1
|
Li C, Zhu Z, Yao J, Chen Z, Huang Y. Perspectives in Aptasensor-Based Portable Detection for Biotoxins. Molecules 2024; 29:4891. [PMID: 39459259 PMCID: PMC11510259 DOI: 10.3390/molecules29204891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Biotoxins are pervasive in food and the environment, posing significant risk to human health. The most effective strategy to mitigate the risk arising from biotoxin exposure is through their specific and sensitive detection. Aptasensors have emerged as pivotal tools, leveraging aptamers as biorecognition elements to transduce the specificity of aptamer-target interactions into quantifiable signals for analytical applications, thereby facilitating the meticulous detection of biotoxins. When integrated with readily portable devices such as lateral flow assays (LFAs), personal glucose meters (PGMs), smartphones, and various meters measuring parameters like pH and pressure, aptasensors have significantly advanced the field of biotoxin monitoring. These commercially available devices enable precise, in situ, and real-time analysis, offering great potential for portable biotoxin detection in food and environmental matrices. This review highlights the recent progress in biotoxin monitoring using portable aptasensors, discussing both their potential applications and the challenges encountered. By addressing these impediments, we anticipate that a portable aptasensor-based detection system will open new avenues in biotoxin monitoring in the future.
Collapse
Affiliation(s)
- Congying Li
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Ziyuan Zhu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Jiahong Yao
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Zhe Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, China
- China Institute for Radiation Protection, Taiyuan 030000, China
| | - Yishun Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
- Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen 361024, China
| |
Collapse
|
2
|
Bruce-Tagoe TA, Harnish MT, Soleimani S, Ullah N, Shen T, Danquah MK. Surface plasmon resonance aptasensing and computational analysis of Staphylococcus aureus IsdA surface protein. Biotechnol Prog 2024; 40:e3475. [PMID: 38682836 DOI: 10.1002/btpr.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Staphylococcus aureus (S. aureus), a common foodborne pathogen, poses significant public health challenges due to its association with various infectious diseases. A key player in its pathogenicity, which is the IsdA protein, is an essential virulence factor in S. aureus infections. In this work, we present an integrated in-silico and experimental approach using MD simulations and surface plasmon resonance (SPR)-based aptasensing measurements to investigate S. aureus biorecognition via IsdA surface protein binding. SPR, a powerful real-time and label-free technique, was utilized to characterize interaction dynamics between the aptamer and IsdA protein, and MD simulations was used to characterize the stable and dynamic binding regions. By characterizing and optimizing pivotal parameters such as aptamer concentration and buffer conditions, we determined the aptamer's binding performance. Under optimal conditions of pH 7.4 and 150 mM NaCl concentration, the kinetic parameters were determined; ka = 3.789 × 104/Ms, kd = 1.798 × 103/s, and KD = 4.745 × 10-8 M. The simulations revealed regions of interest in the IsdA-aptamer complex. Region I, which includes interactions between amino acid residues H106 and R107 and nucleotide residues 9G, 10U, 11G and 12U of the aptamer, had the strongest interaction, based on ΔG and B-factor values, and hence contributed the most to the stability of the interaction. Region II, which covers residue 37A reflects the dynamic nature of the interaction due to frequent contacts. The approach presents a rigorous characterization of aptamer-IsdA binding behavior, supporting the potential application of the IsdA-binding aptamer system for S. aureus biosensing.
Collapse
Affiliation(s)
- Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael T Harnish
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Shokoufeh Soleimani
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Qin M, Khan IM, Ding N, Qi S, Dong X, Zhang Y, Wang Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol Adv 2024; 73:108368. [PMID: 38692442 DOI: 10.1016/j.biotechadv.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Huang Y, Ji Y, Zheng M, Li X, Luan Y, Liu Y, Zhang X. Double-Enhanced Photothermal Lateral Flow Biosensor Based on Dual Gold Nanoparticle Conjugates. ACS Sens 2024; 9:2815-2825. [PMID: 38758028 DOI: 10.1021/acssensors.3c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Bacterial toxins emerge as the primary triggers of foodborne illnesses, posing a significant threat to human health. To ensure food safety, it is imperative to implement point-of-care testing methods. Lateral flow biosensors (LFBs) based on gold nanoparticles (GNPs) have been commonly used for rapid detection, but their applicationis limited by low sensitivity. Based on the localized surface plasmon resonance and photothermal effect of dual gold nanoparticle conjugates (DGNPs), we developed a smartphone-integrated photothermal LFB (PLFB) with double-enhanced colorimetric and photothermal sensitivity. Through numerical simulations, we verified that DGNPs have significantly enhanced photothermal performance compared to single 15 nm GNPs (SGNPs), and applied DGNPs in PLFB for the detection of staphylococcus enterotoxin A (SEA). The colorimetric and photothermal limits of detection of DGNPs-based PLFB for SEA were 0.091 and 0.0038 ng mL-1, respectively. Compared with the colorimetric detection of the SGNPs-based LFB, the colorimetric detection sensitivity of the DGNPs-based PLFB was increased by 10.7 times, and the photothermal detection sensitivity was further improved by 255.3 times. Moreover, the PLFB exhibits robust reproducibility and exceptional specificity and is applicable for detecting SEA in milk samples. This smartphone-integrated PLFB based on DGNPs allows users to detect toxins simply, conveniently, and quickly and has huge application potential in the field of food safety.
Collapse
Affiliation(s)
- Yan Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongxiang Ji
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengxin Zheng
- SINOMACH Academy of Science and Technology Co., Ltd., Beijing 100083, China
| | - Xiujuan Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Luan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
5
|
Issuriya A, Jatutasri K, Sanpinit S, Chusri S, Voravuthikunchai SP, Kaewmanee T, Phoopha S, Jetwanna KWN, Limsuwan S. Potential applications of Rhodomyrtus tomentosa leaf extract as natural anti-staphylococcal additive in food systems: Efficacy and in vivo safety evaluation. FOOD SCI TECHNOL INT 2024; 30:370-383. [PMID: 36959762 DOI: 10.1177/10820132231165667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
This work aimed to explore the potential use of Rhodomyrtus tomentosa ethanol leaf extract (RTEL) as an alternative food preservative agent for controlling the growth of Staphylococcus aureus. Antibacterial activities against food-isolated S. aureus were performed using disc diffusion and broth microdilution assays, followed by evaluating in vivo subacute oral toxicity of the extract. Salad dressing was used as a food model to study bactericidal properties and consumer acceptability. RTEL remarkably inhibited S. aureus with minimum inhibitory concentrations (MICs) ranging from 7.81-62.5 µg/mL. Repeated oral doses (5, 50, and 300 mg/kg RTEL) for 28 days did not affect any of the measured toxicity parameters. The no-observed-adverse-effect-level (NOAEL) of RTEL was noted as more than 300 mg/kg body weight/day. The utilization of RTEL (12.5 mg/mL) in the vinaigrette salad dressing did not affect the consumer acceptability of the product, remarkably killed the pathogen within 3-9 h of exposure. The results indicated that RTEL is safe and effective as a natural anti-staphylococcal controlling agent that could be utilized in food systems. Further work is required on the effects of enterotoxin production, an important virulence factor of S. aureus responsible for food-borne disease.
Collapse
Affiliation(s)
- Acharaporn Issuriya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kawinsak Jatutasri
- Sirindhorn College of Public Health, Yala, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Thailand
| | - Sineenart Sanpinit
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations, and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Sathianpong Phoopha
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Surasak Limsuwan
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
6
|
Coatrini-Soares A, Soares JC, Popolin-Neto M, de Mello SS, Sanches EA, Paulovich FV, Oliveira ON, Mattoso LHC. Multidimensional calibration spaces in Staphylococcus Aureus detection using chitosan-based genosensors and electronic tongue. Int J Biol Macromol 2024; 271:132460. [PMID: 38772468 DOI: 10.1016/j.ijbiomac.2024.132460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Mastitis diagnosis can be made by detecting Staphylococcus aureus (S. aureus), which requires high sensitivity and selectivity. Here, we report on microfluidic genosensors and electronic tongues to detect S. aureus DNA using impedance spectroscopy with data analysis employing visual analytics and machine learning techniques. The genosensors were made with layer-by-layer films containing either 10 bilayers of chitosan/chondroitin sulfate or 8 bilayers of chitosan/sericin functionalized with an active layer of cpDNA S. aureus. The specific interactions leading to hybridization in these genosensors allowed for a low limit of detection of 5.90 × 10-19 mol/L. The electronic tongue had four sensing units made with 6-bilayer chitosan/chondroitin sulfate films, 10-bilayer chitosan/chondroitin sulfate, 8-bilayer chitosan/sericin, and 8-bilayer chitosan/gold nanoparticles modified with sericin. Despite the absence of specific interactions, various concentrations of DNA S. aureus could be distinguished when the impedance data were plotted using a dimensionality reduction technique. Selectivity of S. aureus DNA was confirmed using multidimensional calibration spaces, based on machine learning, with accuracy up to 89 % for the genosensors and 66 % for the electronic tongue. Hence, with these computational methods one may opt for the more expensive genosensors or the simpler and cheaper electronic tongue, depending on the sensitivity level required to diagnose mastitis.
Collapse
Affiliation(s)
- Andrey Coatrini-Soares
- Embrapa Instrumentação, Nanotechnology National Laboratory for Agriculture (LNNA), São Carlos, Brazil.
| | - Juliana Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Mario Popolin-Neto
- Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP), 13566-590 São Carlos, Brazil; Federal Institute of São Paulo (IFSP), 14804-296 Araraquara, Brazil
| | | | | | - Fernando V Paulovich
- Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), 5600 MB Eindhoven, the Netherlands
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590 São Carlos, Brazil.
| | | |
Collapse
|
7
|
Shalaby M, Reboud J, Forde T, Zadoks RN, Busin V. Distribution and prevalence of enterotoxigenic Staphylococcus aureus and staphylococcal enterotoxins in raw ruminants' milk: A systematic review. Food Microbiol 2024; 118:104405. [PMID: 38049264 DOI: 10.1016/j.fm.2023.104405] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Enterotoxins produced by Staphylococcus aureus are a common cause of food poisoning, leading to significant gastrointestinal symptoms and even hospitalization. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched three electronic databases for studies on detection of staphylococcal enterotoxins or enterotoxigenic S. aureus in raw ruminant milk. The 128 studies included in this systematic review showed a worldwide distribution of studies on staphylococcal enterotoxins and enterotoxigenic S. aureus, with an increase in the number from 1980 to 2021, a shift in detection methods from enterotoxins to enterotoxin genes, and a preponderance of studies from Europe and South America. Most studies focused on milk from individual animals with mastitis, especially cattle. Based on 24 studies, the within-herd prevalence of enterotoxigenic S. aureus in raw milk samples was 11.6%. Many studies failed to report the health status of sampled animals, or the numerator and denominator data needed for prevalence calculation. Cultural and legislative differences, economic status, diagnostic capabilities, and public awareness are all likely factors contributing to the observed distribution of studies. Our review highlighted a significant gap in quality and completeness of data reporting, which limits full assessment of prevalence and distribution of hazards posed by raw milk.
Collapse
Affiliation(s)
- Maha Shalaby
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom; Food Control Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr-El-Sheikh, 33516, Egypt.
| | - Julien Reboud
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Taya Forde
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ruth N Zadoks
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, 2006, Australia
| | - Valentina Busin
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
8
|
Shi L, Lin W, Cai Y, Chen F, Zhang Q, Liang D, Xiu Y, Lin S, He B. Oxidative Stress-Mediated Repression of Virulence Gene Transcription and Biofilm Formation as Antibacterial Action of Cinnamomum burmannii Essential Oil on Staphylococcus aureus. Int J Mol Sci 2024; 25:3078. [PMID: 38474323 DOI: 10.3390/ijms25053078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
This work aimed to identify the chemical compounds of Cinnamomum burmannii leaf essential oil (CBLEO) and to unravel the antibacterial mechanism of CBLEO at the molecular level for developing antimicrobials. CBLEO had 37 volatile compounds with abundant borneol (28.40%) and showed good potential to control foodborne pathogens, of which Staphylococcus aureus had the greatest inhibition zone diameter (28.72 mm) with the lowest values of minimum inhibitory concentration (1.0 μg/mL) and bactericidal concentration (2.0 μg/mL). To unravel the antibacterial action of CBLEO on S. aureus, a dynamic exploration of antibacterial growth, material leakage, ROS formation, protein oxidation, cell morphology, and interaction with genome DNA was conducted on S. aureus exposed to CBLEO at different doses (1/2-2×MIC) and times (0-24 h), indicating that CBLEO acts as an inducer for ROS production and the oxidative stress of S. aureus. To highlight the antibacterial action of CBLEO on S. aureus at the molecular level, we performed a comparative association of ROS accumulation with some key virulence-related gene (sigB/agrA/sarA/icaA/cidA/rsbU) transcription, protease production, and biofilm formation in S. aureus subjected to CBLEO at different levels and times, revealing that CBLEO-induced oxidative stress caused transcript suppression of virulence regulators (RsbU and SigB) and its targeted genes, causing a protease level increase destined for the biofilm formation and growth inhibition of S. aureus, which may be a key bactericidal action. Our findings provide valuable information for studying the antibacterial mechanism of essential oil against pathogens.
Collapse
Affiliation(s)
- Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Wei Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
9
|
Li Q, Dou L, Zhang Y, Luo L, Yang H, Wen K, Yu X, Shen J, Wang Z. A comprehensive review on the detection of Staphylococcus aureus enterotoxins in food samples. Compr Rev Food Sci Food Saf 2024; 23:e13264. [PMID: 38284582 DOI: 10.1111/1541-4337.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Staphylococcal enterotoxins (SEs), the major virulence factors of Staphylococcus aureus, cause a wide range of food poisoning and seriously threaten human health by infiltrating the food supply chain at different phases of manufacture, processes, distribution, and market. The significant prevalence of Staphylococcus aureus calls for efficient, fast, and sensitive methods for the early detection of SEs. Here, we provide a comprehensive review of the hazards of SEs in contaminated food, the characteristic and worldwide regulations of SEs, and various detection methods for SEs with extensive comparison and discussion of benefits and drawbacks, mainly including biological detection, genetic detection, and mass spectrometry detection and biosensors. We highlight the biosensors for the screening purpose of SEs, which are classified according to different recognition elements such as antibodies, aptamers, molecularly imprinted polymers, T-cell receptors, and transducers such as optical, electrochemical, and piezoelectric biosensors. We analyzed challenges of biosensors for the monitoring of SEs and conclude the trends for the development of novel biosensors should pay attention to improve samples pretreatment efficiency, employ innovative nanomaterials, and develop portable instruments. This review provides new information and insightful commentary, important to the development and innovation of further detection methods for SEs in food samples.
Collapse
Affiliation(s)
- Qing Li
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Yingjie Zhang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Huijuan Yang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
10
|
Wiśniewski P, Gajewska J, Zadernowska A, Chajęcka-Wierzchowska W. Identification of the Enterotoxigenic Potential of Staphylococcus spp. from Raw Milk and Raw Milk Cheeses. Toxins (Basel) 2023; 16:17. [PMID: 38251234 PMCID: PMC10819113 DOI: 10.3390/toxins16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to genotypic and phenotypic analyses of the enterotoxigenic potential of Staphylococcus spp. isolated from raw milk and raw milk cheeses. The presence of genes encoding staphylococcal enterotoxins (SEs), including the classical enterotoxins (sea-see), non-classical enterotoxins (seg-seu), exfoliative toxins (eta-etd) and toxic shock syndrome toxin-1 (tst-1) were investigated. Isolates positive for classical enterotoxin genes were then tested by SET-RPLA methods for toxin expression. Out of 75 Staphylococcus spp. (19 Staphylococcus aureus and 56 CoNS) isolates from raw milk (49/65.3%) and raw milk cheese samples (26/34.7%), the presence of enterotoxin genes was confirmed in 73 (97.3%) of them. Only one isolate from cheese sample (1.3%) was able to produce enterotoxin (SED). The presence of up to eight different genes encoding enterotoxins was determined simultaneously in the staphylococcal genome. The most common toxin gene combination was sek, eta present in fourteen isolates (18.7%). The tst-1 gene was present in each of the analyzed isolates from cheese samples (26/34.7%). Non-classical enterotoxins were much more frequently identified in the genome of staphylococcal isolates than classical SEs. The current research also showed that genes tagged in S. aureus were also identified in CoNS, and the total number of different genes detected in CoNS was seven times higher than in S. aureus. The obtained results indicate that, in many cases, the presence of a gene in Staphylococcus spp. is not synonymous with the ability of enterotoxins production. The differences in the number of isolates with genes encoding SEs and enterotoxin production may be mainly due to the limit of detection of the toxin production method used. This indicates the need to use high specificity and sensitivity methods for detecting enterotoxin in future studies.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (J.G.); (A.Z.); (W.C.-W.)
| | | | | | | |
Collapse
|
11
|
Wan Y, Yang L, Li Q, Wang X, Zhou T, Chen D, Li L, Wang Y, Wang X. Stability and emetic activity of enterotoxin like X (SElX) with high carrier rate of food poisoning Staphylococcus aureus. Int J Food Microbiol 2023; 404:110352. [PMID: 37549593 DOI: 10.1016/j.ijfoodmicro.2023.110352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Abstract
In order to analyze and clarify the thermal stability of food poisoning Staphylococcus aureus (S. aureus) enterotoxin-like X (SElX) and the biological characteristics of digestive enzymes, and to evaluate the risk of S. aureus carrying selx gene in food poisoning, the selx gene carrying rates of 165 strains isolated from 95 food poisoning events from 2006 to 2019 were first statistically analyzed. Subsequently, the purified recombinant SElX protein was digested and heated, and the superantigen activity was verified with mouse spleen cells and peripheral blood mononuclear cells of kittens. At the same time, the emetic activity and toxicity of SElX were evaluated using the kitten vomiting animal model, mice toxin model and in vitro cell models. The results showed the selx gene carrying rate of 165 food poisoning S. aureus strains was 90.30 %. SElX had significant resistance to heat treatment and pepsin digestion (pH = 4.0 and pH = 4.5), and had good superantigen activity and emetic activity. However, there is no significant lethal effect on mice and no significant toxicity to cells. Importantly, we found that SElX had an inhibitory effect on acidic mucus of goblet cells in various segments of the small intestine. The present study investigated the stability of SElX, and confirmed the emetic activity of SElX by establishing a kitten vomiting model for the first time, suggesting that SElX is a high risk toxin of food poisoning, which will provide new ideas for the prevention and control of S. aureus food poisoning.
Collapse
Affiliation(s)
- Yangli Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianhong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, China
| | - Dishi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Li Li
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Yeru Wang
- Risk Assessment Division China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Chen Q, Zhao G, Yang W, Chen F, Qi Y, Lou Z. Investigation into the prevalence of enterotoxin genes and genetic background of Staphylococcus aureus isolates from retain foods in Hangzhou, China. BMC Microbiol 2023; 23:294. [PMID: 37848808 PMCID: PMC10580612 DOI: 10.1186/s12866-023-03027-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Staphylococcus aureus expresses numerous toxins, many of which are strongly believed to be responsible for specific symptoms and even diseases, making it significant in the pathogenesis of human health. Enterotoxins, which are vital toxins, are associated with foodborne illnesses that manifest through symptoms like vomiting and diarrhea. In the present study, 264 S. aureus isolates obtained from various retail foods in Hangzhou, China were further investigated the profiles of enterotoxin genes and genetic backgrounds. RESULTS Approximately, 64.02% of the isolates from diverse sources contained at least one Staphylococcal Enterotoxin (SE) genes, displaying a total of 36 distinct combinations. Enterotoxin gene cluster (egc) encoded enterotoxin genes, normally designated by seg, sei, sem, sen, seo and selu, plus with sep were more frequently detected (33.73%, each). In contrast, see, ses and set were absent in any of the isolates tested. A total of 44 sequence types (STs), 20 clonal complexes (CCs) and 66 different staphylococcal protein A (spa) types (including six novel types) were identified among those 169 SE-positive isolates. Moreover, nineteen methicillin-resistant Staphylococcus aureus (MRSA) isolates were identified. The majority of those isolates belonged to the CC59-Sccmec IVa cluster and carried the seb-sek-seq gene cluster. The egc cluster, either coexisting with or without other enterotoxin genes, was observed in all isolates allocated into CC5, CC9, CC20, CC25, CC72 and ST672. Irrespective of the spa types and origins of the food, it appeared that seh was a distinct genetic element present in isolates belonging to the CC1 clonal lineage. CONCLUSIONS The results not only proposed a suspected relationship between distribution of enterotoxigenic strains and genetic backgrounds, but also attributed the presence of novel enterotoxins to potential hazards in food safety.
Collapse
Affiliation(s)
- Qi Chen
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China.
| | - Gang Zhao
- Hangzhou Center for Disease Control and Prevention, 310021, Hangzhou, China
| | - Wei Yang
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China
| | - Fuhong Chen
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China
| | - Yan Qi
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China
| | - Zhengqing Lou
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China.
| |
Collapse
|
13
|
Mousseau F, Féraudet Tarisse C, Simon S, Gacoin T, Alexandrou A, Bouzigues CI. Multititration: The New Method for Implementing Ultrasensitive and Quantitative Multiplexed In-Field Immunoassays Despite Cross-Reactivity? Anal Chem 2023; 95:13509-13518. [PMID: 37639578 DOI: 10.1021/acs.analchem.3c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The accurate in-field titration of multiple pathogens is essential to efficiently describe and monitor environmental or biological contamination, isolate, act, and treat adequately. This underscores the requirement of portable, fast, quantitative, and multiplexed detection technologies, which, however, have not been properly developed so far, notably because it has been hindered by the phenomenon of cross-reactivity. In this work, we proposed a new analytical method based on the imaging through a portable device of lanthanide-based nanoparticles (YVO4:Eu) for spatially multiplexed detection, relying on a multiparameter analysis, i.e., a simultaneous analysis of all of the luminescence signals through the comparison to a calibration surface built in the presence of multiple analytes of interest. We then demonstrated the possibility to simultaneously quantify by multiplexed lateral flow assay (xLFA) the three enterotoxins SEG, SEH, and SEI in unknown mixtures, over two concentration decades (from a dozen of pg·mL-1 to few ng·mL-1). Assays were performed in less than an hour (25 min of strip migration followed by 30 min of drying at room temperature), the time during which the presence of the operator was not required for more than 5 min, in order to dip the strip and have it imaged by the reader. The concepts of nominal concentration recovery, coefficient of variation (CV), limit of blank (LOB), and limit of detection (LOD) were discussed in detail in the context of multiplexed assays. With our new definitions, quantitative results demonstrated a high recovery of the nominal concentrations (115%), reliability (CV = 20%), and sensitivity (LOBs of 3, 27, and 6 pg·mL-1 for SEG, SEH, and SEI respectively, and LODs of 6, 48, and 11 pg·mL-1 for SEG, SEH, and SEI, respectively). Based on this method, we observed an increase in sensitivity of 100 compared to the other multiplexed LFA labeled with gold particles and we approached the sensitivity of the simplex enzyme-linked immunosorbent assay (ELISA) performed with the same capture and detection antibodies. To conclude, our results, which are applicable to virtually any kind of multiplexed test, pave the way to the next generation of in-field analytical immunoassays by providing fast, quantitative, and highly sensitive multiplexed detection of biomarkers or pathogens.
Collapse
Affiliation(s)
- Fanny Mousseau
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| | - Cécile Féraudet Tarisse
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, Route de Saclay, 91128 Palaiseau, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| | - Cédric Ismael Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
14
|
Ramadan HA, El-Baz AM, Goda RM, El-Sokkary MMA, El-Morsi RM. Molecular characterization of enterotoxin genes in methicillin-resistant S. aureus isolated from food poisoning outbreaks in Egypt. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:86. [PMID: 37641155 PMCID: PMC10463939 DOI: 10.1186/s41043-023-00416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/09/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Staphylococcus aureus (S. aureus), especially methicillin-resistant S. aureus (MRSA), is a known disease-causing bacteria with many associated health hazards. Staphylococcal food poisoning can result from staphylococcal enterotoxins (SEs). METHODS In this study, 50 S. aureus isolates were isolated from the gastrointestinal tract (GIT) clinical samples of patients with food poisoning in clinical laboratories at Mansoura University Hospital, Egypt. For determination their antibiogram, these isolates were tested for antimicrobial sensitivity against 12 antimicrobial agents using the agar disk diffusion test. After DNA extraction from the isolates, conventional polymerase chain reaction (PCR) was used to detect mecA and SEs genes. RESULTS As a result, all isolates were ampicillin and cefoxitin-resistant, while 86% (43 of 50) of the tested isolates exhibited multidrug resistance (MDR). In contrast, the highest sensitivity was confirmed against vancomycin, linezolid and quinolones, namely ciprofloxacin and norfloxacin. Although 100% of the isolates were mecA positive, staphylococcal enterotoxin genes set-A, set-B, set-C, set-G, set-M, and set-O genes were detected in 56%, 20%, 8%, 32%, 16%, and 24%, of the tested isolates, respectively. Finally, isolates encompassing SEs genes were used to validate a microarray chip, indicating its potential for a better methodological approach for detecting and identifying SEs in human samples. CONCLUSION The genotypic findings of this study may help explain the enterotoxigenic patterns in S. aureus among Egyptian patients with food poisoning.
Collapse
Affiliation(s)
- Heba A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Ahmed M El-Baz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Reham M Goda
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Mohamed M A El-Sokkary
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
15
|
Wijesinghe KM, Sabbih G, Algama CH, Syed R, Danquah MK, Dhakal S. FRET-Based Single-Molecule Detection of Pathogen Protein IsdA Using Computationally Selected Aptamers. Anal Chem 2023. [PMID: 37327207 DOI: 10.1021/acs.analchem.3c00717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Iron-regulated surface determinant protein A (IsdA) is a key surface protein found in the foodborne bacteria─Staphylococcus aureus (S. aureus)─which is known to be critical for bacterial survival and colonization. S. aureus is pathogenic and has been linked to foodborne diseases; thus, early detection is critical to prevent diseases caused by this bacterium. Despite IsdA being a specific marker for S. aureus and several detection methods have been developed for sensitive detection of this bacteria such as cell culture, nucleic acids amplification, and other colorimetric and electrochemical methods, the detection of S. aureus through IsdA is underdeveloped. Here, by combining computational generation of target-guided aptamers and fluorescence resonance energy transfer (FRET)-based single-molecule analysis, we presented a widely applicable and robust detection method for IsdA. Three different RNA aptamers specific to the IsdA protein were identified and their ability to switch a FRET construct to a high-FRET state in the presence of protein was verified. The presented approach demonstrated the detection of IsdA down to picomolar levels (×10-12 M, equivalent to ∼1.1 femtomoles IsdA) with a dynamic range extending to ∼40 nM. The FRET-based single-molecule technique that we reported here is capable of detecting the foodborne pathogen protein IsdA with high sensitivity and specificity and has a broader application in the food industry and aptamer-based sensing field by enabling quantitative detection of a wide range of pathogen proteins.
Collapse
Affiliation(s)
- Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Godfred Sabbih
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee 37403, United States
| | - Chamika Harshani Algama
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Rida Syed
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee 37403, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
16
|
Hughes AC, Kirkland M, Du W, Rasooly R, Hernlem B, Tam C, Zhang Y, He X. Development of Thermally Stable Nanobodies for Detection and Neutralization of Staphylococcal Enterotoxin B. Toxins (Basel) 2023; 15:400. [PMID: 37368700 DOI: 10.3390/toxins15060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, sixteen unique staphylococcal enterotoxin B (SEB)-reactive nanobodies (nbs), including ten monovalent and six bivalent nbs, were developed. All characterized nbs were highly specific for SEB and did not cross-react with other staphylococcal enterotoxins (SE). Several formats of highly sensitive enzyme-linked immunosorbent assays (ELISAs) were established using SEB nbs and a polyclonal antibody (pAb). The lowest limit of detection (LOD) reached 50 pg/mL in PBS. When applied to an ELISA to detect SEB-spiked milk (a commonly contaminated foodstuff), a LOD as low as 190 pg/mL was obtained. The sensitivity of ELISA was found to increase concurrently with the valency of nbs used in the assay. In addition, a wide range of thermal tolerance was observed among the sixteen nbs, with a subset of nbs, SEB-5, SEB-9, and SEB-62, retaining activity even after exposure to 95 °C for 10 min, whereas the conventional monoclonal and polyclonal antibodies exhibited heat-labile properties. Several nbs demonstrated a long shelf-life, with one nb (SEB-9) retaining 93% of its activity after two weeks of storage at room temperature. In addition to their usage in toxin detection, eleven out of fifteen nbs were capable of neutralizing SEB's super-antigenic activity, demonstrated by their inhibition on IL-2 expression in an ex vivo human PBMC assay. Compared to monoclonal and polyclonal antibodies, the nbs are relatively small, thermally stable, and easy to produce, making them useful in applications for sensitive, specific, and cost-effective detection and management of SEB contamination in food products.
Collapse
Affiliation(s)
- Anna C Hughes
- Western Regional Research Center United States Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Marina Kirkland
- Western Regional Research Center United States Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Wenxian Du
- Western Regional Research Center United States Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Reuven Rasooly
- Western Regional Research Center United States Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Bradley Hernlem
- Western Regional Research Center United States Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Christina Tam
- Western Regional Research Center United States Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Yuzhu Zhang
- Western Regional Research Center United States Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Xiaohua He
- Western Regional Research Center United States Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| |
Collapse
|
17
|
Chang G, Luo Z, Zhang Y, Xu X, Zhou T, Wang X. Effect and Mechanism of Eliminating Staphylococcus aureus by Electron Beam Irradiation and Reducing the Toxicity of Its Metabolites. Appl Environ Microbiol 2023; 89:e0207522. [PMID: 36847554 PMCID: PMC10057028 DOI: 10.1128/aem.02075-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
The purpose of this study was to evaluate the mechanism of sterilization of Staphylococcus aureus by electron beam irradiation (0.5-, 1-, 2-, 4-, and 6-kGy treatments) and whether it reduces the toxicity of its fermentation supernatant. In this study, we investigated the mechanism of sterilization of S. aureus by electron beam irradiation using colony count, membrane potential, intracellular ATP, and UV absorbance measurements; we used hemolytic, cytotoxic, and suckling mouse wound models to verify that electron beam irradiation reduced the toxicity of the S. aureus fermentation supernatant. The results showed that 2 kGy of electron beam irradiation treatment completely inactivated S. aureus in suspension culture, and 4 kGy inactivated cells in S. aureus biofilms. This study suggests that the bactericidal effect of electron beam irradiation on S. aureus may be attributed to reversible damage to the cytoplasmic membrane, resulting in its leakage and the significant degradation of genomic DNA. The combined results of hemolytic, cytotoxic, and suckling mouse wound models demonstrated that the toxicity of S. aureus metabolites was significantly reduced when the electron beam irradiation dose was 4 kGy. In summary, electron beam irradiation has the potential to control S. aureus and reduce its toxic metabolites in food. IMPORTANCE Electron beam irradiation of >1 kGy damaged the cytoplasmic membrane, and reactive oxygen species (ROS) penetrated the cells. Electron beam irradiation of >4 kGy reduces the combined toxicity of virulent proteins produced by Staphylococcus aureus. Electron beam irradiation of >4 kGy can be used to inactivate Staphylococcus aureus and biofilms on milk.
Collapse
Affiliation(s)
- Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zonghong Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xu Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Yan X, Xu Y, Shen C, Chen D. Inactivation of Staphylococcus aureus by Levulinic Acid Plus Sodium Dodecyl Sulfate and their Antibacterial Mechanisms on S. aureus Biofilms by Transcriptomic Analysis. J Food Prot 2023; 86:100050. [PMID: 36916557 DOI: 10.1016/j.jfp.2023.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
The combination of levulinic acid (LVA) and sodium dodecyl sulfate (SDS) in recent years has shown a considerable potential to use as an antimicrobial intervention. The objectives of this study were to evaluate the antimicrobial efficacy of the combination against Staphylococcus aureus in both planktonic and biofilm states and to investigate the transcriptional changes in S. aureus biofilms coincubated with sublethal concentrations of LVA and/or SDS. The minimum inhibitory concentrations (MICs) of LVA and SDS determined by the microdilution method were 3.125 and 0.039 mg/mL, respectively. An additive bacteriostatic interaction (fractional inhibitory concentration index = 1) between the two compounds was observed by the checkerboard assay, whereas a synergistic bactericidal activity was displayed by the time-kill assay. The biomass and viable cells in the biofilms were reduced by both antimicrobials either alone or in combination in a dose-dependent manner. Transcriptomics indicated that more differentially expressed (DE) genes were observed in the biofilm treated with SDS (103 up- and 205 downregulated DE genes) and LVA + SDS (187 up and 162 down) than that coincubated with LVA (34 up and 32 down). The SDS and LVA + SDS treatments mainly affected the expression of genes responsible for cell surface proteins, virulence factors, adhesins, and capsular polysaccharides. Both the antibiofilm assay and the transcriptomics indicated that SDS, not LVA, was the major chemical contributing to the antibacterial efficacy of the combination. This study reveals the behavioral responses and protective mechanisms of S. aureus to LVA and SDS applied individually or in combination.
Collapse
Affiliation(s)
- Xiaoxue Yan
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Yiwei Xu
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Dong Chen
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China.
| |
Collapse
|
19
|
Sun R, Li Y, Du T, Qi Y. Recent advances in integrated dual-mode optical sensors for food safety detection. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
20
|
Crugeira PJL, Almeida HHS, Teixeira LG, Barreiro MF. Photodynamic inactivation of Staphylococcus aureus by ecological antibacterial solutions associating LED (ʎ 450 ± 10 nm) with curcumin and olive leaf extracts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112626. [PMID: 36512898 DOI: 10.1016/j.jphotobiol.2022.112626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a problem in contemporary society, with Staphylococcus aureus standing out as a threat due to its ability to colonize, its pathogenicity, and its expression of several virulence factors. In this context, antimicrobial photodynamic inactivation (aPDI) emerges as an alternative to conventional microbicidal or microbiostatic systems, enabling numerous and successive applications without developing side effects and microbial resistance. In this context, an aPDI system against cultures of S. aureus based on a water-in-oil (W/O) emulsion incorporating curcumin as the photosensitizer (PS), with and without olive leaf extract (OLE), was developed and the antibacterial efficacy evaluated under LED activation (ʎ450 ± 10 nm) by depositing an energy density of 14 J/cm2. The produced emulsified systems showed no significant differences in the droplet size and morphology, remaining stable along the tested period of 30 days. The bacterial reduction achieved after the first aPDI application for the emulsions added with curcumin and curcumin combined with the OLE was 5 log10 CFU.mL-1 and 6 log10 CFU.mL-1, respectively, revealing a significant difference between the two groups (p < 0.0001). After the second aPDI application, an increased microbial reduction (7 log10 CFU.mL-1) was observed for both studied groups even with a low significant difference (p < 0.05). The PS loading through an emulsified system for aPDI obtained a bactericidal action against S. aureus, increased by applying two aPDI, showing a significant synergy between photodynamic inactivation, OLE delivery and antibacterial activity. In addition, the developed solutions were produced using natural products by an ecologically correct process.
Collapse
Affiliation(s)
- Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Heloísa H S Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Liandra G Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - M Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
21
|
Zhai Y, Yu H, Liu X, Zhang M, Han R, Yin C, Liu X, Li H, Li J, Song X. Visual detection of Staphylococcus aureus based on immunomagnetic separation and polymerase spiral reaction. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Tian L, Jackson K, Chan M, Saif A, He L, Didar TF, Hosseinidoust Z. Phage display for the detection, analysis, disinfection, and prevention of Staphylococcus aureus. SMART MEDICINE 2022; 1:e20220015. [PMID: 39188734 PMCID: PMC11235639 DOI: 10.1002/smmd.20220015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 08/28/2024]
Abstract
The World Health Organization has designated Staphylococcus aureus as a global health concern. This designation stems from the emergence of multiple drug-resistant strains that already account for hundreds of thousands of deaths globally. The development of novel treatment strategies to eradicate S. aureus or mitigate its pathogenic potential is desperately needed. In the effort to develop emerging strategies to combat S. aureus, phage display is uniquely positioned to assist in this endeavor. Leveraging bacteriophages, phage display enables researchers to better understand interactions between proteins and their antagonists. In doing so, researchers have the capacity to design novel inhibitors, biosensors, disinfectants, and immune modulators that can target specific S. aureus strains. In this review, we highlight how phage display can be leveraged to design novel solutions to combat S. aureus. We further discuss existing uses of phage display as a detection, intervention, and prevention platform against S. aureus and provide outlooks on how this technology can be optimized for future applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Kyle Jackson
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Michael Chan
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Ahmed Saif
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Leon He
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Tohid F. Didar
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
- Department of Mechanical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Zeinab Hosseinidoust
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
23
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
24
|
Antimicrobial Resistance Profile of Common Foodborne Pathogens Recovered from Livestock and Poultry in Bangladesh. Antibiotics (Basel) 2022; 11:antibiotics11111551. [PMID: 36358208 PMCID: PMC9686756 DOI: 10.3390/antibiotics11111551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Multidrug-resistant (MDR) foodborne pathogens have created a great challenge to the supply and consumption of safe & healthy animal-source foods. The study was conducted to identify the common foodborne pathogens from animal-source foods & by-products with their antimicrobial drug susceptibility and resistance gene profile. The common foodborne pathogens Escherichia coli (E. coli), Salmonella, Streptococcus, Staphylococcus, and Campylobacter species were identified in livestock and poultry food products. The prevalence of foodborne pathogens was found higher in poultry food & by-product compared with livestock (p < 0.05). The antimicrobial drug susceptibility results revealed decreased susceptibility to penicillin, ampicillin, amoxicillin, levofloxacin, ciprofloxacin, tetracycline, neomycin, streptomycin, and sulfamethoxazole-trimethoprim whilst gentamicin was found comparatively more sensitive. Regardless of sources, the overall MDR pattern of E. coli, Salmonella, Staphylococcus, and Streptococcus were found to be 88.33%, 75%, 95%, and 100%, respectively. The genotypic resistance showed a prevalence of blaTEM, blaSHV, blaCMY, tetA, tetB, sul1, aadA1, aac(3)-IV, and ereA resistance genes. The phenotype and genotype resistance patterns of isolated pathogens from livestock and poultry had harmony and good concordance, and sul1 & tetA resistance genes had a higher prevalence. Good agricultural practices along with proper biosecurity may reduce the rampant use of antimicrobial drugs. In addition, proper handling, processing, storage, and transportation of foods may decline the spread of MDR foodborne pathogens in the food chain.
Collapse
|
25
|
Rapid detection of Staphylococcus aureus in food safety using an RPA-CRISPR-Cas12a assay. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Zhang Z, Song Y, Ma L, Huang K, Liang Z. Co-Occurrence of <i>Staphylococcus aureus</i> and Ochratoxin A in Pasteurized Milk. Toxins (Basel) 2022; 14:toxins14100718. [PMID: 36287986 PMCID: PMC9612031 DOI: 10.3390/toxins14100718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens and mycotoxins are serious public health risks for humans and food safety in milk. This study concentrated on detecting <i>Staphylococcus aureus</i> and Ochratoxin A (OTA) in 210 pasteurized milk from ten urban Beijing districts to suggest the co-occurrence of <i>S. aureus</i> with toxin-producing genes and OTA in milk and the possible risk. <i>S. aureus</i> was identified by physiological and biochemical experiments and molecular biology experiments, and enterotoxin genes were identified by PCR. OTA was detected by LC-MS/MS. The study found 29 isolates of <i>S. aureus</i>, of which 17.24% had the sea gene encoding enterotoxin A. OTA was detected in 31 out of 120 samples and the maximum amount of detection was 18.8 μg/kg. The results of this study indicate that when failing to guarantee the cold chain, the presence of <i>S. aureus</i> with enterotoxin genes in milk will present a risk to food safety. Furthermore, the high detection rates and levels of OTA in milk suggest that OTA is a hidden risk. The co-occurrence of <i>S. aureus</i> and OTA in milk is a food safety concern and there is a need to control the occurrence of these two biohazards in milk.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanmin Song
- Beijing JTM International Food Co., Ltd., Beijing 101400, China
| | - Liyan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-6273-7055
| |
Collapse
|
27
|
Heng P, Liu J, Song Z, Wu C, Yu X, He Y. Rapid detection of Staphylococcus aureus using a novel multienzyme isothermal rapid amplification technique. Front Microbiol 2022; 13:1027785. [PMID: 36312945 PMCID: PMC9606696 DOI: 10.3389/fmicb.2022.1027785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is a common pathogen that causes various infections. Therefore, it is crucial to develop a fast and easy detection method for diagnosing and preventing S. aureus infections. In this study, MIRA assay was developed and validated (specificity; 100%) for the detection of S. aureus with nuc as the target gene. The reaction temperature and reaction time were then optimized, and the best reaction was at 40°C, 20 min. The assay could detect S. aureus in only 25 min. Additionally, the limit of detection of MIRA was 5 × 102 CFU/ml, 10-fold lower than that of the traditional PCR. Furthermore, this assay efficiently detected 219 S. aureus of 335 strains obtained from different bacterial samples (detection accuracy; 99.40%). In conclusion, this study provides a rapid and easy-to-operate method for the detection of S. aureus, and thus can be used for the timely diagnosis and prevention of S. aureus infection.
Collapse
Affiliation(s)
- Pengfei Heng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiakai Liu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Zhen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiuzhong Yu
- Department of Laboratory Medicine, People’s Hospital of Xinjin District, Chengdu, Sichuan, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Yang He,
| |
Collapse
|
28
|
Jang JH, Kim S, Kim SG, Lee J, Lee DG, Jang J, Jeong YS, Song DH, Min JK, Park JG, Lee MS, Han BS, Son JS, Lee J, Lee NK. A Sensitive Immunodetection Assay Using Antibodies Specific to Staphylococcal Enterotoxin B Produced by Baculovirus Expression. BIOSENSORS 2022; 12:bios12100787. [PMID: 36290925 PMCID: PMC9599101 DOI: 10.3390/bios12100787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a potent bacterial toxin that causes inflammatory stimulation and toxic shock, thus it is necessary to detect SEB in food and environmental samples. Here, we developed a sensitive immunodetection system using monoclonal antibodies (mAbs). Our study is the first to employ a baculovirus expression vector system (BEVS) to produce recombinant wild-type SEB. BEVS facilitated high-quantity and pure SEB production from suspension-cultured insect cells, and the SEB produced was characterized by mass spectrometry analysis. The SEB was stable at 4 °C for at least 2 years, maintaining its purity, and was further utilized for mouse immunization to generate mAbs. An optimal pair of mAbs non-competitive to SEB was selected for sandwich enzyme-linked immunosorbent assay-based immunodetection. The limit of detection of the immunodetection method was 0.38 ng/mL. Moreover, it displayed higher sensitivity in detecting SEB than commercially available immunodetection kits and retained detectability in various matrices and S. aureus culture supernatants. Thus, the results indicate that BEVS is useful for producing pure recombinant SEB with its natural immunogenic property in high yield, and that the developed immunodetection assay is reliable and sensitive for routine identification of SEB in various samples, including foods.
Collapse
Affiliation(s)
- Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Sungsik Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Seul-Gi Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaemin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Dong-Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jieun Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Young-Su Jeong
- Agency for Defense Development, 488 Bugyuseoung-daero, Daejeon 34060, Korea
| | - Dong-Hyun Song
- Agency for Defense Development, 488 Bugyuseoung-daero, Daejeon 34060, Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jee-Soo Son
- iNtRON Biotechnology, 137 Sagimakgol-ro, Jungwon-gu, Seongnam-si 13202, Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (J.L.); (N.-K.L.); Tel.: +82-42-860-4123 (J.L.); +82-42-860-4117 (N.-K.L.)
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (J.L.); (N.-K.L.); Tel.: +82-42-860-4123 (J.L.); +82-42-860-4117 (N.-K.L.)
| |
Collapse
|
29
|
Belhout C, Elgroud R, Butaye P. Methicillin-Resistant Staphylococcus aureus (MRSA) and Other Methicillin-Resistant Staphylococci and Mammaliicoccus (MRNaS) Associated with Animals and Food Products in Arab Countries: A Review. Vet Sci 2022; 9:vetsci9070317. [PMID: 35878334 PMCID: PMC9320237 DOI: 10.3390/vetsci9070317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Staphylococci are present in the microbiota of both humans and animal species, being recognized as the most important opportunistic pathogens. Antimicrobial resistance (AMR) has become a global public health issue presenting a significant risk because it severely limits treatment options. Methicillin resistance in staphylococci (MRS) poses a specific problem as it may cause serious human and animal infections, eventually resulting in death. The increasing observation of MRS in different animal species has raised the concern of their impact on animal health and the potential of zoonotic transmission. The availability of comprehensive data on the ecology and distribution of MRS in animals and food products worldwide is necessary to understand their relevance in the “One Health” domain. However, there is a gap in information in terms of MRS and the Arab countries. Therefore, our study aimed to provide an overview of the situation of MRS in these countries by reviewing the available data on livestock and animal products and making recommendations for the future. Abstract The prevalence of methicillin resistance in staphylococci has been increasing globally and is currently one of the major public health concerns. In particular, treating infections caused by staphylococci with acquired antimicrobial resistance is problematic, as their treatment is more difficult. The resistance is found both in human and animal staphylococcal strains. Methicillin-resistant staphylococci (MRS) have also been increasingly reported in wildlife. In Arab countries, MRS has been detected in food producing animals and food products; however, the risk this poses is somewhat unclear, and still a significant lack of information on the trend and distribution of these pathogens in these countries, which have a specific ecosystem (desert) and traditions (Muslim culture). In this manuscript, we aim to provide an overview of the prevalence and the major MRS clonal lineages circulating in these specific countries and compare to them other situations with different ecosystems and cultures.
Collapse
Affiliation(s)
- Chahrazed Belhout
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
- Correspondence:
| | - Rachid Elgroud
- Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine 25017, Algeria;
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium;
| |
Collapse
|
30
|
Analysis of Staphylococcus aureus Molecules in Non-Treated Blood Using Mercury Immobilized Carbon Nanotube Sensor. Molecules 2022; 27:molecules27061837. [PMID: 35335199 PMCID: PMC8953576 DOI: 10.3390/molecules27061837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus bacteria is a ubiquitous Gram-positive microorganism that causes infections related to the sudden infant death syndrome. Recently, basic detection methods depend on complicated PCR amplification, electric separation, spectric adsorption and other detection systems. However, in this study, simplified sensitive voltammetric skills are developed. To identify an effective diagnostic method for Staphylococcus aureus (SA), a voltammetric sensing probe was sought using mercury immobilized on a carbon nanotube sensor (MCN). The voltammetric MCN conditions were optimized through stripping and cyclic voltammetry. Diagnostic electrolyte was used on non-treated blood sera as an electrolyte solution. The optimum cyclic and stripping analytical working range was 0.5–4.0 mL (3 × 102~5 × 102 CFU/0.5 mL) SA. The statistic relative standard deviation of 0.1 mL SA was observed to be 0.0078 (n = 5). Using the optimum parameters, a diagnostic test was performed by the direct assay of SA in non-treated human blood and patient sera. Here, the developed results can be used for the direct assay of non-treated blood sera, organ monitoring, in-vivo diagnosis, and other assays requiring SA detection.
Collapse
|
31
|
Liu C, Shen Y, Yang M, Chi K, Guo N. Hazard of Staphylococcal Enterotoxins in Food and Promising Strategies for Natural Products against Virulence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2450-2465. [PMID: 35170308 DOI: 10.1021/acs.jafc.1c06773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Staphylococcal enterotoxins (SEs) secreted by Staphylococcus aureus frequently contaminate food and cause serious foodborne diseases but are ignored during food processing and even cold-chain storage. Notably, SEs are stable and resistant to harsh sterilization environments, which can induce more serious hazards to public health than the bacterium itself. Therefore, it is necessary to develop promising strategies to control SE contamination in food and improve food safety. Natural products not only have various pharmaceutical properties, such as antimicrobial and antitoxin activities, but they are also eco-friendly, safe, nutritive, and barely drug-resistant. Here, the hazards of SEs and the promising natural compounds with different inhibitory mechanisms are summarized and classified. The key points of future research and applications for natural products against bacterial toxin contamination in food are also prospected. Overall, this review may provide enlightening insights for screening effective natural compounds to prevent foodborne diseases caused by bacterial toxins.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Meng Yang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Kunmei Chi
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
32
|
Roshan M, Parmanand, Arora D, Behera M, Vats A, Gautam D, Deb R, Parkunan T, De S. Virulence and enterotoxin gene profile of methicillin-resistant Staphylococcus aureus isolates from bovine mastitis. Comp Immunol Microbiol Infect Dis 2021; 80:101724. [PMID: 34826723 DOI: 10.1016/j.cimid.2021.101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022]
Abstract
Bovine mastitis is a major infectious disease affecting dairy animals resulting in enormous economic losses, prolonged antibiotic treatment, reduced milk yield and death of livestock. Emergence of Methicillin-resistant Staphylococcus aureus (MRSA) among bovine mastitis is matter of concern for animal health and dairy industry. The present study was conducted to detect the distribution of virulence and enterotoxin genes among MRSA isolates from bovine mastitis. Out of 500 milk samples, 126 isolates were identified as Staphylococcus and from these only 56 were S. aureus. S.aureus were resistant to cefoxitin (75%), ceftazidime (75%), amoxicillin (71.4%), cefodaxime (67.8%), cefepime (66.1%), oxacillin (64.3%), norfloxacin (60.7%) and gentamicin (58.9%). Only 42 isolates were identified as MRSA strains among staphylococci isolates. MRSA were harbouring virulence genes; mecA (100%), coa (100%) and nuc (100%). The other virulence factors such as hlg (80.9%, 34/42), pvl (47.6%, 20/42) and spa (92.8%, 39/42) were also reported. Molecular characterisation of enterotoxin genes revealed that out of 42 tested isolates 11 were found negative (26%) for any enterotoxin gene whereas 7 (16.6%), 6 (14.3%), 18 (42.8%), 1 (2.3%), 26 (61.9%),27(64.2%),3 (7.1%) were found positive for sea, seb, sec, sed, seg, sei, and seq enterotoxin respectively.
Collapse
Affiliation(s)
- Mayank Roshan
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Parmanand
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devan Arora
- Referral Veterinary Diagnostic and Extension Centre (Uchani Campus), Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, India
| | - Manisha Behera
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Ashutosh Vats
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Guwahati, Assam, India
| | - Thulasiraman Parkunan
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India; Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Sachinandan De
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India.
| |
Collapse
|
33
|
Mousseau F, Féraudet Tarisse C, Simon S, Gacoin T, Alexandrou A, Bouzigues CI. Luminescent lanthanide nanoparticle-based imaging enables ultra-sensitive, quantitative and multiplexed in vitro lateral flow immunoassays. NANOSCALE 2021; 13:14814-14824. [PMID: 34533151 DOI: 10.1039/d1nr03358a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lateral Flow Assays (LFAs) have been extensively used on-site to rapidly detect analytes, possibly in complex media. However, standard gold nanoparticle-based LFAs lack sensitivity and cannot provide quantitative measurements with high accuracy. To overcome these limitations, we image lanthanide-doped nanoparticles (YVO4:Eu 40%) as new luminescent LFA probes, using a homemade reader coupled to a smartphone and propose an original image analysis allowing strip quantification regardless of the shape of the test band signal. This method is demonstrated for the detection of staphylococcal enterotoxins SEA, SEG, SEH, and SEI. A systematic comparison to state-of-the-art gold nanoparticle-based LFA revealed an analytical sensitivity enhancement of at least one order of magnitude. We furthermore provided measurements of absolute toxin concentration over two orders of magnitude and demonstrated simultaneous quantitative detection of multiple toxins with unaltered sensitivity. In particular, we reached concentrations 100 times lower than the ones reported in the literature for on-site multiplexed LFA targeting enterotoxins. Altogether, these results highlight that our luminescent nanoparticle-based method provides a powerful and versatile on-site framework to detect multiple biomolecules with sensitivity approaching that obtained by ELISA. This paves the way to a change of paradigm in the field of analytical immunoassays by providing fast in situ quantitative high sensitivity detection of biomarkers or pathogens.
Collapse
Affiliation(s)
- F Mousseau
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France.
| | - C Féraudet Tarisse
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), 91191 Gif-sur-Yvette, France
| | - S Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), 91191 Gif-sur-Yvette, France
| | - T Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, Route de Saclay, 91128 Palaiseau, France
| | - A Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France.
| | - C I Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France.
| |
Collapse
|
34
|
Fluorescent Immunoassay for Determination of Staphylococcal Enterotoxin A in Milk by Immobilized F(ab')2 Fragment of Anti-enterotoxin A Monoclonal Antibody. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02019-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Nadar SS, Kelkar RK, Pise PV, Patil NP, Patil SP, Chaubal-Durve NS, Bhange VP, Tiwari MS, Patil PD. The untapped potential of magnetic nanoparticles for forensic investigations: A comprehensive review. Talanta 2021; 230:122297. [PMID: 33934767 DOI: 10.1016/j.talanta.2021.122297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
With a growing interest in precise and sensitive diagnosis for criminal investigations, nanoparticles (NPs) have intrigued scientific minds working in the field of forensic science due to their exceptional properties. Magnetic nanoparticles (MNPs) have emerged as a powerful tool for improving forensic analysis due to their super magnetic behavior combined with smaller dimensions. MNP-based applications can benefit criminologists to solve criminal mysteries with greater precision and pace. This review highlights the different types of MNP-based applications and their developmental and implicational aspects of forensic science. It also renders insight into the future prospects of a splendid blend of nanotechnology and forensic science, leading to a better scientific analysis.
Collapse
Affiliation(s)
- Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Radhika K Kelkar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Pradnya V Pise
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Neha P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Sadhana P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Nivedita S Chaubal-Durve
- Department of Basic Science and Humanities, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India
| | - Vivek P Bhange
- Department of Biotechnology, Priyadarshini Institute of Engineering and Technology, Nagpur, Maharashtra, 440019, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India
| | - Pravin D Patil
- Department of Basic Science and Humanities, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
36
|
Lv G, Jiang R, Zhang H, Wang L, Li L, Gao W, Zhang H, Pei Y, Wei X, Dong H, Qin L. Molecular Characteristics of Staphylococcus aureus From Food Samples and Food Poisoning Outbreaks in Shijiazhuang, China. Front Microbiol 2021; 12:652276. [PMID: 34239506 PMCID: PMC8258372 DOI: 10.3389/fmicb.2021.652276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
As an opportunistic pathogen worldwide, Staphylococcus aureus can cause food poisoning and human infections. This study investigated the sequence typing, the penicillin (blaZ) and methicillin (mec) resistance profiles of S. aureus from food samples and food poisoning outbreaks in Shijiazhuang City, and the staphylococcal enterotoxin (SE) types of the S. aureus isolates from food poisoning. A total of 138 foodborne S. aureus isolates were distributed into 8 clonal complexes (CCs) and 12 singletons. CC1, CC5, CC8, CC15, CC97, CC59, CC398, CC88, and CC7 were the predominant CCs of foodborne S. aureus isolates. Moreover, CC59, CC15, and CC5 were the most prevalent CCs in food poisoning outbreaks. SEE was the most commonly detected SE in food poisoning isolates. One hundred thirty-three S. aureus isolates harbored the penicillin-resistant gene blaZ, and nine isolates carried the mec gene. The present study further explained the relationship between S. aureus and foods and food poisoning and indicated the potential risk of S. aureus infection.
Collapse
Affiliation(s)
- Guoping Lv
- Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ruiping Jiang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Han Zhang
- Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lei Wang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Lijie Li
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Weili Gao
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Hong Zhang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Yantao Pei
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiuping Wei
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Hongyan Dong
- Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Liyun Qin
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| |
Collapse
|
37
|
Samutela MT, Kwenda G, Simulundu E, Nkhoma P, Higashi H, Frey A, Bates M, Hang'ombe BM. Pigs as a potential source of emerging livestock-associated Staphylococcus aureus in Africa: a systematic review. Int J Infect Dis 2021; 109:38-49. [PMID: 34146692 DOI: 10.1016/j.ijid.2021.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To assess the emergence of livestock-associated Staphylococcus aureus including methicillin-resistant S. aureus (MRSA) in the pig and pork production systems in Africa for the past two decades. METHODS PubMed and African Journals OnLine were searched for relevant primary studies from 2000 to 2019 using standardized key words. In total, 19 eligible articles were included in this review. RESULTS The prevalence of S. aureus including MRSA ranged from 0% to 55% among live pigs and raw pork, and from 9.4% to 30.8% among pig farm and abattoir workers. Risk factors associated with S. aureus carriage among workers were: male gender, working in an abattoir, and medical-related occupation of a household member. S. aureus and MRSA from pigs and pork production systems in Africa are potentially pathogenic with diverse spa types and clonal complexes, with genes encoding antimicrobial resistance, heavy metal resistance, and virulence factors including secreted and enterotoxins, proteases and immune evasion cluster. The typical livestock-associated S. aureus CC398 and mecC genes were reported in two studies. CONCLUSION Pigs are a potential source of the emerging livestock-associated S. aureus in Africa. Continued monitoring using a 'One Health' approach is recommended for effective infection prevention and control of these infections in Africa.
Collapse
Affiliation(s)
- Mulemba Tillika Samutela
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Hideaki Higashi
- Division of Infection and Immunity, Research Centre for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Andrew Frey
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, USA
| | - Matthew Bates
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Bernard M Hang'ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
38
|
Becheva ZR, Ivanov YL, Godjevargova TI, Tchorbanov AI. Simultaneous determination of ochratoxin A and enterotoxin A in milk by magnetic nanoparticles based fluorescent immunoassay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1218-1236. [PMID: 33955808 DOI: 10.1080/19440049.2021.1914866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ochratoxin A (OTA) and staphylococcus enterotoxin A (SEA) are highly toxic contaminants and have induced human health problems. They commonly occur in milk and milk products. A competitive fluorescent immunoassay was developed for rapid and simultaneous determination of these toxins in milk samples. The procedure was based on the competitive immunoreactions between antigens in sample and antigen-fluorescent dye conjugates with immobilised antibodies on magnetic nanoparticles (MNPs). Each monoclonal antibody specifically recognises its corresponding toxin (antigen), and there is no cross-reactivity in the assay. First, monoclonal antibodies against OTA and SEA were produced. The activity of the obtained antibodies was determined by fluorescent-linked immunosorbent assay. Then, the monoclonal antibodies were immobilised on MNPs. The amounts of immobilised anti-OTA antibody and anti-SEA antibody were determined to be 20 and 22 μg mL-1, respectively. The antigen-fluorescent dye conjugates OTA-OVA-ATTO620 and SEA-FITC were prepared. The optimal amount of immobilised antibodies for competitive immunoassay was determined. It was found that the linear range of OTA in buffer was larger (0.001-100 ng mL-1) than the linear range of SEA (0.001-20 ng mL-1). The results for simultaneous determination of OTA and SEA in sixfold diluted milk were almost the same in buffer; the linear range for OTA was from 0.005 to 100 ng mL-1 and for SEA from 0.005 to 20 ng mL-1. The detection limit for both OTA and SEA in milk was 0.004 ng mL-1. The developed method took half the time of the individual assays (20 min). The assay was evaluated using spiked milk samples. The influences of somatic cell count, fat, pH and protein concentration in milk on immunoassay were studied. In summary, this developed immunoassay could provide an effective and rapid approach for detecting multi-toxins in milk samples.
Collapse
Affiliation(s)
- Zlatina R Becheva
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Yavor L Ivanov
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Tzonka I Godjevargova
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
39
|
Belen SM, Sofía NT, Romina M, Belén AM, Santiago C, María Julieta FL, Pablo R, Cristina V, Martín D, Mauricio DM, Emilio M, Marisa F. Optimized surface plasmon resonance immunoassay for staphylococcal enterotoxin G detection using silica nanoparticles. Biochem Biophys Res Commun 2021; 558:168-174. [PMID: 33932776 DOI: 10.1016/j.bbrc.2021.04.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Staphylococcal enterotoxins are one of the most important causative agents of food poisoning. These molecules function as both gastrointestinal toxins and superantigens (SAgs) which can simultaneously bind MHC-II and T cell receptor leading to a non-specific polyclonal T cell activation and massive proinflammatory cytokine release. Common symptoms include vomiting and diarrhea; however, in more severe cases, systemic dissemination may result in toxic shock syndrome and can be lethal in a few hours. Only small amounts of these heat-stable toxins are needed to cause the disease. Therefore, it is highly important to detect quickly low concentrations of SAgs in biological samples. In this work, we report a surface plasmon resonance (SPR)-based capture immunoassay for the detection of the SAg SEG. We analyzed the use of different amplification strategies. The SPR-based double-antibody sandwich approach could detect picomolar levels of SEG. The use of antibody-coated silica nanoparticles (AbSiNPs) as an alternative enhancing reagent also detected SEG in the picomolar range. Although AbSiNPs did not improve the limit of detection, for the same amount of SAg tested, AbSiNPs gave a higher response level than free antibodies. This work highlights the suitability of silica nanoparticles for signal amplification in SPR-based biosensors. Overall, SPR biosensors offer the capability for continuous real-time monitoring and high sensitivity that can be befitting for the detection of enterotoxins in food industries, laboratories and regulatory agencies.
Collapse
Affiliation(s)
- Sarratea Maria Belen
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Noli Truant Sofía
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Mitarotonda Romina
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Luján, Argentina; Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES)-CONICET, Laboratorio de Inmunología, Buenos Aires, Argentina
| | - Antonoglou María Belén
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Chiappini Santiago
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Fernández Lynch María Julieta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Romasanta Pablo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Vescina Cristina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química Analítica, Buenos Aires, Argentina
| | - Desimone Martín
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - De Marzi Mauricio
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Luján, Argentina; Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES)-CONICET, Laboratorio de Inmunología, Buenos Aires, Argentina
| | - Malchiodi Emilio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Fernández Marisa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Rasooly R, Do P, He X, Hernlem B. Human Leukemia T-Cell Lines as Alternatives to Animal Use for Detecting Biologically Active Staphylococcal Enterotoxin Type B. Toxins (Basel) 2021; 13:toxins13050300. [PMID: 33922450 PMCID: PMC8145393 DOI: 10.3390/toxins13050300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcal enterotoxin type B (SEB) is associated with food poisoning. Current methods for the detection of biologically active SEB rely upon its ability to cause emesis when administered to live kittens or monkeys. This technique suffers from poor reproducibility and low sensitivity and is ethically disfavored over concerns for the welfare of laboratory animals. The data presented here show the first successful implementation of an alternative method to live animal testing that utilizes SEB super-antigenic activity to induce cytokine production for specific novel cell-based assays for quantifiable detection of active SEB. Rather than using or sacrificing live animals, we found that SEB can bind to the major histocompatibility complex (MHC) class II molecules on Raji B-cells. We presented this SEB–MHC class II complex to specific Vβ5.3 regions of the human T-cell line HPB-ALL, which led to a dose-dependent secretion of IL-2 that is capable of being quantified and can further detect 10 pg/mL of SEB. This new assay is 100,000 times more sensitive than the ex vivo murine splenocyte method that achieved a detection limit of 1 µg/mL. The data presented here also demonstrate that SEB induced proliferation in a dose-dependent manner for cells obtained by three different selection methods: by splenocyte cells containing 22% of CD4+ T-cells, by CD4+ T-cells enriched to >90% purity by negative selection methods, and by CD4+ T-cells enriched to >95% purity by positive selection methods. The highly enriched and positively isolated CD4+ T-cells with the lowest concentration of antigen-presenting cells (APC) (below 5%) provided higher cell proliferation than the splenocyte cells containing the highest concentration of APC cells.
Collapse
|
41
|
Féraudet Tarisse C, Goulard-Huet C, Nia Y, Devilliers K, Marcé D, Dambrune C, Lefebvre D, Hennekinne JA, Simon S. Highly Sensitive and Specific Detection of Staphylococcal Enterotoxins SEA, SEG, SEH, and SEI by Immunoassay. Toxins (Basel) 2021; 13:130. [PMID: 33572449 PMCID: PMC7916246 DOI: 10.3390/toxins13020130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/05/2023] Open
Abstract
Staphylococcal food poisoning (SFP) is one of the most common foodborne diseases worldwide, resulting from the ingestion of staphylococcal enterotoxins (SEs), primarily SE type A (SEA), which is produced in food by enterotoxigenic strains of staphylococci, mainly S. aureus. Since newly identified SEs have been shown to have emetic properties and the genes encoding them have been found in food involved in poisoning outbreaks, it is necessary to have reliable tools to prove the presence of the toxins themselves, to clarify the role played by these non-classical SEs, and to precisely document SFP outbreaks. We have produced and characterized monoclonal antibodies directed specifically against SE type G, H or I (SEG, SEH or SEI respectively) or SEA. With these antibodies, we have developed, for each of these four targets, highly sensitive, specific, and reliable 3-h sandwich enzyme immunoassays that we evaluated for their suitability for SE detection in different matrices (bacterial cultures of S. aureus, contaminated food, human samples) for different purposes (strain characterization, food safety, biological threat detection, diagnosis). We also initiated and described for the first time the development of monoplex and quintuplex (SEA, SE type B (SEB), SEG, SEH, and SEI) lateral flow immunoassays for these new staphylococcal enterotoxins. The detection limits in buffer were under 10 pg/mL (0.4 pM) by enzyme immunoassays and at least 300 pg/mL (11 pM) by immunochromatography for all target toxins with no cross-reactivity observed. Spiking studies and/or bacterial supernatant analysis demonstrated the applicability of the developed methods, which could become reliable detection tools for the routine investigation of SEG, SEH, and SEI.
Collapse
Affiliation(s)
- Cécile Féraudet Tarisse
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Céline Goulard-Huet
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Karine Devilliers
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Dominique Marcé
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Chloé Dambrune
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Donatien Lefebvre
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Stéphanie Simon
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| |
Collapse
|
42
|
Ahmadi K, Farasat A, Rostamian M, Johari B, Madanchi H. Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: an in silico drug repurposing study. J Biomol Struct Dyn 2021; 40:5566-5576. [PMID: 33438525 PMCID: PMC7814568 DOI: 10.1080/07391102.2021.1871958] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regarding the urgency of therapeutic measures for coronavirus disease 2019 (COVID-19) pandemic, the use of available drugs with FDA approval is preferred because of the less time and cost required for their development. In silico drug repurposing is an accurate way to speed up the screening of the existing FDA-approved drugs to find a therapeutic option for COVID-19. The similarity in SARS-CoV-2 and HIV-1 fusion mechanism to host cells can be a key point for Inhibit SARS-CoV-2 entry into host cells by HIV fusion inhibitors. Accordingly, in this study, an HIV-1 fusion inhibitor called Enfuvirtide (Enf) was selected. The affinity and essential residues involving in the Enf binding to the S2 protein of SARS-CoV-2, HIV-1 gp41 protein and angiotensin-converting enzyme 2 (ACE-2) as a negative control, was evaluated using molecular docking. Eventually, Enf-S2 and Enf-gp41 protein complexes were simulated by molecular dynamics (MD) in terms of binding affinity and stability. Based on the most important criteria such as docking score, cluster size, energy and dissociation constant, the strongest interaction was observed between Enf with the S2 protein. In addition, MD results confirmed that Enf-S2 protein interaction was remarkably stable and caused the S2 protein residues to undergo the fewest fluctuations. In conclusion, it can be stated that Enf can act as a strong SARS-CoV-2 fusion inhibitor and demonstrates the potential to enter the clinical trial phase of COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
43
|
Shi Y, Zhu J, Xu Y, Tang X, Yang Z, Huang A. Malonyl-proteome profiles of Staphylococcus aureus reveal lysine malonylation modification in enzymes involved in energy metabolism. Proteome Sci 2021; 19:1. [PMID: 33436009 PMCID: PMC7802289 DOI: 10.1186/s12953-020-00169-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Protein lysine malonylation, a novel post-translational modification (PTM), has been recently linked with energy metabolism in bacteria. Staphylococcus aureus is the third most important foodborne pathogen worldwide. Nonetheless, substrates and biological roles of malonylation are still poorly understood in this pathogen. RESULTS Using anti-malonyl-lysine antibody enrichment and high-resolution LC-MS/MS analysis, 440 lysine-malonylated sites were identified in 281 proteins of S. aureus strain. The frequency of valine in position - 1 and alanine at + 2 and + 4 positions was high. KEGG pathway analysis showed that six categories were highly enriched, including ribosome, glycolysis/gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), valine, leucine, isoleucine degradation, and aminoacyl-tRNA biosynthesis. In total, 31 malonylated sites in S. aureus shared homology with lysine-malonylated sites previously identified in E. coli, indicating malonylated proteins are highly conserved among bacteria. Key rate-limiting enzymes in central carbon metabolic pathways were also found to be malonylated in S. aureus, namely pyruvate kinase (PYK), 6-phosphofructokinase, phosphoglycerate kinase, dihydrolipoyl dehydrogenase, and F1F0-ATP synthase. Notably, malonylation sites were found at or near protein active sites, including KH domain protein, thioredoxin, alanine dehydrogenase (ALD), dihydrolipoyl dehydrogenase (LpdA), pyruvate oxidase CidC, and catabolite control protein A (CcpA), thus suggesting that lysine malonylation may affect the activity of such enzymes. CONCLUSIONS Data presented herein expand the current knowledge on lysine malonylation in prokaryotes and indicate the potential roles of protein malonylation in bacterial physiology and metabolism.
Collapse
Affiliation(s)
- Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jingjing Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yan Xu
- Yunnan Center for Disease Control and Prevention, Kunming, 650201, Yunnan, China
| | - Xiaozhao Tang
- Yunnan Center for Disease Control and Prevention, Kunming, 650201, Yunnan, China
| | - Zushun Yang
- Yunnan Center for Disease Control and Prevention, Kunming, 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
44
|
Korzeniewska E, Szczęsny A, Lipiński P, Dróżdż T, Kiełbasa P, Miernik A. Prototype of a Textronic Sensor Created with a Physical Vacuum Deposition Process for Staphylococcus aureus Detection. SENSORS 2020; 21:s21010183. [PMID: 33383934 PMCID: PMC7794882 DOI: 10.3390/s21010183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is a bacterium which people have been in contact with for thousands of years. Its presence often leads to severe disorders of the respiratory and circulatory systems. The authors of this article present a prototype of a textronic sensor enabling the detection of this bacterium. This sensor was created using a process of physical vacuum deposition on a flexible textile substrate which can be implemented on clothing. With increasing numbers of bacterial colonies, changes in the sensor's electrical parameters were observed. The sensor's resistance reduced by 50% and the capacitance more than doubled within the first two days of starting bacterial cultures. Extensive changes in electrical parameters were observed at 100 Hz and 120 Hz of the measurement signal.
Collapse
Affiliation(s)
- Ewa Korzeniewska
- Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Łódź, Poland;
- Correspondence:
| | - Artur Szczęsny
- Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Łódź, Poland;
| | - Piotr Lipiński
- Faculty of Technical Physics, Information Technology and Applied Mathematics, Lodz University of Technology, ul. Wólczańska 215, 90-924 Łódź, Poland;
| | - Tomasz Dróżdż
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 B, 30-149 Kraków, Poland; (T.D.); (P.K.); (A.M.)
| | - Paweł Kiełbasa
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 B, 30-149 Kraków, Poland; (T.D.); (P.K.); (A.M.)
| | - Anna Miernik
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 B, 30-149 Kraków, Poland; (T.D.); (P.K.); (A.M.)
| |
Collapse
|
45
|
Yi J, Xiao W, Li G, Wu P, He Y, Chen C, He Y, Ding P, Kai T. The research of aptamer biosensor technologies for detection of microorganism. Appl Microbiol Biotechnol 2020; 104:9877-9890. [PMID: 33047168 DOI: 10.1007/s00253-020-10940-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
The activities and transmissions of microorganisms are closely related to human, and all kinds of diseases caused by pathogenic microorganisms have attracted attention in the world and brought many challenges to human health and public health. The traditional microbial detection technologies have characteristics of longer detection cycle and complicated processes, therefore, which can no longer meet the detection requirements in the field of public health. At present, it is the focus to develop and design a novel, rapid, and simple microbial detection method in the field of public health. Herein, this article summarized the development of aptamer biosensor technologies for detection of microorganism in the aspect of bacteria, viruses, and toxins in detail, including optical aptamer sensors such as fluorometry and colorimetry, electrochemical aptamer sensors, and other technologies combined with aptamer. KEY POINTS: • Aptamer biosensor is a good platform for microbial detection. • Aptamer biosensors include optical sensors and electrochemical sensors. • Aptamer sensors have been widely used in the detection of bacteria, viruses, and other microorganisms.
Collapse
Affiliation(s)
- Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.,School of Public Health, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Wen Xiao
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, 410000, Hunan, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541014, Guangxi, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yayuan He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Cuimei Chen
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Tianhan Kai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
46
|
Schwendimann L, Berger T, Graber HU, Meier S, Hummerjohann JÖ, Jakob E. Effect of Scalding Temperature on Growth of Staphylococcus aureus and Formation of Staphylococcal Enterotoxin during the Production of Alpine Cheese in a Laboratory Cheesemaking Model. J Food Prot 2020; 83:1822-1828. [PMID: 32502266 DOI: 10.4315/jfp-19-600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/02/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT To reduce the number of cheese with potential Staphylococcus aureus contamination reaching consumers, European legislation has stipulated that all cheese must be tested for coagulase-positive staphylococci (CPS) at the point in production when numbers are expected to be highest. When CPS counts exceed 105 CFU/mL, staphylococcal enterotoxin (SE) tests must be conducted. When SE tests are positive, the cheese must be destroyed. Manufacturers of Swiss Alpine cheese are exempt from this legislation because SE formation in hard cheese is expected to be very unlikely because of the high scalding temperatures used for cheeses during production, which inactive CPS in the curd. However, this assumption has not been scientifically tested. A laboratory-scale cheese production experiment was performed in which the conditions corresponded to certain limitations in practical cheesemaking conditions such as temperature and time exposure as for production of Gruyere or Tete de Moine Swiss type cheeses. Raw milk aliquots (200 mL) were inoculated with five strains of CPS, and scalding temperatures of 46 to 56°C were used during cheese production. The temperatures applied after the curd was pressed were meant to reproduce the temperature curve in the peripheral zone of a real cheese wheel. Contrary to expectations, SE formation occurred and differed according to the scalding temperature (52 to 56°C). The differences in SE formation were more associated with strain type rather than temperature. These results indicate that the mechanisms of SE formation in cheese require further study. HIGHLIGHTS
Collapse
Affiliation(s)
- Livia Schwendimann
- National Reference Laboratory for Coagulase Positive Staphylococci, Agroscope, Schwarzenburgstrasse 161, 3003 Berne, Switzerland.,(ORCID: https://orcid.org/0000-0001-6548-3988 [L.S.])
| | - Thomas Berger
- National Reference Laboratory for Coagulase Positive Staphylococci, Agroscope, Schwarzenburgstrasse 161, 3003 Berne, Switzerland
| | - Hans-Ulrich Graber
- National Reference Laboratory for Coagulase Positive Staphylococci, Agroscope, Schwarzenburgstrasse 161, 3003 Berne, Switzerland
| | - Susann Meier
- National Reference Laboratory for Coagulase Positive Staphylococci, Agroscope, Schwarzenburgstrasse 161, 3003 Berne, Switzerland
| | - JÖrg Hummerjohann
- National Reference Laboratory for Coagulase Positive Staphylococci, Agroscope, Schwarzenburgstrasse 161, 3003 Berne, Switzerland
| | - Ernst Jakob
- National Reference Laboratory for Coagulase Positive Staphylococci, Agroscope, Schwarzenburgstrasse 161, 3003 Berne, Switzerland
| |
Collapse
|
47
|
Golafrouz H, Ahari H, Anvar SA, Shahbazzadeh D. Detection of Staphylococcus aureus Enterotoxin A (SEA) Using Dot-ELISA in Milk Samples. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2020. [DOI: 10.29252/jommid.8.4.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
48
|
Soares AC, Soares JC, Rodrigues VC, Oliveira ON, Capparelli Mattoso LH. Controlled molecular architectures in microfluidic immunosensors for detecting Staphylococcus aureus. Analyst 2020; 145:6014-6023. [PMID: 32779664 DOI: 10.1039/d0an00714e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of pathogenic microorganisms is essential for food quality control and diagnosis of various diseases, which is currently performed with high-cost, sophisticated methods. In this paper, we report on a low-cost detection method based on impedance spectroscopy to detect Staphylococcus aureus (S. aureus). The immunosensors were made with microfluidic devices made of interdigitated electrodes coated with layer-by-layer (LbL) films of chitosan and chondroitin sulfate, on which a layer of anti-S. aureus antibodies was adsorbed. The limit of detection was 2.83 CFU mL-1 with a limit of quantification of 9.42 CFU mL-1 for immunosensors with 10-bilayer LbL films. This level of sensitivity is sufficient to detect traces of bacteria that cause mastitis in milk, which we have confirmed by distinguishing milk samples containing various concentrations of S. aureus from pure milk and milk contaminated with Escherichia coli (E. coli) and Salmonella. Distinction of these samples was made possible by projecting the electrical impedance data with the interactive document mapping (IDMAP) technique. The high sensitivity and selectivity are attributed to the highly specific interaction with anti-S. aureus antibodies captured with polarization-modulated reflection absorption spectroscopy (PM-IRRAS), with adsorption on the antibodies explained with the Langmuir-Freundlich model. Since these immunosensors are stable for up to 25 days and detection measurements can be made within minutes, the methodology proposed is promising for monitoring S. aureus contamination in the food industry and hospitals, and in detecting bovine mastitis.
Collapse
Affiliation(s)
- Andrey Coatrini Soares
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
49
|
G. Abril A, G. Villa T, Barros-Velázquez J, Cañas B, Sánchez-Pérez A, Calo-Mata P, Carrera M. Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. Toxins (Basel) 2020; 12:toxins12090537. [PMID: 32825515 PMCID: PMC7551672 DOI: 10.3390/toxins12090537] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus constitutes a major food-borne pathogen, as well as one of the main causative agents of mastitis in dairy ruminants. This pathogen can produce a variety of extracellular toxins; these include the shock syndrome toxin 1 (TSST-1), exfoliative toxins, staphylococcal enterotoxins (SE), hemolysins, and leukocidins. S. aureus expresses many virulence proteins, involved in evading the host defenses, hence facilitating microbial colonization of the mammary glands of the animals. In addition, S. aureus exotoxins play a role in the development of both skin infections and mastitis. Indeed, if these toxins remain in dairy products for human consumption, they can cause staphylococcal food poisoning (SFP) outbreaks. As a result, there is a need for procedures to identify the presence of exotoxins in human food, and the methods used must be fast, sensitive, reliable, and accurate. It is also essential to determine the best medical therapy for human patients suffering from S. aureus infections, as well as establishing the relevant veterinary treatment for infected ruminants, to avoid economic losses in the dairy industry. This review summarizes the role of S. aureus toxins in the development of mastitis in ruminants, their negative effects in the food and dairy industries, and the different methods used for the identification of these toxins in food destined for human consumption.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Correspondence: (T.G.V.); (M.C.)
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
- Correspondence: (T.G.V.); (M.C.)
| |
Collapse
|
50
|
Bezdekova J, Zemankova K, Hutarova J, Kociova S, Smerkova K, Adam V, Vaculovicova M. Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem 2020; 321:126673. [DOI: 10.1016/j.foodchem.2020.126673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/13/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
|