1
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
2
|
Wang L, Zhao H, Wang Z, Ding S, Qin L, Jiang R, Deng X, He Z, Li L. An Evolutionary Perspective of Codon Usage Pattern, Dinucleotide Composition and Codon Pair Bias in Prunus Necrotic Ringspot Virus. Genes (Basel) 2023; 14:1712. [PMID: 37761852 PMCID: PMC10530913 DOI: 10.3390/genes14091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Prunus necrotic ringspot virus (PNRSV) is a significant virus of ornamental plants and fruit trees. It is essential to study this virus due to its impact on the horticultural industry. Several studies on PNRSV diversity and phytosanitary detection technology were reported, but the content on the codon usage bias (CUB), dinucleotide preference and codon pair bias (CPB) of PNRSV is still uncertain. We performed comprehensive analyses on a dataset consisting of 359 coat protein (CP) gene sequences in PNRSV to examine the characteristics of CUB, dinucleotide composition, and CPB. The CUB analysis of PNRSV CP sequences showed that it was not only affected by natural selection, but also affected by mutations, and natural selection played a more significant role compared to mutations as the driving force. The dinucleotide composition analysis showed an over-expression of the CpC/GpA dinucleotides and an under-expression of the UpA/GpC dinucleotides. The dinucleotide composition of the PNRSV CP gene showed a weak association with the viral lineages and hosts, but a strong association with viral codon positions. Furthermore, the CPB of PNRSV CP gene is low and is related to dinucleotide preference and codon usage patterns. This research provides reference for future research on PNRSV genetic diversity and gene evolution mechanism.
Collapse
Affiliation(s)
- Lingqi Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.W.); (S.D.); (L.Q.); (R.J.); (X.D.)
| | - Haiting Zhao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.W.); (S.D.); (L.Q.); (R.J.); (X.D.)
| | - Zhilei Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.W.); (S.D.); (L.Q.); (R.J.); (X.D.)
| | - Shiwen Ding
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.W.); (S.D.); (L.Q.); (R.J.); (X.D.)
| | - Lang Qin
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.W.); (S.D.); (L.Q.); (R.J.); (X.D.)
| | - Runzhou Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.W.); (S.D.); (L.Q.); (R.J.); (X.D.)
| | - Xiaolong Deng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.W.); (S.D.); (L.Q.); (R.J.); (X.D.)
| | - Zhen He
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.W.); (S.D.); (L.Q.); (R.J.); (X.D.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Sreenivasan CC, Liu R, Gao R, Guo Y, Hause BM, Thomas M, Naveed A, Clement T, Rausch D, Christopher-Hennings J, Nelson E, Druce J, Zhao M, Kaushik RS, Li Q, Sheng Z, Wang D, Li F. Influenza C and D Viruses Demonstrated a Differential Respiratory Tissue Tropism in a Comparative Pathogenesis Study in Guinea Pigs. J Virol 2023; 97:e0035623. [PMID: 37199648 PMCID: PMC10308911 DOI: 10.1128/jvi.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Yicheng Guo
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ahsan Naveed
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Travis Clement
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Dana Rausch
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Julian Druce
- Virology Section, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Miaoyun Zhao
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Dan Wang
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Feng Li
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Wang C, Wu W, Pang Z, Liu J, Qiu J, Luan T, Deng J, Fang Z. Polystyrene microplastics significantly facilitate influenza A virus infection of host cells. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130617. [PMID: 36623344 DOI: 10.1016/j.jhazmat.2022.130617] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are emerging pollutants which exist in various environments and pose a potential threat to human health. However, the effect of MP on respiratory pathogens-infected organisms is unknown. In order to explore the effect of MP on respiratory pathogen infection, we studied the effect of polystyrene microplastics (PS) on influenza A virus (IAV)-infected A549 cells. Western blot, qPCR, and viral plaque assay demonstrated that PS could promote IAV infection. Further study by bioluminescence imaging showed that a large number of IAV could be enriched on PS and entered cells through endocytosis. Meanwhile, the expression of IFITM3 in cells was significantly reduced. In addition, our results showed that PS down-regulated IRF3 and its active form P-IRF3 by down-regulating RIG-I and inhibiting TBK1 phosphorylation activation, which then significantly reduced IFN-β expression and affected the cellular innate antiviral immune system. Taken together, our results indicate the potential threat of MPs to respiratory diseases caused by IAV and provide new insights into human health protection.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Wenjiao Wu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Zefen Pang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Jiaxin Liu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Jianxiang Qiu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory 7 (Rongjiang Laboratory), Jieyang 515200, Guangdong, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China.
| | - Zhixin Fang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China.
| |
Collapse
|
5
|
Qin L, Ding S, Wang Z, Jiang R, He Z. Host Plants Shape the Codon Usage Pattern of Turnip Mosaic Virus. Viruses 2022; 14:v14102267. [PMID: 36298822 PMCID: PMC9607058 DOI: 10.3390/v14102267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Turnip mosaic virus (TuMV), an important pathogen that causes mosaic diseases in vegetable crops worldwide, belongs to the genus Potyvirus of the family Potyviridae. Previously, the areas of genetic variation, population structure, timescale, and migration of TuMV have been well studied. However, the codon usage pattern and host adaptation analysis of TuMV is unclear. Here, compositional bias and codon usage of TuMV were performed using 184 non-recombinant sequences. We found a relatively stable change existed in genomic composition and a slightly lower codon usage choice displayed in TuMV protein-coding sequences. Statistical analysis presented that the codon usage patterns of TuMV protein-coding sequences were mainly affected by natural selection and mutation pressure, and natural selection was the key influencing factor. The codon adaptation index (CAI) and relative codon deoptimization index (RCDI) revealed that TuMV genes were strongly adapted to Brassica oleracea from the present data. Similarity index (SiD) analysis also indicated that B. oleracea is potentially the preferred host of TuMV. Our study provides the first insights for assessing the codon usage bias of TuMV based on complete genomes and will provide better advice for future research on TuMV origins and evolution patterns.
Collapse
Affiliation(s)
- Lang Qin
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
| | - Shiwen Ding
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
| | - Zhilei Wang
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
| | - Runzhou Jiang
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
| | - Zhen He
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
6
|
He Z, Qin L, Xu X, Ding S. Evolution and host adaptability of plant RNA viruses: Research insights on compositional biases. Comput Struct Biotechnol J 2022; 20:2600-2610. [PMID: 35685354 PMCID: PMC9160401 DOI: 10.1016/j.csbj.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023] Open
Abstract
During recent decades, many new emerging or re-emerging RNA viruses have been found in plants through the development of deep-sequencing technology and big data analysis. These findings largely changed our understanding of the origin, evolution and host range of plant RNA viruses. There is evidence that their genetic composition originates from viruses, and host populations play a key role in the evolution and host adaptability of plant RNA viruses. In this mini-review, we describe the state of our understanding of the evolution of plant RNA viruses in view of compositional biases and explore how they adapt to the host. It appears that adenine rich (A-rich) coding sequences, low CpG and UpA dinucleotide frequencies and lower codon usage patterns were found in the vast majority of plant RNA viruses. The codon usage pattern of plant RNA viruses was influenced by both natural selection and mutation pressure, and natural selection mostly from hosts was the dominant factor. The codon adaptation analyses support that plant RNA viruses probably evolved a dynamic balance between codon adaptation and deoptimization to maintain efficient replication cycles in multiple hosts with various codon usage patterns. In the future, additional combinations of computational and experimental analyses of the nucleotide composition and codon usage of plant RNA viruses should be addressed.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
- Corresponding author.
| | - Lang Qin
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Xiaowei Xu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Shiwen Ding
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
7
|
Daniels RS, Galiano M, Ermetal B, Kwong J, Lau CS, Xiang Z, McCauley JW, Lo J. Temporal and Gene Reassortment Analysis of Influenza C Virus Outbreaks in Hong Kong, SAR, China. J Virol 2022; 96:e0192821. [PMID: 34787455 PMCID: PMC8826914 DOI: 10.1128/jvi.01928-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.
Collapse
Affiliation(s)
- Rodney S. Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Monica Galiano
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Jasmine Kwong
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Chi S. Lau
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Zheng Xiang
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - John W. McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
8
|
Chiem K, Nogales A, Martinez-Sobrido L. Generation, Characterization, and Applications of Influenza A Reporter Viruses. Methods Mol Biol 2022; 2524:249-268. [PMID: 35821477 DOI: 10.1007/978-1-0716-2453-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Secondary experimental procedures such as immunostaining have been utilized to study wild-type influenza A viruses (IAV) but are inadequate to rapidly determine the virus in infected cells or for the high-throughput screening (HTS) of antivirals or neutralizing antibodies. Reverse genetics approaches have allowed the generation of recombinant IAV expressing bioluminescent (BL) reporters or fluorescent proteins (FPs). These approaches can easily track viral infections in cultured cells and in validated animal models of infection using in vivo imaging systems (IVIS). Here, we describe the experimental procedures to generate recombinant monomeric (m)Cherry-expressing influenza A/Puerto Rico/8/34 (PR8-mCherry) H1N1 by altering the non-structural (NS) vRNA segment and its use in mCherry-based microneutralization assays to assess antivirals and neutralizing antibodies. The experimental procedures could be used for the generation of other recombinant influenza virus types (e.g., influenza B) or IAV subtypes (e.g., H3N2) expressing mCherry or other BL reporters or FPs from the NS or other vRNA segment. These recombinant reporter-expressing viruses represent an excellent toolbox for the identification of prophylactics or therapeutics for the treatment of influenza viral infections in HTS settings as well as to study different aspects related with the biology of influenza viruses and/or its interaction with the host.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Aitor Nogales
- Center for Animal Health Research, INIA-CISA/CSIC, Madrid, Spain.
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, TX, USA.
- Department of Internal Research, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
9
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|
10
|
Liu W, Li J, Du H, Ou Z. Mutation Profiles, Glycosylation Site Distribution and Codon Usage Bias of Human Papillomavirus Type 16. Viruses 2021; 13:v13071281. [PMID: 34209097 PMCID: PMC8310365 DOI: 10.3390/v13071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) is the most prevalent HPV type causing cervical cancers. Herein, using 1597 full genomes, we systemically investigated the mutation profiles, surface protein glycosylation sites and the codon usage bias (CUB) of HPV16 from different lineages and sublineages. Multiple lineage- or sublineage-conserved mutation sites were identified. Glycosylation analysis showed that HPV16 lineage D contained the highest number of different glycosylation sites from lineage A in both L1 and L2 capsid proteins, which might lead to their antigenic distances between the two lineages. CUB analysis showed that the HPV16 open reading frames (ORFs) preferred codons ending with A/T. The CUB of HPV16 ORFs was mainly affected by natural selection except for E1, E5 and L2. HPV16 only shared some of the preferred codons with humans, which might help reduce competition in translational resources. These findings increase our understanding of the heterogeneity between HPV16 lineages and sublineages, and the adaptation mechanism of HPV in human cells. In summary, this study might facilitate HPV classification and improve vaccine development and application.
Collapse
Affiliation(s)
- Wei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Junhua Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
| | - Zhihua Ou
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
- Correspondence: ; Tel.: +86-134-3428-7879
| |
Collapse
|
11
|
Huang W, Guo Y, Li N, Feng Y, Xiao L. Codon usage analysis of zoonotic coronaviruses reveals lower adaptation to humans by SARS-CoV-2. INFECTION GENETICS AND EVOLUTION 2021; 89:104736. [PMID: 33516969 PMCID: PMC7843097 DOI: 10.1016/j.meegid.2021.104736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Since 2002, the world has witnessed major outbreaks of acute respiratory illness by three zoonotic coronaviruses (CoVs), which differ from each other in pathogenicity. Reasons for the lower pathogenicity of SARS-CoV-2 than the other two zoonotic coronaviruses, SARS-CoV and MERS-CoV, are not well understood. We herein compared the codon usage patterns of the three zoonotic CoVs causing severe acute respiratory syndromes and four human-specific CoVs (NL63, 229E, OC43, and HKU1) causing mild diseases. We found that the seven viruses have different codon usages, with SARS-CoV-2 having the lowest effective number of codons (ENC) among the zoonotic CoVs. Human codon adaptation index (CAI) analysis revealed that the CAI value of SARS-CoV-2 is the lowest among the zoonotic CoVs. The ENC and CAI values of SARS-CoV-2 were more similar to those of the less-pathogenic human-specific CoVs. To further investigate adaptive evolution within SARS-CoV-2, we examined codon usage patterns in 3573 genomes of SARS-CoV-2 collected over the initial 4 months of the pandemic. We showed that the ENC values and the CAI values of SARS-CoV-2 were decreasing over the period. The low ENC and CAI values could be responsible for the lower pathogenicity of SARS-CoV-2. While mutational pressure appears to shape codon adaptation in the overall genomes of SARS-CoV-2 and other zoonotic CoVs, the E gene of SARS-CoV-2, which has the highest codon usage bias, appears to be under strong natural selection. Data from the study contribute to our understanding of the pathogenicity and evolution of SARS-CoV-2 in humans.
Collapse
Affiliation(s)
- Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
12
|
He Z, Dong Z, Qin L, Gan H. Phylodynamics and Codon Usage Pattern Analysis of Broad Bean Wilt Virus 2. Viruses 2021; 13:v13020198. [PMID: 33525612 PMCID: PMC7912035 DOI: 10.3390/v13020198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Broad bean wilt virus 2 (BBWV-2), which belongs to the genus Fabavirus of the family Secoviridae, is an important pathogen that causes damage to broad bean, pepper, yam, spinach and other economically important ornamental and horticultural crops worldwide. Previously, only limited reports have shown the genetic variation of BBWV2. Meanwhile, the detailed evolutionary changes, synonymous codon usage bias and host adaptation of this virus are largely unclear. Here, we performed comprehensive analyses of the phylodynamics, reassortment, composition bias and codon usage pattern of BBWV2 using forty-two complete genome sequences of BBWV-2 isolates together with two other full-length RNA1 sequences and six full-length RNA2 sequences. Both recombination and reassortment had a significant influence on the genomic evolution of BBWV2. Through phylogenetic analysis we detected three and four lineages based on the ORF1 and ORF2 nonrecombinant sequences, respectively. The evolutionary rates of the two BBWV2 ORF coding sequences were 8.895 × 10−4 and 4.560 × 10−4 subs/site/year, respectively. We found a relatively conserved and stable genomic composition with a lower codon usage choice in the two BBWV2 protein coding sequences. ENC-plot and neutrality plot analyses showed that natural selection is the key factor shaping the codon usage pattern of BBWV2. Strong correlations between BBWV2 and broad bean and pepper were observed from similarity index (SiD), codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analyses. Our study is the first to evaluate the phylodynamics, codon usage patterns and adaptive evolution of a fabavirus, and our results may be useful for the understanding of the origin of this virus.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.D.); (L.Q.); (H.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zhuozhuo Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.D.); (L.Q.); (H.G.)
| | - Lang Qin
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.D.); (L.Q.); (H.G.)
| | - Haifeng Gan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.D.); (L.Q.); (H.G.)
| |
Collapse
|
13
|
He Z, Dong Z, Gan H. Comprehensive codon usage analysis of rice black-streaked dwarf virus based on P8 and P10 protein coding sequences. INFECTION GENETICS AND EVOLUTION 2020; 86:104601. [PMID: 33122052 DOI: 10.1016/j.meegid.2020.104601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus of the family Reoviridae and is an important pathogen that damages rice, maize and wheat worldwide. Previously, several reports have described the genetic variation and population structure of RBSDV. However, the details of the evolutionary changes, synonymous codon usage patterns and host adaptation of the virus are largely unclear. Here, we performed a detailed analysis of the codon usage and host adaptability of RBSDV based on 130 full-length P8 and 234 full-length P10 sequences. Infrequent recombination and frequent segment reassortment influence the genomic evolution of RBSDV. Our phylogenetic analysis found three and four lineages based on the P8 and P10 non-recombinant sequences respectively. We found relatively stable and conserved genomic composition with lower codon usage choice in the RBSDV P8 and P10 protein coding sequences. Both ENC-plot and neutrality-plot analyses showed that natural selection is the key factor that shapes the codon usage pattern of RBSDV. Codon adaptation index (CAI), relative codon deoptimization index (RCDI) and similarity index (SiD) analyses indicated strong correlation between RBSDV and rice rather than maize, wheat or Laodelphax striatellus. Our study provides deep insight into the evaluation of the codon usage pattern and adaptive evolution of RBSDV based on P8 and P10 sequences and should be taken into consideration for the prevention and control of this virus.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Zhuozhuo Dong
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China
| | - Haifeng Gan
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China
| |
Collapse
|
14
|
Daniels RS, Tse H, Ermetal B, Xiang Z, Jackson DJ, Guntoro J, Nicod J, Stewart A, Cross KJ, Hussain S, McCauley JW, Lo J. Molecular Characterization of Influenza C Viruses from Outbreaks in Hong Kong SAR, China. J Virol 2020; 94:e01051-20. [PMID: 32817211 PMCID: PMC7565627 DOI: 10.1128/jvi.01051-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Substitution
- Child
- Child, Preschool
- Disease Outbreaks
- Epidemiological Monitoring
- Female
- Gene Expression
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- High-Throughput Nucleotide Sequencing
- Hong Kong/epidemiology
- Humans
- Infant
- Influenza, Human/epidemiology
- Influenza, Human/pathology
- Influenza, Human/virology
- Gammainfluenzavirus/enzymology
- Gammainfluenzavirus/genetics
- Male
- Middle Aged
- Models, Molecular
- Molecular Epidemiology
- Mutation
- Phylogeny
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Retrospective Studies
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rodney S Daniels
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Herman Tse
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Burcu Ermetal
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Zheng Xiang
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Deborah J Jackson
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jeremy Guntoro
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jérôme Nicod
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Karen J Cross
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Saira Hussain
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
15
|
Sun J, Zhao W, Wang R, Zhang W, Li G, Lu M, Shao Y, Yang Y, Wang N, Gao Q, Su S. Analysis of the Codon Usage Pattern of HA and NA Genes of H7N9 Influenza A Virus. Int J Mol Sci 2020; 21:ijms21197129. [PMID: 32992529 PMCID: PMC7583936 DOI: 10.3390/ijms21197129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
Novel H7N9 influenza virus transmitted from birds to human and, since March 2013, it has caused five epidemic waves in China. Although the evolution of H7N9 viruses has been investigated, the evolutionary changes associated with codon usage are still unclear. Herein, the codon usage pattern of two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), was studied to understand the evolutionary changes in relation to host, epidemic wave, and pathogenicity. Both genes displayed a low codon usage bias, with HA higher than NA. The codon usage was driven by mutation pressure and natural selection, although the main contributing factor was natural selection. Additionally, the codon adaptation index (CAI) and deoptimization (RCDI) illustrated the strong adaptability of H7N9 to Gallus gallus. Similarity index (SiD) analysis showed that Homo sapiens posed a stronger selection pressure than Gallus gallus. Thus, we assume that this may be related to the gradual adaptability of the virus to human. In addition, the host strong selection pressure was validated based on CpG dinucleotide content. In conclusion, this study analyzed the usage of codons of two genes of H7N9 and expanded our understanding of H7N9 host specificity. This aids into the development of control measures against H7N9 influenza virus.
Collapse
|
16
|
Codon usage bias in the H gene of canine distemper virus. Microb Pathog 2020; 149:104511. [PMID: 32961282 DOI: 10.1016/j.micpath.2020.104511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Canine distemper virus (CDV), a non-segmented single negative-stranded RNA (ssRNA), is the etiological agent of canine distemper. Canine distemper is a highly contagious and lethal viral disease in domestic dogs and wild carnivores. Study of the evolution of CDV presents an essential key to improve the vaccine efficacy. In this study, a total of 328 full-length CDV hemagglutinin (H) gene sequences were subjected to phylogenetic, amino acid mutations, and codon usage analysis. In accordance with previous study, CDV genotypes consisted of fifteen lineages. The unique amino acid substitution sites in each CDV lineages have been identified for the first time, including America-1 (Q330H), America-2 (I585S), Asia-1 (A359V), Asia-2 (H61R), Asia-3 (P108Q), Asia-4 (K213T), India-1/Asia-5(S497P), Arctic (S20L), Africa-1(N489S), Colombian (V41I), EWL (I44V), Europe (D560E), Europe-1/South America-1(K161Q), South America-2 (R580Q), and East African (S214A). Codon usage analysis indicated that H gene exhibited low codon usage bias and further neutrality plot analysis demonstrated that natural selection played a dominated role in driving CPV evolution. The effective number of codons (ENC) plots show that all the different sequences are below the standard curve, indicating that mutational pressure is not the only factor affecting CUB but other forces, including natural selection. The neutrality analysis showed that the slope of the regression line was 0.1501, indicating natural selection dominates directional mutation pressure in driving the codon usage pattern. In addition, nucleotide composition, relative synonymous codon usage value, dinucleotide content, and geographical distribution have been proven to influence the codon usage bias of the CDV H gene. The novel findings enhanced the understanding of CDV evolution.
Collapse
|
17
|
Silverj A, Rota-Stabelli O. On the correct interpretation of similarity index in codon usage studies: Comparison with four other metrics and implications for Zika and West Nile virus. Virus Res 2020; 286:198097. [DOI: 10.1016/j.virusres.2020.198097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
18
|
Matsuzaki Y, Shimotai Y, Kadowaki Y, Sugawara K, Hongo S, Mizuta K, Nishimura H. Antigenic changes among the predominantly circulating C/Sao Paulo lineage strains of influenza C virus in Yamagata, Japan, between 2015 and 2018. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104269. [PMID: 32135195 DOI: 10.1016/j.meegid.2020.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 11/29/2022]
Abstract
Influenza C virus is a pathogen that causes acute respiratory illness in children and results in the hospitalization of infants. The antigenicity of the hemagglutinin esterase (HE) glycoprotein is highly stable, and it is not yet known whether antigenic changes contribute to the worldwide transmission and the occurrence of outbreaks of influenza C virus. Here, we performed antigenic analysis of 84 influenza C viruses isolated in Yamagata, Japan, during a 4-year period from 2015 to 2018 and analyzed sequence data for strains of the virus from Japan and many other parts of the world. Antigenic and phylogenetic analyses revealed that 83 strains belonged to the C/Sao Paulo lineage, and two sublineage strains, the Aichi99 sublineage and Victoria2012 sublineage, cocirculated between 2016 and 2018. Aichi99 sublineage strains exhibiting decreased reactivity with the monoclonal antibody YA3 became predominant after 2016, and these strains possessed the K190N mutation. Residue 190 is located in the 190-loop on the top side of the HE protein within a region that is known to show variation that does not impair the biological activity of the protein. The Aichi99 sublineage strains possessing the K190N mutation were detected after 2012 in Europe, Australia, the USA, and Asia as well as Japan. These observations suggest that antigenic variants with K190N mutations have circulated extensively around the world and caused outbreaks in Japan between 2016 and 2018. Our study indicated that the 190-loop is an important antigenic region, and the results suggested that changes in the 190-loop have contributed to the extensive transmission of the virus.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan.
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Yamagata 990-0031, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| |
Collapse
|
19
|
He Z, Dong Z, Gan H. Genetic changes and host adaptability in sugarcane mosaic virus based on complete genome sequences. Mol Phylogenet Evol 2020; 149:106848. [PMID: 32380283 DOI: 10.1016/j.ympev.2020.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sugarcane mosaic virus (SCMV), a member of the genus Potyvirus in the family Potyviridae, is an important pathogen that causes mosaic diseases in maize, sugarcane, canna and other graminaceous species worldwide. Previously, several reports have showed the genetic variation and population structure of SCMV. However, the evolutionary dynamics, synonymous codon usage pattern and adaptive evolution of the virus is unclear. In this study, we performed comprehensive analyses of phylodynamics, composition bias and codon usage of SCMV using 108 complete genomic sequences. Our phylogenetic analysis found six host- and geographically confined phylogenetic lineages within the SCMV non-recombinant isolates. We found a relatively stable and conserved genomic composition with a lower codon usage choice in the SCMV protein coding sequences. Mutation pressure and natural selection have shaped the codon usage patterns of the SCMV protein coding sequences with natural selection being the dominant factor. The codon adaptation index (CAI), relative codon deoptimization index (RCDI) and similarity index (SiD) analyses revealed a stronger correlation between SCMV and maize than between SCMV and sugarcane or canna. Our study is the first to evaluate the codon usage pattern of SCMV based on complete sequences and may provide a better understanding of the origin of SCMV and its evolutionary patterns for future research.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China.
| | - Zhuozhuo Dong
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Haifeng Gan
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
20
|
Sederdahl BK, Williams JV. Epidemiology and Clinical Characteristics of Influenza C Virus. Viruses 2020; 12:E89. [PMID: 31941041 PMCID: PMC7019359 DOI: 10.3390/v12010089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza C virus (ICV) is a common yet under-recognized cause of acute respiratory illness. ICV seropositivity has been found to be as high as 90% by 7-10 years of age, suggesting that most people are exposed to ICV at least once during childhood. Due to difficulty detecting ICV by cell culture, epidemiologic studies of ICV likely have underestimated the burden of ICV infection and disease. Recent development of highly sensitive RT-PCR has facilitated epidemiologic studies that provide further insights into the prevalence, seasonality, and course of ICV infection. In this review, we summarize the epidemiology and clinical characteristics of ICV.
Collapse
Affiliation(s)
- Bethany K. Sederdahl
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
21
|
Nogales A, Aydillo T, Ávila-Pérez G, Escalera A, Chiem K, Cadagan R, DeDiego ML, Li F, García-Sastre A, Martínez-Sobrido L. Functional Characterization and Direct Comparison of Influenza A, B, C, and D NS1 Proteins in vitro and in vivo. Front Microbiol 2019; 10:2862. [PMID: 31921042 PMCID: PMC6927920 DOI: 10.3389/fmicb.2019.02862] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza viruses are important pathogens that affect multiple animal species, including humans. There are four types of influenza viruses: A, B, C, and D (IAV, IBV, ICV, and IDV, respectively). IAV and IBV are currently circulating in humans and are responsible of seasonal epidemics (IAV and IBV) and occasional pandemics (IAV). ICV is known to cause mild infections in humans and pigs, while the recently identified IDV primarily affect cattle and pigs. Influenza non-structural protein 1 (NS1) is a multifunctional protein encoded by the NS segment in all influenza types. The main function of NS1 is to counteract the host antiviral defense, including the production of interferon (IFN) and IFN-stimulated genes (ISGs), and therefore is considered an important viral pathogenic factor. Despite of homologous functions, the NS1 protein from the diverse influenza types share little amino acid sequence identity, suggesting possible differences in their mechanism(s) of action, interaction(s) with host factors, and contribution to viral replication and/or pathogenesis. In addition, although the NS1 protein of IAV, IBV and, to some extent ICV, have been previously studied, it is unclear if IDV NS1 has similar properties. Using an approach that allow us to express NS1 independently of the nuclear export protein from the viral NS segment, we have generated recombinant IAV expressing IAV, IBV, ICV, and IDV NS1 proteins. Although recombinant viruses expressing heterotypic (IBV, ICV, and IDV) NS1 proteins were able to replicate similarly in canine MDCK cells, their viral fitness was impaired in human A549 cells and they were highly attenuated in vivo. Our data suggest that despite the similarities to effectively counteract innate immune responses in vitro, the NS1 proteins of IBV, ICV, or IDV do not fully complement the functions of IAV NS1, resulting in deficient viral replication and pathogenesis in vivo.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Centro de Investigación en Sanidad Animal, Madrid, Spain
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gines Ávila-Pérez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin Chiem
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Richard Cadagan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Feng Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
22
|
Shi SL, Xia RX. Codon Usage in the Iflaviridae Family Is Not Diverse Though the Family Members Are Isolated from Diverse Host Taxa. Viruses 2019; 11:E1087. [PMID: 31766648 PMCID: PMC6950266 DOI: 10.3390/v11121087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
All iflavirus members belong to the unique genus, Iflavirus, of the family, Iflaviridae. The host taxa and sequence identities of these viruses are diverse. A codon usage bias, maintained by a balance between selection, mutation, and genetic drift, exists in a wide variety of organisms. We characterized the codon usage patterns of 44 iflavirus genomes that were isolated from the classes, Insecta, Arachnida, Mammalia, and Malacostraca. Iflaviruses lack a strong codon usage bias when they are evaluated using an effective number of codons. The odds ratios of the majority of dinucleotides are within the normal range. However, the dinucleotides at the 1st-2nd codon positions are more biased than those at the 2nd-3rd codon positions. Plots of effective numbers of codons, relative neutrality analysis, and PR2 bias analysis all indicate that selection pressure dominates mutations in shaping codon usage patterns in the family, Iflaviridae. When these viruses were grouped into their host taxa, we found that the indices, including the nucleotide composition, effective number of codons, relative synonymous codon usage, and the influencing factors behind the codon usage patterns, all show that there are non-significant differences between the six host-taxa-groups. Our results disagree with our assumption that diverse viruses should possess diverse codon usage patterns, suggesting that the nucleotide composition and codon usage in the family, Iflaviridae, are not host taxa-specific signatures.
Collapse
Affiliation(s)
| | - Run-Xi Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
23
|
Analysis of Synonymous Codon Usage Bias in Potato Virus M and Its Adaption to Hosts. Viruses 2019; 11:v11080752. [PMID: 31416257 PMCID: PMC6722529 DOI: 10.3390/v11080752] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Potato virus M (PVM) is a member of the genus Carlavirus of the family Betaflexviridae and causes large economic losses of nightshade crops. Several previous studies have elucidated the population structure, evolutionary timescale and adaptive evolution of PVM. However, the synonymous codon usage pattern of PVM remains unclear. In this study, we performed comprehensive analyses of the codon usage and composition of PVM based on 152 nucleotide sequences of the coat protein (CP) gene and 125 sequences of the cysteine-rich nucleic acid binding protein (NABP) gene. We observed that the PVM CP and NABP coding sequences were GC-and AU-rich, respectively, whereas U- and G-ending codons were preferred in the PVM CP and NABP coding sequences. The lower codon usage of the PVM CP and NABP coding sequences indicated a relatively stable and conserved genomic composition. Natural selection and mutation pressure shaped the codon usage patterns of PVM, with natural selection being the most important factor. The codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of PVM was to pepino, followed by tomato and potato. Moreover, similarity Index (SiD) analysis showed that pepino had a greater impact on PVM than tomato and potato. Our study is the first attempt to evaluate the codon usage pattern of the PVM CP and NABP genes to better understand the evolutionary changes of a carlavirus.
Collapse
|
24
|
Du R, Cui Q, Rong L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019; 11:v11050458. [PMID: 31137516 PMCID: PMC6563287 DOI: 10.3390/v11050458] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) of influenza A virus possess antagonistic activities on interaction with sialic acid (SA), which is the receptor for virus attachment. HA binds SA through its receptor-binding sites, while NA is a receptor-destroying enzyme by removing SAs. The function of HA during virus entry has been extensively investigated, however, examination of NA has long been focused to its role in the exit of progeny virus from infected cells, and the role of NA in the entry process is still under-appreciated. This review summarizes the current understanding of the roles of HA and NA in relation to each other during virus entry.
Collapse
Affiliation(s)
- Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|