutant dynamin does not affect the endocytosis, degradation, or toxicity of ebulin l. However, the inhibition of clathrin-coated pit formation by acidification of the cytosol reduced ebulin l endocytosis but not toxicity. Remarkably, unlike ricin, ebulin l is not transported through the Golgi apparatus to intoxicate the cells and ebulin l induces apoptosis as the predominant cell death mechanism. Therefore, after binding to cells, ebulin l is taken up by clathrin-dependent and -independent endocytosis into the endosomal/lysosomal system, but there is no apparent role for clathrin and dynamin in productive intracellular routing leading to intoxication.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Mechanical, Electronics and Chemical Engineering Art and Design, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
- Correspondence:
| |
Collapse
|
38
|
Bortolotti M, Maiello S, Ferreras JM, Iglesias R, Polito L, Bolognesi A. Kirkiin: A New Toxic Type 2 Ribosome-Inactivating Protein from the Caudex of Adenia kirkii. Toxins (Basel) 2021; 13:toxins13020081. [PMID: 33499082 PMCID: PMC7912562 DOI: 10.3390/toxins13020081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are plant toxins that irreversibly damage ribosomes and other substrates, thus causing cell death. RIPs are classified in type 1 RIPs, single-chain enzymatic proteins, and type 2 RIPs, consisting of active A chains, similar to type 1 RIPs, linked to lectin B chains, which enable the rapid internalization of the toxin into the cell. For this reason, many type 2 RIPs are very cytotoxic, ricin, volkensin and stenodactylin being the most toxic ones. From the caudex of Adenia kirkii (Mast.) Engl., a new type 2 RIP, named kirkiin, was purified by affinity chromatography on acid-treated Sepharose CL-6B and gel filtration. The lectin, with molecular weight of about 58 kDa, agglutinated erythrocytes and inhibited protein synthesis in a cell-free system at very low concentrations. Moreover, kirkiin was able to depurinate mammalian and yeast ribosomes, but it showed little or no activity on other nucleotide substrates. In neuroblastoma cells, kirkiin inhibited protein synthesis and induced apoptosis at doses in the pM range. The biological characteristics of kirkiin make this protein a potential candidate for several experimental pharmacological applications both alone for local treatments and as component of immunoconjugates for systemic targeting in neurodegenerative studies and cancer therapy.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Section, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.B.); (S.M.); (A.B.)
| | - Stefania Maiello
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Section, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.B.); (S.M.); (A.B.)
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (J.M.F.); (R.I.)
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (J.M.F.); (R.I.)
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Section, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.B.); (S.M.); (A.B.)
- Correspondence:
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Section, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.B.); (S.M.); (A.B.)
| |
Collapse
|
39
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
40
|
Sagini MN, Klika KD, Orry A, Zepp M, Mutiso J, Berger MR. Riproximin Exhibits Diversity in Sugar Binding, and Modulates some Metastasis-Related Proteins with Lectin like Properties in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:549804. [PMID: 33328982 PMCID: PMC7734336 DOI: 10.3389/fphar.2020.549804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023] Open
Abstract
Riproximin (Rpx) is a type II ribosome-inactivating protein with specific anti-proliferative activity. It was purified from Ximenia americana by affinity chromatography using a resin coupled with lactosyl residues. The same technique facilitated isolation of proteins with lectin-like properties from human Suit2-007 and rat ASML pancreatic cancer cells, which were termed lactosyl-sepharose binding proteins (LSBPs). The role of these proteins in cancer progression was investigated at mRNA level using chip array data of Suit2-007 and ASML cells re-isolated from nude rats. These data compared significant mRNA expression changes when relating primary (pancreas) and metastatic (liver) sites following orthotopic and intraportal implantation of Pancreatic Ductal Adenocarcinoma (PDAC) cells, respectively. The affinity of Rpx to 13 simple sugar structures was modeled by docking experiments, the ranking of which was principally confirmed by NMR-spectroscopy. In addition, Rpx and LSBPs were evaluated for anti-proliferative activity and their cellular uptake was assessed by fluorescence microscopy. From 13 monosaccharides evaluated, open-chain rhamnose, β-d-galactose, and α-l-galactopyranose showed the highest affinities for site 1 of Rpx’s B-chain. NMR evaluation yielded a similar ranking, as galactose was among the best binders. Both, Rpx and LSBPs reduced cell proliferation in vitro, but their anti-proliferative effects were decreased by 15–20% in the presence of galactose. The program “Ingenuity Pathway Analysis” identified 2,415 genes showing significantly modulated mRNA expression following exposure of Suit2-007 cells to Rpx in vitro. These genes were then matched to those 1,639 genes, which were significantly modulated in the rat model when comparing primary and metastatic growth of Suit2-007 cells. In this overlap analysis, LSBP genes were considered separately. The potential suitability of Rpx for treating metastatic Suit2-007 PDAC cells was reflected by those genes, which were modulated by Rpx in a way opposite to that observed in cancer progression. Remarkably, these were 14% of all genes modulated during cancer progression, but 71% of the respective LSBP gene subgroup. Based on these findings, we predict that Rpx has the potential to treat PDAC metastasis by modulating genes involved in metastatic progression, especially by targeting LSBPs.
Collapse
Affiliation(s)
- Micah N Sagini
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center, Heidelberg, Germany
| | | | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Joshua Mutiso
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany.,Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
41
|
An unusual type I ribosome-inactivating protein from Agrostemma githago L. Sci Rep 2020; 10:15377. [PMID: 32958800 PMCID: PMC7506001 DOI: 10.1038/s41598-020-72282-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Agrostemma githago L. (corn cockle) is an herbaceous plant mainly growing in Europe. The seeds of the corn cockle are toxic and poisonings were widespread in the past by consuming contaminated flour. The toxic principle of Agrostemma seeds was attributed to triterpenoid secondary metabolites. Indeed, this is in part true. However Agrostemma githago L. is also a producer of ribosome-inactivating proteins (RIPs). RIPs are N-glycosylases that inactivate the ribosomal RNA, a process leading to an irreversible inhibition of protein synthesis and subsequent cell death. A widely known RIP is ricin from Ricinus communis L., which was used as a bioweapon in the past. In this study we isolated agrostin, a 27 kDa RIP from the seeds of Agrostemma githago L., and determined its full sequence. The toxicity of native agrostin was investigated by impedance-based live cell imaging. By RNAseq we identified 7 additional RIPs (agrostins) in the transcriptome of the corn cockle. Agrostin was recombinantly expressed in E. coli and characterized by MALDI-TOF–MS and adenine releasing assay. This study provides for the first time a comprehensive analysis of ribosome-inactivating proteins in the corn cockle and complements the current knowledge about the toxic principles of the plant.
Collapse
|
42
|
Przydacz M, Jones R, Pennington HG, Belmans G, Bruderer M, Greenhill R, Salter T, Wellham PAD, Cota E, Spanu PD. Mode of Action of the Catalytic Site in the N-Terminal Ribosome-Inactivating Domain of JIP60. PLANT PHYSIOLOGY 2020; 183:385-398. [PMID: 32123042 PMCID: PMC7210648 DOI: 10.1104/pp.19.01029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Jasmonate-induced protein 60 (JIP60) is a ribosome-inactivating protein (RIP) from barley (Hordeum vulgare) and is involved in the plant immune response dependent on jasmonate hormones. Here, we demonstrate in Nicotiana benthamiana that transient expression of the N-terminal domain of JIP60, from which the inhibitor domain (amino acids 163-185) is removed, initiates cell death, leading to extensive necrosis of leaf tissues. We used structure prediction of JIP60 to identify potential catalytic amino acids in the active site and tested these by mutagenesis and in planta assays of necrosis induction by expression in N. benthamiana, as well as through an in vitro translation-inactivation assay. We found that Tyr 96, Glu 201, Arg 204, and Trp 234 in the presumptive active site of JIP60 are conserved in 815 plant RIPs in the Pfam database that were identified by HUMMR as containing a RIP domain. When these amino acid residues are individually mutated, the necrosis-inducing activity is completely abolished. We therefore propose that the role of these amino acids in JIP60 activity is to depurinate adenosine in ribosomes. This study provides insight into the catalytic mechanism of JIP60.
Collapse
Affiliation(s)
- Michal Przydacz
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rhian Jones
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Helen G Pennington
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gerard Belmans
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maya Bruderer
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rachel Greenhill
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tia Salter
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter A D Wellham
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
43
|
Rasoulpour R, Izadpanah K, Afsharifar A. Opuntin B, the antiviral protein isolated from prickly pear (Opuntia ficus-indica (L.) Miller) cladode exhibits ribonuclease activity. Microb Pathog 2019; 140:103929. [PMID: 31846744 DOI: 10.1016/j.micpath.2019.103929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
An antiviral protein, designated Opuntin B, was purified from Prickly Pear (Opuntia ficus-indica (L.) Miller) Cladode by heat treatment of the extract, protein precipitation by ammonium sulfate treatment followed by ion-exchange chromatography. Assessment of enzymatic activity of the purified protein showed that it degrades total plant genomic RNA, while causing electrophoretic mobility shifting of Cucumber mosaic virus (CMV) RNAs. However, heat-denatured viral RNA became sensitive to degradation upon treatment with antiviral protein. Opuntin B had no DNase activity on native and heat-denatured apricot genomic DNA, and on PCR-amplified coat protein gene of CMV. Using CMV as prey protein and Opuntin B as bait protein, no interaction was found between the antiviral protein and viral coat protein in far western dot blot analysis.
Collapse
Affiliation(s)
- Rasoul Rasoulpour
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Keramat Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
44
|
Yu H, Chang Y, Dong M, Wang Y, Sun C, Liu Z, Wang X, Xu N, Liu W. Neutralization and binding activity of a human single-chain antibody to ricin toxin. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1698521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Haotian Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Ying Chang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
- Jilin Medical University, Jilin, People’s Republic of China
| | - Mingxin Dong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Yan Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Chengbiao Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Zhongliang Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Na Xu
- Jilin Medical University, Jilin, People’s Republic of China
| | - Wensen Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| |
Collapse
|
45
|
Heterologous Production and Functional Characterization of Ageritin, a Novel Type of Ribotoxin Highly Expressed during Fruiting of the Edible Mushroom Agrocybe aegerita. Appl Environ Microbiol 2019; 85:AEM.01549-19. [PMID: 31444206 DOI: 10.1128/aem.01549-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Fungi produce various defense proteins against antagonists, including ribotoxins. These toxins cleave a single phosphodiester bond within the universally conserved sarcin-ricin loop of ribosomes and inhibit protein biosynthesis. Here, we report on the structure and function of ageritin, a previously reported ribotoxin from the edible mushroom Agrocybe aegerita The amino acid sequence of ageritin was derived from cDNA isolated from the dikaryon A. aegerita AAE-3 and lacks, according to in silico prediction, a signal peptide for classical secretion, predicting a cytoplasmic localization of the protein. The calculated molecular weight of the protein is slightly higher than the one reported for native ageritin. The A. aegerita ageritin-encoding gene, AaeAGT1, is highly induced during fruiting, and toxicity assays with AaeAGT1 heterologously expressed in Escherichia coli showed a strong toxicity against Aedes aegypti larvae yet not against nematodes. The activity of recombinant A. aegerita ageritin toward rabbit ribosomes was confirmed in vitro Mutagenesis studies revealed a correlation between in vivo and in vitro activities, indicating that entomotoxicity is mediated by ribonucleolytic cleavage. The strong larvicidal activity of ageritin makes this protein a promising candidate for novel biopesticide development.IMPORTANCE Our results suggest a pronounced organismal specificity of a protein toxin with a very conserved intracellular molecular target. The molecular details of the toxin-target interaction will provide important insight into the mechanism of action of protein toxins and the ribosome. This insight might be exploited to develop novel bioinsecticides.
Collapse
|
46
|
Dianthin and Its Potential in Targeted Tumor Therapies. Toxins (Basel) 2019; 11:toxins11100592. [PMID: 31614697 PMCID: PMC6832487 DOI: 10.3390/toxins11100592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Dianthin enzymes belong to ribosome-inactivating proteins (RIPs) of type 1, i.e., they only consist of a catalytic domain and do not have a cell binding moiety. Dianthin-30 is very similar to saporin-S3 and saporin-S6, two RIPs often used to design targeted toxins for tumor therapy and already tested in some clinical trials. Nevertheless, dianthin enzymes also exhibit differences to saporin with regard to structure, efficacy, toxicity, immunogenicity and production by heterologous expression. Some of the distinctions might make dianthin more suitable for targeted tumor therapies than other RIPs. The present review provides an overview of the history of dianthin discovery and illuminates its structure, function and role in targeted toxins. It further discusses the option to increase the efficacy of dianthin by endosomal escape enhancers.
Collapse
|
47
|
Bortolotti M, Mercatelli D, Polito L. Momordica charantia, a Nutraceutical Approach for Inflammatory Related Diseases. Front Pharmacol 2019; 10:486. [PMID: 31139079 PMCID: PMC6517695 DOI: 10.3389/fphar.2019.00486] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023] Open
Abstract
Momordica charantia, commonly called bitter melon, is a plant belonging to Cucurbitaceae family known for centuries for its pharmacological activities, and nutritional properties. Due to the presence of many bioactive compounds, some of which possess potent biological actions, this plant is used in folk medicine all over the world for the treatment of different pathologies, mainly diabetes, but also cancer, and other inflammation-associated diseases. It is widely demonstrated that M. charantia extracts contribute in lowering glycaemia in patients affected by type 2 diabetes. However, the majority of existing studies on M. charantia bioactive compounds were performed only on cell lines and in animal models. Therefore, because the real impact of bitter melon on human health has not been thoroughly demonstrated, systematic clinical studies are needed to establish its efficacy and safety in patients. Besides, both in vitro and in vivo studies have demonstrated that bitter melon may also elicit toxic or adverse effects under different conditions. The aim of this review is to provide an overview of anti-inflammatory and anti-neoplastic properties of bitter melon, discussing its pharmacological activity as well as the potential adverse effects. Even if a lot of literature is available about bitter melon as antidiabetic drug, few papers discuss the anti-inflammatory and anti-cancer properties of this plant.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Daniele Mercatelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Barkhordari F, Sohrabi N, Davami F, Mahboudi F, Garoosi YT. Cloning, expression and characterization of a HER2-alpha luffin fusion protein in Escherichia coli. Prep Biochem Biotechnol 2019; 49:759-766. [PMID: 31032734 DOI: 10.1080/10826068.2019.1608447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent decades, immunotoxins have attracted significant attention in treatment of a wide range of diseases including cancers due to their natural origins and their role in blocking crucial pathways within the cells. Ribosome inactivating proteins (RIPs) are efficient molecules in blocking protein synthesis through interactions with ribosomal rRNA molecules. cDNA molecule encoding HER2 scFv antibody fragment originated from trastuzumab attached to the mature alpha luffin gene fragment was subcloned into pET28a expression vector and expressed in different E. coli expression hosts. Identity of the expressed recombinant protein was investigated through western blotting and the fusion protein was purified using Ni-NTA affinity chromatography. The biological activity (toxicity) of the protein was investigated on DNA and RNA samples. A 58 kDa protein was expressed in E. coli. The best protein expression level was achieved in 0.2 mM IPTG at 30 °C in TB medium using E. coli BL21 (DE3) host strain. The fusion protein showed RNase and DNA glycosylase activity on tested RNA and DNA samples. DNA glycosylase activity of the recombinant fusion protein showed that alpha luffin part of this protein is active in conjugation to the scFv molecule and the expressed protein can be further studied in targeted biological in vitro assays.
Collapse
Affiliation(s)
- Farzaneh Barkhordari
- a Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran.,b Department of Biochemistry, Payame Noor University , Tehran , Iran
| | - Nooshin Sohrabi
- c Department of Biology, Payame Noor University , Tehran , Iran
| | - Fatemeh Davami
- a Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Fereidoun Mahboudi
- a Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | | |
Collapse
|
49
|
Gholizadeh A. Purification of a ribosome-inactivating protein with antioxidation and root developer potencies from Celosia plumosa. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:243-251. [PMID: 30804646 PMCID: PMC6352530 DOI: 10.1007/s12298-018-0577-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 06/09/2023]
Abstract
Considering Celosia plumosa as a potent antiviral plant, the attempt was made to determine, purify and characterize its proteinaceous antiviral elements against tobacco mosaic virus hypersensitive response on Nicotiana glutinosa. By using 60% ammonium sulphate-precipitation, FPLC-based anion and cation-exchange chromatography in 10 and 50 mM NaCl, size-exclusion chromatography in 50 mM NaCl and SDS-PAGE 10%, a 25 kD antiviral protein with ribosome-inactivating/28S rRNase ability was purified from the leaves of C. plumosa at vegetative growth stage. The purified protein showed FRAP-based antioxidant activity in vitro and caused 1.7-fold and 1.4-fold increases in the growth rate of root system upon carborundum-based application on the root growth medium of N. glutinosa. The present work reports an antiviral protein with ribosome-inactivating, antioxidation and root developer potencies in C. plumosa as an edible or ornamental plant that may be useful in health and agricultural biotechnology in the future.
Collapse
Affiliation(s)
- Ashraf Gholizadeh
- Iran National Science Foundation (INSF), Tehran, Iran
- Department of Biology, Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| |
Collapse
|
50
|
Kokorin A, Weise C, Sama S, Weng A. A new type 1 ribosome-inactivating protein from the seeds of Gypsophila elegans M.Bieb. PHYTOCHEMISTRY 2019; 157:121-127. [PMID: 30399494 DOI: 10.1016/j.phytochem.2018.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes with N-glycosylase activity that remove adenine bases from the ribosomal RNA. In theory, one single RIP molecule internalized into a cell is sufficient to induce cell death. For this reason, RIPs are of high potential as toxic payload for anti-tumor therapy. A considerable number of RIPs are synthesized by plants that belong to the carnation family (Caryophyllaceae). Prominent examples are the RIPs saporin from Saponaria officinalis L. or dianthin from Dianthus caryophyllus L. In this study, we have isolated and characterized a novel RIP (termed gypsophilin-S) from the tiny seeds of Gypsophila elegans M. Bieb. (Caryophyllaceae). It is noteworthy that this is the first study presenting the complete amino acid sequence of a RIP from a Gypsophila species. Gypsophilin-S was isolated from the defatted seed material following ammonium sulphate precipitation and HPLC-based ion exchange chromatography. Gypsophilin-S-containing fractions were analysed by SDS-PAGE and mass spectrometry. The full amino acid sequence of gypsophilin-S was assembled by MALDI-TOF-MS-MS and PCR. Gypsophilin-S exhibited strong adenine releasing activity and its cytotoxicity in human glioblastoma cells was investigated using an impedance-based real-time assay in comparison with recombinant saporin and dianthin.
Collapse
Affiliation(s)
- Arsenij Kokorin
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Simko Sama
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|