1
|
Mundy RM, Baker AT, Bates EA, Cunliffe TG, Teijeira-Crespo A, Moses E, Rizkallah PJ, Parker AL. Broad sialic acid usage amongst species D human adenovirus. NPJ VIRUSES 2023; 1:1. [PMID: 38665237 PMCID: PMC11041768 DOI: 10.1038/s44298-023-00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 04/28/2024]
Abstract
Human adenoviruses (HAdV) are widespread pathogens causing usually mild infections. The Species D (HAdV-D) cause gastrointestinal tract infections and epidemic keratoconjunctivitis (EKC). Despite being significant pathogens, knowledge around HAdV-D mechanism of cell infection is lacking. Sialic acid (SA) usage has been proposed as a cell infection mechanism for EKC causing HAdV-D. Here we highlight an important role for SA engagement by many HAdV-D. We provide apo state crystal structures of 7 previously undetermined HAdV-D fiber-knob proteins, and structures of HAdV-D25, D29, D30 and D53 fiber-knob proteins in complex with SA. Biologically, we demonstrate that removal of cell surface SA reduced infectivity of HAdV-C5 vectors pseudotyped with HAdV-D fiber-knob proteins, whilst engagement of the classical HAdV receptor CAR was variable. Our data indicates variable usage of SA and CAR across HAdV-D. Better defining these interactions will enable improved development of antivirals and engineering of the viruses into refined therapeutic vectors.
Collapse
Affiliation(s)
- Rosie M. Mundy
- Division of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Alexander T. Baker
- Division of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Emily A. Bates
- Division of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Tabitha G. Cunliffe
- Division of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Alicia Teijeira-Crespo
- Division of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Elise Moses
- Division of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Pierre J. Rizkallah
- Division of Infection & Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Alan L. Parker
- Division of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| |
Collapse
|
2
|
MacNeil KM, Dodge MJ, Evans AM, Tessier TM, Weinberg JB, Mymryk JS. Adenoviruses in medicine: innocuous pathogen, predator, or partner. Trends Mol Med 2023; 29:4-19. [PMID: 36336610 PMCID: PMC9742145 DOI: 10.1016/j.molmed.2022.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
3
|
Seo JW, Lee SK, Hong IH, Choi SH, Lee JY, Kim HS, Kim HS. Molecular Epidemiology of Adenoviral Keratoconjunctivitis in Korea. Ann Lab Med 2022; 42:683-687. [PMID: 35765877 PMCID: PMC9277046 DOI: 10.3343/alm.2022.42.6.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Human adenoviruses (HAdVs) are a major cause of epidemic keratoconjunctivitis. We investigated the types of adenoviruses responsible for the recent epidemic of keratoconjunctivitis in Korea. From January to November 2019, 218 conjunctival swab samples were collected from patients clinically suspected as having adenoviral keratoconjunctivitis. Genotyping targeting of adenovirus capsid hexon genes was performed using PCR and sequencing. Of the 218 samples collected, 128 (58.7%) were positive for the adenovirus genes by PCR, and 126 samples were successfully genotyped. Adenovirus type 8 (HAdV-D8) was the most common type (67.5%), followed by HAdV-D64 (11.1%), HAdV-D37 (9.5%), HAdV-B3 (5.6%), HAdV-D53 (4.0%), HAdV-E4 (1.6%), and HAdV-D56 (0.8%). Adenoviral keratoconjunctivitis cases were the most frequent in July and August 2019, which were mainly caused by type 8. Phylogenetic analyses revealed little genetic distance among adenoviruses of the same type detected in our study. Our results provide basic data for further studies of adenoviral keratoconjunctivitis.
Collapse
Affiliation(s)
- Jeong-Won Seo
- Department of Ophthalmology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Su Kyung Lee
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - In Hwan Hong
- Department of Ophthalmology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Joo Youn Lee
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| |
Collapse
|
4
|
Ramos-Martínez IE, Ramos-Martínez E, Segura-Velázquez RÁ, Saavedra-Montañez M, Cervantes-Torres JB, Cerbón M, Papy-Garcia D, Zenteno E, Sánchez-Betancourt JI. Heparan Sulfate and Sialic Acid in Viral Attachment: Two Sides of the Same Coin? Int J Mol Sci 2022; 23:ijms23179842. [PMID: 36077240 PMCID: PMC9456526 DOI: 10.3390/ijms23179842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - René Álvaro Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jacquelynne Brenda Cervantes-Torres
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dulce Papy-Garcia
- Glycobiology, Cell Growth ant Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
5
|
Zheng N, Wang Y, Rong H, Wang K, Huang X. Human Adenovirus Associated Hepatic Injury. Front Public Health 2022; 10:878161. [PMID: 35570934 PMCID: PMC9095934 DOI: 10.3389/fpubh.2022.878161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Human adenovirus (HAdV) is a common virus, but the infections it causes are relatively uncommon. At the same time, the methods for the detection of HAdV are varied, among which viral culture is still the gold standard. HAdV infection is usually self-limited but can also cause clinically symptomatic in lots of organs and tissues, of which human adenovirus pneumonia is the most common. In contrast, human adenovirus hepatitis is rarely reported. However, HAdV hepatitis has a high fatality rate once it occurs, especially in immunocompromised patients. Although human adenovirus hepatitis has some pathological and imaging features, its clinical symptoms are not typical. Therefore, HAdV hepatitis is not easy to be found in the clinic. There are kinds of treatments to treat this disease, but few are absolutely effective. In view of the above reasons, HAdV hepatitis is a disease that is difficult to be found in time. We reviewed and summarized the previously reported cases, hoping to bring some relatively common characteristics to clinicians, so as to facilitate early detection, early diagnosis, and early treatment of patients.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wang
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hechen Rong
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Huang
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Van Gelder RN, Akileswaran L, Nakamichi K, Stroman D. Molecular and Clinical Characterization of Human Adenovirus E4-Associated Conjunctivitis. Am J Ophthalmol 2022; 233:227-242. [PMID: 34740631 DOI: 10.1016/j.ajo.2021.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine the characteristics of conjunctivitis associated with human adenovirus E4 (AdV E4). METHODS Samples and outcomes from 500 patients with conjunctivitis were obtained from the NVC-422 randomized controlled clinical trial comparing auriclosene to placebo. Molecular typing identified 36 cases associated with AdV E4. Signs and symptoms at presentation and at the day 18 endpoint were compared with the larger cohort of 262 subjects with conjunctivitis caused by due to AdV D8. Full viral genomes of 22 AdV E4 isolates were reconstructed. RESULTS AdV E4 was the most frequently identified adenoviral type in conjunctivitis cases from the United States. Signs and symptoms at presentation were comparable to those associated with AdV D8. Viral load at presentation was comparable between groups but resolution was more rapid in the AdV E4 group. Clinical signs were fully resolved by day 18 in 26 of 36 (72%) patients with AdV E4. Subepithelial infiltrates developed in 12 of 36 (33%) patients with AdV E4 compared with 98 of 215 (45%) patients with AdV D8 (P = .0001). One hundred twenty-four polymorphisms were observed among 22 whole viral genome sequences, which clustered into 3 clades. Patients in each clade developed subepithelial infiltrates. Neither single nucleotide polymorphism analysis nor machine learning approaches identified specific sequence features predictive of presenting signs or outcome. CONCLUSIONS AdV E4 conjunctivitis may be indistinguishable at presentation from AdV D8-associated disease. Resolution of viral load for AdV E4 appears more rapid than for AdV D8, and the risk for subepithelial infiltrates appears lower. Multiple substrains of AdV E4 are in circulation but all appeared equivalently pathogenic for conjunctivitis. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
7
|
The Communication between Ocular Surface and Nasal Epithelia in 3D Cell Culture Technology for Translational Research: A Narrative Review. Int J Mol Sci 2021; 22:ijms222312994. [PMID: 34884799 PMCID: PMC8657734 DOI: 10.3390/ijms222312994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
There is a lack of knowledge regarding the connection between the ocular and nasal epithelia. This narrative review focuses on conjunctival, corneal, ultrastructural corneal stroma, and nasal epithelia as well as an introduction into their interconnections. We describe in detail the morphology and physiology of the ocular surface, the nasolacrimal ducts, and the nasal cavity. This knowledge provides a basis for functional studies and the development of relevant cell culture models that can be used to investigate the pathogenesis of diseases related to these complex structures. Moreover, we also provide a state-of-the-art overview regarding the development of 3D culture models, which allow for addressing research questions in models resembling the in vivo situation. In particular, we give an overview of the current developments of corneal 3D and organoid models, as well as 3D cell culture models of epithelia with goblet cells (conjunctiva and nasal cavity). The benefits and shortcomings of these cell culture models are discussed. As examples for pathogens related to ocular and nasal epithelia, we discuss infections caused by adenovirus and measles virus. In addition to pathogens, also external triggers such as allergens can cause rhinoconjunctivitis. These diseases exemplify the interconnections between the ocular surface and nasal epithelia in a molecular and clinical context. With a final translational section on optical coherence tomography (OCT), we provide an overview about the applicability of this technique in basic research and clinical ophthalmology. The techniques presented herein will be instrumental in further elucidating the functional interrelations and crosstalk between ocular and nasal epithelia.
Collapse
|
8
|
Othman M, Baker AT, Gupalo E, Elsebaie A, Bliss CM, Rondina MT, Lillicrap D, Parker AL. To clot or not to clot? Ad is the question-Insights on mechanisms related to vaccine-induced thrombotic thrombocytopenia. J Thromb Haemost 2021; 19:2845-2856. [PMID: 34351057 PMCID: PMC8420166 DOI: 10.1111/jth.15485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023]
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) has caused global concern. VITT is characterized by thrombosis and thrombocytopenia following COVID-19 vaccinations with the AstraZeneca ChAdOx1 nCov-19 and the Janssen Ad26.COV2.S vaccines. Patients present with thrombosis, severe thrombocytopenia developing 5-24 days following first dose of vaccine, with elevated D-dimer, and PF4 antibodies, signifying platelet activation. As of June 1, 2021, more than 1.93 billion COVID-19 vaccine doses had been administered worldwide. Currently, 467 VITT cases (0.000024%) have been reported across the UK, Europe, Canada, and Australia. Guidance on diagnosis and management of VITT has been reported but the pathogenic mechanism is yet to be fully elucidated. Here, we propose and discuss potential mechanisms in relation to adenovirus induction of VITT. We provide insights and clues into areas warranting investigation into the mechanistic basis of VITT, highlighting the unanswered questions. Further research is required to help solidify a pathogenic model for this condition.
Collapse
Affiliation(s)
- Maha Othman
- Department of Biomedical and Molecular SciencesSchool of MedicineQueen's UniversityKingstonOntarioCanada
- School of Baccalaureate NursingSt. Lawrence CollegeKingstonOntarioCanada
| | - Alexander T. Baker
- Center for Individualized MedicineMayo ClinicScottsdaleArizonaUSA
- Division of Cancer and GeneticsCardiff University School of MedicineCardiffUK
| | - Elena Gupalo
- National Medical Research Center for CardiologyMoscowRussia
| | - Abdelrahman Elsebaie
- Department of Biomedical and Molecular SciencesSchool of MedicineQueen's UniversityKingstonOntarioCanada
| | - Carly M. Bliss
- Division of Cancer and GeneticsCardiff University School of MedicineCardiffUK
| | - Matthew T. Rondina
- Departments of Internal Medicine and Pathology, and the Molecular Medicine ProgramUniversity of Utah HealthSalt Lake CityUtahUSA
- Department of Internal Medicine and GRECCGeorge E. Wahlen VAMCSalt Lake CityUtahUSA
| | - David Lillicrap
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - Alan L. Parker
- Division of Cancer and GeneticsCardiff University School of MedicineCardiffUK
| |
Collapse
|
9
|
Argüeso P, Woodward AM, AbuSamra DB. The Epithelial Cell Glycocalyx in Ocular Surface Infection. Front Immunol 2021; 12:729260. [PMID: 34497615 PMCID: PMC8419333 DOI: 10.3389/fimmu.2021.729260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
The glycocalyx is the main component of the transcellular barrier located at the interface between the ocular surface epithelia and the external environment. This barrier extends up to 500 nm from the plasma membrane and projects into the tear fluid bathing the surface of the eye. Under homeostatic conditions, defense molecules in the glycocalyx, such as transmembrane mucins, resist infection. However, many pathogenic microorganisms have evolved to exploit components of the glycocalyx in order to gain access to epithelial cells and consequently exert deleterious effects. This manuscript reviews the implications of the ocular surface epithelial glycocalyx to bacterial, viral, fungal and parasitic infection. Moreover, it presents some ongoing controversies surrounding the functional relevance of the epithelial glycocalyx to ocular infectious disease.
Collapse
Affiliation(s)
- Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Ashley M Woodward
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Dina B AbuSamra
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Mahsoub HM, Yuan L, Pierson FW. Turkey adenovirus 3, a siadenovirus, uses sialic acid on N-linked glycoproteins as a cellular receptor. J Gen Virol 2021; 101:760-771. [PMID: 32459612 DOI: 10.1099/jgv.0.001429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Turkey adenovirus 3 (TAdV-3) is the causative agent of an immune-mediated disease in turkeys, haemorrhagic enteritis, through targeting B lymphocytes. In the present study, we investigated the role of sialic acid in TAdV-3 entry and characterized the structural components of TAdV-3 receptor(s) on RP19, B lymphoblastoid cells. Removal of the cell-surface sialic acids by neuraminidases or blocking of sialic acids by wheat germ agglutinin lectin reduced virus infection. Pre-incubation of cells with Maackia amurensis lectin or Sambucus nigra agglutinin resulted in virus reduction, suggesting that TAdV-3 uses both α2,3-linked and α2,6-linked sialic acids as attachment receptor. Virus infectivity data from RP19 cells treated with sodium periodate, proteases (trypsin or bromelain) or metabolic inhibitors (dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, tunicamycin, or benzyl N-acetyl-α-d-galactosaminide) indicated that N-linked, but not O-linked, carbohydrates are part of the sialylated receptor and they are likely based on a membrane glycoprotein, rather than a glycolipid. Furthermore, our data, in conjunction with previous findings, implies that the secondary receptor for TAdV-3 is a protein molecule since the inhibition of glycolipid biosynthesis did not affect the virus infection, which was rather reduced by protease treatment. We can conclude that terminal sialic acids attached to N-linked membrane glycoproteins on B cells are used for virus attachment and are essential for successful virus infection.
Collapse
Affiliation(s)
- Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061-0442, USA.,Poultry Production Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061-0442, USA
| | - F William Pierson
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061-0442, USA
| |
Collapse
|
11
|
Adenovirus and the Cornea: More Than Meets the Eye. Viruses 2021; 13:v13020293. [PMID: 33668417 PMCID: PMC7917768 DOI: 10.3390/v13020293] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Human adenoviruses cause disease at multiple mucosal sites, including the respiratory, gastrointestinal, and genitourinary tracts, and are common agents of conjunctivitis. One site of infection that has received sparse attention is the cornea, a transparent tissue and the window of the eye. While most adenovirus infections are self-limited, corneal inflammation (keratitis) due to adenovirus can persist or recur for months to years after infection, leading to reduced vision, discomfort, and light sensitivity. Topical corticosteroids effectively suppress late adenovirus keratitis but are associated with vision-threatening side effects. In this short review, we summarize current knowledge on infection of the cornea by adenoviruses, including corneal epithelial cell receptors and determinants of corneal tropism. We briefly discuss mechanisms of stromal keratitis due to adenovirus infection, and review an emerging therapy to mitigate adenovirus corneal infections based on evolving knowledge of corneal epithelial receptor usage.
Collapse
|
12
|
Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses 2021; 13:v13020262. [PMID: 33567791 PMCID: PMC7915228 DOI: 10.3390/v13020262] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Emerging viral diseases are a major threat to global health, and nearly two-thirds of emerging human infectious diseases are zoonotic. Most of the human epidemics and pandemics were caused by the spillover of viruses from wild mammals. Viruses that infect humans and a wide range of animals have historically caused devastating epidemics and pandemics. An in-depth understanding of the mechanisms of viral emergence and zoonotic spillover is still lacking. Receptors are major determinants of host susceptibility to viruses. Animal species sharing host cell receptors that support the binding of multiple viruses can play a key role in virus spillover and the emergence of novel viruses and their variants. Sialic acids (SAs), which are linked to glycoproteins and ganglioside serve as receptors for several human and animal viruses. In particular, influenza and coronaviruses, which represent two of the most important zoonotic threats, use SAs as cellular entry receptors. This is a comprehensive review of our current knowledge of SA receptor distribution among animal species and the range of viruses that use SAs as receptors. SA receptor tropism and the predicted natural susceptibility to viruses can inform targeted surveillance of domestic and wild animals to prevent the future emergence of zoonotic viruses.
Collapse
|
13
|
Persson BD, John L, Rafie K, Strebl M, Frängsmyr L, Ballmann MZ, Mindler K, Havenga M, Lemckert A, Stehle T, Carlson LA, Arnberg N. Human species D adenovirus hexon capsid protein mediates cell entry through a direct interaction with CD46. Proc Natl Acad Sci U S A 2021; 118:e2020732118. [PMID: 33384338 PMCID: PMC7826407 DOI: 10.1073/pnas.2020732118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human adenovirus species D (HAdV-D) types are currently being explored as vaccine vectors for coronavirus disease 2019 (COVID-19) and other severe infectious diseases. The efficacy of such vector-based vaccines depends on functional interactions with receptors on host cells. Adenoviruses of different species are assumed to enter host cells mainly by interactions between the knob domain of the protruding fiber capsid protein and cellular receptors. Using a cell-based receptor-screening assay, we identified CD46 as a receptor for HAdV-D56. The function of CD46 was validated in infection experiments using cells lacking and overexpressing CD46, and by competition infection experiments using soluble CD46. Remarkably, unlike HAdV-B types that engage CD46 through interactions with the knob domain of the fiber protein, HAdV-D types infect host cells through a direct interaction between CD46 and the hexon protein. Soluble hexon proteins (but not fiber knob) inhibited HAdV-D56 infection, and surface plasmon analyses demonstrated that CD46 binds to HAdV-D hexon (but not fiber knob) proteins. Cryoelectron microscopy analysis of the HAdV-D56 virion-CD46 complex confirmed the interaction and showed that CD46 binds to the central cavity of hexon trimers. Finally, soluble CD46 inhibited infection by 16 out of 17 investigated HAdV-D types, suggesting that CD46 is an important receptor for a large group of adenoviruses. In conclusion, this study identifies a noncanonical entry mechanism used by human adenoviruses, which adds to the knowledge of adenovirus biology and can also be useful for development of adenovirus-based vaccine vectors.
Collapse
Affiliation(s)
- B David Persson
- Department of Clinical Microbiology, Division of Virology, Umeå University, SE-90185 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-90185 Umeå, Sweden
| | - Lijo John
- Department of Clinical Microbiology, Division of Virology, Umeå University, SE-90185 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-90185 Umeå, Sweden
| | - Karim Rafie
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-90187 Umeå, Sweden
- Department of Medical Biochemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Michael Strebl
- Interfaculty Institute of Biochemistry, The University of Tübingen, D-72076 Tübingen, Germany
| | - Lars Frängsmyr
- Department of Clinical Microbiology, Division of Virology, Umeå University, SE-90185 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-90185 Umeå, Sweden
| | | | - Katja Mindler
- Interfaculty Institute of Biochemistry, The University of Tübingen, D-72076 Tübingen, Germany
| | - Menzo Havenga
- Batavia Biosciences, 2333 CL Leiden, The Netherlands
| | | | - Thilo Stehle
- Interfaculty Institute of Biochemistry, The University of Tübingen, D-72076 Tübingen, Germany
| | - Lars-Anders Carlson
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-90187 Umeå, Sweden
- Department of Medical Biochemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Niklas Arnberg
- Department of Clinical Microbiology, Division of Virology, Umeå University, SE-90185 Umeå, Sweden;
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
14
|
Coroneo MT. The eye as the discrete but defensible portal of coronavirus infection. Ocul Surf 2021; 19:176-182. [PMID: 32446866 PMCID: PMC7241406 DOI: 10.1016/j.jtos.2020.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
Oculo-centric factors may provide a key to understanding invasion success by SARS-CoV-2, a highly contagious, potentially lethal, virus with ocular tropism. Respiratory infection transmission via the eye and lacrimal-nasal pathway elucidated during the 1918 influenza pandemic, remains to be explored in this crisis. The eye and its adnexae represent a large surface area directly exposed to airborne viral particles and hand contact. The virus may bind to corneal and conjunctival angiotensin converting enzyme 2 (ACE2) receptors and potentially to the lipophilic periocular skin and superficial tear film with downstream carriage into the nasopharynx and subsequent access to the lungs and gut. Adenoviruses and influenza viruses share this ocular tropism and despite differing ocular and systemic manifestations and disease patterns, common lessons, particularly in management, emerge. Slit lamp usage places ophthalmologists at particular risk of exposure to high viral loads (and poor prognosis) and as for adenoviral epidemics, this may be a setting for disease transmission. Local, rather than systemic treatments blocking virus binding in this pathway (advocated for adenovirus) are worth considering. This pathway is accessible with eye drops or aerosols containing drugs which appear efficacious via systemic administration. A combination such as hydroxychloroquine, azithromycin and zinc, all of which have previously been used topically in the eye and which work at least in part by blocking ACE2 receptors, may offer a safe, cost-effective and resource-sparing intervention.
Collapse
Affiliation(s)
- Minas Theodore Coroneo
- Department of Ophthalmology, Prince of Wales Hospital/University of New South Wales, Sydney, Australia; Ophthalmic Surgeons, 2 St Pauls St, Randwick, NSW, 2031, Australia.
| |
Collapse
|
15
|
Diaz K, Hu CT, Sul Y, Bromme BA, Myers ND, Skorohodova KV, Gounder AP, Smith JG. Defensin-driven viral evolution. PLoS Pathog 2020; 16:e1009018. [PMID: 33232373 PMCID: PMC7723274 DOI: 10.1371/journal.ppat.1009018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/08/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023] Open
Abstract
Enteric alpha-defensins are potent effectors of innate immunity that are abundantly expressed in the small intestine. Certain enteric bacteria and viruses are resistant to defensins and even appropriate them to enhance infection despite neutralization of closely related microbes. We therefore hypothesized that defensins impose selective pressure during fecal-oral transmission. Upon passaging a defensin-sensitive serotype of adenovirus in the presence of a human defensin, mutations in the major capsid protein hexon accumulated. In contrast, prior studies identified the vertex proteins as important determinants of defensin antiviral activity. Infection and biochemical assays suggest that a balance between increased cell binding and a downstream block in intracellular trafficking mediated by defensin interactions with all of the major capsid proteins dictates the outcome of infection. These results extensively revise our understanding of the interplay between defensins and non-enveloped viruses. Furthermore, they provide a feasible rationale for defensins shaping viral evolution, resulting in differences in infection phenotypes of closely related viruses. Defensins are potent antimicrobial peptides that are found on human mucosal surfaces and can directly neutralize viruses. They are abundant in the small intestine, which is constantly challenged by ingested viral pathogens. Interestingly, non-enveloped viruses, such as adenovirus, that infect the gastrointestinal system are unaffected by defensins or can even appropriate defensins to enhance their infection. In contrast, respiratory adenoviruses are neutralized by the same defensins. How enteric viruses overcome defensin neutralization is not well understood. Our studies are the first to show that defensins can drive the evolution of non-enveloped viruses. Furthermore, we identify important components within human adenovirus that dictate sensitivity to defensins. This new insight into defensin-virus interactions informs our understanding of mucosal immunity to viral infections.
Collapse
Affiliation(s)
- Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Youngmee Sul
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Beth A. Bromme
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicolle D. Myers
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ksenia V. Skorohodova
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Anshu P. Gounder
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lee JS, Mukherjee S, Lee JY, Saha A, Chodosh J, Painter DF, Rajaiya J. Entry of Epidemic Keratoconjunctivitis-Associated Human Adenovirus Type 37 in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:50. [PMID: 32852546 PMCID: PMC7453050 DOI: 10.1167/iovs.61.10.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Ocular infection by human adenovirus species D type 37 (HAdV-D37) causes epidemic keratoconjunctivitis, a severe, hyperacute condition. The corneal component of epidemic keratoconjunctivitis begins upon infection of corneal epithelium, and the mechanism of viral entry dictates subsequent proinflammatory gene expression. Therefore, it is important to understand the specific pathways of adenoviral entry in these cells. Methods Transmission electron microscopy of primary and tert-immortalized human corneal epithelial cells infected with HAdV-D37 was performed to identify the means of viral entry. Confocal microscopy was used to determine intracellular trafficking. The results of targeted small interfering RNA and specific chemical inhibitors were analyzed by quantitative PCR, and Western blot. Results By transmission electron microscopy, HAdV-D37 was seen to enter by both clathrin-coated pits and macropinocytosis; however, entry was both pH and dynamin 2 independent. Small interfering RNA against clathrin, AP2A1, and lysosome-associated membrane protein 1, but not early endosome antigen 1, decreased early viral gene expression. Ethyl-isopropyl amiloride, which blocks micropinocytosis, did not affect HAdV-D37 entry, but IPA, an inhibitor of p21-activated kinase, and important to actin polymerization, decreased viral entry in a dose-dependent manner. Conclusions HAdV-D37 enters human corneal epithelial cells by a noncanonical clathrin-mediated pathway involving lysosome-associated membrane protein 1 and PAK1, independent of pH, dynamin, and early endosome antigen 1. We showed earlier that HAdV-D37 enters human keratocytes through caveolae. Therefore, epidemic keratoconjunctivitis-associated viruses enter different corneal cell types via disparate pathways, which could account for a relative paucity of proinflammatory gene expression upon infection of corneal epithelial cells compared with keratocytes, as seen in prior studies.
Collapse
Affiliation(s)
- Ji Sun Lee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Santanu Mukherjee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David F. Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Adenovirus infection and disease in recipients of hematopoietic cell transplantation. Curr Opin Infect Dis 2020; 32:591-600. [PMID: 31567568 DOI: 10.1097/qco.0000000000000605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To provide an update on risk factors associated with adenovirus (ADV) infection in patients after hematopoietic cell transplant (HCT) and on options for ADV monitoring and treatment in the setting of HCT. RECENT FINDINGS Among patients undergoing HCT, ADV infection continues to be more common amongst those receiving a T-cell-depleted or graft other than from a matched-related donor. Among children undergoing HCT, reactivation in the gastrointestinal tract appears to be the most common source, and the virus is detectable by quantitative PCR in the stool before it is detectable in the blood. Thus, screening for the virus in the stool of these children may allow for preemptive therapy to reduce mortality. Brincidofovir, although still not approved by any regulatory agency, remains a potential agent for preemptive therapy and for salvage in cases not responding to cidofovir. Rapidly generated off-the-shelf virus-specific T cells may facilitate adoptive cell therapy in populations with a special need and previously not eligible for adoptive cell therapy, such as cord blood recipients. SUMMARY ADV infection continues to adversely affect survival in HCT recipients. Screening stool in children and preemptive therapy may reduce mortality. Brincidofovir and adoptive T-cell therapy remain potential options for treatment.
Collapse
|
18
|
Besson S, Vragniau C, Vassal-Stermann E, Dagher MC, Fender P. The Adenovirus Dodecahedron: Beyond the Platonic Story. Viruses 2020; 12:E718. [PMID: 32630840 PMCID: PMC7412204 DOI: 10.3390/v12070718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/03/2023] Open
Abstract
Many geometric forms are found in nature, some of them adhering to mathematical laws or amazing aesthetic rules. One of the best-known examples in microbiology is the icosahedral shape of certain viruses with 20 triangular facets and 12 edges. What is less known, however, is that a complementary object displaying 12 faces and 20 edges called a 'dodecahedron' can be produced in huge amounts during certain adenovirus replication cycles. The decahedron was first described more than 50 years ago in the human adenovirus (HAdV3) viral cycle. Later on, the expression of this recombinant scaffold, combined with improvements in cryo-electron microscopy, made it possible to decipher the structural determinants underlying their architecture. Recently, this particle, which mimics viral entry, was used to fish the long elusive adenovirus receptor, desmoglein-2, which serves as a cellular docking for some adenovirus serotypes. This breakthrough enabled the understanding of the physiological role played by the dodecahedral particles, showing that icosahedral and dodecahedral particles live more than a simple platonic story. All these points are developed in this review, and the potential use of the dodecahedron in therapeutic development is discussed.
Collapse
Affiliation(s)
- Solène Besson
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
| | - Charles Vragniau
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Institut National Polytechnique Grenoble, Technique de l’ingénierie Médicale et de la Complexité, TIMC-IMAG Bât Jean Roget Faculté de Médecine et Pharmacie, 38700 La Tronche, France
| | - Emilie Vassal-Stermann
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
| | - Marie Claire Dagher
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
| | - Pascal Fender
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
| |
Collapse
|
19
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020; 594:1828-1837. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential multifunctional cellular protein that is only beginning to be understood. CAR serves as a receptor for many adenoviruses, human group B coxsackieviruses, swine vesicular disease virus, and possibly other viruses. While named for its function as a viral receptor, CAR is also involved in cell adhesion, immune cell activation, synaptic transmission, and signaling. Knockout mouse models were first to identify some of these biological functions; however, tissue-specific model systems have shed light on the complexity of different CAR isoforms and their specific activities. Many of these functions are mediated by the large number of interacting proteins described so far, and several new putative interactions have recently been discovered. As antiviral and gene therapy strategies that target CAR continue to emerge, future work poised to understand the biological implications of manipulating CAR in vivo is critical.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Biological Sciences, Wright State University, Dayton, OH, USA.,Spirovant Sciences, Inc, Philadelphia, PA, USA
| |
Collapse
|
21
|
Sriwilaijaroen N, Suzuki Y. Sialoglycovirology of Lectins: Sialyl Glycan Binding of Enveloped and Non-enveloped Viruses. Methods Mol Biol 2020; 2132:483-545. [PMID: 32306355 PMCID: PMC7165297 DOI: 10.1007/978-1-0716-0430-4_47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
On the cell sur "face", sialoglycoconjugates act as receptionists that have an important role in the first step of various cellular processes that bridge communication between the cell and its environment. Loss of Sia production can cause the developmental of defects and lethality in most animals; hence, animal cells are less prone to evolution of resistance to interactions by rapidly evolved Sia-binding viruses. Obligative intracellular viruses mostly have rapid evolution that allows escape from host immunity, leading to an epidemic variant, and that allows emergence of a novel strain, occasionally leading to pandemics that cause health-social-economic problems. Recently, much attention has been given to the mutual recognition systems via sialosugar chains between viruses and their host cells and there has been rapid growth of the research field "sialoglycovirology." In this chapter, the structural diversity of sialoglycoconjugates is overviewed, and enveloped and non-enveloped viruses that bind to Sia are reviewed. Also, interactions of viral lectins-host Sia receptors, which determine viral transmission, host range, and pathogenesis, are presented. The future direction of new therapeutic routes targeting viral lectins, development of easy-to-use detection methods for diagnosis and monitoring changes in virus binding specificity, and challenges in the development of suitable viruses to use in virus-based therapies for genetic disorders and cancer are discussed.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
22
|
Ismail AM, Zhou X, Dyer DW, Seto D, Rajaiya J, Chodosh J. Genomic foundations of evolution and ocular pathogenesis in human adenovirus species D. FEBS Lett 2019; 593:3583-3608. [PMID: 31769017 PMCID: PMC7185199 DOI: 10.1002/1873-3468.13693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Human adenovirus commonly causes infections of respiratory, gastrointestinal, genitourinary, and ocular surface mucosae. Although most adenovirus eye infections are mild and self-limited, specific viruses within human adenovirus species D are associated with epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular surface infection, which can lead to chronic and/or recurrent, visually disabling keratitis. In this review, we discuss the links between adenovirus ontogeny, genomics, immune responses, and corneal pathogenesis, for those viruses that cause EKC.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaohong Zhou
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Jaya Rajaiya
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Pennington MR, Saha A, Painter DF, Gavazzi C, Ismail AM, Zhou X, Chodosh J, Rajaiya J. Disparate Entry of Adenoviruses Dictates Differential Innate Immune Responses on the Ocular Surface. Microorganisms 2019; 7:E351. [PMID: 31540200 PMCID: PMC6780103 DOI: 10.3390/microorganisms7090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus infection of the ocular surface is associated with severe keratoconjunctivitis and the formation of subepithelial corneal infiltrates, which may persist and impair vision for months to years following infection. Long term pathology persists well beyond the resolution of viral replication, indicating that the prolonged immune response is not virus-mediated. However, it is not clear how these responses are sustained or even initiated following infection. This review discusses recent work from our laboratory and others which demonstrates different entry pathways specific to both adenovirus and cell type. These findings suggest that adenoviruses may stimulate specific pattern recognition receptors in an entry/trafficking-dependent manner, leading to distinct immune responses dependent on the virus/cell type combination. Additional work is needed to understand the specific connections between adenoviral entry and the stimulation of innate immune responses by the various cell types present on the ocular surface.
Collapse
Affiliation(s)
- Matthew R Pennington
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - David F Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Christina Gavazzi
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Xiaohong Zhou
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Baker AT, Mundy RM, Davies JA, Rizkallah PJ, Parker AL. Human adenovirus type 26 uses sialic acid-bearing glycans as a primary cell entry receptor. SCIENCE ADVANCES 2019; 5:eaax3567. [PMID: 31517055 PMCID: PMC6726447 DOI: 10.1126/sciadv.aax3567] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/29/2019] [Indexed: 05/02/2023]
Abstract
Adenoviruses are clinically important agents. They cause respiratory distress, gastroenteritis, and epidemic keratoconjunctivitis. As non-enveloped, double-stranded DNA viruses, they are easily manipulated, making them popular vectors for therapeutic applications, including vaccines. Species D adenovirus type 26 (HAdV-D26) is both a cause of EKC and other diseases and a promising vaccine vector. HAdV-D26-derived vaccines are under investigation as protective platforms against HIV, Zika, and respiratory syncytial virus infections and are in phase 3 clinical trials for Ebola. We recently demonstrated that HAdV-D26 does not use CD46 or Desmoglein-2 as entry receptors, while the putative interaction with coxsackie and adenovirus receptor is low affinity and unlikely to represent the primary cell receptor. Here, we establish sialic acid as a primary entry receptor used by HAdV-D26. We demonstrate that removal of cell surface sialic acid inhibits HAdV-D26 infection, and provide a high-resolution crystal structure of HAdV-D26 fiber-knob in complex with sialic acid.
Collapse
Affiliation(s)
- Alexander T. Baker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Rosie M. Mundy
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - James A. Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Pierre J. Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|