1
|
Kim JJ, Kurial SNT, Choksi PK, Nunez M, Lunow-Luke T, Bartel J, Driscoll J, Her CL, Dhillon S, Yue W, Murti A, Mao T, Ramos JN, Tiyaboonchai A, Grompe M, Mattis AN, Syed SM, Wang BM, Maher JJ, Roll GR, Willenbring H. AAV capsid prioritization in normal and steatotic human livers maintained by machine perfusion. Nat Biotechnol 2025:10.1038/s41587-024-02523-6. [PMID: 39881029 DOI: 10.1038/s41587-024-02523-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice. AAV-LK03 preferentially transduced periportal hepatocytes in normal liver, whereas AAV5 targeted pericentral hepatocytes in steatotic liver. AAV5 and AAV8 transduced liver sinusoidal endothelial cells as efficiently as hepatocytes. AAV capsid and steatosis influenced vector episome formation, which determines gene therapy durability, with AAV5 delaying concatemerization. Our findings inform capsid choice in clinical AAV liver gene therapy, including consideration of disease-relevant hepatocyte zonation and effects of steatosis, and facilitate the development of AAV capsids that transduce hepatocytes or other therapeutically relevant cell types in the human liver with maximum efficiency and specificity.
Collapse
Affiliation(s)
- Jae-Jun Kim
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Simone N T Kurial
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Pervinder K Choksi
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Miguel Nunez
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler Lunow-Luke
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jan Bartel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Driscoll
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Chris L Her
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Simaron Dhillon
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Stone Research Foundation, San Francisco, CA, USA
| | - William Yue
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Abhishek Murti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tin Mao
- Ambys Medicines, South San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Julian N Ramos
- Ambys Medicines, South San Francisco, CA, USA
- Adverum Biotechnologies, Redwood City, CA, USA
| | - Amita Tiyaboonchai
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Aras N Mattis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Shareef M Syed
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce M Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jacquelyn J Maher
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Garrett R Roll
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Holger Willenbring
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Qin W, Wei B, Ren P, Chang Y, Xue C, Tang Q. Fucoidan from Apostichopus japonicus enhances intestinal barrier function and promotes intestinal immunity via regulating the gut microbiota and tryptophan metabolism. Int J Biol Macromol 2025:139929. [PMID: 39826721 DOI: 10.1016/j.ijbiomac.2025.139929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Apostichopus japonicus is one of the most popular types of sea cucumber among consumers in Southeast Asia. Fucoidan from Apostichopus japonicus (Aj-FUC) has attracted considerable attention because of its immunomodulatory activities. Aj-FUC is indigestible in the human upper gastrointestinal tract but can be utilized by the gut microbiota. Thus, we suspect that Aj-FUC interacts with the gut to enhance immune y76kjfunction. This study showed that after a three-week intervention with Aj-FUC (100 mg/kg/d), the gut microbiota in mice developed a new homeostasis. Subsequently, in the condition of intestinal flora homeostasis, the effects of Aj-FUC on intestinal health in normal mice and the prevention of intestinal mucosal damage in cyclophosphamide-induced mice were investigated. Aj-FUC preserved intestinal structural integrity, increased the number of goblet cells, upregulated the expression of ZO-1 and Occludin, stimulated the secretion of sIgA and IgA, and maintained the Th1/Th2 balance. Importantly, beneficial bacteria were enriched, and tryptophan metabolism-related metabolites such as 5-hydroxyindole-3-acetic acid, and indole-3-lactic acid were upregulated following Aj-FUC administration. In summary, a three-week Aj-FUC intervention could result in the formation of a new homeostasis in intestinal flora, while the effect of Aj-FUC on intestinal immunity was related to the regulation of tryptophan metabolism by gut microbiota.
Collapse
Affiliation(s)
- Wanting Qin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Biqian Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
3
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Hendrix EK, Sha J, Kilgore PB, Neil BH, Chopra AK. Combination of live attenuated and adenovirus-based vaccines completely protects interferon gamma (IFNγ) knockout mice against pneumonic plague. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627261. [PMID: 39713400 PMCID: PMC11661069 DOI: 10.1101/2024.12.06.627261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Two live attenuated vaccines (LAVs), LMA and LMP, were evaluated alone or in combination with a trivalent adenoviral vector-based vaccine (Ad5-YFV) for their efficacy and immune responses in wild type (WT) and interferon gamma (IFNγ) knockout (KO) mice in a C57BL/6 background. While LMA and LMP are triple deletion mutants of Yersinia pestis CO92 strain, Ad5-YFV incorporates three protective plague immunogens. An impressive 80-100% protection was observed in all vaccinated animals against highly lethal intranasal challenge doses of parental Y. pestis CO92. All vaccinated mice generated robust humoral and cellular immune responses. The immunized WT mice showed overall better antibody responses in both serum and bronchoalveolar lavage fluid with much higher percentages of polyfunctional T cell populations. On the other hand, vaccinated IFNγ KO mice displayed better B cell activity in germinal centers with higher percentages of activated antigen specific T cells and memory T cells. In addition, depletion of IFNγ and tumor necrosis factor alpha (TNFα) from immunized WT mice prior to and during infection did not reduce protection against pulmonary Y. pestis CO92 challenge. These data demonstrated a dispensable nature of IFNγ in mediating protection by the aforementioned vaccines. This is the first detailed immunogenicity study of two plague LAVs administered either alone or in combination with an Ad5-YFV vaccine in a prime-boost immunization strategy in IFNγ KO mice. Further, by combining advantages of live-attenuated and adenovirus-based vaccines, augmentation of generalized immune responses were observed which could be beneficial in providing long-lasting immunity in the host.
Collapse
|
5
|
Kapic A, Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics. Pharmaceuticals (Basel) 2024; 17:1508. [PMID: 39598420 PMCID: PMC11597337 DOI: 10.3390/ph17111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Although estrogenic compounds promise therapeutic potential in treating various conditions, concerns regarding their endocrine-disrupting effects have been raised. Current methodologies for screening estrogenicity in rodent models are limited to the female-specific uterotrophic bioassay. Studies have reported enlargement of the seminal vesicles in orchiectomized males treated with estrogens. However, identifying estrogenicity strictly through changes in wet weights is uninformative regarding the molecular mechanisms of these agents. Therefore, protein-based biomarkers can complement and improve the sensitivity of weight-based assessments. To this end, we present a discovery-driven proteomic analysis of 17β-estradiol's effects on the seminal vesicles. Methods: We treated orchidectomized mice with the hormone for five days and used the vehicle-treated group as a control. Seminal vesicles were analyzed by shotgun approach using data-dependent nanoflow liquid chromatography-tandem mass spectrometry and label-free quantification. Proteins found to be differentially expressed between the two groups were processed through a bioinformatics pipeline focusing on pathway analyses and assembly of protein interaction networks. Results: Out of 668 identified proteins that passed rigorous validation criteria, 133 were regulated significantly by 17β-estradiol. Ingenuity Pathway Analysis® linked them to several hormone-affected pathways, including those associated with immune function such as neutrophil degranulation. The altered protein interaction networks were also related to functions including endocrine disruption, abnormal metabolism, and therapeutic effects. Conclusions: We identified several potential biomarkers for estrogenicity in mouse seminal vesicles, many of them not previously linked with exogenous 17β-estradiol exposure.
Collapse
Affiliation(s)
| | | | | | | | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (A.K.); (K.Z.); (V.N.); (K.P.-T.)
| |
Collapse
|
6
|
Mbani CJ, Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Moukassa D, Hober D. Enterovirus Antibodies: Friends and Foes. Rev Med Virol 2024; 34:e70004. [PMID: 39505825 DOI: 10.1002/rmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV. However, antibody binding to virions does not always result in viral neutralisation. Non-neutralising antibodies, or sub-neutralising concentrations of antibodies, can enhance infection of viruses, leading to more severe pathologies. This phenomenon, known as antibody-dependent enhancement (ADE) of infection, has been described in vitro and/or in vivo for EV including poliovirus, coxsackievirus B and EV-A71. It has been shown that ADE of EV infection is mediated by FcγRs expressed by monocytes, macrophages, B lymphocytes and granulocytes. Antibodies play a crucial role in the diagnosis and monitoring of infections. They are valuable markers that have been used to establish a link between enteroviral infection and chronic diseases such as type 1 diabetes. Monoclonal and polyclonal antibodies targeting enteroviral proteins have been developed and shown to be effective to prevent or combat EV infections in vitro and in vivo. In addition, vaccines are under development, and clinical trials of vaccines are underway or have been completed, providing hope for the prevention of diseases due to EV. However, the ADE of the infection should be considered in the development of anti-EV antibodies or safe vaccines.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Corentin Morvan
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
7
|
Xu X, Zhang B, Tan M, Fan X, Chen Q, Xu Z, Tang Y, Han L. CLINICAL APPLICATION OF EARLY POSTOPERATIVE NUTRITIONAL SUPPORT IN PATIENTS WITH HIGH-RISK VALVULAR HEART DISEASE. Shock 2024; 62:522-528. [PMID: 39158921 PMCID: PMC11446509 DOI: 10.1097/shk.0000000000002436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
ABSTRACT Background : The treatment strategy of early nutritional support after cardiac surgery has gradually been adopted. However, there are no scientific guidelines for the timing and specific programs of early nutritional support. Methods: A retrospective, single-center analysis (2021-2023) was carried out including elderly patients who were admitted for valvular heart disease and received open-heart valve replacement surgery. We designated patients who started the optimized nutritional support after surgery as the optimized enteral nutritional support strategy TN (EN) group and those who received traditional nutritional support as the traditional nutritional support strategy (TN) group. The nutritional and immune indexes, postoperative complications, length of hospital stay, and hospitalization cost of the two groups were compared and analyzed. Results: We identified 378 eligible patients, comprising 193 (51%) patients in the EN group and 185 (49%) patients in the TN group. There was no significant difference in hospital mortality between the two groups, but the proportion of nosocomial pneumonia was significantly lower in the EN group than in the TN group ( P < 0.001). In the Poisson regression analysis, EN was not associated with an increase in gastrointestinal complications ( P = 0.549). The EN group also seemed to have shorter hospital stays and lower hospitalization expenses ( P < 0.001). In the comparison of postoperative gastrointestinal complications, fewer patients experienced diarrhea ( P = 0.021) and abdominal distension ( P = 0.033) in the EN group compared with the TN group. Conclusion: The optimal nutritional support strategy could effectively improve the clinical outcome of high-risk patients with valvular heart disease.
Collapse
|
8
|
Qi J, Yu B, Hu Y, Luo Y, Zheng P, Mao X, Yu J, Zhao X, He T, Yan H, Wu A, He J. Effect of coated-benzoic acid on growth performance, immunity, and intestinal functions in weaned pigs challenged by enterotoxigenic Escherichia coli. Front Vet Sci 2024; 11:1430696. [PMID: 39351150 PMCID: PMC11439879 DOI: 10.3389/fvets.2024.1430696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Benzoic acid (BA) could be added to the diets of weaned pigs to prevent diarrhea due to its antibacterial function. However, BA may be absorbed or decomposed before it can reach the hindgut. This study was conducted to explore the effect of a novel coated benzoic acid (CBA) on growth performance, immunity, and intestinal barrier functions in weaned pigs upon enterotoxigenic Escherichia coli (ETEC) challenge. Methods In a 21d experiment, 32 piglets were randomly assigned to 4 treatments: (1) a basal diet (CON), (2) CON added with CBA at 3 g/kg (CBA); (3) CON and challenged by ETEC (ECON); (4) CON added with CBA at 3 g/kg and challenged by ETEC (ECON). On d 22, all piglets were euthanised to obtain samples. Results Dietary CBA supplementation elevated the average daily gain (ADG) of the ETEC-challenged pigs (p < 0.05). CBA also improved the digestibility of dry matter, gross energy, and ash (p < 0.05). Moreover, CBA elevated the ratio of blood basophil and the serum concentration of total cholesterol of the ETEC challenged pigs (p < 0.05). Importantly, CBA increased the serum concentrations of immunoglobulin A (IgA), IgG, and IgM (p < 0.05). CBA not only decreased the crypt depth but also increased the ratio of villus height to crypt depth (V:C) in the jejunum and ileum (p < 0.05). Moreover, CBA increased the activities of jejunal and ileal sucrase, and the activities of duodenal and ileal maltase (p < 0.05). Importantly, CBA elevated the expression levels of critical functional genes such as the claudin-1, occluding, glucose transporter-2 (GLUT2), and sodium/glucose cotransporter-1 (SGLT-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). Additionally, CBA increased the abundances of total bacteria and Bacillus, and increased the concentrations of volatile fatty acids (acetic acid, propanoic acid, and butyric acid) in cecum (p < 0.05). Discussion These results suggested a beneficial role for CBA in alleviating intestinal injury in weaned pigs following ETEC challenge. Such effects may be tightly associated with elevated immunity and improved intestinal epithelium functions and microbiota.
Collapse
Affiliation(s)
- Jiawen Qi
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Youjun Hu
- Nuacid Nutrition Co., Ltd, Qingyuan, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | | | - Taiqian He
- Nuacid Nutrition Co., Ltd, Qingyuan, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| |
Collapse
|
9
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
10
|
Byeon S, McKay MJ, Molloy MP, Gill AJ, Samra JS, Mittal A, Sahni S. Novel serum protein biomarker panel for early diagnosis of pancreatic cancer. Int J Cancer 2024; 155:365-371. [PMID: 38519999 DOI: 10.1002/ijc.34928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Late presentation of disease at the time of diagnosis is one of the major reasons for dismal prognostic outcomes for PDAC patients. Currently, there is a lack of clinical biomarkers, which can be used to diagnose PDAC patients at an early resectable stage. This study performed proteomic mass spectrometry to identify novel blood-based biomarkers for early diagnosis of PDAC. Serum specimens from 88 PDAC patients and 88 healthy controls (60 discovery cohort and 28 validation cohort) were analyzed using data independent acquisition high resolution mass spectrometry to identify candidate biomarker proteins. A total of 249 proteins were identified and quantified by the mass spectrometric analysis. Six proteins were markedly (>1.5 fold) and significantly (p < .05; q < 0.1) increased in PDAC patients compared to healthy controls in discovery cohort. Notably, four of these six proteins were significantly upregulated in an independent validation cohort. The top three upregulated proteins (i.e., Polymeric Immunoglobulin Receptor [PIGR], von Willebrand Factor [vWF], and Fibrinogen) were validated using enzyme linked immunosorbent assay, which led to selection of PIGR and vWF as a diagnostic biomarker panel for PDAC. The panel showed high ability to diagnose early stage (stage I and II) PDAC patients (area under the curve [AUC]: 0.8926), which was further improved after the addition of clinically used prognostic biomarker (Ca 19-9) to the panel (AUC: 0.9798). In conclusion, a novel serum protein biomarker panel for early diagnosis of PDAC was identified.
Collapse
Affiliation(s)
- Sooin Byeon
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew J McKay
- Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mark P Molloy
- Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony J Gill
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Jaswinder S Samra
- Australian Pancreatic Centre, St Leonards, Sydney, New South Wales, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, New South Wales, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, New South Wales, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, New South Wales, Australia
- Department of Surgery, The University of Notre Dame Australia, Sydney, New South Wales, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Wang Y, Lih TM, Lee JW, Ohtsuka T, Hozaka Y, Mino-Kenudson M, Adsay NV, Luchini C, Scarpa A, Maker AV, Kim GE, Paulino J, Chen L, Jiao L, Sun Z, Goodman D, Pflüger MJ, Roberts NJ, Matthaei H, Wood LD, Furukawa T, Zhang H, Hruban RH. Multi-omic profiling of intraductal papillary neoplasms of the pancreas reveals distinct expression patterns and potential markers of progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602385. [PMID: 39005476 PMCID: PMC11245086 DOI: 10.1101/2024.07.07.602385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In order to advance our understanding of precancers in the pancreas, 69 pancreatic intraductal papillary neoplasms (IPNs), including 64 intraductal papillary mucinous neoplasms (IPMNs) and 5 intraductal oncocytic papillary neoplasms (IOPNs), 32 pancreatic cyst fluid samples, 104 invasive pancreatic ductal adenocarcinomas (PDACs), 43 normal adjacent tissues (NATs), and 76 macro-dissected normal pancreatic ducts (NDs) were analyzed by mass spectrometry. A total of 10,246 proteins and 22,284 glycopeptides were identified in all tissue samples, and 756 proteins with more than 1.5-fold increase in abundance in IPMNs relative to NDs were identified, 45% of which were also identified in cyst fluids. The over-expression of selected proteins was validated by immunolabeling. Proteins and glycoproteins overexpressed in IPMNs included those involved in glycan biosynthesis and the immune system. In addition, multiomics clustering identified two subtypes of IPMNs. This study provides a foundation for understanding tumor progression and targets for earlier detection and therapies. Significance This multilevel characterization of intraductal papillary neoplasms of the pancreas provides a foundation for understanding the changes in protein and glycoprotein expression during the progression from normal duct to intraductal papillary neoplasm, and to invasive pancreatic carcinoma, providing a foundation for informed approaches to earlier detection and treatment.
Collapse
|
12
|
Laprise F, Arduini A, Duguay M, Pan Q, Liang C. SARS-CoV-2 Accessory Protein ORF8 Targets the Dimeric IgA Receptor pIgR. Viruses 2024; 16:1008. [PMID: 39066171 PMCID: PMC11281603 DOI: 10.3390/v16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
SARS-CoV-2 is a highly pathogenic respiratory virus that successfully initiates and establishes its infection at the respiratory mucosa. However, little is known about how SARS-CoV-2 antagonizes the host's mucosal immunity. Recent findings have shown a marked reduction in the expression of the polymeric Ig receptor (pIgR) in COVID-19 patients. This receptor maintains mucosal homeostasis by transporting the dimeric IgA (dIgA) and pentameric IgM (pIgM) across mucosal epithelial cells to neutralize the invading respiratory pathogens. By studying the interaction between pIgR and SARS-CoV-2 proteins, we discovered that the viral accessory protein Open Reading Frame 8 (ORF8) potently downregulates pIgR expression and that this downregulation activity of ORF8 correlates with its ability to interact with pIgR. Importantly, the ORF8-mediated downregulation of pIgR diminishes the binding of dIgA or pIgM, and the ORF8 proteins of the variants of concern of SARS-CoV-2 preserve the function of downregulating pIgR, indicating the importance of this conserved activity of ORF8 in SARS-CoV-2 pathogenesis. We further observed that the secreted ORF8 binds to cell surface pIgR, but that this interaction does not trigger the cellular internalization of ORF8, which requires the binding of dIgA to pIgR. These findings suggest the role of ORF8 in SARS-CoV-2 mucosal immune evasion.
Collapse
Affiliation(s)
- Frederique Laprise
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Mathew Duguay
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Institut de Recherche Clinique de Montréal, Montreal, QC H2W 1R7, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
13
|
Hong C, Huang Y, Yang G, Wen X, Wang L, Yang X, Gao K, Jiang Z, Xiao H. Maternal resveratrol improves the intestinal health and weight gain of suckling piglets during high summer temperatures: The involvement of exosome-derived microRNAs and immunoglobin in colostrum. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:36-48. [PMID: 38464951 PMCID: PMC10921242 DOI: 10.1016/j.aninu.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Previous studies have shown that maternal resveratrol improved growth performance and altered the microbial composition of suckling piglets under hot summer conditions. However, it remains unclear how maternal resveratrol improves growth performance of suckling piglets during high summer temperatures. A total of 20 sows (Landrace × Large White; three parity) were randomly assigned to 2 groups (with or without 300 mg/kg resveratrol) from d 75 of gestation to d 21 of lactation during high ambient temperatures (from 27 to 30 °C). The results showed that maternal resveratrol supplementation increased total daily weight gain of piglets under hot summer conditions, which is consistent with previous studies. Furthermore, we found that maternal resveratrol improved the intestinal morphology and intestinal epithelial proliferation in suckling piglets. Dietary resveratrol supplementation affected the characteristics of exosome-derived microRNAs (miRNAs) in sow colostrum, as well as the genes targeted by differentially produced miRNAs. MiRNAs are concentrated in the tight junction pathway. As a result, the expression of intestinal tight junction proteins was increased in suckling piglets (P < 0.05). Notably, maternal resveratrol increased the intestinal secretory immunoglobulin A (sIgA) levels of suckling piglets via colostrum immunoglobin (P < 0.05), which could increase the abundance of beneficial microbiota to further increase the concentration of short chain fatty acids (SCFA) in suckling piglets' intestine (P < 0.05). Finally, our correlation analysis further demonstrated the positive associations between significantly differential intestinal microbiota, intestinal sIgA production and SCFA concentrations, as well as the positive relation between total daily weight gain and intestinal health of suckling piglets. Taken together, our findings suggested that maternal resveratrol could promote intestinal health to improve piglet growth during high summer temperatures, which might be associated with the immunoglobin and exosome-derived miRNAs in sows' colostrum.
Collapse
Affiliation(s)
- Changming Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yujian Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiaolu Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Hao Xiao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| |
Collapse
|
14
|
Mandal G, Pradhan S. B cell responses and antibody-based therapeutic perspectives in human cancers. Cancer Rep (Hoboken) 2024; 7:e2056. [PMID: 38522010 PMCID: PMC10961090 DOI: 10.1002/cnr2.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immuno-oncology has been focused on T cell-centric approaches until the field recently started appreciating the importance of tumor-reactive antibody production by tumor-infiltrating plasma B cells, and the necessity of developing novel therapeutic antibodies for the treatment of different cancers. RECENT FINDINGS B lymphocytes often infiltrate solid tumors and the extent of B cell infiltration normally correlates with stronger T cell responses while generating humoral responses against malignant progression by producing tumor antigens-reactive antibodies that bind and coat the tumor cells and promote cytotoxic effector mechanisms, reiterating the fact that the adaptive immune system works by coordinated humoral and cellular immune responses. Isotypes, magnitude, and the effector functions of antibodies produced by the B cells within the tumor environment differ among cancer types. Interestingly, apart from binding with specific tumor antigens, antibodies produced by tumor-infiltrating B cells could bind to some non-specific receptors, peculiarly expressed by cancer cells. Antibody-based immunotherapies have revolutionized the modalities of cancer treatment across the world but are still limited against hematological malignancies and a few types of solid tumor cancers with a restricted number of targets, which necessitates the expansion of the field to have newer effective targeted antibody therapeutics. CONCLUSION Here, we discuss about recent understanding of the protective spontaneous antitumor humoral responses in human cancers, with an emphasis on the advancement and future perspectives of antibody-based immunotherapies in cancer.
Collapse
Affiliation(s)
- Gunjan Mandal
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| | - Suchismita Pradhan
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| |
Collapse
|
15
|
Li Y, Chang RB, Stone ML, Delman D, Markowitz K, Xue Y, Coho H, Herrera VM, Li JH, Zhang L, Choi-Bose S, Giannone M, Shin SM, Coyne EM, Hernandez A, Gross NE, Charmsaz S, Ho WJ, Lee JW, Beatty GL. Multimodal immune phenotyping reveals microbial-T cell interactions that shape pancreatic cancer. Cell Rep Med 2024; 5:101397. [PMID: 38307029 PMCID: PMC10897543 DOI: 10.1016/j.xcrm.2024.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled. Mouse models of pancreatic cancer recapitulate the immune-microbial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched and T cell-poor regions displaying unique bacterial communities that are associated with immunologically active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities differentially influence tumor biology.
Collapse
Affiliation(s)
- Yan Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renee B Chang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Devora Delman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Markowitz
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuqing Xue
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Coho
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronica M Herrera
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey H Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liti Zhang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaanti Choi-Bose
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Giannone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Erin M Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole E Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Mass Cytometry Facility, Johns Hopkins University, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jae W Lee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
McGettigan SE, Aira LE, Kumar G, Ballet R, Butcher EC, Baumgarth N, Debes GF. Secreted IgM modulates IL-10 expression in B cells. Nat Commun 2024; 15:324. [PMID: 38182585 PMCID: PMC10773282 DOI: 10.1038/s41467-023-44382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
IL-10+ B cells are critical for immune homeostasis and restraining immune responses in infection, cancer, and inflammation; however, the signals that govern IL-10+ B cell differentiation are ill-defined. Here we find that IL-10+ B cells expand in mice lacking secreted IgM ((s)IgM-/-) up to 10-fold relative to wildtype (WT) among all major B cell and regulatory B cell subsets. The IL-10+ B cell increase is polyclonal and presents within 24 hours of birth. In WT mice, sIgM is produced prenatally and limits the expansion of IL-10+ B cells. Lack of the high affinity receptor for sIgM, FcμR, in B cells translates into an intermediate IL-10+ B cell phenotype relative to WT or sIgM-/- mice. Our study thus shows that sIgM regulates IL-10 programming in B cells in part via B cell-expressed FcμR, thereby revealing a function of sIgM in regulating immune homeostasis.
Collapse
Affiliation(s)
- Shannon Eileen McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lazaro Emilio Aira
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Romain Ballet
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugene C Butcher
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Dept. Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
Pratscher B, Kuropka B, Csukovich G, Doulidis PG, Spirk K, Kramer N, Freund P, Rodríguez-Rojas A, Burgener IA. Traces of Canine Inflammatory Bowel Disease Reflected by Intestinal Organoids. Int J Mol Sci 2024; 25:576. [PMID: 38203746 PMCID: PMC10778911 DOI: 10.3390/ijms25010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that affects humans and several domestic animal species, including cats and dogs. In this study, we have analyzed duodenal organoids derived from canine IBD patients using quantitative proteomics. Our objective was to investigate whether these organoids show phenotypic traits of the disease compared with control organoids obtained from healthy donors. To this aim, IBD and control organoids were subjected to quantitative proteomics analysis via liquid chromatography-mass spectrometry. The obtained data revealed notable differences between the two groups. The IBD organoids exhibited several alterations at the levels of multiple proteins that are consistent with some known IBD alterations. The observed phenotype in the IBD organoids to some degree mirrors the corresponding intestinal condition, rendering them a compelling approach for investigating the disease and advancing drug exploration. Additionally, our study revealed similarities to some human IBD biomarkers, further emphasizing the translational and comparative value of dogs for future investigations related to the causes and treatment of IBD. Relevant proteins such as CALU, FLNA, MSN and HMGA2, which are related to intestinal diseases, were all upregulated in the IBD duodenal organoids. At the same time, other proteins such as intestinal keratins and the mucosal immunity PIGR were depleted in these IBD organoids. Based on these findings, we propose that these organoids could serve as a valuable tool for evaluating the efficacy of therapeutic interventions against canine IBD.
Collapse
Affiliation(s)
- Barbara Pratscher
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Georg Csukovich
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Pavlos G. Doulidis
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Katrin Spirk
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Nina Kramer
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Patricia Freund
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Alexandro Rodríguez-Rojas
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Iwan A. Burgener
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| |
Collapse
|
18
|
Xu X, Delves PJ, Huang J, Shao W, Qiu X. Comparison of Non B-Ig and B-Ig. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:73-88. [PMID: 38967751 DOI: 10.1007/978-981-97-0511-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Peter J Delves
- Division of Infection and Immunity, Department of Immunology, UCL (University College London), London, UK
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
19
|
Oskam N, den Boer MA, Lukassen MV, Ooijevaar-de Heer P, Veth TS, van Mierlo G, Lai SH, Derksen NIL, Yin V, Streutker M, Franc V, Šiborová M, Damen MJA, Kos D, Barendregt A, Bondt A, van Goudoever JB, de Haas CJC, Aerts PC, Muts RM, Rooijakkers SHM, Vidarsson G, Rispens T, Heck AJR. CD5L is a canonical component of circulatory IgM. Proc Natl Acad Sci U S A 2023; 120:e2311265120. [PMID: 38055740 PMCID: PMC10723121 DOI: 10.1073/pnas.2311265120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L.
Collapse
Affiliation(s)
- Nienke Oskam
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Maurits A. den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marie V. Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Tim S. Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Gerard van Mierlo
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Ninotska I. L. Derksen
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marij Streutker
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marta Šiborová
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Mirjam J. A. Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Dorien Kos
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Johannes B. van Goudoever
- Amsterdam University Medical Center, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam1105 AZ, the Netherlands
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Gestur Vidarsson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| |
Collapse
|
20
|
Elesela S, Arzola-Martínez L, Rasky A, Ptaschinski C, Hogan SP, Lukacs NW. Mucosal IgA immune complex induces immunomodulatory responses in allergic airway and intestinal T H2 disease. J Allergy Clin Immunol 2023; 152:1607-1618.e1. [PMID: 37604310 DOI: 10.1016/j.jaci.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND IgA is the most abundant immunoglobulin at the mucosal surface and although its role in regulating mucosal immunity is not fully understood, its presence is associated with protection from developing allergic disease. OBJECTIVE We sought to determine the role of IgA immune complexes for therapeutic application to mucosal allergic responses. METHODS Trinitrophenol (TNP)-specific IgA immune complexes were applied, using TNP-coupled ovalbumin (OVA), to airway and gut mucosal surfaces in systemically sensitized allergic animals to regulate allergen challenge responses. Animals were assessed for both pathologic and immune-mediated responses in the lung and gut, respectively, using established mouse models. RESULTS The mucosal application of IgA immune complexes in the lung and gut with TNP-OVA regulated TH2-driven allergic response in the lung and gut, reducing TH2 cytokines and mucus (lung) as well as diarrhea and temperature loss (gut), but increasing IL-10 and the number of regulatory T cells. The IgA-OVA immune complex did not alter peanut-induced anaphylaxis, indicating antigen specificity. Using OVA-specific DO.11-green fluorescent protein IL-4 reporter mouse-derived TH2-skewed cells in a transfer model demonstrated that mucosal IgA immune complex treatment reduced TH2-cell expansion and increased the number of regulatory T cells. To address a potential mechanism of action, TGF-β and IL-10 were induced in bone marrow-derived dendritic cells when they were exposed to IgA immune complex, suggesting a regulatory phenotype induced in dendritic cells that also led to an altered primary T-cell-mediated response in in vitro OVA-specific assays. CONCLUSIONS These studies highlight one possible mechanism of how allergen-specific IgA may provide a regulatory signal to reduce the development of allergic responses in the lung and gut.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Llilian Arzola-Martínez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Andrew Rasky
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Simon P Hogan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich.
| |
Collapse
|
21
|
Bharathkar SK, Miller MJ, Stadtmueller BM. Engineered Secretory Immunoglobulin A provides insights on antibody-based effector mechanisms targeting Clostridiodes difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566291. [PMID: 37986930 PMCID: PMC10659285 DOI: 10.1101/2023.11.08.566291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Secretory (S) Immunoglobin (Ig) A is the predominant mucosal antibody, which mediates host interactions with commensal and pathogenic microbes, including Clostridioides difficile. SIgA adopts a polymeric IgA structure that is bound by secretory component (SC). Despite significance, how SIgA supports diverse effector mechanisms is poorly characterized and SIgA-based therapies nonexistent. We engineered chimeric (c) SIgAs, in which we replaced SC domain D2 with a single domain antibody or a monomeric fluorescent protein, allowing us to investigate and enhance SIgA effector mechanisms. cSIgAs exhibited increased neutralization potency against C. difficile toxins, promoted bacterial clumping and cell rupture, and decreased cytotoxicity. cSIgA also allowed us to visualize and/or quantify C. difficile morphological changes and clumping events. Results reveal mechanisms by which SIgA combats C. difficile infection, demonstrate that cSIgA design can modulate these mechanisms, and demonstrate cSIgA's adaptability to modifications that might target a broad range of antigens and effector mechanisms.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Michael J. Miller
- Carle R. Woese Institute of Genomic Biology
- Department of food science and Human Nutrition, University of Illinois Urbana-Champaign, Illinois 61801 USA
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carle R. Woese Institute of Genomic Biology
| |
Collapse
|
22
|
Hendrikx T, Lang S, Rajcic D, Wang Y, McArdle S, Kim K, Mikulski Z, Schnabl B. Hepatic pIgR-mediated secretion of IgA limits bacterial translocation and prevents ethanol-induced liver disease in mice. Gut 2023; 72:1959-1970. [PMID: 36690432 PMCID: PMC10841342 DOI: 10.1136/gutjnl-2022-328265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Alcohol-associated liver disease is accompanied by microbial dysbiosis, increased intestinal permeability and hepatic exposure to translocated microbial products that contribute to disease progression. A key strategy to generate immune protection against invading pathogens is the secretion of IgA in the gut. Intestinal IgA levels depend on the polymeric immunoglobulin receptor (pIgR), which transports IgA across the epithelial barrier into the intestinal lumen and hepatic canaliculi. Here, we aimed to address the function of pIgR during ethanol-induced liver disease. DESIGN pIgR and IgA were assessed in livers from patients with alcohol-associated hepatitis and controls. Wild-type and pIgR-deficient (pIgR-/- ) littermates were subjected to the chronic-binge (NIAAA model) and Lieber-DeCarli feeding model for 8 weeks. Hepatic pIgR re-expression was established in pIgR-/- mice using adeno-associated virus serotype 8 (AAV8)-mediated pIgR expression in hepatocytes. RESULTS Livers of patients with alcohol-associated hepatitis demonstrated an increased colocalisation of pIgR and IgA within canaliculi and apical poles of hepatocytes. pIgR-deficient mice developed increased liver injury, steatosis and inflammation after ethanol feeding compared with wild-type littermates. Furthermore, mice lacking pIgR demonstrated increased plasma lipopolysaccharide levels and more hepatic bacteria, indicating elevated bacterial translocation. Treatment with non-absorbable antibiotics prevented ethanol-induced liver disease in pIgR-/- mice. Injection of AAV8 expressing pIgR into pIgR-/- mice prior to ethanol feeding increased intestinal IgA levels and ameliorated ethanol-induced steatohepatitis compared with pIgR-/- mice injected with control-AAV8 by reducing bacterial translocation. CONCLUSION Our results highlight that dysfunctional hepatic pIgR enhances alcohol-associated liver disease due to impaired antimicrobial defence by IgA in the gut.
Collapse
Affiliation(s)
- Tim Hendrikx
- Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Sonja Lang
- University Hospital of Cologne, Clinic for Gastroenterology and Hepatology, Cologne, Germany
| | - Dragana Rajcic
- Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Yanhan Wang
- Medicine, University of California, La Jolla, California, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Bernd Schnabl
- Medicine, University of California, La Jolla, California, USA
| |
Collapse
|
23
|
Bernard-Raichon L, Cadwell K. Immunomodulation by Enteric Viruses. Annu Rev Virol 2023; 10:477-502. [PMID: 37380186 DOI: 10.1146/annurev-virology-111821-112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Cell Biology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine; Department of Systems Pharmacology and Translational Therapeutics; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
24
|
Thesbjerg MN, Nielsen SDH, Sundekilde UK, Poulsen NA, Larsen LB. Fingerprinting of Proteases, Protease Inhibitors and Indigenous Peptides in Human Milk. Nutrients 2023; 15:4169. [PMID: 37836453 PMCID: PMC10574734 DOI: 10.3390/nu15194169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The presence of proteases and their resulting level of activity on human milk (HM) proteins may aid in the generation of indigenous peptides as part of a pre-digestion process, of which some have potential bioactivity for the infant. The present study investigated the relative abundance of indigenous peptides and their cleavage products in relation to the abundance of observed proteases and protease inhibitors. The proteomes and peptidomes in twelve HM samples, representing six donors at lactation months 1 and 3, were profiled. In the proteome, 39 proteases and 29 protease inhibitors were identified in 2/3 of the samples. Cathepsin D was found to be present in higher abundance in the proteome compared with plasmin, while peptides originating from plasmin cleavage were more abundant than peptides from cathepsin D cleavage. As both proteases are present as a system of pro- and active- forms, their activation indexes were calculated. Plasmin was more active in lactation month 3 than month 1, which correlated with the total relative abundance of the cleavage product ascribed to plasmin. By searching the identified indigenous peptides in the milk bioactive peptide database, 283 peptides were ascribed to 10 groups of bioactivities. Antimicrobial peptides were significantly more abundant in month 1 than month 3; this group comprised 103 peptides, originating from the β-CN C-terminal region.
Collapse
Affiliation(s)
- Martin Nørmark Thesbjerg
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Søren Drud-Heydary Nielsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
| | - Ulrik Kræmer Sundekilde
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
| | - Nina Aagaard Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
| | - Lotte Bach Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
| |
Collapse
|
25
|
Bamias G, Kitsou K, Rivera-Nieves J. The Underappreciated Role of Secretory IgA in IBD. Inflamm Bowel Dis 2023; 29:1327-1341. [PMID: 36943800 PMCID: PMC10393212 DOI: 10.1093/ibd/izad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 03/23/2023]
Abstract
Eighty percent of antibody secreting cells (ASCs) are found in the intestine, where they produce grams of immunoglobulin (Ig) A daily. immunoglobulin A is actively transcytosed into the lumen, where it plays a critical role in modulating the gut microbiota. Although loss of immune tolerance to bacterial antigens is the likely trigger of the dysregulated immune response that characterizes inflammatory bowel disease (IBD), little effort has been placed on understanding the interface between B cells, IgA, and the microbiota during initiation or progression of disease. This may be in part due to the misleading fact that IgA-deficient humans are mostly asymptomatic, likely due to redundant role of secretory (S) IgM. Intestinal B cell recruitment is critically dependent on integrin α4β7-MAdCAM-1 interactions, yet antibodies that target α4β7 (ie, vedolizumab), MAdCAM-1 (ie, ontamalimab), or both β7 integrins (α4β7 and αE [CD103] β7; etrolizumab) are in clinical use or development as IBD therapeutics. The effect of such interventions on the biology of IgA is largely unknown, yet a single dose of vedolizumab lowers SIgA levels in stool and weakens the oral immunization response to cholera vaccine in healthy volunteers. Thus, it is critical to further understand the role of these integrins for the migration of ASC and other cellular subsets during homeostasis and IBD-associated inflammation and the mode of action of drugs that interfere with this traffic. We have recently identified a subset of mature ASC that employs integrin αEβ7 to dock with intestinal epithelial cells, predominantly in the pericryptal region of the terminal ileum. This role for the integrin had not been appreciated previously, nor the αEβ7-dependent mechanism of IgA transcytosis that it supports. Furthermore, we find that B cells more than T cells are critically dependent on α4β7-MAdCAM-1 interactions; thus MAdCAM-1 blockade and integrin-β7 deficiency counterintuitively hasten colitis in interleukin-10-deficient mice. In both cases, de novo recruitment of IgA ASC to the intestinal lamina propria is compromised, leading to bacterial overgrowth, dysbiosis, and lethal colitis. Thus, despite the safe and effective use of anti-integrin antibodies in patients with IBD, much remains to be learned about their various cell targets.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Konstantina Kitsou
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Jesús Rivera-Nieves
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Grancieri M, Viana ML, de Oliveira DF, Vaz Tostes MDG, Costa Ignacchiti MD, Costa AGV, Brunoro Costa NM. Yacon ( Smallanthus sonchifolius) Flour Reduces Inflammation and Had No Effects on Oxidative Stress and Endotoxemia in Wistar Rats with Induced Colorectal Carcinogenesis. Nutrients 2023; 15:3281. [PMID: 37513699 PMCID: PMC10383765 DOI: 10.3390/nu15143281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer has a high worldwide incidence. The aim of this study was to determine the effect of yacon flour (YF) on oxidative stress, inflammation, and endotoxemia in rats with induced colorectal cancer (CRC). The Wistar male rats were divided and kept for 8 weeks in four groups: S (basal diet, n = 10), Y (YF flour + basal diet, n = 10), C (CRC-induced control + basal diet, n = 12), CY (CRC-induced animals + YF, n = 12). CRC was induced by intraperitoneal injections of 1,2-dimethylhydrazine (25 mg/kg body weight). Groups Y and CY received 7.5% of the prebiotic FOS from YF. The treatment with YF increased fecal secretory immunoglobulin A levels and decreased lipopolysaccharides, tumor necrosis factor alpha and interleukin-12. However, no effect was observed on the oxidative stress by the total antioxidant capacity of plasma, anion superoxide, and nitric oxide analysis of the animals (p < 0.05). The short-chain fatty acids acetate, propionate, and butyrate showed interactions with NF-κB, TLR4, iNOS, and NADPH oxidase by in silico analysis and had a correlation (by the Person analysis) with CRC markers. The yacon flour treatment reduced the inflammation in rats with induced CRC, and could be a promising food to reduce the damages caused by colorectal cancer.
Collapse
Affiliation(s)
- Mariana Grancieri
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Mirelle Lomar Viana
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Daniela Furtado de Oliveira
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Maria das Graças Vaz Tostes
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Mariana Drummond Costa Ignacchiti
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| |
Collapse
|
27
|
Toyama S, Honda T, Iwabuchi S, Hashimoto S, Yamaji K, Tokunaga Y, Matsumoto Y, Kawaji H, Miyazaki T, Kikkawa Y, Kohara M. Application of spatial transcriptomics analysis using the Visium system for the mouse nasal cavity after intranasal vaccination. Front Immunol 2023; 14:1209945. [PMID: 37545501 PMCID: PMC10403337 DOI: 10.3389/fimmu.2023.1209945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Intranasal vaccines that elicit mucosal immunity are deemed effective against respiratory tract infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but their ability to induce humoral immunity characterized by immunoglobulin A (IgA) and IgG production is low. It has been reported that vaccination with a mixture of a viscous base carboxyvinyl polymer (CVP) and viral antigens induced robust systemic and mucosal immune responses. In this study, we analyzed the behavior of immunocompetent cells in the nasal cavity over time by spatial transcriptome profiling induced immediately after antigen vaccination using CVP. We established a method for performing spatial transcriptomics using the Visium system in the mouse nasal cavity and analyzed gene expression profiles within the nasal cavity after intranasal vaccination. Glycoprotein 2 (Gp2)-, SRY-box transcription factor 8 (Sox8)-, or Spi-B transcription factor (Spib)-expressing cells were increased in the nasal passage (NP) region at 3-6 hr after SARS-CoV-2 spike protein and CVP (S-CVP) vaccination. The results suggested that microfold (M) cells are activated within a short period of time (3-6 hr). Subsequent cluster analysis of cells in the nasal cavity showed an increase in Cluster 9 at 3-6 hr after intranasal vaccination with the S-CVP. We found that Il6 in Cluster 9 had the highest log2 fold values within the NP at 3-6 hr. A search for gene expression patterns similar to that of Il6 revealed that the log2 fold values of Edn2, Ccl20, and Hk2 also increased in the nasal cavity after 3-6 hr. The results showed that the early response of immune cells occurred immediately after intranasal vaccination. In this study, we identified changes in gene expression that contribute to the activation of M cells and immunocompetent cells after intranasal vaccination of mice with antigen-CVP using a time-series analysis of spatial transcriptomics data. The results facilitated the identification of the cell types that are activated during the initial induction of nasal mucosal immunity.
Collapse
Affiliation(s)
- Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yusuke Matsumoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hideya Kawaji
- Research Center for Genome and Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Miyazaki
- Business Management Department, Toko Yakuhin Kogyo Co., Ltd., Toyama, Japan
| | - Yoshiaki Kikkawa
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Deafness Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
28
|
Nandanpawar P, Sahoo L, Sahoo B, Murmu K, Chaudhari A, Pavan kumar A, Das P. Identification of differentially expressed genes and SNPs linked to harvest body weight of genetically improved rohu carp, Labeo rohita. Front Genet 2023; 14:1153911. [PMID: 37359361 PMCID: PMC10285081 DOI: 10.3389/fgene.2023.1153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In most of the aquaculture selection programs, harvest body weight has been a preferred performance trait for improvement. Molecular interplay of genes linked to higher body weight is not elucidated in major carp species. The genetically improved rohu carp with 18% average genetic gain per generation with respect to harvest body weight is a promising candidate for studying genes' underlying performance traits. In the present study, muscle transcriptome sequencing of two groups of individuals, with significant difference in breeding value, belonging to the tenth generation of rohu carp was performed using the Illumina HiSeq 2000 platform. A total of 178 million paired-end raw reads were generated to give rise to 173 million reads after quality control and trimming. The genome-guided transcriptome assembly and differential gene expression produced 11,86,119 transcripts and 451 upregulated and 181 downregulated differentially expressed genes (DEGs) between high-breeding value and low-breeding value (HB & LB) groups, respectively. Similarly, 39,158 high-quality coding SNPs were identified with the Ts/Tv ratio of 1.23. Out of a total of 17 qPCR-validated transcripts, eight were associated with cellular growth and proliferation and harbored 13 SNPs. The gene expression pattern was observed to be positively correlated with RNA-seq data for genes such as myogenic factor 6, titin isoform X11, IGF-1 like, acetyl-CoA, and thyroid receptor hormone beta. A total of 26 miRNA target interactions were also identified to be associated with significant DETs (p-value < 0.05). Genes such as Myo6, IGF-1-like, and acetyl-CoA linked to higher harvest body weight may serve as candidate genes in marker-assisted breeding and SNP array construction for genome-wide association studies and genomic selection.
Collapse
Affiliation(s)
- P. Nandanpawar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - L. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - B. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K. Murmu
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - A. Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - A. Pavan kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - P. Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
29
|
Boero E, Vezzani G, Micoli F, Pizza M, Rossi O. Functional assays to evaluate antibody-mediated responses against Shigella: a review. Front Cell Infect Microbiol 2023; 13:1171213. [PMID: 37260708 PMCID: PMC10227456 DOI: 10.3389/fcimb.2023.1171213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.
Collapse
Affiliation(s)
- Elena Boero
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
30
|
Update on the Pathogenesis of the Hirschsprung-Associated Enterocolitis. Int J Mol Sci 2023; 24:ijms24054602. [PMID: 36902033 PMCID: PMC10003052 DOI: 10.3390/ijms24054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Despite the significant progress that has been made in terms of understanding the pathophysiology and risk factors of Hirschsprung-associated enterocolitis (HAEC), the morbidity rate has remained unsatisfactorily stable, and clinical management of the condition continues to be challenging. Therefore, in the present literature review, we summarized the up-to-date advances that have been made regarding basic research on the pathogenesis of HAEC. Original articles published between August 2013 and October 2022 were searched in a number of databases, including PubMed, Web of Science, and Scopus. The keywords "Hirschsprung enterocolitis", "Hirschsprung's enterocolitis", "Hirschsprung's-associated enterocolitis", and "Hirschsprung-associated enterocolitis" were selected and reviewed. A total of 50 eligible articles were obtained. The latest findings of these research articles were grouped into gene, microbiome, barrier function, enteric nervous system, and immune state categories. The present review concludes that HAEC is shown to be a multifactorial clinical syndrome. Only deep insights into this syndrome, with an accrual of knowledge in terms of understanding its pathogenesis, will elicit the necessary changes that are required for managing this disease.
Collapse
|
31
|
Castillo-Lopez E, Pacífico C, Sener-Aydemir A, Hummel K, Nöbauer K, Ricci S, Rivera-Chacon R, Reisinger N, Razzazi-Fazeli E, Zebeli Q, Kreuzer-Redmer S. Diet and phytogenic supplementation substantially modulate the salivary proteome in dairy cows. J Proteomics 2023; 273:104795. [PMID: 36535624 DOI: 10.1016/j.jprot.2022.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Phytogenic compounds may influence salivation or salivary properties. However, their effects on the bovine salivary proteome have not been evaluated. We investigated changes in the bovine salivary proteome due to transition from forage to high-concentrate diet, with and without supplementation with a phytogenic feed additive. Eight non-lactating cows were fed forage, then transitioned to a 65% concentrate diet (DM basis) over a week. Cows were control (n = 4, CON) or supplemented with a phytogenic feed additive (n = 4, PHY). Proteomic analysis was conducted using liquid chromatography coupled with mass spectrometry. We identified 1233 proteins; 878 were bovine proteins, 189 corresponded to bacteria, and 166 were plant proteins. Between forage and high-concentrate, 139 proteins were differentially abundant (P < 0.05), with 48 proteins having a log2FC difference > |2|. The salivary proteome reflected shifts in processes involving nutrient utilization, body tissue accretion, and immune response. Between PHY and CON, 195 proteins were differently abundant (P < 0.05), with 37 having a log2FC difference > |2|; 86 proteins were increased by PHY, including proteins involved in smell recognition. Many differentially abundant proteins correlated (r > |0.70|) with salivary bicarbonate, total mucins or pH. Results provide novel insights into the bovine salivary proteome using a non-invasive approach, and the association of specific proteins with major salivary properties influencing rumen homeostasis. SIGNIFICANCE: Phytogenic compounds may stimulate salivation due to their olfactory properties, but their effects on the salivary proteome have not been investigated. We investigated the effect of high-concentrate diets and supplementation with a phytogenic additive on the salivary proteome of cows. We show that analysis of cows' saliva can be a non-invasive approach to detect effects occurring not only in the gut, but also systemically including indications for gut health and immune response. Thus, results provide unique insights into the bovine salivary proteome, and will have a crucial contribution to further understand animal response in terms of nutrient utilization and immune activity due to the change from forage to a high-energy diet. Additionally, our findings reveal changes due to supplementation with a phytogenic feed additive with regard to health and olfactory stimulation. Furthermore, findings suggest an association between salivary proteins and other components like bicarbonate content.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria.
| | - Cátia Pacífico
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Karin Hummel
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Katharina Nöbauer
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Sara Ricci
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Raul Rivera-Chacon
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | | | - Ebrahim Razzazi-Fazeli
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Qendrim Zebeli
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Nutrigenomics Unit, Vienna, Austria.
| |
Collapse
|
32
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
33
|
Rajput P, Aryal UK, Bhide K, Minor RC, Krishnamurthy S, Casey TM. Characterization of sow milk N-linked glycoproteome over the course of lactation. J Anim Sci 2023; 101:skac426. [PMID: 36585837 PMCID: PMC9940737 DOI: 10.1093/jas/skac426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Milk proteins serve as nutrition and affect neonate development and immunity through their bioactivity. Post-translational modifications of proteins affect their bioactivity. Glycosylation is the attachment of sugar moieties to proteins, with attachment of glycans to asparagine indicated as N-linked glycosylation. Our objective was to characterize N-linked glycosylated proteins in homogenate swine milk samples collected from sows (n = 5/6) during farrowing to represent colostrum and on days 3 and 14 post-farrowing to represent transitional and mature milk, respectively. Glycopeptides were isolated with lectin-based extraction and treated with Peptide N-glycosidase F (PNGase F) to identify N-linked glycosylation sites. Purified glycopeptides were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant software was used to align spectra to Sus scrofa Uniport database to identify proteins and measure their relative abundances. Analysis of variance and Welch's t-test analysis identified glycoproteins differentially abundant between colostrum, transitional, and mature milk (false discovery rate <0.05). Shotgun proteome analysis identified 545 N-linked and glutamine, Q, -linked, glycosylation (P > 0.75 for deamidation) sites on 220 glycoproteins in sow milk. Glycoproteins were found across all three phases of swine milk production and varied by number of glycosylation sites (1-14) and in abundance and distribution between colostrum, transitional, and mature milk. Polymeric immunoglobulin receptor was the most glycosylated protein with 14 sites identified. Also highly glycosylated were casein and mucin proteins. These data are described and the relevance of glycosylated milk proteins in neonate development, such as protection against pathogens, is discussed.
Collapse
Affiliation(s)
- Prabha Rajput
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Uma K Aryal
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Radiah C Minor
- Department of Animal Sciences, North Carolina A&T University, Greensboro, NC, USA
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Theresa M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
34
|
Yang D, Hu X, Li H, Xu W, Wu T, Chen J. Molecular cloning and characteristic analysis of polymeric immunoglobulin receptor-like (plgRL) in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108503. [PMID: 36581255 DOI: 10.1016/j.fsi.2022.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the polyimmunoglobulin receptor-like (pIgRL) of large yellow croaker (Larimichthys crocea) was first cloned and characterized. LcpIgRL's full-length cDNA was 1610 bp, encoding 377 amino acids, and the protein's predicted molecular weight was 41.9 kDa, containing two immunoglobulin-like structural domains. The transcript levels of LcpIgRL in different tissues of healthy large yellow croaker were examined by real-time fluorescence quantitative PCR, and the results showed that the gills and head kidney had the highest levels. Within 36 h of the large yellow croaker being infected with Vibrio harveyi, pIgRL mRNA first increased and then decreased in all determined tissues, with the highest expression in the skin and hindgut. Furthermore, a recombinant protein of the extracellular region of LcpIgRL was expressed in E. coli BL21, and a murine rLcpIgRL polyclonal antibody was prepared, which could react specifically with the natural LcpIgRL in skin mucus, but no natural LcpIgRL was detected in serum. Meanwhile, it was found that the rLcpIgRL could bind to the recombinant IgM and the natural IgM, indicating that LcpIgRL could mediate the transport of IgM in mucus. In addition, rLcpIgRL binds to Aeromonas hydrophila and V. harveyi, as well as lipopolysaccharide (LPS) and various saccharides, and reduced binding to bacteria was observed under LPS treatment, suggesting that LcpIgRL can bind to bacteria to prevent infection and that saccharide binding is an important mechanism of interaction between pIgRL and bacteria.
Collapse
Affiliation(s)
- Du Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Wenlong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ting Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
35
|
Prior exposure to B. pertussis shapes the mucosal antibody response to acellular pertussis booster vaccination. Nat Commun 2022; 13:7429. [PMID: 36460655 PMCID: PMC9716536 DOI: 10.1038/s41467-022-35165-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Bordetella pertussis (Bp), the causative agent of pertussis, continues to circulate despite widespread vaccination programs. An important question is whether and how (sub)clinical infections shape immune memory to Bp, particularly in populations primed with acellular pertussis vaccines (aP). Here, we examine the prevalence of mucosal antibodies against non-vaccine antigens in aP-primed children and adolescents of the BERT study (NCT03697798), using antibody binding to a Bp mutant strain lacking aP antigens (Bp_mut). Our study identifies increased levels of mucosal IgG and IgA binding to Bp_mut in older aP-primed individuals, suggesting different Bp exposure between aP-primed birth cohorts, in line with pertussis disease incidence data. To examine whether Bp exposure influences vaccination responses, we measured mucosal antibody responses to aP booster vaccination as a secondary study outcome. Although booster vaccination induces significant increases in mucosal antibodies to Bp in both cohorts, the older age group that had higher baseline antibodies to Bp_ mut shows increased persistence of antibodies after vaccination.
Collapse
|
36
|
Zheng H, Zhang C, Wang Q, Feng S, Fang Y, Zhang S. The impact of aging on intestinal mucosal immune function and clinical applications. Front Immunol 2022; 13:1029948. [PMID: 36524122 PMCID: PMC9745321 DOI: 10.3389/fimmu.2022.1029948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Immune cells and immune molecules in the intestinal mucosa participate in innate and adaptive immunity to maintain local and systematic homeostasis. With aging, intestinal mucosal immune dysfunction will promote the emergence of age-associated diseases. Although there have been a number of studies on the impact of aging on systemic immunity, relatively fewer studies have been conducted on the impact of aging on the intestinal mucosal immune system. In this review, we will briefly introduce the impact of aging on the intestinal mucosal barrier, the impact of aging on intestinal immune cells as well as immune molecules, and the process of interaction between intestinal mucosal immunity and gut microbiota during aging. After that we will discuss potential strategies to slow down intestinal aging in the elderly.
Collapse
Affiliation(s)
- Han Zheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianqian Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyan Feng
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Shuo Zhang,
| |
Collapse
|
37
|
Miao Y, Zhang Q, Yuan Z, Wang J, Xu Y, Chai Y, Du M, Yu Q, Zhang L, Jiang Z. Proteomics analysis reveals novel insights into the mechanism of hepatotoxicity induced by Tripterygium wilfordii multiglycoside in mice. Front Pharmacol 2022; 13:1032741. [DOI: 10.3389/fphar.2022.1032741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Tripterygium wilfordii multiglycoside (GTW), extracted and purified from the peeled roots of T. wilfordii Hook.f. (TwHF), is a well-known traditional Chinese medicine and applied to various autoimmune diseases clinically. However, it has been reported to cause severe liver injury. At present, the mechanism underlying GTW-induced hepatotoxicity remain poorly defined. Here, we evaluated the effects of GTW on mouse liver and elucidated the associated mechanisms via label-free proteomics combined with bioinformatics analysis. Male C57BL/6J mice were randomly divided into normal group, a low-dose GTW (70 mg/kg) group and a high-dose GTW (140 mg/kg) group. After 1-week administration, GTW dose-dependently induced hepatotoxicity. Further analysis showed that GTW could act on the intestinal immune network for IgA production pathway, which plays an important role in maintaining intestinal homeostasis and influences the crosstalk between gut and liver. Western blots confirmed that GTW could decrease pIgR protein expression in the liver and ileum, and, as a result, the secretion of IgA into gut lumen was reduced. Further validation showed that intestinal barrier integrity was impaired in GTW-treated mice, promoting bacteria transferring to the liver and triggering proinflammatory response. Our study demonstrated that gut-liver axis may play a vital part in the progression of GTW-induced hepatotoxicity, which provides guidance for basic research and clinical application of GTW.
Collapse
|
38
|
Chen Q, Menon R, Calder LJ, Tolar P, Rosenthal PB. Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer. Nat Commun 2022; 13:6314. [PMID: 36274064 PMCID: PMC9588798 DOI: 10.1038/s41467-022-34090-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Immunoglobulin M (IgM) is the most ancient of the five isotypes of immunoglobulin (Ig) molecules and serves as the first line of defence against pathogens. Here, we use cryo-EM to image the structure of the human full-length IgM pentamer, revealing antigen binding domains flexibly attached to the asymmetric and rigid core formed by the Cμ4 and Cμ3 constant regions and the J-chain. A hinge is located at the Cμ3/Cμ2 domain interface, allowing Fabs and Cμ2 to pivot as a unit both in-plane and out-of-plane. This motion is different from that observed in IgG and IgA, where the two Fab arms are able to swing independently. A biased orientation of one pair of Fab arms results from asymmetry in the constant domain (Cμ3) at the IgM subunit interacting most extensively with the J-chain. This may influence the multi-valent binding to surface-associated antigens and complement pathway activation. By comparison, the structure of the Fc fragment in the IgM monomer is similar to that of the pentamer, but is more dynamic in the Cμ4 domain.
Collapse
Affiliation(s)
- Qu Chen
- grid.451388.30000 0004 1795 1830Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Rajesh Menon
- grid.451388.30000 0004 1795 1830Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Lesley J. Calder
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,Institute of Immunity and Transplantation, University College London, Rowland Hill Street, London, NW3 2PP, UK.
| | - Peter B. Rosenthal
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| |
Collapse
|
39
|
Harnessing Nasal Immunity with IgA to Prevent Respiratory Infections. IMMUNO 2022. [DOI: 10.3390/immuno2040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The nasal cavity is a primary checkpoint for the invasion of respiratory pathogens. Numerous pathogens, including SARS-CoV-2, S. pneumoniae, S. aureus, etc., can adhere/colonize nasal lining to trigger an infection. Secretory IgA (sIgA) serves as the first line of immune defense against foreign pathogens. sIgA facilitates clearance of pathogenic microbes by intercepting their access to epithelial receptors and mucus entrapment through immune exclusion. Elevated levels of neutralizing IgA at the mucosal surfaces are associated with a high level of protection following intranasal immunizations. This review summarizes recent advances in intranasal vaccination technology and challenges in maintaining nominal IgA levels at the mucosal surface. Overall, the review emphasizes the significance of IgA-mediated nasal immunity, which holds a tremendous potential to mount protection against respiratory pathogens.
Collapse
|
40
|
Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9309327. [PMID: 36246396 PMCID: PMC9568330 DOI: 10.1155/2022/9309327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Tissue and organ ischemia can lead to cell trauma, tissue necrosis, irreversible damage, and death. While intended to reverse ischemia, reperfusion can further aggravate an ischemic injury (ischemia-reperfusion injury, I/R injury) through a range of pathologic processes. An I/R injury to one organ can also harm other organs, leading to systemic multiorgan failure. A type of carotenoid, lycopene, has been shown to treat and prevent many diseases (e.g., rheumatoid arthritis, cancer, diabetes, osteoporosis, male infertility, neurodegenerative diseases, and cardiovascular disease), making it a hot research topic in health care. Some recent researches have suggested that lycopene can evidently ameliorate ischemic and I/R injuries to many organs, but few clinical studies are available. Therefore, it is essential to review the effects of lycopene on ischemic and I/R injuries to different organs, which may help further research into its potential clinical applications.
Collapse
|
41
|
Research Progress on the Therapeutic Effect of Polysaccharides on Non-Alcoholic Fatty Liver Disease through the Regulation of the Gut–Liver Axis. Int J Mol Sci 2022; 23:ijms231911710. [PMID: 36233011 PMCID: PMC9570256 DOI: 10.3390/ijms231911710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting global public health at present, which can induce cirrhosis and liver cancer in serious cases. However, NAFLD is a multifactorial disease, and there is still a lack of research on its mechanism and therapeutic strategy. With the development of the gut–liver axis theory, the association between the gut–liver axis and the pathogenesis of NAFLD has been gradually disclosed. Polysaccharides, as a kind of natural product, have the advantages of low toxicity, multi-target and multi-pathway action. It has been reported that polysaccharides can affect the gut–liver axis at multiple interrelated levels, such as maintaining the ecological balance of gut microbiota (GM), regulating the metabolites of GM and improving the intestinal barrier function, which thereby plays a protective role in NAFLD. These studies have great scientific significance in understanding NAFLD based on the gut–liver axis and developing safe and effective medical treatments. Herein, we reviewed the recent progress of polysaccharides in improving nonalcoholic fatty liver disease (NAFLD) through the gut–liver axis.
Collapse
|
42
|
Teng Z, Meng LY, Yang JK, He Z, Chen XG, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J Control Release 2022; 351:456-475. [PMID: 36174803 DOI: 10.1016/j.jconrel.2022.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Vaccination is an urgently needed and effective option to address epidemic, cancers, allergies, and other diseases. Nasal administration of vaccines offers many benefits over needle-based injection including high compliance and less risk of infection. Inactivated or attenuated vaccines as convention vaccine present potential risks of pathogenic virulence reversal, the focus of nasal vaccine development has shifted to the use of next-generation (subunit and nucleic acid) vaccines. However, subunit and nucleic acid vaccine intranasally have numerous challenges in development and utilization due to mucociliary clearance, mucosal epithelial tight junction, and enzyme/pH degradation. Nanoplatforms as ideal delivery systems, with the ability to enhance the retention, penetration, and uptake of nasal mucosa, shows great potential in improving immunogenic efficacy of nasal vaccine. This review provides an overview of delivery strategies for overcoming nasal barrier, including mucosal adhesion, mucus penetration, targeting of antigen presenting cells (APCs), enhancement of paracellular transportation. We discuss methods of enhancing antigen immunogenicity by nanoplatforms as immune-modulators or multi-antigen co-delivery. Meanwhile, we describe the application status and development prospect of nanoplatforms for nasal vaccine administration. Development of nanoplatforms for vaccine delivery via nasal route will facilitate large-scale and faster global vaccination, helping to address the threat of epidemics.
Collapse
Affiliation(s)
- Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ling-Yang Meng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
43
|
Remoroza CA, Burke MC, Yang X, Sheetlin S, Mirokhin Y, Markey SP, Tchekhovskoi DV, Stein SE. Mass Spectral Library Methods for Analysis of Site-Specific N-Glycosylation: Application to Human Milk Proteins. J Proteome Res 2022; 21:2421-2434. [DOI: 10.1021/acs.jproteome.2c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Concepcion A. Remoroza
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Meghan C. Burke
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Xiaoyu Yang
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Sergey Sheetlin
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Yuri Mirokhin
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Sanford P. Markey
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Dmitrii V. Tchekhovskoi
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Stephen E. Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
44
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
45
|
Jiang Z, Zhang N, Ji H, Zhu M, Zhou M, Dong J. Correlation between serum immunoglobulin levels and retinal structure in patients with newly diagnosed Vogt‑Koyanagi‑Harada disease. Mol Med Rep 2022; 26:291. [PMID: 35904174 PMCID: PMC9366149 DOI: 10.3892/mmr.2022.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulins serve immunomodulatory roles in numerous autoimmune diseases. The aim of the present study was to investigate the correlations between serum Ig levels and retinal structural parameters in patients with newly diagnosed acute Vogt‑Koyanagi‑Harada (VKH) disease. A total of 138 participants were enrolled and the foveal thickness (FT), serous retinal detachment (SRD), sensory retinal thickness, central FT (CFT), cube volume (V) and cube average thickness (AT) were assessed by optical coherence tomography. The patients were divided, according to the extent of SRD, into a high‑detachment group (>500 µm) and a low‑detachment group (≤500 µm). Rate‑scattering turbidimetry was performed to measure the Ig levels. The high‑detachment group comprised 51 (36.96%) patients. The proportion of males was significantly greater in the high‑detachment group compared with the low‑detachment group (58.82 vs. 40.23%; P<0.05) and best‑corrected visual acuity was significantly worse in the high‑detachment group compared with the low‑detachment group (P<0.001). The IgE levels in the high‑detachment group were significantly greater compared with the low‑detachment group (P<0.05). FT, SRD, CFT, V and AT were significantly greater in the high‑detachment group compared with the low‑detachment group (P<0.001). The IgE levels were positively associated with SRD, CFT and AT (P<0.05). Multivariate binary logistic regression analysis demonstrated that male sex (B=2.447; P<0.05) and serum IgE levels (B=0.997, P<0.05) may be independent risk factors for severe SRD. The results of the present study demonstrated that males are more likely to develop severe SRD and that serum IgE levels were associated with the extent of detachment. These data suggested that IgE may be involved in the progression of VKH disease.
Collapse
Affiliation(s)
- Zhijian Jiang
- Department of Ophthalmology, Shanghai Xuhui Central Hospital, Shanghai 200031, P.R. China
| | - Nan Zhang
- Department of Ophthalmology, Shanghai Xuhui Central Hospital, Shanghai 200031, P.R. China
| | - Huiying Ji
- Department of Laboratory, Shanghai Xuhui Central Hospital, Shanghai 200031, P.R. China
| | - Maoli Zhu
- Department of Ophthalmology, Shanghai Xuhui Central Hospital, Shanghai 200031, P.R. China
| | - Min Zhou
- Department of Ophthalmology, Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Jianhong Dong
- Department of Ophthalmology, Shanghai Xuhui Central Hospital, Shanghai 200031, P.R. China
| |
Collapse
|
46
|
Kummerlowe C, Mwakamui S, Hughes TK, Mulugeta N, Mudenda V, Besa E, Zyambo K, Shay JES, Fleming I, Vukovic M, Doran BA, Aicher TP, Wadsworth MH, Bramante JT, Uchida AM, Fardoos R, Asowata OE, Herbert N, Yilmaz ÖH, Kløverpris HN, Garber JJ, Ordovas-Montanes J, Gartner Z, Wallach T, Shalek AK, Kelly P. Single-cell profiling of environmental enteropathy reveals signatures of epithelial remodeling and immune activation. Sci Transl Med 2022; 14:eabi8633. [PMID: 36044598 PMCID: PMC9594855 DOI: 10.1126/scitranslmed.abi8633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Environmental enteropathy (EE) is a subclinical condition of the small intestine that is highly prevalent in low- and middle-income countries. It is thought to be a key contributing factor to childhood malnutrition, growth stunting, and diminished oral vaccine responses. Although EE has been shown to be the by-product of a recurrent enteric infection, its full pathophysiology remains unclear. Here, we mapped the cellular and molecular correlates of EE by performing high-throughput, single-cell RNA-sequencing on 33 small intestinal biopsies from 11 adults with EE in Lusaka, Zambia (eight HIV-negative and three HIV-positive), six adults without EE in Boston, United States, and two adults in Durban, South Africa, which we complemented with published data from three additional individuals from the same clinical site. We analyzed previously defined bulk-transcriptomic signatures of reduced villus height and decreased microbial translocation in EE and showed that these signatures may be driven by an increased abundance of surface mucosal cells-a gastric-like subset previously implicated in epithelial repair in the gastrointestinal tract. In addition, we determined cell subsets whose fractional abundances associate with EE severity, small intestinal region, and HIV infection. Furthermore, by comparing duodenal EE samples with those from three control cohorts, we identified dysregulated WNT and MAPK signaling in the EE epithelium and increased proinflammatory cytokine gene expression in a T cell subset highly expressing a transcriptional signature of tissue-resident memory cells in the EE cohort. Together, our work elucidates epithelial and immune correlates of EE and nominates cellular and molecular targets for intervention.
Collapse
Affiliation(s)
- Conner Kummerlowe
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Simutanyi Mwakamui
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Travis K. Hughes
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Nolawit Mulugeta
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Victor Mudenda
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Ellen Besa
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Kanekwa Zyambo
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Jessica E. S. Shay
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Ira Fleming
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marko Vukovic
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ben A. Doran
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
| | - Toby P. Aicher
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marc H. Wadsworth
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Amiko M. Uchida
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Cancer Immunology and Virology, Dana Farber Cancer Institute; Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School; Boston MA, 02115, USA
| | - Rabiah Fardoos
- Africa Health Research Institute, Durban, 4001, South Africa
| | | | | | - Ömer H. Yilmaz
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Pathology, MGH, Harvard Medical School, Boston, MA, 02115, USA
| | | | - John J. Garber
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School; Boston MA, 02115, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Program in Immunology, Harvard Medical School; Boston, MA, 02115, USA
- Harvard Stem Cell Institute; Cambridge, MA, 02138, USA
| | - Zev Gartner
- University of California San Francisco; San Francisco, CA, 94185 USA
| | - Thomas Wallach
- SUNY Downstate Health Sciences University; Department of Pediatrics, Brooklyn, NY, 11203, USA
| | - Alex K. Shalek
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Pathology, MGH, Harvard Medical School, Boston, MA, 02115, USA
- Program in Immunology, Harvard Medical School; Boston, MA, 02115, USA
| | - Paul Kelly
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114, USA
- Blizard Institute, Queen Mary University of London; London E1 2AT, United Kingdom
| |
Collapse
|
47
|
Recent progress in application of nanovaccines for enhancing mucosal immune responses. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Transcytosis of IgA Attenuates Salmonella Invasion in Human Enteroids and Intestinal Organoids. Infect Immun 2022; 90:e0004122. [PMID: 35579465 DOI: 10.1128/iai.00041-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretory IgA (SIgA) is the most abundant antibody type in intestinal secretions where it contributes to safeguarding the epithelium from invasive pathogens like the Gram-negative bacterium, Salmonella enterica serovar Typhimurium (STm). For example, we recently reported that passive oral administration of the recombinant monoclonal SIgA antibody, Sal4, to mice promotes STm agglutination in the intestinal lumen and restricts bacterial invasion of Peyer's patch tissues. In this report, we sought to recapitulate Sal4-mediated protection against STm in human Enteroids and human intestinal organoids (HIOs) as models to decipher the molecular mechanisms by which antibodies function in mucosal immunity in the human gastrointestinal tract. We confirm that Enteroids and HIO-derived monolayers are permissive to STm infection, dependent on HilD, the master transcriptional regulator of the SPI-I type three secretion system (T3SS). Stimulation of M-like cells in both Enteroids and HIOs by the addition of RANKL further enhanced STm invasion. The apical addition of Sal4 mouse IgA, as well as recombinant human Sal4 dimeric IgA (dIgA) and SIgA resulted a dose-dependent reduction in bacterial invasion. Moreover, basolateral application of Sal4 dIgA to Enteroid and HIO monolayers gave rise to SIgA in the apical compartment via a pathway dependent on expression of the polymeric immunoglobulin receptor (pIgR). The resulting Sal4 SIgA was sufficient to reduce STm invasion of Enteroid and HIO epithelial cell monolayers by ~20-fold. Recombinant Sal4 IgG was also transported in the Enteroid and HIOs, but to a lesser degree and via a pathway dependent on the neonatal Fc receptor (FCGRT). The models described lay the foundation for future studies into detailed mechanisms of IgA and IgG protection against STm and other pathogens.
Collapse
|
49
|
The STING Ligand and Delivery System Synergistically Enhance the Immunogenicity of an Intranasal Spike SARS-CoV-2 Vaccine Candidate. Biomedicines 2022; 10:biomedicines10051142. [PMID: 35625879 PMCID: PMC9138454 DOI: 10.3390/biomedicines10051142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
The respiratory organ serves as a primary target site for SARS-CoV-2. Thus, the vaccine-stimulating immune response of the respiratory tract is significant in controlling SARS-CoV-2 transmission and disease development. In this study, mucoadhesive nanoparticles were used to deliver SARS-CoV-2 spike proteins (S-NPs) into the nasal tracts of mice. The responses in the respiratory organ and the systemic responses were monitored. The administration of S-NPs along with cGAMP conferred a robust stimulation of antibody responses in the respiratory tract, as demonstrated by an increase of IgA and IgG antibodies toward the spike proteins in bronchoalveolar lavages (BALs) and the lungs. Interestingly, the elicited antibodies were able to neutralize both the wild-type and Delta variant strains of SARS-CoV-2. Significantly, the intranasal immunization also stimulated systemic responses. This is evidenced by the increased production of circulating IgG and IgA, which were able to neutralize and bind specifically to the SARS-CoV-2 virion and spike protein. Additionally, this intranasal administration potently activated a splenic T cell response and the production of Th-1 cytokines, suggesting that this vaccine may well activate a cellular response in the respiratory tract. The results demonstrate that STING agonist strongly acts as an adjuvant to the immunogenicity of S-NPs. This platform may be an ideal vaccine against SARS-CoV-2.
Collapse
|
50
|
D’Amato M, Vertui V, Pandolfi L, Bozzini S, Fossali T, Colombo R, Aliberti A, Fumagalli M, Iadarola P, Didò C, Viglio S, Meloni F. Investigating the Link between Alpha-1 Antitrypsin and Human Neutrophil Elastase in Bronchoalveolar Lavage Fluid of COVID-19 Patients. Curr Issues Mol Biol 2022; 44:2122-2138. [PMID: 35678672 PMCID: PMC9164061 DOI: 10.3390/cimb44050143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022] Open
Abstract
Neutrophils play a pathogenic role in COVID-19 by releasing Neutrophils Extracellular Traps (NETs) or human neutrophil elastase (HNE). Given that HNE is inhibited by α1-antitrypsin (AAT), we aimed to assess the content of HNE, α1-antitrypsin (AAT) and HNE-AAT complexes (the AAT/HNE balance) in 33 bronchoalveolar lavage fluid (BALf) samples from COVID-19 patients. These samples were submitted for Gel-Electrophoresis, Western Blot and ELISA, and proteins (bound to AAT or HNE) were identified by Liquid Chromatography-Mass Spectrometry. NETs' release was analyzed by confocal microscopy. Both HNE and AAT were clearly detectable in BALf at high levels. Contrary to what was previously observed in other settings, the formation of HNE-AAT complex was not detected in COVID-19. Rather, HNE was found to be bound to acute phase proteins, histones and C3. Due to the relevant role of NETs, we assessed the ability of free AAT to bind to histones. While confirming this binding, AAT was not able to inhibit NET formation. In conclusion, despite the finding of a high burden of free and bound HNE, the lack of the HNE-AAT inhibitory complex in COVID-19 BALf demonstrates that AAT is not able to block HNE activity. Furthermore, while binding to histones, AAT does not prevent NET formation nor their noxious activity.
Collapse
Affiliation(s)
- Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Valentina Vertui
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (V.V.); (L.P.); (C.D.); (F.M.)
| | - Laura Pandolfi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (V.V.); (L.P.); (C.D.); (F.M.)
| | - Sara Bozzini
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20121 Milan, Italy; (T.F.); (R.C.)
| | - Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20121 Milan, Italy; (T.F.); (R.C.)
| | - Anna Aliberti
- Division of Anesthesiology and Intensive Care 1, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Marco Fumagalli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.F.); (P.I.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.F.); (P.I.)
| | - Camilla Didò
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (V.V.); (L.P.); (C.D.); (F.M.)
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Federica Meloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (V.V.); (L.P.); (C.D.); (F.M.)
- Transplant Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|