1
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Bellini N, Ye C, Ajibola O, Murooka TT, Lodge R, Cohen ÉA. Downregulation of miRNA-26a by HIV-1 Enhances CD59 Expression and Packaging, Impacting Virus Susceptibility to Antibody-Dependent Complement-Mediated Lysis. Viruses 2024; 16:1076. [PMID: 39066239 PMCID: PMC11281366 DOI: 10.3390/v16071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
MicroRNAs (miRNAs) play important roles in the control of HIV-1 infection. Here, we performed RNA-seq profiling of miRNAs and mRNAs expressed in CD4+ T lymphocytes upon HIV-1 infection. Our results reveal significant alterations in miRNA and mRNA expression profiles in infected relative to uninfected cells. One of the miRNAs markedly downregulated in infected cells is miRNA-26a. Among the putative targets of miRNA-26a are CD59 receptor transcripts, which are significantly upregulated in infected CD4+ T cells. The addition of miRNA-26a mimics to CD4+ T cells reduces CD59 at both the mRNA and surface protein levels, validating CD59 as a miRNA-26a target. Consistent with the reported inhibitory role of CD59 in complement-mediated lysis (CML), knocking out CD59 in CD4+ T cells renders both HIV-1-infected cells and progeny virions more prone to antibody-dependent CML (ADCML). The addition of miRNA-26a mimics to infected cells leads to enhanced sensitivity of progeny virions to ADCML, a condition linked to a reduction in CD59 packaging into released virions. Lastly, HIV-1-mediated downregulation of miRNA-26a expression is shown to be dependent on integrated HIV-1 expression but does not involve viral accessory proteins. Overall, these results highlight a novel mechanism by which HIV-1 limits ADCML by upregulating CD59 expression via miRNA-26a downmodulation.
Collapse
Affiliation(s)
- Nicolas Bellini
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chengyu Ye
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (O.A.); (T.T.M.)
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (O.A.); (T.T.M.)
| | - Robert Lodge
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
3
|
Di Carlo D, Falasca F, Mazzuti L, Guerrizio G, Migliara G, Santori M, Lazzaro A, Mezzaroma I, D'Ettorre G, Fimiani C, Iaiani G, Antonelli G, Turriziani O. MicroRNA Expression Levels in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus Type 1 Positive Individuals and Relationship with Different Levels of Viral Suppression. AIDS Res Hum Retroviruses 2024; 40:321-329. [PMID: 37523231 DOI: 10.1089/aid.2022.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The persistence of low human immunodeficiency virus type 1 (HIV-1) replication in individuals undergoing antiretroviral therapy (ART) still threatens their health. Previous findings have shown that microRNAs (miRNAs) could interfere with several steps of the viral life cycle. Herein, we set out to investigate the expression of miR-150, miR-223, miR-382, miR-324-5p, miR-33a-5p, miR-34a, and miR-132 in the whole peripheral blood mononuclear cell (PBMC) population from people living with HIV-1 showing different levels of viral suppression. Levels of PBMC-associated miRNAs were analyzed in 30 individuals with undetectable viremia (target not detected) and 30 individuals with detectable low-level viremia (1-200 copies/mL). In addition, 30 samples from treatment-naive (NAIVE) individuals were investigated. Results were compared to a control group of 28 HIV-negative donors. All miRNAs analyzed were strongly downregulated in the NAIVE population, either compared to the treated group or to controls. Stratification of ART-treated donors according to the therapeutic regimen showed the downregulation of miR-33a-5p in subjects treated with non-nucleoside reverse transcriptase inhibitors compared with those treated with protease inhibitors. Collectively, the present study shows that uncontrolled viral replication leads to profound miRNA deregulation while treated individuals, irrespective of the degree of viral suppression, and even the types of antiviral drugs seem to be specifically associated with miRNA expression profiles. These evidences suggest that virological suppression could be favored by miRNA modulation.
Collapse
Affiliation(s)
- Daniele Di Carlo
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Pasteur Laboratories, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Falasca
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Transfusion Medicine Unit, "F. Veneziale" Hospital, Isernia, Italy
| | - Laura Mazzuti
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Giuliana Guerrizio
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marta Santori
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Caterina Fimiani
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Giancarlo Iaiani
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ombretta Turriziani
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
4
|
Ramirez Bustamante CE, Agarwal N, Cox AR, Hartig SM, Lake JE, Balasubramanyam A. Adipose Tissue Dysfunction and Energy Balance Paradigms in People Living With HIV. Endocr Rev 2024; 45:190-209. [PMID: 37556371 PMCID: PMC10911955 DOI: 10.1210/endrev/bnad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.
Collapse
Affiliation(s)
- Claudia E Ramirez Bustamante
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Alpuche-Lazcano SP, Scarborough RJ, Gatignol A. MicroRNAs and long non-coding RNAs during transcriptional regulation and latency of HIV and HTLV. Retrovirology 2024; 21:5. [PMID: 38424561 PMCID: PMC10905857 DOI: 10.1186/s12977-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV) have replicative and latent stages of infection. The status of the viruses is dependent on the cells that harbour them and on different events that change the transcriptional and post-transcriptional events. Non-coding (nc)RNAs are key factors in the regulation of retrovirus replication cycles. Notably, micro (mi)RNAs and long non-coding (lnc)RNAs are important regulators that can induce switches between active transcription-replication and latency of retroviruses and have important impacts on their pathogenesis. Here, we review the functions of miRNAs and lncRNAs in the context of HIV and HTLV. We describe how specific miRNAs and lncRNAs are involved in the regulation of the viruses' transcription, post-transcriptional regulation and latency. We further discuss treatment strategies using ncRNAs for HIV and HTLV long remission, reactivation or possible cure.
Collapse
Affiliation(s)
- Sergio P Alpuche-Lazcano
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
- National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - Robert J Scarborough
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
6
|
Pawar P, Gokavi J, Wakhare S, Bagul R, Ghule U, Khan I, Ganu V, Mukherjee A, Shete A, Rao A, Saxena V. MiR-155 Negatively Regulates Anti-Viral Innate Responses among HIV-Infected Progressors. Viruses 2023; 15:2206. [PMID: 38005883 PMCID: PMC10675553 DOI: 10.3390/v15112206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/26/2023] Open
Abstract
HIV infection impairs host immunity, leading to progressive disease. An anti-retroviral treatment efficiently controls viremia but cannot completely restore the immune dysfunction in HIV-infected individuals. Both host and viral factors determine the rate of disease progression. Among the host factors, innate immunity plays a critical role; however, the mechanism(s) associated with dysfunctional innate responses are poorly understood among HIV disease progressors, which was investigated here. The gene expression profiles of TLRs and innate cytokines in HIV-infected (LTNPs and progressors) and HIV-uninfected individuals were examined. Since the progressors showed a dysregulated TLR-mediated innate response, we investigated the role of TLR agonists in restoring the innate functions of the progressors. The stimulation of PBMCs with TLR3 agonist-poly:(I:C), TLR7 agonist-GS-9620 and TLR9 agonist-ODN 2216 resulted in an increased expression of IFN-α, IFN-β and IL-6. Interestingly, the expression of IFITM3, BST-2, IFITM-3, IFI-16 was also increased upon stimulation with TLR3 and TLR7 agonists, respectively. To further understand the molecular mechanism involved, the role of miR-155 was explored. Increased miR-155 expression was noted among the progressors. MiR-155 inhibition upregulated the expression of TLR3, NF-κB, IRF-3, TNF-α and the APOBEC-3G, IFITM-3, IFI-16 and BST-2 genes in the PBMCs of the progressors. To conclude, miR-155 negatively regulates TLR-mediated cytokines as wel l as the expression of host restriction factors, which play an important role in mounting anti-HIV responses; hence, targeting miR-155 might be helpful in devising strategic approaches towards alleviating HIV disease progression.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Jyotsna Gokavi
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Shilpa Wakhare
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Rajani Bagul
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ujjwala Ghule
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ishrat Khan
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Varada Ganu
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Ashwini Shete
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Amrita Rao
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| |
Collapse
|
7
|
Bauer AN, Majumdar N, Williams F, Rajput S, Pokhrel LR, Cook PP, Akula SM. MicroRNAs: Small but Key Players in Viral Infections and Immune Responses to Viral Pathogens. BIOLOGY 2023; 12:1334. [PMID: 37887044 PMCID: PMC10604607 DOI: 10.3390/biology12101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Since the discovery of microRNAs (miRNAs) in C. elegans in 1993, the field of miRNA research has grown steeply. These single-stranded non-coding RNA molecules canonically work at the post-transcriptional phase to regulate protein expression. miRNAs are known to regulate viral infection and the ensuing host immune response. Evolving research suggests miRNAs are assets in the discovery and investigation of therapeutics and diagnostics. In this review, we succinctly summarize the latest findings in (i) mechanisms underpinning miRNA regulation of viral infection, (ii) miRNA regulation of host immune response to viral pathogens, (iii) miRNA-based diagnostics and therapeutics targeting viral pathogens and challenges, and (iv) miRNA patents and the market landscape. Our findings show the differential expression of miRNA may serve as a prognostic biomarker for viral infections in regard to predicting the severity or adverse health effects associated with viral diseases. While there is huge market potential for miRNA technology, the novel approach of using miRNA mimics to enhance antiviral activity or antagonists to inhibit pro-viral miRNAs has been an ongoing research endeavor. Significant hurdles remain in terms of miRNA delivery, stability, efficacy, safety/tolerability, and specificity. Addressing these challenges may pave a path for harnessing the full potential of miRNAs in modern medicine.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Niska Majumdar
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Frank Williams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Smit Rajput
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
8
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses 2023; 15:622. [PMID: 36992331 PMCID: PMC10059597 DOI: 10.3390/v15030622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles (EVs) and extracellular condensates (ECs) in the setting of untreated HIV/SIV infection. The goals of the study presented in this Manuscript 1 are to (i) assess the abundance and compartmentalization of exmiRNAs in EVs versus ECs in the healthy uninfected state, and (ii) evaluate how SIV infection may affect exmiRNA abundance and compartmentalization in these particles. Considerable effort has been devoted to studying the epigenetic control of viral infection, particularly in understanding the role of exmiRNAs as key regulators of viral pathogenesis. MicroRNA (miRNAs) are small (~20-22 nts) non-coding RNAs that regulate cellular processes through targeted mRNA degradation and/or repression of protein translation. Originally associated with the cellular microenvironment, circulating miRNAs are now known to be present in various extracellular environments, including blood serum and plasma. While in circulation, miRNAs are protected from degradation by ribonucleases through their association with lipid and protein carriers, such as lipoproteins and other extracellular particles-EVs and ECs. Functionally, miRNAs play important roles in diverse biological processes and diseases (cell proliferation, differentiation, apoptosis, stress responses, inflammation, cardiovascular diseases, cancer, aging, neurological diseases, and HIV/SIV pathogenesis). While lipoproteins and EV-associated exmiRNAs have been characterized and linked to various disease processes, the association of exmiRNAs with ECs is yet to be made. Likewise, the effect of SIV infection on the abundance and compartmentalization of exmiRNAs within extracellular particles is unclear. Literature in the EV field has suggested that most circulating miRNAs may not be associated with EVs. However, a systematic analysis of the carriers of exmiRNAs has not been conducted due to the inefficient separation of EVs from other extracellular particles, including ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of SIV-uninfected male Indian rhesus macaques (RMs, n = 15). Additionally, paired EVs and ECs were isolated from EDTA blood plasma of combination anti-retroviral therapy (cART) naïve SIV-infected (SIV+, n = 3) RMs at two time points (1- and 5-months post infection, 1 MPI and 5 MPI). Separation of EVs and ECs was achieved with PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high-resolution separation and retrieval of preparative quantities of sub-populations of extracellular particles. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNAs was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We showed that exmiRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid-based carriers-EVs and non-lipid-based carriers-ECs, with a significant (~30%) proportion of the exmiRNAs being associated with ECs. In the blood plasma of uninfected RMs, a total of 315 miRNAs were associated with EVs, while 410 miRNAs were associated with ECs. A comparison of detectable miRNAs within paired EVs and ECs revealed 19 and 114 common miRNAs, respectively, detected in all 15 RMs. Let-7a-5p, Let-7c-5p, miR-26a-5p, miR-191-5p, and let-7f-5p were among the top 5 detectable miRNAs associated with EVs in that order. In ECs, miR-16-5p, miR-451, miR-191-5p, miR-27a-3p, and miR-27b-3p, in that order, were the top detectable miRNAs in ECs. miRNA-target enrichment analysis of the top 10 detected common EV and EC miRNAs identified MYC and TNPO1 as top target genes, respectively. Functional enrichment analysis of top EV- and EC-associated miRNAs identified common and distinct gene-network signatures associated with various biological and disease processes. Top EV-associated miRNAs were implicated in cytokine-cytokine receptor interactions, Th17 cell differentiation, IL-17 signaling, inflammatory bowel disease, and glioma. On the other hand, top EC-associated miRNAs were implicated in lipid and atherosclerosis, Th1 and Th2 cell differentiation, Th17 cell differentiation, and glioma. Interestingly, infection of RMs with SIV revealed that the brain-enriched miR-128-3p was longitudinally and significantly downregulated in EVs, but not ECs. This SIV-mediated decrease in miR-128-3p counts was validated by specific TaqMan microRNA stem-loop RT-qPCR assay. Remarkably, the observed SIV-mediated decrease in miR-128-3p levels in EVs from RMs agrees with publicly available EV miRNAome data by Kaddour et al., 2021, which showed that miR-128-3p levels were significantly lower in semen-derived EVs from HIV-infected men who used or did not use cocaine compared to HIV-uninfected individuals. These findings confirmed our previously reported finding and suggested that miR-128 may be a target of HIV/SIV. Conclusions: In the present study, we used sRNA sequencing to provide a holistic understanding of the repertoire of circulating exmiRNAs and their association with extracellular particles, such as EVs and ECs. Our data also showed that SIV infection altered the profile of the miRNAome of EVs and revealed that miR-128-3p may be a potential target of HIV/SIV. The significant decrease in miR-128-3p in HIV-infected humans and in SIV-infected RMs may indicate disease progression. Our study has important implications for the development of biomarker approaches for various types of cancer, cardiovascular diseases, organ injury, and HIV based on the capture and analysis of circulating exmiRNAs.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
9
|
Poorghobadi S, Agharezaei M, Ghanbari M, Bahramali G, Abbasian L, Sajadipour M, Baesi K. Discordant immune response among treatment experienced patients infected with HIV-1: Crosstalk between MiRNAs expression and CD4+ T cells count. Int Immunopharmacol 2023; 114:109533. [PMID: 36508918 DOI: 10.1016/j.intimp.2022.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND One of the problems with treating HIV-infected patients with ARVs is that the treatment can reduce viral load and does not increase the number of CD4 cells (immunological discordance). There are still challenges to treating HIV-positive patients. AIM This study aimed to investigate the expression level of 18 miRNAs involved in the proliferation and differentiation of CD4+ T cells in a target (discordant immune response) and a control (immune response) group. METHODS In this case-control study, 18 miRNAs were selected and synthesized according to the in-silico analysis and published literatures. RNA extraction was performed from PBMC cells of 30 HIV-1 positive patients in the sample bank. The expression level of microRNAs was calculated by the relative q PCR method (2-ΔΔCt method), and data were analyzed using GraphPad Prism software version 8.0.2. RESULTS The results of fold change calculation and statistical analysis showed that the expression levels of miR-30b (p value: 0.01, fold change: 0.23), miR-155 (p value: 0.04, fold change: 0.44), miR-181a (p value: 0.01, fold change: 0.37), and miR-190b (p value: 0.01, fold change: 0.39) had a significant decrease in the target group compared to the control group. CONCLUSION In summary, various studies have shown that miRNAs, including miR-30b, miR-155, miR-181a, and miR-190b, are involved in the proliferation, differentiation, and development of CD4+ T cells. One reason for the lack of increase in CD4+ T cells may be the reduced expression of these miRNAs.
Collapse
Affiliation(s)
- Shima Poorghobadi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Agharezaei
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ghanbari
- Department of Microbial Biotechnology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Abbasian
- Department of Infectious Diseases and Tropical Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Sajadipour
- South Health Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
A Panel of Eight miRNAs Is Deregulated in HTLV-2 Infected PBMCs and BJABGu Cell Line. Int J Mol Sci 2022; 23:ijms23147583. [PMID: 35886938 PMCID: PMC9320395 DOI: 10.3390/ijms23147583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Despite human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 being retroviruses closely related at a genomic level, HTLV-2 differs from HTLV-1 in terms of pathogenicity in both single infection and coinfection contexts. Moreover, the HTLV-2 association with clinical outcomes is still debated and several mechanisms underlying HTLV-2 infection remain unexplored as well. Cellular miRNAs are key factors in the post-transcriptional regulation of gene expression and they are known to be potential targets for several pathogens to control the host microenvironment and, in particular, escape immune responses. Here, we identified a HTLV-2-related signature of eight miRNAs (miR-125a-3p, miR-381-3p, miR-502-5p, miR-708-5p, miR-548d-5p, miR-548c-5p, miR-1-3p, and miR-511-5p) in both HTLV-2 infected PBMC and BJABGu cell lines. Altered miRNA expression patterns were correlated with the impairment of Th cell differentiation and signaling pathways driven by cytokines and transcriptional factors such as the Runt-related transcription factor (RUNX) family members. Specifically, we demonstrated that the RUNX2 protein was significantly more expressed in the presence of Tax-2 compared with Tax-1 in an in vitro cell model. To the best of our knowledge, these data represent the first contribution to elucidating the HTLV-2 mediated alteration of host cell miRNA profiles that may impact on HTLV-2 replication and persistent infection.
Collapse
|
11
|
Crespo R, Rao S, Mahmoudi T. HibeRNAtion: HIV-1 RNA Metabolism and Viral Latency. Front Cell Infect Microbiol 2022; 12:855092. [PMID: 35774399 PMCID: PMC9237370 DOI: 10.3389/fcimb.2022.855092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 infection remains non-curative due to the latent reservoir, primarily a small pool of resting memory CD4+ T cells bearing replication-competent provirus. Pharmacological reversal of HIV-1 latency followed by intrinsic or extrinsic cell killing has been proposed as a promising strategy to target and eliminate HIV-1 viral reservoirs. Latency reversing agents have been extensively studied for their role in reactivating HIV-1 transcription in vivo, although no permanent reduction of the viral reservoir has been observed thus far. This is partly due to the complex nature of latency, which involves strict intrinsic regulation at multiple levels at transcription and RNA processing. Still, the molecular mechanisms that control HIV-1 latency establishment and maintenance have been almost exclusively studied in the context of chromatin remodeling, transcription initiation and elongation and most known LRAs target LTR-driven transcription by manipulating these. RNA metabolism is a largely understudies but critical mechanistic step in HIV-1 gene expression and latency. In this review we provide an update on current knowledge on the role of RNA processing mechanisms in viral gene expression and latency and speculate on the possible manipulation of these pathways as a therapeutic target for future cure studies.
Collapse
Affiliation(s)
- Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Tokameh Mahmoudi,
| |
Collapse
|
12
|
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The Effect of miRNA Gene Regulation on HIV Disease. Front Genet 2022; 13:862642. [PMID: 35601502 PMCID: PMC9117004 DOI: 10.3389/fgene.2022.862642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.
Collapse
Affiliation(s)
- Romona Chinniah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Gibson MS, Noronha-Estima C, Gama-Carvalho M. Therapeutic Metabolic Reprograming Using microRNAs: From Cancer to HIV Infection. Genes (Basel) 2022; 13:273. [PMID: 35205318 PMCID: PMC8872267 DOI: 10.3390/genes13020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of cellular processes, including metabolism. Attempts to use miRNAs as therapeutic agents are being explored in several areas, including the control of cancer progression. Recent evidence suggests fine tuning miRNA activity to reprogram tumor cell metabolism has enormous potential as an alternative treatment option. Indeed, cancer growth is known to be linked to profound metabolic changes. Likewise, the emerging field of immunometabolism is leading to a refined understanding of how immune cell proliferation and function is governed by glucose homeostasis. Different immune cell types are now known to have unique metabolic signatures that switch in response to a changing environment. T-cell subsets exhibit distinct metabolic profiles which underlie their alternative differentiation and phenotypic functions. Recent evidence shows that the susceptibility of CD4+ T-cells to HIV infection is intimately linked to their metabolic activity, with many of the metabolic features of HIV-1-infected cells resembling those found in tumor cells. In this review, we discuss the use of miRNA modulation to achieve metabolic reprogramming for cancer therapy and explore the idea that the same approach may serve as an effective mechanism to restrict HIV replication and eliminate infected cells.
Collapse
Affiliation(s)
| | | | - Margarida Gama-Carvalho
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal; (M.S.G.); (C.N.-E.)
| |
Collapse
|
14
|
Kartinah NT, Komara N, Noviati ND, Dewi S, Yolanda S, Radhina A, Heriyanto H, Sianipar IR. Potential of Hibiscus sabdariffa Linn. in managing FGF21 resistance in diet-induced-obesity rats via miR-34a regulation. Vet Med Sci 2022; 8:309-317. [PMID: 34687158 PMCID: PMC8788974 DOI: 10.1002/vms3.653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Obesity is a cause of FGF21 resistance, which affects the browning and thermogenesis process of the adipose tissue. Decreased receptor expression is influenced by miR-34a, whose expression is increased in obesity. While FGF21-based therapies have been widely investigated, the potential activity of Hibiscus sabdariffa Linn. extract (HSE) against FGF21 resistance is unknown. OBJECTIVE This study aims to determine the effects of HSE on the expression of miR-34a and FGF21 receptors in white adipose tissue. METHODS This experimental study used 24 male Sprague-Dawley rats and divided into four groups: Control (N); diet-induced-obesity rats (DIO); DIO rats with HSE 200 mg/kgBW/day and DIO rats with HSE 400 mg/kgBW/day. Rats were fed a high-fat diet for 17 weeks. HSE was administered daily for 5 weeks. The administration of HSE 400 mg/kgBW/day resulted in the equivalent expression of miR-34a to that of the control (p > 0.05). RESULTS FGFR1 receptor expression was also similar to controls (p > 0.05). Beta-klotho expression was significantly lower than that of control (p < 0.05) but equivalent to that of DIO rats (p < 0.05). CONCLUSIONS H. sabdariffa has the potential to reduce FGF21 resistance in DIO rats through the suppression of miR-34a expression and an increase in the number of FGFR1 and beta-klotho receptors in adipose tissue.
Collapse
Affiliation(s)
- Neng Tine Kartinah
- Department of Medical PhysiologyFaculty of Medicine, Universitas IndonesiaJakartaIndonesia
| | - Nisa Komara
- Master Program in Biomedical SciencesFaculty of Medicine, Universitas IndonesiaJakartaIndonesia
| | - Nuraini Diah Noviati
- Master Program in Biomedical SciencesFaculty of Medicine, Universitas IndonesiaJakartaIndonesia
| | - Syarifah Dewi
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, Universitas IndonesiaJakartaIndonesia
| | - Sophie Yolanda
- Department of Medical PhysiologyFaculty of Medicine, Universitas IndonesiaJakartaIndonesia
| | - Afifa Radhina
- Master Program in Biomedical SciencesFaculty of Medicine, Universitas IndonesiaJakartaIndonesia
| | - Heriyanto Heriyanto
- Master Program in Biomedical SciencesFaculty of Medicine, Universitas IndonesiaJakartaIndonesia
- Department of Medical PhysiologyFaculty of Medicine, UKRIDAJakartaIndonesia
| | | |
Collapse
|
15
|
Qiao J, Peng Q, Qian F, You Q, Feng L, Hu S, Liu W, Huang L, Shu X, Sun B. HIV-1 Vpr protein upregulates microRNA-210-5p expression to induce G2 arrest by targeting TGIF2. PLoS One 2021; 16:e0261971. [PMID: 34965271 PMCID: PMC8716043 DOI: 10.1371/journal.pone.0261971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important molecules that mediate virus-host interactions, mainly by regulating gene expression via gene silencing. Here, we demonstrated that HIV-1 infection upregulated miR-210-5p in HIV-1-inoculated cell lines and in the serum of HIV-1-infected individuals. Luciferase reporter assays and western blotting confirmed that a target protein of miR-210-5p, TGIF2, is regulated by HIV-1 infection. Furthermore, HIV-1 Vpr protein induced miR-210-5p expression. The use of a miR-210-5p inhibitor and TGIF2 overexpression showed that Vpr upregulated miR-210-5p and thereby downregulated TGIF2, which might be one of the mechanisms used by Vpr to induce G2 arrest. Moreover, we identified a transcription factor, NF-κB p50, which upregulated miR-210-5p in response to Vpr protein. In conclusion, we identified a mechanism whereby miR-210-5p, which is induced upon HIV-1 infection, targets TGIF2. This pathway was initiated by Vpr protein activating NF-κB p50, which promoted G2 arrest. These alterations orchestrated by miRNA provide new evidence on how HIV-1 interacts with its host during infection and increase our understanding of the mechanism by which Vpr regulates the cell cycle.
Collapse
Affiliation(s)
- Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Feng Qian
- Division of HIV/AIDS, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lingyan Feng
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lixia Huang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- * E-mail: (BS); (XS)
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- * E-mail: (BS); (XS)
| |
Collapse
|
16
|
Consuegra I, Gasco S, Serramía MJ, Jiménez JL, Mellado MJ, Muñoz-Fernández MÁ. Establishment of a miRNA profile in paediatric HIV-1 patients and its potential as a biomarker for effectiveness of the combined antiretroviral therapy. Sci Rep 2021; 11:23477. [PMID: 34873266 PMCID: PMC8648729 DOI: 10.1038/s41598-021-03020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
miRNAs have been extensively studied in pathological conditions, including viral infections, such as those provoked by HIV-1. Several cellular and circulating miRNAs are altered during HIV-1 infection, with either beneficial effects on host defenses or enhanced virus infectivity. Blood samples were collected in sterile EDTA tubes and plasma was separated and stored, as were PBMCs. RNA was isolated and reverse-transcribed. Finally, the miRNA gene expression profile was assessed using TaqMan Array Human microRNA Card A v2.0. A comprehensive statistical analysis was performed on the results obtained. This is the first study on miRNAs in HIV-1 paediatric patients, and a miRNA profile differentiating patients starting combination antiretroviral therapy (cART) at different times after HIV-1 diagnosis was established. Thirty-four miRNAs were observed to have different expression levels between the control group and the cART group. The data indicates the need to start cART as soon as possible after the establishment of HIV-1 infection to assure the best outcome possible. Finally, the selected 34 miRNAs may be used as biomarkers for prognosis and assessing therapy effectiveness. However, more research must be conducted to establish adequate quantitative correlations.
Collapse
Affiliation(s)
- Irene Consuegra
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV HGM BioBank, Madrid, Spain
| | - Samanta Gasco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Jesús Serramía
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Laboratorio InmunoBiología Molecular, Head Immunology Section, (Hospital General Universitario Gregorio Marañón), C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV HGM BioBank, Madrid, Spain.,Plataforma-Laboratorio (IiSGM), Madrid, Spain
| | - Maria Jose Mellado
- General Pediatrics, Infectious and Tropical Diseases Department Hospital, Universitario La Paz, Madrid, Spain.,IdiPAZ, Madrid, Spain.,Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. .,Spanish HIV HGM BioBank, Madrid, Spain. .,Laboratorio InmunoBiología Molecular, Head Immunology Section, (Hospital General Universitario Gregorio Marañón), C/Dr. Esquerdo 46, 28007, Madrid, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
17
|
Endogenous Feline Leukemia Virus (FeLV) siRNA Transcription May Interfere with Exogenous FeLV Infection. J Virol 2021; 95:e0007021. [PMID: 34495702 DOI: 10.1128/jvi.00070-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses (ERVs) are increasingly recognized for biological impacts on host cell function and susceptibility to infectious agents, particularly in relation to interactions with exogenous retroviral progenitors (XRVs). ERVs can simultaneously promote and restrict XRV infections using mechanisms that are virus and host specific. The majority of endogenous-exogenous retroviral interactions have been evaluated in experimental mouse or chicken systems, which are limited in their ability to extend findings to naturally infected outbred animals. Feline leukemia virus (FeLV) has a relatively well-characterized endogenous retrovirus with a coexisting virulent exogenous counterpart and is endemic worldwide in domestic cats. We have previously documented an association between endogenous FeLV (enFeLV) long terminal repeat (LTR) copy number and abrogated exogenous FeLV in naturally infected cats and experimental infections in tissue culture. Analyses described here examine limited FeLV replication in experimentally infected peripheral blood mononuclear cells, which correlates with higher enFeLV transcripts in these cells compared to fibroblasts. We further examine NCBI Sequence Read Archive RNA transcripts to evaluate enFeLV transcripts and RNA interference (RNAi) precursors. We find that lymphoid-derived tissues, which are experimentally less permissive to exogenous FeLV infection, transcribe higher levels of enFeLV under basal conditions. Transcription of enFeLV-LTR segments is significantly greater than that of other enFeLV genes. We documented transcription of a 21-nucleotide (nt) microRNA (miRNA) just 3' to the enFeLV 5'-LTR in the feline miRNAome of all data sets evaluated (n = 27). Our findings point to important biological functions of enFeLV transcription linked to solo LTRs distributed within the domestic cat genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. IMPORTANCE Endogenous retroviruses (ERVs) are increasingly implicated in host cellular processes and susceptibility to infectious agents, specifically regarding interactions with exogenous retroviral progenitors (XRVs). Exogenous feline leukemia virus (FeLV) and its endogenous counterpart (enFeLV) represent a well-characterized, naturally occurring XRV-ERV dyad. We have previously documented an abrogated FeLV infection in both naturally infected cats and experimental fibroblast infections that harbor higher enFeLV proviral loads. Using an in silico approach, we provide evidence of miRNA transcription that is produced in tissues that are most important for FeLV infection, replication, and transmission. Our findings point to important biological functions of enFeLV transcription linked to solo-LTRs distributed within the feline genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. This body of work provides additional evidence of RNA interference (RNAi) as a mechanism of viral interference and is a demonstration of ERV exaptation by the host to defend against related XRVs.
Collapse
|
18
|
Jamshidi S, Bokharaei-Salim F, Nahand JS, Monavari SH, Moghoofei M, Garshasbi S, Kalantari S, Esghaei M, Mirzaei H. Evaluation of the expression pattern of 4 microRNAs and their correlation with cellular/viral factors in PBMCs of Long Term non-progressors and HIV infected naïve Individuals. Curr HIV Res 2021; 20:42-53. [PMID: 34493187 DOI: 10.2174/1570162x19666210906143136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Long-term non-progressors (LTNPs) are small subsets of HIV-infected subjects that can control HIV-1 replication for several years without receiving ART. The exact mechanism of HIV-1 suppression has not yet been completely elucidated. Although the modulatory role of microRNAs (miRNAs) in HIV-1 replication has been reported, their importance in LTNPs is unclear. OBJECTIVE The aim of this cross-sectional study was to assess the expression pattern of miR-27b, -29, -150, and -221, as well as their relationship with CD4+ T-cell count, HIV-1 viral load, and nef gene expression in peripheral blood mononuclear cells (PBMCs) of untreated viremic patients and in LTNPs. METHODS MiRNAs expression levels were evaluated with real-time PCR assay using RNA isolated from PBMCs of LTNPs, HIV-1 infected naive patients, and healthy people. Moreover, CD4 T-cell count, HIV viral load, and nef gene expression were assessed. RESULTS The expression level of all miRNAs significantly decreased in the HIV-1 patient group compared to the control group, while the expression pattern of miRNAs in the LNTPs group was similar to that in the healthy subject group. In addition, there were significant correlations between some miRNA expression with viral load, CD4+ T-cell count, and nef gene expression. CONCLUSION The significant similarity and difference of the miRNA expression pattern between LNTPs and healthy individuals as well as between elite controllers and HIV-infected patients, respectively, showed that these miRNAs could be used as diagnostic biomarkers. Further, positive and negative correlations between miRNAs expression and viral/cellular factors could justify the role of these miRNAs in HIV-1 disease monitoring.
Collapse
Affiliation(s)
- Sogol Jamshidi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Seyed Hamidreza Monavari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah. Iran
| | | | - Saeed Kalantari
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Hamed Mirzaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
19
|
Srinivasa S, Garcia-Martin R, Torriani M, Fitch KV, Carlson AR, Kahn CR, Grinspoon SK. Altered pattern of circulating miRNAs in HIV lipodystrophy perturb key adipose differentiation and inflammation pathways. JCI Insight 2021; 6:e150399. [PMID: 34383714 PMCID: PMC8492307 DOI: 10.1172/jci.insight.150399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
We identified a microRNA (miRNA) profile characterizing HIV lipodystrophy and explored the downstream mechanistic implications with respect to adipocyte biology and the associated clinical phenotype. miRNA profiles were extracted from small extracellular vesicles (sEVs) of HIV-infected individuals with and without lipodystrophic changes and individuals without HIV, among whom we previously showed significant reductions in adipose Dicer expression related to HIV. miR-20a-3p was increased and miR-324-5p and miR-186 were reduced in sEVs from HIV lipodystrophic individuals. Changes in these miRNAs correlated with adipose Dicer expression and clinical markers of lipodystrophy, including fat redistribution, insulin resistance, and hypertriglyceridemia. Human preadipocytes transfected with mimic miR-20a-3p, anti–miR-324-5p, or anti–miR-186 induced consistent changes in latent transforming growth factor beta binding protein 2 (Ltbp2), Wisp2, and Nebl expression. Knockdown of Ltbp2 downregulated markers of adipocyte differentiation (Fabp4, Pparγ, C/ebpa, Fasn, adiponectin, Glut4, CD36), and Lamin C, and increased expression of genes involved in inflammation (IL1β, IL6, and Ccl20). Our studies suggest a likely unique sEV miRNA signature related to dysregulation of Dicer in adipose tissue in HIV. Enhanced miR-20a-3p or depletion of miR-186 and miR-324-5p may downregulate Ltbp2 in HIV, leading to dysregulation in adipose differentiation and inflammation, which could contribute to acquired HIV lipodystrophy and associated metabolic and inflammatory perturbations.
Collapse
Affiliation(s)
- Suman Srinivasa
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, boston, United States of America
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Kathleen V Fitch
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Anna R Carlson
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, boston, United States of America
| | - Steven K Grinspoon
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| |
Collapse
|
20
|
Bhatti GK, Khullar N, Sidhu IS, Navik US, Reddy AP, Reddy PH, Bhatti JS. Emerging role of non-coding RNA in health and disease. Metab Brain Dis 2021; 36:1119-1134. [PMID: 33881724 PMCID: PMC8058498 DOI: 10.1007/s11011-021-00739-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Human diseases have always been a significant turf of concern since the origin of mankind. It is cardinal to know the cause, treatment, and cure for every disease condition. With the advent and advancement in technology, the molecular arena at the microscopic level to study the mechanism, progression, and therapy is more rational and authentic pave than a macroscopic approach. Non-coding RNAs (ncRNAs) have now emerged as indispensable players in the diagnosis, development, and therapeutics of every abnormality concerning physiology, pathology, genetics, epigenetics, oncology, and developmental diseases. This is a comprehensive attempt to collate all the existing and proven strategies, techniques, mechanisms of genetic disorders including Silver Russell Syndrome, Fascio- scapula humeral muscular dystrophy, cardiovascular diseases (atherosclerosis, cardiac fibrosis, hypertension, etc.), neurodegenerative diseases (Spino-cerebral ataxia type 7, Spino-cerebral ataxia type 8, Spinal muscular atrophy, Opitz-Kaveggia syndrome, etc.) cancers (cervix, breast, lung cancer, etc.), and infectious diseases (viral) studied so far. This article encompasses discovery, biogenesis, classification, and evolutionary prospects of the existence of this junk RNA along with the integrated networks involving chromatin remodelling, dosage compensation, genome imprinting, splicing regulation, post-translational regulation and proteomics. In conclusion, all the major human diseases are discussed with a facilitated technology transfer, advancements, loopholes, and tentative future research prospects have also been proposed.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab India
| | | | - Uma Shanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - P. Hemachandra Reddy
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Cell Biology & Biochemistry, Neuroscience & Pharmacology, Neurology, Public Health, School of Health Professions, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
21
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
22
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
23
|
Millard RS, Bickley LK, Bateman KS, Farbos A, Minardi D, Moore K, Ross SH, Stentiford GD, Tyler CR, van Aerle R, Santos EM. Global mRNA and miRNA Analysis Reveal Key Processes in the Initial Response to Infection with WSSV in the Pacific Whiteleg Shrimp. Viruses 2021; 13:v13061140. [PMID: 34199268 PMCID: PMC8231841 DOI: 10.3390/v13061140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
White Spot Disease (WSD) presents a major barrier to penaeid shrimp production. Mechanisms underlying White Spot Syndrome Virus (WSSV) susceptibility in penaeids are poorly understood due to limited information related to early infection. We investigated mRNA and miRNA transcription in Penaeus vannamei over 36 h following infection. Over this time course, 6192 transcripts and 27 miRNAs were differentially expressed—with limited differential expression from 3–12 h post injection (hpi) and a more significant transcriptional response associated with the onset of disease symptoms (24 hpi). During early infection, regulated processes included cytoskeletal remodelling and alterations in phagocytic activity that may assist WSSV entry and translocation, novel miRNA-induced metabolic shifts, and the downregulation of ATP-dependent proton transporter subunits that may impair cellular recycling. During later infection, uncoupling of the electron transport chain may drive cellular dysfunction and lead to high mortalities in infected penaeids. We propose that post-transcriptional silencing of the immune priming gene Dscam (downregulated following infections) by a novel shrimp miRNA (Pva-pmiR-78; upregulated) as a potential mechanism preventing future recognition of WSSV that may be suppressed in surviving shrimp. Our findings improve our understanding of WSD pathogenesis in P. vannamei and provide potential avenues for future development of prophylactics and treatments.
Collapse
Affiliation(s)
- Rebecca S. Millard
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Correspondence: (R.S.M.); (E.M.S.); Tel.: +44-(0)-1392-724607 (E.M.S.)
| | - Lisa K. Bickley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
| | - Kelly S. Bateman
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Audrey Farbos
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK; (A.F.); (K.M.)
| | - Diana Minardi
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Karen Moore
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK; (A.F.); (K.M.)
| | - Stuart H. Ross
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Grant D. Stentiford
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
| | - Ronny van Aerle
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Eduarda M. Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Correspondence: (R.S.M.); (E.M.S.); Tel.: +44-(0)-1392-724607 (E.M.S.)
| |
Collapse
|
24
|
Royo-Rubio E, Rodríguez-Izquierdo I, Moreno-Domene M, Lozano-Cruz T, de la Mata FJ, Gómez R, Muñoz-Fernández MA, Jiménez JL. Promising PEGylated cationic dendrimers for delivery of miRNAs as a possible therapy against HIV-1 infection. J Nanobiotechnology 2021; 19:158. [PMID: 34049570 PMCID: PMC8161934 DOI: 10.1186/s12951-021-00899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The appearance of resistance against new treatments and the fact that HIV-1 can infect various cell types and develop reservoirs and sanctuaries makes it necessary to develop new therapeutic approaches to overcome those failures. RESULTS Studies of cytotoxicity, genotoxicity, complexes formation, stability, resistance, release and particle size distribution confirmed that G2-SN15-PEG, G3-SN31-PEG, G2-SN15-PEG-FITC and G3-SN31-PEG-FITC dendrimers can form complexes with miRNAs being biocompatible, stable and conferring protection to these nucleic acids. Confocal microscopy and flow cytometry showed effective delivery of these four dendrimers into the target cells, confirming their applicability as delivery systems. Dendriplexes formed with the dendrimers and miRNAs significantly inhibited HIV-1 infection in PBMCs. CONCLUSIONS These dendrimers are efficient delivery systems for miRNAs and they specifically and significantly improved the anti-R5-HIV-1 activity of these RNA molecules.
Collapse
Affiliation(s)
- E Royo-Rubio
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain
| | - I Rodríguez-Izquierdo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain
| | - M Moreno-Domene
- Laboratorio Dosimetría Biológica, HGUGM, IiSGM, Madrid, Spain
| | - T Lozano-Cruz
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - F J de la Mata
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - R Gómez
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - M A Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain.
| | - J L Jiménez
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain.
| |
Collapse
|
25
|
Diurnal Variation of Plasma Extracellular Vesicle Is Disrupted in People Living with HIV. Pathogens 2021; 10:pathogens10050518. [PMID: 33923310 PMCID: PMC8145918 DOI: 10.3390/pathogens10050518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Several types of extracellular vesicles (EVs) secreted by various immune and non-immune cells are present in the human plasma. We previously demonstrated that EV abundance and microRNA content change in pathological conditions, such as HIV infection. Here, we investigated daily variations of large and small EVs, in terms of abundance and microRNA contents in people living with HIV (PLWH) receiving antiretroviral therapy (HIV+ART) and uninfected controls (HIV-). METHODS Venous blood samples from n = 10 HIV+ART and n = 10 HIV- participants were collected at 10:00 and 22:00 the same day. Large and small plasma EVs were purified, counted, and the mature miRNAs miR-29a, miR-29b, miR-92, miR-155, and miR-223 copies were measured by RT-PCR. RESULTS Large EVs were significantly bigger in the plasma collected at 10:00 versus 22:00 in both groups. There was a significant day-night increase in the quantity of 5 miRNAs in HIV- large EVs. In HIV+ART, only miR-155 daily variation has been observed in large EVs. Finally, EV-miRNA content permits to distinguish HIV- to HIV+ART in multivariate analysis. CONCLUSION These results point that plasma EV amount and microRNA contents are under daily variation in HIV- people. This new dynamic measure is disrupted in PLWH despite viral-suppressive ART. This study highlights a significant difference concerning EV abundance and their content measured at 22:00 between both groups. Therefore, the time of blood collection must be considered in the future for the EV as biomarkers.
Collapse
|
26
|
Kinoo SM, Chuturgoon AA, Singh B, Nagiah S. Hepatic expression of cholesterol regulating genes favour increased circulating low-density lipoprotein in HIV infected patients with gallstone disease: a preliminary study. BMC Infect Dis 2021; 21:294. [PMID: 33757439 PMCID: PMC7986270 DOI: 10.1186/s12879-021-05977-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV endemic populations are displaying higher incidence of metabolic disorders. HIV and the standard treatment are both associated with altered lipid and cholesterol metabolism, however gallstone disease (a cholesterol related disorder) in Sub-Saharan African populations is rarely investigated. METHODS This study sought to evaluate hepatic expression of key genes in cholesterol metabolism (LDLr, HMGCR, ABCA1) and transcriptional regulators of these genes (microRNA-148a, SREBP2) in HIV positive patients on antiretroviral therapy presenting with gallstones. Liver biopsies from HIV positive patients (cases: n = 5) and HIV negative patients (controls: n = 5) were analysed for miR-148a and mRNA expression using quantitative PCR. RESULTS Circulating total cholesterol was elevated in the HIV positive group with significantly elevated LDL-c levels(3.16 ± 0.64 mmol/L) relative to uninfected controls (2.10 ± 0.74 mmol/L; p = 0.04). A scavenging receptor for LDL-c, LDLr was significantly decreased (0.18-fold) in this group, possibly contributing to higher LDL-c levels. Transcriptional regulator of LDLr, SREBP2 was also significantly lower (0.13-fold) in HIV positive patients. Regulatory microRNA, miR-148a-3p, was reduced in HIV positive patients (0.39-fold) with a concomitant increase in target ABCA1 (1.5-fold), which regulates cholesterol efflux. CONCLUSIONS Collectively these results show that HIV patients on antiretroviral therapy display altered hepatic regulation of cholesterol metabolizing genes, reducing cholesterol scavenging, and increasing cholesterol efflux.
Collapse
Affiliation(s)
- Suman Mewa Kinoo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
- Discipline of General Surgery, School of Clinical Medicine, College of Health Science, University of KwaZulu Natal, Umbilo, Durban, 4001 South Africa
| | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
| | - Bugwan Singh
- Discipline of General Surgery, School of Clinical Medicine, College of Health Science, University of KwaZulu Natal, Umbilo, Durban, 4001 South Africa
| | - Savania Nagiah
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
- Present address: Department of Human Biology, Medical Programme, Faculty of Health Sciences, Nelson Mandela University Missionvale Campus, Room 113, 2nd floor, Road, Salt Pan, Bethelsdorp, Port Elizabeth, 6059 South Africa
| |
Collapse
|
27
|
Plasma microRNA expression levels in HIV-1-positive patients receiving antiretroviral therapy. Biosci Rep 2021; 40:222736. [PMID: 32319513 PMCID: PMC7225415 DOI: 10.1042/bsr20194433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) may serve as therapeutic agents or targets in diseases in which the expression of proteins plays an important role. The aim of the present study was to compare the expression levels of specific miRNAs, as well as their correlation with markers of response to antiretroviral (ARV) therapy, in patients with human immunodeficiency virus type 1 (HIV-1) infection with and without resistance to highly active antiretroviral therapy (HAART). Methods: miRNA assays were performed on plasma samples obtained from 20 HIV-1-positive patients. A total of ten patients were divided into two groups: HAART-responsive and HAART-resistant (n=5 per group). Commercial arrays were subsequently used to identify 84 miRNAs. A total of three differentially expressed miRNAs were selected and analyzed by quantitative PCR (qPCR). Five other patients were subsequently added to each group for a new relative expression analysis. The absolute expression level of the two miRNAs was obtained and compared using the Student’s t test. Receiver operating characteristic (ROC) curves were used to identify patients with antiretroviral therapy (ART) resistance. Results: The array analysis revealed that miR-15b-5p, miR-16-5p, miR-20a-5p, miR-26a-5p, miR-126-3p and miR-150-5p were down-regulated in patients with HAART-resistance comparing with HAART-responsive. The expression levels of miR-16-5p, miR-26a-5p and miR-150-5p were confirmed using qPCR. The area under the ROC curve was 1.0 for the three miRNAs. Conclusions: The lower expression levels of miR-16-5p and miR-26a-5p in patients with HAART-resistance suggested that these may serve as potential biomarkers for the identification of HAART-responsive patients.
Collapse
|
28
|
Cornwell A, Palli R, Singh MV, Benoodt L, Tyrell A, Abe JI, Schifitto G, Maggirwar SB, Thakar J. Molecular characterization of atherosclerosis in HIV positive persons. Sci Rep 2021; 11:3232. [PMID: 33547350 PMCID: PMC7865026 DOI: 10.1038/s41598-021-82429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
People living with HIV are at higher risk of atherosclerosis (AS). The pathogenesis of this risk is not fully understood. To assess the regulatory networks involved in AS we sequenced mRNA of the peripheral blood mononuclear cells (PBMCs) and measured cytokine and chemokine levels in the plasma of 13 persons living with HIV and 12 matched HIV-negative persons with and without AS. microRNAs (miRNAs) are known to play a role in HIV infection and may modulate gene regulation to drive AS. Hence, we further assessed miRNA expression in PBMCs of a subset of 12 HIV+ people with and without atherosclerosis. We identified 12 miRNAs differentially expressed between HIV+ AS+ and HIV+ , and validated 5 of those by RT-qPCR. While a few of these miRNAs have been implicated in HIV and atherosclerosis, others are novel. Integrating miRNA measurements with mRNA, we identified 27 target genes including SLC4A7, a critical sodium and bicarbonate transporter, that are potentially dysregulated during atherosclerosis. Additionally, we uncovered that levels of plasma cytokines were associated with transcription factor activity and miRNA expression in PBMCs. For example, BACH2 activity was associated with IL-1β, IL-15, and MIP-1α. IP10 and TNFα levels were associated with miR-124-3p. Finally, integration of all data types into a single network revealed increased importance of miRNAs in network regulation of the HIV+ group in contrast with increased importance of cytokines in the HIV+ AS+ group.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester, Rochester, NY, USA
- Biophysics, Structural, and Computational Biology PhD Program, University of Rochester, Rochester, NY, USA
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Lauren Benoodt
- Biophysics, Structural, and Computational Biology PhD Program, University of Rochester, Rochester, NY, USA
| | - Alicia Tyrell
- Department of Neurology, General Neurology, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Jun-Ichi Abe
- Department of Cardiology-Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, USA
| | - Giovanni Schifitto
- Department of Neurology, General Neurology, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, George Washing University, Washington, DC, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
- Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, , Box 672, Rochester, NY, 14642, USA.
| |
Collapse
|
29
|
Bazié WW, Boucher J, Vitry J, Goyer B, Routy JP, Tremblay C, Trottier S, Jenabian MA, Provost P, Alary M, Gilbert C. Plasma Extracellular Vesicle Subtypes May be Useful as Potential Biomarkers of Immune Activation in People With HIV. Pathog Immun 2021; 6:1-28. [PMID: 33987483 PMCID: PMC8109236 DOI: 10.20411/pai.v6i1.384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH. Methods Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes. Results HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count. Conclusions These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.
Collapse
Affiliation(s)
- Wilfried Wenceslas Bazié
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Programme de recherche sur les maladies infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Julien Boucher
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Julien Vitry
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Cécile Tremblay
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Trottier
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université de Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Patrick Provost
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université de Laval, Québec, C, Canada.,Institut national de santé publique du Québec, Québec, QC, Canada
| | - Caroline Gilbert
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
30
|
Functional Analyses of Bovine Foamy Virus-Encoded miRNAs Reveal the Importance of a Defined miRNA for Virus Replication and Host-Virus Interaction. Viruses 2020; 12:v12111250. [PMID: 33147813 PMCID: PMC7693620 DOI: 10.3390/v12111250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
In addition to regulatory or accessory proteins, some complex retroviruses gain a repertoire of micro-RNAs (miRNAs) to regulate and control virus–host interactions for efficient replication and spread. In particular, bovine and simian foamy viruses (BFV and SFV) have recently been shown to express a diverse set of RNA polymerase III-directed miRNAs, some with a unique primary miRNA double-hairpin, dumbbell-shaped structure not known in other viruses or organisms. While the mechanisms of expression and structural requirements have been studied, the functional importance of these miRNAs is still far from understood. Here, we describe the in silico identification of BFV miRNA targets and the subsequent experimental validation of bovine Ankyrin Repeat Domain 17 (ANKRD17) and Bax-interacting factor 1 (Bif1) target genes in vitro and, finally, the suppression of ANKRD17 downstream genes in the affected pathway. Deletion of the entire miRNA cassette in the non-coding part of the U3 region of the long terminal repeats attenuated replication of corresponding BFV mutants in bovine cells. This repression can be almost completely trans-complemented by the most abundant miRNA BF2-5p having the best scores for predicted and validated BFV miRNA target genes. Deletion of the miRNA cassette does not grossly affect particle release and overall particle composition.
Collapse
|
31
|
The assessment of selected MiRNAs profile in HIV, HBV, HCV, HIV/HCV, HIV/HBV Co-infection and elite controllers for determination of biomarker. Microb Pathog 2020; 147:104355. [DOI: 10.1016/j.micpath.2020.104355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
32
|
Abstract
Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.
Collapse
|
33
|
Expression profiling of human milk derived exosomal microRNAs and their targets in HIV-1 infected mothers. Sci Rep 2020; 10:12931. [PMID: 32737406 PMCID: PMC7395778 DOI: 10.1038/s41598-020-69799-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022] Open
Abstract
Despite the use of antiretroviral therapy (ART) in HIV-1 infected mothers approximately 5% of new HIV-1 infections still occur in breastfed infants annually, which warrants for the development of novel strategies to prevent new HIV-1 infections in infants. Human milk (HM) exosomes are highly enriched in microRNAs (miRNAs), which play an important role in neonatal immunity. Furthermore, HM exosomes from healthy donors are known to inhibit HIV-1 infection and transmission; however, the effect of HIV-1 on HM exosomal miRNA signatures remains unknown. In this study, we used nCounter NanoString technology and investigated miRNAs expression profiles in first week postpartum HM exosomes from HIV-1 infected and uninfected control mothers (n = 36). Our results indicated that HIV-1 perturbed the differential expression patterns of 19 miRNAs (13 upregulated and 6 downregulated) in HIV-1 infected women compared to healthy controls. DIANA-miR functional pathway analyses revealed that multiple biological pathways are involved including cell cycle, pathways in cancer, TGF-β signaling, FoxO signaling, fatty acid biosynthesis, p53 signaling and apoptosis. Moreover, the receiver operating characteristics (ROC) curve analyses of miR-630 and miR-378g yielded areas under the ROC curves of 0.82 (95% CI 0.67 to 0.82) and 0.83 (95% CI 0.67 to 0.83), respectively highlighting their potential to serve as biomarkers to identify HIV-1 infection in women. These data may contribute to the development of new therapeutic strategies in prevention of mother-to-child transmission (MTCT) of HIV-1.
Collapse
|
34
|
Fan X, Murray SC, Staitieh BS, Spearman P, Guidot DM. HIV Impairs Alveolar Macrophage Function via MicroRNA-144-Induced Suppression of Nrf2. Am J Med Sci 2020; 361:90-97. [PMID: 32773107 DOI: 10.1016/j.amjms.2020.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite anti-retroviral therapy, HIV-1 infection increases the risk of pneumonia and causes oxidative stress and defective alveolar macrophage (AM) immune function. We have previously determined that HIV-1 proteins inhibit antioxidant defenses and impair AM phagocytosis by suppressing nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Given its known effects on Nrf2, we hypothesize miR-144 mediates the HIV-1 induced suppression of Nrf2. METHODS Primary AMs isolated from HIV-1 transgenic (HIV-1 Tg) rats and wild type littermates (WT) as well as human monocyte-derived macrophages (MDMs) infected ex vivo with HIV-1 were used. We modulated miR-144 expression using a miR-144 mimic or an inhibitor to assay its effects on Nrf2/ARE activity and AM functions in vitro and in vivo. RESULTS MiR-144 expression was increased in AMs from HIV-1 Tg rats and in HIV-1-infected human MDMs compared to cells from WT rats and non-infected human MDMs, respectively. Increasing miR-144 with a miR-144 mimic inhibited the expression of Nrf2 and its downstream effectors in WT rat macrophages and consequently impaired their bacterial phagocytic capacity and H2O2 scavenging ability. These effects on Nrf2 expression and AM function were reversed by antagonizing miR-144 ex vivo or in the airways of HIV-1 Tg rats in vivo, but this protection was abrogated by silencing Nrf2 expression. CONCLUSIONS Our results suggest that inhibiting miR-144 or interfering with its deleterious effects on Nrf2 attenuates HIV-1-mediated AM immune dysfunction and improves lung health in individuals with HIV.
Collapse
Affiliation(s)
- Xian Fan
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia.
| | - Shannon C Murray
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Paul Spearman
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
35
|
Ivanov S, Lagunin A, Filimonov D, Tarasova O. Network-Based Analysis of OMICs Data to Understand the HIV-Host Interaction. Front Microbiol 2020; 11:1314. [PMID: 32625189 PMCID: PMC7311653 DOI: 10.3389/fmicb.2020.01314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
The interaction of human immunodeficiency virus with human cells is responsible for all stages of the viral life cycle, from the infection of CD4+ cells to reverse transcription, integration, and the assembly of new viral particles. To date, a large amount of OMICs data as well as information from functional genomics screenings regarding the HIV–host interaction has been accumulated in the literature and in public databases. We processed databases containing HIV–host interactions and found 2910 HIV-1-human protein-protein interactions, mostly related to viral group M subtype B, 137 interactions between human and HIV-1 coding and non-coding RNAs, essential for viral lifecycle and cell defense mechanisms, 232 transcriptomics, 27 proteomics, and 34 epigenomics HIV-related experiments. Numerous studies regarding network-based analysis of corresponding OMICs data have been published in recent years. We overview various types of molecular networks, which can be created using OMICs data, including HIV–human protein–protein interaction networks, co-expression networks, gene regulatory and signaling networks, and approaches for the analysis of their topology and dynamics. The network-based analysis can be used to determine the critical pathways and key proteins involved in the HIV life cycle, cellular and immune responses to infection, viral escape from host defense mechanisms, and mechanisms mediating different susceptibility of humans to infection. The proteins and pathways identified in these studies represent a basis for developing new anti-HIV therapeutic strategies such as new drugs preventing infection of CD4+ cells and viral replication, effective vaccines, “shock and kill” and “block and lock” approaches to cure latent infection.
Collapse
Affiliation(s)
- Sergey Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
36
|
Steiner MC, Gibson KM, Crandall KA. Drug Resistance Prediction Using Deep Learning Techniques on HIV-1 Sequence Data. Viruses 2020; 12:E560. [PMID: 32438586 PMCID: PMC7290575 DOI: 10.3390/v12050560] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022] Open
Abstract
The fast replication rate and lack of repair mechanisms of human immunodeficiency virus (HIV) contribute to its high mutation frequency, with some mutations resulting in the evolution of resistance to antiretroviral therapies (ART). As such, studying HIV drug resistance allows for real-time evaluation of evolutionary mechanisms. Characterizing the biological process of drug resistance is also critically important for sustained effectiveness of ART. Investigating the link between "black box" deep learning methods applied to this problem and evolutionary principles governing drug resistance has been overlooked to date. Here, we utilized publicly available HIV-1 sequence data and drug resistance assay results for 18 ART drugs to evaluate the performance of three architectures (multilayer perceptron, bidirectional recurrent neural network, and convolutional neural network) for drug resistance prediction, jointly with biological analysis. We identified convolutional neural networks as the best performing architecture and displayed a correspondence between the importance of biologically relevant features in the classifier and overall performance. Our results suggest that the high classification performance of deep learning models is indeed dependent on drug resistance mutations (DRMs). These models heavily weighted several features that are not known DRM locations, indicating the utility of model interpretability to address causal relationships in viral genotype-phenotype data.
Collapse
Affiliation(s)
- Margaret C. Steiner
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (K.M.G.); (K.A.C.)
| | - Keylie M. Gibson
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (K.M.G.); (K.A.C.)
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (K.M.G.); (K.A.C.)
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
37
|
Pheiffer C, Dias S, Rheeder P, Adam S. MicroRNA Profiling in HIV-Infected South African Women with Gestational Diabetes Mellitus. Mol Diagn Ther 2020; 23:499-505. [PMID: 31111446 DOI: 10.1007/s40291-019-00404-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recently, we reported that the microRNAs (miRNAs) miR-20a-5p and-to a lesser extent-miR-222-3p hold potential as biomarkers for gestational diabetes mellitus (GDM) in human immunodeficiency virus (HIV)-negative South African women. METHODS In this preliminary study, we measured the expression of these miRNAs in HIV-positive women (GDM 15, non-GDM 52; median 26.0 weeks; range 16-30). RESULTS Although the same trend of decreased expression of miR-20a-5p (1.5-fold decrease) and miR-222-3p (1.4-fold decrease) was observed in sera of women with and without GDM, these differences were not statistically significant. Stratification according to antiretroviral treatment (ART) confirmed decreased expression of miR-20a-5p and miR-222-3p in ART-naïve and ART-treated women with GDM, although again this was not statistically significant. CONCLUSION Our results demonstrate that HIV infection modifies the expression of miR-20a-5p and miR-222-3p in women with GDM. Importantly, this study highlights the complexities of miRNA profiling and the need for GDM biomarker discovery in both HIV-infected and uninfected individuals, particularly in South Africa, where approximately 30% of pregnancies are complicated by HIV. Further studies to elucidate the mechanisms that underlie these miRNA differences are needed.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Francie Van Zijl Drive, Tygerberg, Western Cape, 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Francie Van Zijl Drive, Tygerberg, Western Cape, 7505, South Africa.,Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Paul Rheeder
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Valkov N, Das S. Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:327-342. [PMID: 32285422 DOI: 10.1007/978-981-15-1671-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
40
|
Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD, Suciu N, Voinea SC. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front Cell Dev Biol 2020; 8:143. [PMID: 32211411 PMCID: PMC7075948 DOI: 10.3389/fcell.2020.00143] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
The study of miRNAs started in 1993, when Lee et al. observed their involvement in the downregulation of a crucial protein known as LIN-14 in the nematode Caenorhabditis elegans. Since then, great progress has been made regarding research on microRNAs, which are now known to be involved in the regulation of various physiological and pathological processes in both animals and humans. One such example is represented by their interaction with various signaling pathways during viral infections. It has been observed that these pathogens can induce the up-/downregulation of various host miRNAs in order to elude the host's immune system. In contrast, some miRNAs studied could have an antiviral effect, enabling the defense mechanisms to fight the infection or, at the very least, they could induce the pathogen to enter a latent state. At the same time, some viruses encode their own miRNAs, which could further modulate the host's signaling pathways, thus favoring the survival and replication of the virus. The goal of this extensive literature review was to present how miRNAs are involved in the regulation of various signaling pathways in some of the most important and well-studied human viral infections. Further on, knowing which miRNAs are involved in various viral infections and what role they play could aid in the development of antiviral therapeutic agents for certain diseases that do not have a definitive cure in the present. The clinical applications of miRNAs are extremely important, as miRNAs targeted inhibition may have substantial therapeutic impact. Inhibition of miRNAs can be achieved through many different methods, but chemically modified antisense oligonucleotides have shown the most prominent effects. Though scientists are far from completely understanding all the molecular mechanisms behind the complex cross-talks between miRNA pathways and viral infections, the general knowledge is increasing on the different roles played by miRNAs during viral infections.
Collapse
Affiliation(s)
- Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oana Daniela Toader
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Institute of Oncology Prof. Dr. Alexandru Trestioreanu, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
41
|
Chaudhuri E, Dash S, Balasubramaniam M, Padron A, Holland J, Sowd GA, Villalta F, Engelman AN, Pandhare J, Dash C. The HIV-1 capsid-binding host factor CPSF6 is post-transcriptionally regulated by the cellular microRNA miR-125b. J Biol Chem 2020; 295:5081-5094. [PMID: 32152226 DOI: 10.1074/jbc.ra119.010534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cleavage and polyadenylation specificity factor 6 (CPSF6) is a cellular protein involved in mRNA processing. Emerging evidence suggests that CPSF6 also plays key roles in HIV-1 infection, specifically during nuclear import and integration targeting. However, the cellular and molecular mechanisms that regulate CPSF6 expression are largely unknown. In this study, we report a post-transcriptional mechanism that regulates CPSF6 via the cellular microRNA miR-125b. An in silico analysis revealed that the 3'UTR of CPSF6 contains a miR-125b-binding site that is conserved across several mammalian species. Because miRNAs repress protein expression, we tested the effects of miR-125b expression on CPSF6 levels in miR-125b knockdown and over-expression experiments, revealing that miR-125b and CPSF6 levels are inversely correlated. To determine whether miR-125b post-transcriptionally regulates CPSF6, we introduced the 3'UTR of CPSF6 mRNA into a luciferase reporter and found that miR-125b negatively regulates CPSF6 3'UTR-driven luciferase activity. Accordingly, mutations in the miR-125b seed sequence abrogated the regulatory effect of the miRNA on the CPSF6 3'UTR. Finally, pulldown experiments demonstrated that miR-125b physically interacts with CPSF6 3'UTR. Interestingly, HIV-1 infection down-regulated miR-125b expression concurrent with up-regulation of CPSF6. Notably, miR-125b down-regulation in infected cells was not due to reduced pri-miRNA or pre-miRNA levels. However, miR-125b down-regulation depended on HIV-1 reverse transcription but not viral DNA integration. These findings establish a post-transcriptional mechanism that controls CPSF6 expression and highlight a novel function of miR-125b during HIV-host interaction.
Collapse
Affiliation(s)
- Evan Chaudhuri
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee 37208.,Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Sabyasachi Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee 37208.,Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee 37208.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee 37208.,Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Adrian Padron
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee 37208.,Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee 37208.,School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee 37208
| | - Joseph Holland
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee 37208.,Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Gregory A Sowd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Fernando Villalta
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee 37208.,Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee 37208
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee 37208.,Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee 37208.,School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee 37208
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee 37208 .,Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee 37208.,School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
42
|
Kumar V, Das S, Kumar A, Tiwari N, Kumar A, Abhishek K, Mandal A, Kumar M, Shafi T, Bamra T, Singh RK, Vijayakumar S, Sen A, Das P. Leishmania donovani infection induce differential miRNA expression in CD4+ T cells. Sci Rep 2020; 10:3523. [PMID: 32103111 PMCID: PMC7044172 DOI: 10.1038/s41598-020-60435-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Visceral leishmaniasis is characterized by mixed production of Th1/2 cytokines and the disease is established by an enhanced level of Th2 cytokine. CD4+ T cells are main cell type which produces Th1/2 cytokine in the host upon Leishmania infection. However, the regulatory mechanism for Th1/2 production is not well understood. In this study, we co-cultured mice CD4+ T cells with Leishmania donovani infected and uninfected macrophage for the identification of dysregulated miRNAs in CD4+ T cells by next-generation sequencing. Here, we identified 604 and 613 known miRNAs in CD4+ T cells in control and infected samples respectively and a total of only 503 miRNAs were common in both groups. The expression analysis revealed that 112 miRNAs were up and 96 were down-regulated in infected groups, compared to uninfected control. Nineteen up-regulated and 17 down-regulated miRNAs were statistically significant (p < 0.05), which were validated by qPCR. Further, using insilco approach, we identified the gene targets of significant miRNAs on the basis of CD4+ T cell biology. Eleven up-regulated miRNAs and 9 down-regulated miRNAs were associated with the cellular immune responses and Th1/2 dichotomy upon Leishmania donovani infection. The up-regulated miRNAs targeted transcription factors that promote differentiation of CD4+ T cells towards Th1 phenotype. While down-regulated miRNAs targeted the transcription factors that facilitate differentiation of CD4+ T cells towards Th2 populations. The GO and pathway enrichment analysis also showed that the identified miRNAs target the pathway and genes related to CD4+ T cell biology which plays important role in Leishmania donovani infection.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Neeraj Tiwari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Manjay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Taj Shafi
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Tanvir Bamra
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Rakesh Kumar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saravanan Vijayakumar
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Abhik Sen
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India.
| |
Collapse
|
43
|
Hu S, Li Z, Lan Y, Guan J, Zhao K, Chu D, Fan G, Guo Y, Gao F, He W. MiR-10a-5p-Mediated Syndecan 1 Suppression Restricts Porcine Hemagglutinating Encephalomyelitis Virus Replication. Front Microbiol 2020; 11:105. [PMID: 32153518 PMCID: PMC7044266 DOI: 10.3389/fmicb.2020.00105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/17/2020] [Indexed: 01/23/2023] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a single-stranded RNA coronavirus that causes nervous dysfunction in the infected hosts and leads to widespread alterations in the host transcriptome by modulating specific microRNA (miRNA) levels. MiRNAs contribute to RNA virus pathogenesis by promoting antiviral immune response, enhancing viral replication, or altering miRNA-mediated host gene regulation. Thus, exploration of the virus-miRNA interactions occurring in PHEV-infected host may lead to the identification of novel mechanisms combating the virus life cycle or pathogenesis. Here, we discovered that the expression of miR-10a-5p was constitutively up-regulated by PHEV in both the N2a cells in vitro and mice brain in vivo. Treatment with miR-10a-5p mimics allowed miR-10a-5p enrichment and resulted in a significant restriction in PHEV replication, suggesting widespread negative regulation of the RNA virus infection by miR-10a-5p. The outcomes were also evidenced by miR-10a-5p inhibitor over-expression. Luciferase reporter, quantitative real-time PCR (qRT-PCR), and western blotting analysis further showed that Syndecan 1 (SDC1), a cell surface proteoglycan associated with host defense mechanisms, acts as a target gene of miR-10a-5p during PHEV infection. Naturally, siRNA-mediated knockdown of SDC1 leads to a reduction in viral replication, implying that SDC1 expression is likely a favorable condition for viral replication. Together, the findings demonstrated that the abundant miR-10a-5p leads to downstream suppression of SDC1, and it functions as an antiviral mechanism in the PHEV-induced disease, providing a potential strategy for the prevention and treatment of PHEV infection in the future work.
Collapse
Affiliation(s)
- Shiyu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dianfeng Chu
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Gencheng Fan
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Yuguang Guo
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
44
|
Chandan K, Gupta M, Sarwat M. Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases. Front Immunol 2020; 10:3081. [PMID: 32038627 PMCID: PMC6992578 DOI: 10.3389/fimmu.2019.03081] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are short, endogenously initiated, non-coding RNAs that bind to target mRNAs, leading to the degradation or translational suppression of respective mRNAs. They have been reported as key players in physiological processes like differentiation, cellular proliferation, development, and apoptosis. They have gained importance as gene expression regulators in the immune system. They control antibody production and release various inflammatory mediators. Abnormal expression and functioning of miRNA in the immune system is linked to various diseases like inflammatory disorders, allergic diseases, cancers etc. As compared to the average human genome, miRNA targets the genes of immune system quite differently. miRNA appeared to regulate the responses related to both acquired and innate immunity of the humans. Several miRNAs importantly regulate the transcription and even, dysregulation of inflammation-related mediators. Many miRNAs are either upregulated or downregulated in various inflammatory and infectious diseases. Hence, modifying or targeting the expression of miRNAs might serve as a novel strategy for the diagnosis, prevention, and treatment of various inflammatory and infectious conditions.
Collapse
Affiliation(s)
| | | | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
45
|
Mishra R, Kumar A, Ingle H, Kumar H. The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Front Immunol 2020; 10:3079. [PMID: 32038626 PMCID: PMC6989438 DOI: 10.3389/fimmu.2019.03079] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are short non-coding RNAs that play a crucial role in the regulation of gene expression during cellular processes. The host-encoded miRNAs are known to modulate the antiviral defense during viral infection. In the last decade, multiple DNA and RNA viruses have been shown to produce miRNAs known as viral miRNAs (v-miRNAs) so as to evade the host immune response. In this review, we highlight the origin and biogenesis of viral miRNAs during the viral lifecycle. We also explore the role of viral miRNAs in immune evasion and hence in maintaining chronic infection and disease. Finally, we offer insights into the underexplored role of viral miRNAs as potential targets for developing therapeutics for treating complex viral diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
46
|
MicroRNAs as new immunity regulators in viral and bacterial infections. ACTA BIOLOGICA 2020. [DOI: 10.18276/ab.2020.27-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019; 9:362. [PMID: 31709195 PMCID: PMC6821723 DOI: 10.3389/fcimb.2019.00362] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
48
|
In-Vitro Subtype-Specific Modulation of HIV-1 Trans-Activator of Transcription (Tat) on RNAi Silencing Suppressor Activity and Cell Death. Viruses 2019; 11:v11110976. [PMID: 31652847 PMCID: PMC6893708 DOI: 10.3390/v11110976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a global health concern affecting millions of individuals with a wide variety of currently circulating subtypes affecting various regions of the globe. HIV relies on multiple regulatory proteins to modify the host cell to promote replication in infected T cells, and these regulatory proteins can have subtle phenotypic differences between subtypes. One of these proteins, HIV-1 Trans-Activator of Transcription (Tat), is capable of RNA interference (RNAi) Silencing Suppressor (RSS) activity and induction of cell death in T cells. However, the subtype-specific RSS activity and induction of cell death have not been explored. We investigated the ability of Tat subtypes and variants to induce RSS activity and cell death. TatB, from HIV-1 subtype B, was found to be a potent RSS activator by 40% whereas TatC, from HIV-1 subtype C, showed 15% RSS activity while subtype TatC variants exhibited varying levels. A high level of cell death (50–53%) was induced by subtype TatB when compared to subtype TatC (25–28%) and varying levels were observed with subtype TatC variants. These differential activities could be due to variations in the functional domains of Tat. These observations further our understanding of subtype-specific augmentation of Tat in HIV-1 replication and pathogenesis.
Collapse
|
49
|
Insights into the HIV Latency and the Role of Cytokines. Pathogens 2019; 8:pathogens8030137. [PMID: 31487807 PMCID: PMC6789648 DOI: 10.3390/pathogens8030137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) has the ability to infect latently at the level of individual CD4+ cells. Latent HIV-1 proviruses are transcriptionally silent and immunologically inert, but are still capable of reactivating productive lytic infection following cellular activation. These latent viruses are the main obstacle in the eradication of HIV-1, because current HIV-1 treatment regimens are ineffective against them. Normal immunological response against an antigen activates CD4+ naïve T cells. The activated CD4+ naïve T cells undergo cell cycle, resulting in further transformation and profound proliferation to form effector CD4+ T-cells. Notably, in HIV-1 infected individuals, some of the effector CD4+ T cells get infected with HIV-1. Upon fulfillment of their effector functions, almost all activated CD4+ T cells are committed to apoptosis or programmed cell death, but a miniscule fraction revert to quiescence and become resting memory CD4+ T cells to mediate a rapid immunological response against the same antigen in the future. However, due to the quiescent nature of the resting memory T cells, the integrated HIV-1 becomes transcriptionally silent and acquires a latent phenotype. Following re-exposure to the same antigen, memory cells and integrated HIV-1 are stimulated. The reactivated latent HIV provirus subsequently proceeds through its life cycle and eventually leads to the production of new viral progeny. Recently, many strategies against HIV-1 latency have been developed and some of them have even matured to the clinical level, but none can yet effectively eliminate the latent HIV reservoir, which remains a barrier to HIV-1 cure. Therefore, alternative strategies to eradicate latent HIV need to be considered. This review provides vital knowledge on HIV latency and on strategies to supplement highly active anti-retroviral therapy (HAART) with cytokine-mediated therapeutics for dislodging the latent HIV reservoirs in order to open up new avenues for curing HIV.
Collapse
|
50
|
Balcom EF, Roda WC, Cohen EA, Li MY, Power C. HIV-1 persistence in the central nervous system: viral and host determinants during antiretroviral therapy. Curr Opin Virol 2019; 38:54-62. [PMID: 31390580 DOI: 10.1016/j.coviro.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Despite remarkable therapeutic advances in the past two decades, the elimination of human immunodeficiency virus type 1 (HIV-1) from latent reservoirs constitutes a major barrier to eradication and preventing neurological disease associated with HIV/AIDS. Invasion of the central nervous system (CNS) by HIV-1 occurs early in infection, leading to viral infection and productive persistence in brain macrophage-like cells (BMCs) including resident microglia and infiltrating macrophages. HIV-1 persistence in the brain and chronic neuroinflammation occur despite effective treatment with antiretroviral therapy (ART). This review examines the evidence from clinical studies, in vivo and in vitro models for HIV-1 CNS persistence, as well as therapeutic considerations in targeting latent CNS reservoirs.
Collapse
Affiliation(s)
- E F Balcom
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - W C Roda
- Department of Mathematical & Statistical Sciences, University of Alberta, Edmonton, AB, Canada
| | - E A Cohen
- Departments of Microbiology and Immunology, University of Montreal, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - M Y Li
- Department of Mathematical & Statistical Sciences, University of Alberta, Edmonton, AB, Canada
| | - C Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|